151
|
Bohnert KA, Rossi AM, Jin QW, Chen JS, Gould KL. Phosphoregulation of the cytokinetic protein Fic1 contributes to fission yeast growth polarity establishment. J Cell Sci 2020; 133:jcs244392. [PMID: 32878942 PMCID: PMC7520453 DOI: 10.1242/jcs.244392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/12/2020] [Indexed: 11/20/2022] Open
Abstract
Cellular polarization underlies many facets of cell behavior, including cell growth. The rod-shaped fission yeast Schizosaccharomyces pombe is a well-established, genetically tractable system for studying growth polarity regulation. S. pombe cells elongate at their two cell tips in a cell cycle-controlled manner, transitioning from monopolar to bipolar growth in interphase when new ends established by the most recent cell division begin to extend. We previously identified cytokinesis as a critical regulator of new end growth and demonstrated that Fic1, a cytokinetic factor, is required for normal polarized growth at new ends. Here, we report that Fic1 is phosphorylated on two C-terminal residues, which are each targeted by multiple protein kinases. Endogenously expressed Fic1 phosphomutants cannot support proper bipolar growth, and the resultant defects facilitate the switch into an invasive pseudohyphal state. Thus, phosphoregulation of Fic1 links the completion of cytokinesis to the re-establishment of polarized growth in the next cell cycle. These findings broaden the scope of signaling events that contribute to regulating S. pombe growth polarity, underscoring that cytokinetic factors constitute relevant targets of kinases affecting new end growth.This article has an associated First Person interview with Anthony M. Rossi, joint first author of the paper.
Collapse
Affiliation(s)
- K Adam Bohnert
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Anthony M Rossi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Quan-Wen Jin
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
152
|
Malecki M, Kamrad S, Ralser M, Bähler J. Mitochondrial respiration is required to provide amino acids during fermentative proliferation of fission yeast. EMBO Rep 2020; 21:e50845. [PMID: 32896087 PMCID: PMC7645267 DOI: 10.15252/embr.202050845] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/07/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
When glucose is available, many organisms repress mitochondrial respiration in favour of aerobic glycolysis, or fermentation in yeast, that suffices for ATP production. Fission yeast cells, however, rely partially on respiration for rapid proliferation under fermentative conditions. Here, we determined the limiting factors that require respiratory function during fermentation. When inhibiting the electron transport chain, supplementation with arginine was necessary and sufficient to restore rapid proliferation. Accordingly, a systematic screen for mutants growing poorly without arginine identified mutants defective in mitochondrial oxidative metabolism. Genetic or pharmacological inhibition of respiration triggered a drop in intracellular levels of arginine and amino acids derived from the Krebs cycle metabolite alpha‐ketoglutarate: glutamine, lysine and glutamic acid. Conversion of arginine into these amino acids was required for rapid proliferation when blocking the respiratory chain. The respiratory block triggered an immediate gene expression response diagnostic of TOR inhibition, which was muted by arginine supplementation or without the AMPK‐activating kinase Ssp1. The TOR‐controlled proteins featured biased composition of amino acids reflecting their shortage after respiratory inhibition. We conclude that respiration supports rapid proliferation in fermenting fission yeast cells by boosting the supply of Krebs cycle‐derived amino acids.
Collapse
Affiliation(s)
- Michal Malecki
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Institute of Healthy Ageing and Research Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Stephan Kamrad
- Institute of Healthy Ageing and Research Department of Genetics, Evolution & Environment, University College London, London, UK.,Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Jürg Bähler
- Institute of Healthy Ageing and Research Department of Genetics, Evolution & Environment, University College London, London, UK
| |
Collapse
|
153
|
van Leeuwen J, Pons C, Tan G, Wang ZY, Hou J, Weile J, Gebbia M, Liang W, Shuteriqi E, Li Z, Lopes M, Ušaj M, Dos Santos Lopes A, van Lieshout N, Myers CL, Roth FP, Aloy P, Andrews BJ, Boone C. Systematic analysis of bypass suppression of essential genes. Mol Syst Biol 2020; 16:e9828. [PMID: 32939983 PMCID: PMC7507402 DOI: 10.15252/msb.20209828] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Essential genes tend to be highly conserved across eukaryotes, but, in some cases, their critical roles can be bypassed through genetic rewiring. From a systematic analysis of 728 different essential yeast genes, we discovered that 124 (17%) were dispensable essential genes. Through whole-genome sequencing and detailed genetic analysis, we investigated the genetic interactions and genome alterations underlying bypass suppression. Dispensable essential genes often had paralogs, were enriched for genes encoding membrane-associated proteins, and were depleted for members of protein complexes. Functionally related genes frequently drove the bypass suppression interactions. These gene properties were predictive of essential gene dispensability and of specific suppressors among hundreds of genes on aneuploid chromosomes. Our findings identify yeast's core essential gene set and reveal that the properties of dispensable essential genes are conserved from yeast to human cells, correlating with human genes that display cell line-specific essentiality in the Cancer Dependency Map (DepMap) project.
Collapse
Affiliation(s)
- Jolanda van Leeuwen
- Center for Integrative
GenomicsBâtiment GénopodeUniversity of LausanneLausanneSwitzerland
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Carles Pons
- Institute for Research in
Biomedicine (IRB Barcelona)The Barcelona Institute for Science and TechnologyBarcelonaSpain
| | - Guihong Tan
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Zi Yang Wang
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
- Department of Molecular
GeneticsUniversity of TorontoTorontoONCanada
| | - Jing Hou
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Jochen Weile
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
- Department of Molecular
GeneticsUniversity of TorontoTorontoONCanada
- Lunenfeld‐Tanenbaum Research
InstituteSinai Health SystemTorontoONCanada
| | - Marinella Gebbia
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
- Lunenfeld‐Tanenbaum Research
InstituteSinai Health SystemTorontoONCanada
| | - Wendy Liang
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Ermira Shuteriqi
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Zhijian Li
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Maykel Lopes
- Center for Integrative
GenomicsBâtiment GénopodeUniversity of LausanneLausanneSwitzerland
| | - Matej Ušaj
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | | | - Natascha van Lieshout
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
- Lunenfeld‐Tanenbaum Research
InstituteSinai Health SystemTorontoONCanada
| | - Chad L Myers
- Department of Computer Science and
EngineeringUniversity of Minnesota‐Twin CitiesMinneapolisMNUSA
| | - Frederick P Roth
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
- Department of Molecular
GeneticsUniversity of TorontoTorontoONCanada
- Lunenfeld‐Tanenbaum Research
InstituteSinai Health SystemTorontoONCanada
- Department of Computer
ScienceUniversity of TorontoTorontoONCanada
| | - Patrick Aloy
- Institute for Research in
Biomedicine (IRB Barcelona)The Barcelona Institute for Science and TechnologyBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Brenda J Andrews
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
- Department of Molecular
GeneticsUniversity of TorontoTorontoONCanada
| | - Charles Boone
- Donnelly Centre for Cellular and
Biomolecular ResearchUniversity of TorontoTorontoONCanada
- Department of Molecular
GeneticsUniversity of TorontoTorontoONCanada
| |
Collapse
|
154
|
De Zoysa T, Phizicky EM. Hypomodified tRNA in evolutionarily distant yeasts can trigger rapid tRNA decay to activate the general amino acid control response, but with different consequences. PLoS Genet 2020; 16:e1008893. [PMID: 32841241 PMCID: PMC7473580 DOI: 10.1371/journal.pgen.1008893] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/04/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
All tRNAs are extensively modified, and modification deficiency often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of any of several tRNA body modifications results in rapid tRNA decay (RTD) of certain mature tRNAs by the 5'-3' exonucleases Rat1 and Xrn1. As tRNA quality control decay mechanisms are not extensively studied in other eukaryotes, we studied trm8Δ mutants in the evolutionarily distant fission yeast Schizosaccharomyces pombe, which lack 7-methylguanosine at G46 (m7G46) of their tRNAs. We report here that S. pombe trm8Δ mutants are temperature sensitive primarily due to decay of tRNATyr(GUA) and that spontaneous mutations in the RAT1 ortholog dhp1+ restored temperature resistance and prevented tRNA decay, demonstrating conservation of the RTD pathway. We also report for the first time evidence linking the RTD and the general amino acid control (GAAC) pathways, which we show in both S. pombe and S. cerevisiae. In S. pombe trm8Δ mutants, spontaneous GAAC mutations restored temperature resistance and tRNA levels, and the trm8Δ temperature sensitivity was precisely linked to GAAC activation due to tRNATyr(GUA) decay. Similarly, in the well-studied S. cerevisiae trm8Δ trm4Δ RTD mutant, temperature sensitivity was closely linked to GAAC activation due to tRNAVal(AAC) decay; however, in S. cerevisiae, GAAC mutations increased tRNA loss and exacerbated temperature sensitivity. A similar exacerbated growth defect occurred upon GAAC mutation in S. cerevisiae trm8Δ and other single modification mutants that triggered RTD. Thus, these results demonstrate a conserved GAAC activation coincident with RTD in S. pombe and S. cerevisiae, but an opposite impact of the GAAC response in the two organisms. We speculate that the RTD pathway and its regulation of the GAAC pathway is widely conserved in eukaryotes, extending to other mutants affecting tRNA body modifications.
Collapse
Affiliation(s)
- Thareendra De Zoysa
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
155
|
Du LL. Resurrection from lethal knockouts: Bypass of gene essentiality. Biochem Biophys Res Commun 2020; 528:405-412. [PMID: 32507598 DOI: 10.1016/j.bbrc.2020.05.207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 01/03/2023]
Abstract
Understanding genotype-phenotype relationships is a central pursuit in biology. Gene knockout generates a complete loss-of-function genotype and is a commonly used approach for probing gene functions. The most severe phenotypic consequence of gene knockout is lethality. Genes with a lethal knockout phenotype are called essential genes. Based on genome-wide knockout analyses in yeasts, up to approximately a quarter of genes in a genome can be essential. Like other genotype-phenotype relationships, gene essentiality is subject to background effects and can vary due to gene-gene interactions. In particular, for some essential genes, lethality caused by knockout can be rescued by extragenic suppressors. Such "bypass of essentiality" (BOE) gene-gene interactions have been an understudied type of genetic suppression. A recent systematic analysis revealed that, remarkably, the essentiality of nearly 30% of essential genes in the fission yeast Schizosaccharomyces pombe can be bypassed by BOE interactions. Here, I review the history and recent progress on uncovering and understanding the bypass of gene essentiality.
Collapse
Affiliation(s)
- Li-Lin Du
- National Institute of Biological Sciences, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
156
|
Hagihara K, Kanda Y, Ishida K, Satoh R, Takasaki T, Maeda T, Sugiura R. Chemical genetic analysis of FTY720- and Ca 2+ -sensitive mutants reveals a functional connection between FTY720 and membrane trafficking. Genes Cells 2020; 25:637-645. [PMID: 32682352 DOI: 10.1111/gtc.12800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/25/2020] [Accepted: 07/05/2020] [Indexed: 11/27/2022]
Abstract
FTY720, a sphingosine-1-phosphate (S1P) analog, is used as an immune modulator to treat multiple sclerosis. Accumulating evidence has suggested the mode of action of FTY720 independent of an S1P modulator. In fission yeast, FTY720 induces an increase in intracellular Ca2+ and ROS levels. We have previously identified 49 genes of which deletion causes FTY720 sensitivity. Here, we characterized the FTY720-sensitive mutants in terms of their relevance to the Ca2+ homeostasis and identified the 16 FTY720- and Ca2+ -sensitive mutants (fcs mutants). Most of the FTY720-sensitive mutants showed elevated Ca2+ levels and exhibited Ca2+ dysregulation by FTY720 treatment. One of the functional categories among the genes whose deletion renders cells susceptible to FTY720 and Ca2+ include the Golgi/endosomal membrane trafficking. Notably, FTY720, but not phosphorylated FTY720 incapable of inducing Ca2+ increase, inhibited the secretion of acid phosphatase in the wild-type cells. Importantly, secretory defects of the Golgi/endosomal trafficking mutants, Vps45, or Ryh1 deletion, were further exacerbated by FTY720. Our fcs mutant screen also identified the adenylyl cyclase-associated protein Cap1 and a Rictor homolog Ste20, whose deletion markedly exacerbated FTY720-sensitive secretory impairment. Collectively, our data may suggest a synergistic impact of FTY720 combined with secretion perturbation on proliferation and Ca2+ homeostasis.
Collapse
Affiliation(s)
- Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka City, Japan.,Laboratory of Hygienic Science, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Yuki Kanda
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka City, Japan
| | - Kouki Ishida
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka City, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka City, Japan
| | - Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka City, Japan
| | - Takuya Maeda
- Laboratory of Hygienic Science, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka City, Japan
| |
Collapse
|
157
|
Comparing the utility of in vivo transposon mutagenesis approaches in yeast species to infer gene essentiality. Curr Genet 2020; 66:1117-1134. [PMID: 32681306 PMCID: PMC7599172 DOI: 10.1007/s00294-020-01096-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
In vivo transposon mutagenesis, coupled with deep sequencing, enables large-scale genome-wide mutant screens for genes essential in different growth conditions. We analyzed six large-scale studies performed on haploid strains of three yeast species (Saccharomyces cerevisiae, Schizosaccaromyces pombe, and Candida albicans), each mutagenized with two of three different heterologous transposons (AcDs, Hermes, and PiggyBac). Using a machine-learning approach, we evaluated the ability of the data to predict gene essentiality. Important data features included sufficient numbers and distribution of independent insertion events. All transposons showed some bias in insertion site preference because of jackpot events, and preferences for specific insertion sequences and short-distance vs long-distance insertions. For PiggyBac, a stringent target sequence limited the ability to predict essentiality in genes with few or no target sequences. The machine learning approach also robustly predicted gene function in less well-studied species by leveraging cross-species orthologs. Finally, comparisons of isogenic diploid versus haploid S. cerevisiae isolates identified several genes that are haplo-insufficient, while most essential genes, as expected, were recessive. We provide recommendations for the choice of transposons and the inference of gene essentiality in genome-wide studies of eukaryotic haploid microbes such as yeasts, including species that have been less amenable to classical genetic studies.
Collapse
|
158
|
Gerien KS, Zhang S, Russell AC, Zhu YH, Purde V, Wu JQ. Roles of Mso1 and the SM protein Sec1 in efficient vesicle fusion during fission yeast cytokinesis. Mol Biol Cell 2020; 31:1570-1583. [PMID: 32432970 PMCID: PMC7521796 DOI: 10.1091/mbc.e20-01-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Membrane trafficking during cytokinesis is essential for the delivery of membrane lipids and cargoes to the division site. However, the molecular mechanisms are still incompletely understood. In this study, we demonstrate the importance of uncharacterized fission yeast proteins Mso1 and Sec1 in membrane trafficking during cytokinesis. Fission yeast Mso1 shares homology with budding yeast Mso1 and human Mint1, proteins that interact with Sec1/Munc18 family proteins during vesicle fusion. Sec1/Munc18 proteins and their interactors are important regulators of SNARE complex formation during vesicle fusion. The roles of these proteins in vesicle trafficking during cytokinesis have been barely studied. Here, we show that fission yeast Mso1 is also a Sec1-binding protein and Mso1 and Sec1 localize to the division site interdependently during cytokinesis. The loss of Sec1 localization in mso1Δ cells results in a decrease in vesicle fusion and cytokinesis defects such as slow ring constriction, defective ring disassembly, and delayed plasma membrane closure. We also find that Mso1 and Sec1 may have functions independent of the exocyst tethering complex on the plasma membrane at the division site. Together, Mso1 and Sec1 play essential roles in regulating vesicle fusion and cargo delivery at the division site during cytokinesis.
Collapse
Affiliation(s)
- Kenneth S Gerien
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210.,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Sha Zhang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Alexandra C Russell
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Yi-Hua Zhu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Vedud Purde
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
159
|
Huraiova B, Kanovits J, Polakova SB, Cipak L, Benko Z, Sevcovicova A, Anrather D, Ammerer G, Duncan CDS, Mata J, Gregan J. Proteomic analysis of meiosis and characterization of novel short open reading frames in the fission yeast Schizosaccharomyces pombe. Cell Cycle 2020; 19:1777-1785. [PMID: 32594847 PMCID: PMC7469465 DOI: 10.1080/15384101.2020.1779470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 01/10/2023] Open
Abstract
Meiosis is the process by which haploid gametes are produced from diploid precursor cells. We used stable isotope labeling by amino acids in cell culture (SILAC) to characterize the meiotic proteome in the fission yeast Schizosaccharomyces pombe. We compared relative levels of proteins extracted from cells harvested around meiosis I with those of meiosis II, and proteins from premeiotic S phase with the interval between meiotic divisions, when S phase is absent. Our proteome datasets revealed peptides corresponding to short open reading frames (sORFs) that have been previously identified by ribosome profiling as new translated regions. We verified expression of selected sORFs by Western blotting and analyzed the phenotype of deletion mutants. Our data provide a resource for studying meiosis that may help understand differences between meiosis I and meiosis II and how S phase is suppressed between the two meiotic divisions.
Collapse
Affiliation(s)
- Barbora Huraiova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Judit Kanovits
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Silvia Bagelova Polakova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Department of Membrane Biochemistry, Inst. Of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zsigmond Benko
- Department of Membrane Biochemistry, Inst. Of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Andrea Sevcovicova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Dorothea Anrather
- Mass Spectrometry Facility and Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter, Austria
| | - Gustav Ammerer
- Mass Spectrometry Facility and Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter, Austria
| | | | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Juraj Gregan
- Department of Chromosome Biology, Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
- Advanced Microscopy Facility, Vienna Biocenter Core Facilities, Vienna, Austria
| |
Collapse
|
160
|
Ahmed Ezzat H, Price C. Characterisation of unessential genes required for survival under conditions of DNA stress. J Genet Eng Biotechnol 2020; 18:14. [PMID: 32372157 PMCID: PMC7201005 DOI: 10.1186/s43141-020-00025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/11/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Genomic instability is a hallmark of cancer. Cancer progression depends on the development and amplification of mutations that alter the cellular response to threats to the genome. This can lead to DNA replication stress and the potential loss of genetic integrity of the newly formed cells. This study utilised fission yeast to map the interactions occurring in some of the most crucial pathways in both DNA replication and checkpoint monitoring involving Rad4, the Schizosaccharomyces pombe (S. pombe) TopBP1 homologue. We have modelled conditions of replication stress in the genetically tractable fission yeast, S. pombe using the hypomorphic rad4-116 allele. Synthetic genetic analysis was used to identify processes required for cell survival under conditions of DNA replication stress. With the aim of mapping the genetic interactions of rad4 and its mutant allele, rad4-116, several genes that could have an interaction with rad4 during replication stress have emerged as attractive. RESULTS Interactions with genes involved in chromatin remodelling, such as hip1, and replication fork stalling resolution, such as mrc1, swi1 and swi3 were explored and confirmed. The interactions of Rad4 with each of the genes provided separate and distinct tumour formation pathways, as evident in the synthetically lethal interactions. Even within the same complex, rad4-116 double mutants behaved differently proving that Rad4 interacts at different levels and functions with the same proteins. CONCLUSION Results from this study provide a novel view of the rad4 interactions, the association of Rad4 with the replisome. The study also provides the groundwork on a theoretical and practical level for the exploration and separation of interactions of TopBP1 with the histone chaperone family and the replisome.
Collapse
Affiliation(s)
- Hassan Ahmed Ezzat
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK.
| | - Clive Price
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
161
|
Gajdušková P, Ruiz de Los Mozos I, Rájecký M, Hluchý M, Ule J, Blazek D. CDK11 is required for transcription of replication-dependent histone genes. Nat Struct Mol Biol 2020; 27:500-510. [PMID: 32367068 PMCID: PMC7116321 DOI: 10.1038/s41594-020-0406-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/05/2020] [Indexed: 01/13/2023]
Abstract
Replication-dependent histones (RDH) are required for packaging of newly synthetized DNA into nucleosomes during S-phase when their expression is highly upregulated. However, the mechanisms of this upregulation in metazoan cells remain poorly understood. Using iCLIP and ChIP-seq, we found that human cyclin-dependent kinase 11 (CDK11) associates with RNA and chromatin of RDH genes primarily in the S-phase. Moreover, its N-terminal region binds FLASH, RDH-specific 3´end processing factor, which keeps the kinase on the chromatin. CDK11 phosphorylates serine 2 (Ser2) of the C-terminal domain (CTD) of RNA polymerase II (RNAPII), which is initiated at the middle of RDH genes and is required for further RNAPII elongation and 3´end processing. CDK11 depletion leads to decreased number of cells in S-phase, likely due to the function of CDK11 in RDH gene expression. Thus, the reliance of RDH expression on CDK11 could explain why CDK11 is essential for growth of many cancers.
Collapse
Affiliation(s)
- Pavla Gajdušková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Igor Ruiz de Los Mozos
- The Francis Crick Institute, London, UK.,Department of Neuromuscular Disease, Institute of Neurology, University College London, London, UK
| | - Michal Rájecký
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Milan Hluchý
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jernej Ule
- The Francis Crick Institute, London, UK.,Department of Neuromuscular Disease, Institute of Neurology, University College London, London, UK
| | - Dalibor Blazek
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
| |
Collapse
|
162
|
Kampmeyer C, Johansen JV, Holmberg C, Karlson M, Gersing SK, Bordallo HN, Kragelund BB, Lerche MH, Jourdain I, Winther JR, Hartmann-Petersen R. Mutations in a Single Signaling Pathway Allow Cell Growth in Heavy Water. ACS Synth Biol 2020; 9:733-748. [PMID: 32142608 DOI: 10.1021/acssynbio.9b00376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Life is completely dependent on water. To analyze the role of water as a solvent in biology, we replaced water with heavy water (D2O) and investigated the biological effects by a wide range of techniques, using Schizosaccharomyces pombe as model organism. We show that high concentrations of D2O lead to altered glucose metabolism and growth retardation. After prolonged incubation in D2O, cells displayed gross morphological changes, thickened cell walls, and aberrant cytoskeletal organization. By transcriptomics and genetic screens, we show that the solvent replacement activates two signaling pathways: (1) the heat-shock response pathway and (2) the cell integrity pathway. Although the heat-shock response system upregulates various chaperones and other stress-relieving enzymes, we find that the activation of this pathway does not offer any fitness advantage to the cells under the solvent-replaced conditions. However, limiting the D2O-triggered activation of the cell integrity pathway allows cell growth when H2O is completely replaced with D2O. The isolated D2O-tolerant strains may aid biological production of deuterated biomolecules.
Collapse
Affiliation(s)
- Caroline Kampmeyer
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Jens V. Johansen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Christian Holmberg
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Magnus Karlson
- Technical University of Denmark, Department of Electrical Engineering, Ørsted Plads, Building 349, DK-2800 Kongens Lyngby, Denmark
| | - Sarah K. Gersing
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Heloisa N. Bordallo
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Birthe B. Kragelund
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
- The REPIN Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Mathilde H. Lerche
- Technical University of Denmark, Department of Electrical Engineering, Ørsted Plads, Building 349, DK-2800 Kongens Lyngby, Denmark
| | - Isabelle Jourdain
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Jakob R. Winther
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
- The REPIN Center, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| |
Collapse
|
163
|
Nguyen HTT, Choi S, Kim S, Lee JH, Park AR, Yu NH, Yoon H, Bae CH, Yeo JH, Choi GJ, Son H, Kim JC. The Hsp90 Inhibitor, Monorden, Is a Promising Lead Compound for the Development of Novel Fungicides. FRONTIERS IN PLANT SCIENCE 2020; 11:371. [PMID: 32300352 PMCID: PMC7144829 DOI: 10.3389/fpls.2020.00371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Endophytic fungi are great resources for the identification of useful natural products such as antimicrobial agents. In this study, we performed the antifungal screening of various plant endophytic fungi against the dollar spot pathogen Sclerotinia homoeocarpa and finally selected Humicola sp. JS-0112 as a potential biocontrol agent. The bioactive compound produced by the strain JS-0112 was identified as monorden known as an inhibitor of heat shock protein 90 (Hsp90). Monorden exhibited strong antagonistic activity against most tested plant pathogenic fungi particularly against tree pathogens and oomycetes with the minimum inhibitory concentration values less than 2.5 μg mL-1. Extensive in planta assays revealed that monorden effectively suppressed the development of several important plant diseases such as rice blast, rice sheath blight, wheat leaf rust, creeping bentgrass dollar spot, and cucumber damping-off. Especially, it showed much stronger disease control efficacy against cucumber damping-off than a synthetic fungicide chlorothalonil. Subsequent molecular genetic analysis of fission yeast and Fusarium graminearum suggested that Hsp90 is a major inhibitory target of monorden, and sequence variation among fungal Hsp90 is a determinant for the dissimilar monorden sensitivity of fungi. This is the first report dealing with the disease control efficacy and antifungal mechanism of monorden against fungal plant diseases and we believe that monorden can be used as a lead molecule for developing novel fungicides with new action mechanism for the control of plant diseases caused by fungi and oomycetes.
Collapse
Affiliation(s)
- Hang T. T. Nguyen
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Soyoung Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Soonok Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, South Korea
| | - Ju-Hee Lee
- GPS Screen Team, Drug R&D Institute, Bioneer Corporation, Daejeon, South Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Nan Hee Yu
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Hyeokjun Yoon
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, South Korea
| | - Chang-Hwan Bae
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, South Korea
| | - Joo Hong Yeo
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, South Korea
| | - Gyung Ja Choi
- Therapeutic & Biotechnology Division, Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
164
|
Size-Dependent Increase in RNA Polymerase II Initiation Rates Mediates Gene Expression Scaling with Cell Size. Curr Biol 2020; 30:1217-1230.e7. [DOI: 10.1016/j.cub.2020.01.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/01/2019] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
|
165
|
Taglini F, Chapman E, van Nues R, Theron E, Bayne EH. Mkt1 is required for RNAi-mediated silencing and establishment of heterochromatin in fission yeast. Nucleic Acids Res 2020; 48:1239-1253. [PMID: 31822915 PMCID: PMC7026591 DOI: 10.1093/nar/gkz1157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/12/2019] [Accepted: 11/28/2019] [Indexed: 01/04/2023] Open
Abstract
Constitutive domains of repressive heterochromatin are maintained within the fission yeast genome through self-reinforcing mechanisms involving histone methylation and small RNAs. Non-coding RNAs generated from heterochromatic regions are processed into small RNAs by the RNA interference pathway, and are subject to silencing through both transcriptional and post-transcriptional mechanisms. While the pathways involved in maintenance of the repressive heterochromatin state are reasonably well understood, less is known about the requirements for its establishment. Here, we describe a novel role for the post-transcriptional regulatory factor Mkt1 in establishment of heterochromatin at pericentromeres in fission yeast. Loss of Mkt1 does not affect maintenance of existing heterochromatin, but does affect its recovery following depletion, as well as de novo establishment of heterochromatin on a mini-chromosome. Pathway dissection revealed that Mkt1 is required for RNAi-mediated post-transcriptional silencing, downstream of small RNA production. Mkt1 physically associates with pericentromeric transcripts, and is additionally required for maintenance of silencing and heterochromatin at centromeres when transcriptional silencing is impaired. Our findings provide new insight into the mechanism of RNAi-mediated post-transcriptional silencing in fission yeast, and unveil an important role for post-transcriptional silencing in establishment of heterochromatin that is dispensable when full transcriptional silencing is imposed.
Collapse
Affiliation(s)
- Francesca Taglini
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Elliott Chapman
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Rob van Nues
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Emmanuelle Theron
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Elizabeth H Bayne
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
166
|
Berry LK, Thomas GH, Thorpe PH. CATS: Cas9-assisted tag switching. A high-throughput method for exchanging genomic peptide tags in yeast. BMC Genomics 2020; 21:221. [PMID: 32156257 PMCID: PMC7063721 DOI: 10.1186/s12864-020-6634-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 02/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The creation of arrays of yeast strains each encoding a different protein with constant tags is a powerful method for understanding how genes and their proteins control cell function. As genetic tools become more sophisticated there is a need to create custom libraries encoding proteins fused with specialised tags to query gene function. These include protein tags that enable a multitude of added functionality, such as conditional degradation, fluorescent labelling, relocalization or activation and also DNA and RNA tags that enable barcoding of genes or their mRNA products. Tools for making new libraries or modifying existing ones are becoming available, but are often limited by the number of strains they can be realistically applied to or by the need for a particular starting library. RESULTS We present a new recombination-based method, CATS - Cas9-Assisted Tag Switching, that switches tags in any existing library of yeast strains. This method employs the reprogrammable RNA guided nuclease, Cas9, to both introduce endogenous double strand breaks into the genome as well as liberating a linear DNA template molecule from a plasmid. It exploits the relatively high efficiency of homologous recombination in budding yeast compared with non-homologous end joining. CONCLUSIONS The method takes less than 2 weeks, is cost effective and can simultaneously introduce multiple genetic changes, thus providing a rapid, genome-wide approach to genetic modification.
Collapse
Affiliation(s)
- Lisa K Berry
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Grace Heredge Thomas
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Peter H Thorpe
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
167
|
Rodríguez-López M, Gonzalez S, Hillson O, Tunnacliffe E, Codlin S, Tallada VA, Bähler J, Rallis C. The GATA Transcription Factor Gaf1 Represses tRNAs, Inhibits Growth, and Extends Chronological Lifespan Downstream of Fission Yeast TORC1. Cell Rep 2020; 30:3240-3249.e4. [PMID: 32160533 PMCID: PMC7068653 DOI: 10.1016/j.celrep.2020.02.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/17/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Target of Rapamycin Complex 1 (TORC1) signaling promotes growth and aging. Inhibition of TORC1 leads to reduced protein translation, which promotes longevity. TORC1-dependent post-transcriptional regulation of protein translation has been well studied, while analogous transcriptional regulation is less understood. Here we screen fission yeast mutants for resistance to Torin1, which inhibits TORC1 and cell growth. Cells lacking the GATA factor Gaf1 (gaf1Δ) grow normally even in high doses of Torin1. The gaf1Δ mutation shortens the chronological lifespan of non-dividing cells and diminishes Torin1-mediated longevity. Expression profiling and genome-wide binding experiments show that upon TORC1 inhibition, Gaf1 directly upregulates genes for small-molecule metabolic pathways and indirectly represses genes for protein translation. Surprisingly, Gaf1 binds to and downregulates the tRNA genes, so it also functions as a transcription factor for RNA polymerase III. Thus, Gaf1 controls the transcription of both protein-coding and tRNA genes to inhibit translation and growth downstream of TORC1.
Collapse
Affiliation(s)
- María Rodríguez-López
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Suam Gonzalez
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, London E14 4LZ, UK
| | - Olivia Hillson
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, London E14 4LZ, UK
| | - Edward Tunnacliffe
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Sandra Codlin
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Victor A Tallada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC, 41013 Sevilla, Spain
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK.
| | - Charalampos Rallis
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK; School of Health, Sport and Bioscience, University of East London, Stratford Campus, London E14 4LZ, UK; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| |
Collapse
|
168
|
Lin H, Zhang X, Liu L, Fu Q, Zang C, Ding Y, Su Y, Xu Z, He S, Yang X, Wei X, Mao H, Cui Y, Wei Y, Zhou C, Du L, Huang N, Zheng N, Wang T, Rao F. Basis for metabolite-dependent Cullin-RING ligase deneddylation by the COP9 signalosome. Proc Natl Acad Sci U S A 2020; 117:4117-4124. [PMID: 32047038 PMCID: PMC7049131 DOI: 10.1073/pnas.1911998117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Cullin-RING ligases (CRLs) are the largest family of ubiquitin E3s activated by neddylation and regulated by the deneddylase COP9 signalosome (CSN). The inositol polyphosphate metabolites promote the formation of CRL-CSN complexes, but with unclear mechanism of action. Here, we provide structural and genetic evidence supporting inositol hexakisphosphate (IP6) as a general CSN cofactor recruiting CRLs. We determined the crystal structure of IP6 in complex with CSN subunit 2 (CSN2), based on which we identified the IP6-corresponding electron density in the cryoelectron microscopy map of a CRL4A-CSN complex. IP6 binds to a cognate pocket formed by conserved lysine residues from CSN2 and Rbx1/Roc1, thereby strengthening CRL-CSN interactions to dislodge the E2 CDC34/UBE2R from CRL and to promote CRL deneddylation. IP6 binding-deficient Csn2K70E/K70E knockin mice are embryonic lethal. The same mutation disabled Schizosaccharomyces pombe Csn2 from rescuing UV-hypersensitivity of csn2-null yeast. These data suggest that CRL transition from the E2-bound active state to the CSN-bound sequestered state is critically assisted by an interfacial IP6 small molecule, whose metabolism may be coupled to CRL-CSN complex dynamics.
Collapse
Affiliation(s)
- Hong Lin
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Xiaozhe Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Li Liu
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Qiuyu Fu
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Chuanlong Zang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, College of Chemistry, Nankai University, 300071 Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071 Tianjin, China
| | - Yan Ding
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Yang Su
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Zhixue Xu
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Sining He
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Xiaoli Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Xiayun Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| | - Haibin Mao
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, WA 98195
| | - Yasong Cui
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Yi Wei
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, College of Chemistry, Nankai University, 300071 Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071 Tianjin, China
| | - Lilin Du
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Niu Huang
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Ning Zheng
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, WA 98195
| | - Tao Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China;
| | - Feng Rao
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China;
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
| |
Collapse
|
169
|
Miao H, Liu Q, Jiang G, Zhang W, Liu K, Gao X, Huo Y, Chen S, Kato T, Sakamoto N, Kuno T, Fang Y. AMPKα Subunit Ssp2 and Glycogen Synthase Kinases Gsk3/Gsk31 are involved in regulation of sterol regulatory element-binding protein (SREBP) activity in fission yeast. PLoS One 2020; 15:e0228845. [PMID: 32053662 PMCID: PMC7018046 DOI: 10.1371/journal.pone.0228845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/23/2020] [Indexed: 11/23/2022] Open
Abstract
Sterol regulatory element-binding protein (SREBP), a highly conserved family of membrane-bound transcription factors, is an essential regulator for cellular cholesterol and lipid homeostasis in mammalian cells. Sre1, the homolog of SREBP in the fission yeast Schizosaccharomyces pombe (S. pombe), regulates genes involved in the transcriptional responses to low sterol as well as low oxygen. Previous study reported that casein kinase 1 family member Hhp2 phosphorylated the Sre1 N-terminal transcriptional factor domain (Sre1N) and accelerated Sre1N degradation, and other kinases might exist for regulating the Sre1 function. To gain insight into the mechanisms underlying the Sre1 activity and to identify additional kinases involved in regulation of Sre1 function, we developed a luciferase reporter system to monitor the Sre1 activity through its binding site called SRE2 in living yeast cells. Here we showed that both ergosterol biosynthesis inhibitors and hypoxia-mimic CoCl2 caused a dose-dependent increase in the Sre1 transcription activity, concurrently, these induced transcription activities were almost abolished in Δsre1 cells. Surprisingly, either AMPKα Subunit Ssp2 deletion or Glycogen Synthase Kinases Gsk3/Gsk31 double deletion significantly suppressed ergosterol biosynthesis inhibitors- or CoCl2-induced Sre1 activity. Notably, the Δssp2Δgsk3Δgsk31 mutant showed further decreased Sre1 activity when compared with their single or double deletion. Consistently, the Δssp2Δgsk3Δgsk31 mutant showed more marked temperature sensitivity than any of their single or double deletion. Moreover, the fluorescence of GFP-Sre1N localized at the nucleus in wild-type cells, but significantly weaker nuclear fluorescence of GFP-Sre1N was observed in Δssp2, Δgsk3Δgsk31, Δssp2Δgsk3, Δssp2Δgsk31 or Δssp2Δgsk3Δgsk31 cells. On the other hand, the immunoblot showed a dramatic decrease in GST-Sre1N levels in the Δgsk3Δgsk31 or the Δssp2Δgsk3Δgsk31 cells but not in the Δssp2 cells. Altogether, our findings suggest that Gsk3/Gsk31 may regulate Sre1N degradation, while Ssp2 may regulate not only the degradation of Sre1N but also its translocation to the nucleus.
Collapse
Affiliation(s)
- Hao Miao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Guanglie Jiang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Wen Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Kun Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Xiang Gao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Yujie Huo
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Toshiaki Kato
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Norihiro Sakamoto
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
- * E-mail:
| |
Collapse
|
170
|
Dramatically diverse Schizosaccharomyces pombe wtf meiotic drivers all display high gamete-killing efficiency. PLoS Genet 2020; 16:e1008350. [PMID: 32032353 PMCID: PMC7032740 DOI: 10.1371/journal.pgen.1008350] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/20/2020] [Accepted: 12/03/2019] [Indexed: 12/27/2022] Open
Abstract
Meiotic drivers are selfish alleles that can force their transmission into more than 50% of the viable gametes made by heterozygotes. Meiotic drivers are known to cause infertility in a diverse range of eukaryotes and are predicted to affect the evolution of genome structure and meiosis. The wtf gene family of Schizosaccharomyces pombe includes both meiotic drivers and drive suppressors and thus offers a tractable model organism to study drive systems. Currently, only a handful of wtf genes have been functionally characterized and those genes only partially reflect the diversity of the wtf gene family. In this work, we functionally test 22 additional wtf genes for meiotic drive phenotypes. We identify eight new drivers that share between 30–90% amino acid identity with previously characterized drivers. Despite the vast divergence between these genes, they generally drive into >85% of gametes when heterozygous. We also identify three wtf genes that suppress other wtf drivers, including two that also act as autonomous drivers. Additionally, we find that wtf genes do not underlie a weak (64% allele transmission) meiotic driver on chromosome 1. Finally, we find that some Wtf proteins have expression or localization patterns that are distinct from the poison and antidote proteins encoded by drivers and suppressors, suggesting some wtf genes may have non-meiotic drive functions. Overall, this work expands our understanding of the wtf gene family and the burden selfish driver genes impose on S. pombe. During gametogenesis, the two gene copies at a given locus, known as alleles, are each transmitted to 50% of the gametes (e.g. sperm). However, some alleles cheat so that they are found in more than the expected 50% of gametes, often at the expense of fertility. This selfish behavior is known as meiotic drive. Some members of the wtf gene family in the fission yeast Schizosaccharomyces pombe kill the gametes (spores) that do not inherit them, resulting in meiotic drive favoring the wtf allele. Other wtf genes act as suppressors of drive. However, the wtf gene family is diverse and only a small subset of the genes has been characterized. Here we analyze the functions of other members of this gene family and found eight new drivers as well as three new suppressors of drive. Surprisingly, we find that drive is relatively insensitive to changes in wtf gene sequence as highly diverged wtf genes execute gamete killing with similar efficiency. Finally, we also find that the expression and localization of some Wtf proteins are distinct from those of known drivers and suppressors, suggesting that these proteins may have non-meiotic drive functions.
Collapse
|
171
|
Kume K. Control of cellular organization and its coordination with the cell cycle. Biosci Biotechnol Biochem 2020; 84:869-875. [PMID: 31987003 DOI: 10.1080/09168451.2020.1717926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cells organize themselves to maintain proper shape, structure, and size during growth and division for their cellular functions. However, how these cellular organizations coordinate with the cell cycle is not well understood. This review focuses on cell morphogenesis and size of the membrane-bound nucleus in the fission yeast Schizosaccharomyces pombe. Growth polarity, an important factor for cell morphogenesis, in rod-shaped fission yeast is restricted to the cell tips and dynamically changes depending on the cell cycle stage. Furthermore, nuclear size in fission yeast is proportional to the cell size, resulting in a constant ratio between nuclear volume and cellular volume (N/C ratio). This review summarizes the signaling pathway(s) involved in growth polarity control and key factors involved in N/C ratio control and provides their roles in coordination between cell organization and the cell cycle.
Collapse
Affiliation(s)
- Kazunori Kume
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
172
|
Dalvie NC, Leal J, Whittaker CA, Yang Y, Brady JR, Love KR, Love JC. Host-Informed Expression of CRISPR Guide RNA for Genomic Engineering in Komagataella phaffii. ACS Synth Biol 2020; 9:26-35. [PMID: 31825599 PMCID: PMC7814401 DOI: 10.1021/acssynbio.9b00372] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is growing interest in the use of nonmodel microorganisms as hosts for biopharmaceutical manufacturing. These hosts require genomic engineering to meet clinically relevant product qualities and titers, but the adaptation of tools for editing genomes, such as CRISPR-Cas9, has been slow for poorly characterized hosts. Specifically, a lack of biochemical characterization of RNA polymerase III transcription has hindered reliable expression of guide RNAs in new hosts. Here, we present a sequencing-based strategy for the design of host-specific cassettes for modular, reliable, expression of guide RNAs. Using this strategy, we achieved up to 95% gene editing efficiency in the methylotrophic yeast Komagataella phaffii. We applied this approach for the rapid, multiplexed engineering of a complex phenotype, achieving humanized product glycosylation in two sequential steps of engineering. Reliable extension of simple gene editing tools to nonmodel manufacturing hosts will enable rapid engineering of manufacturing strains tuned for specific product profiles and potentially decrease the costs and timelines for process development.
Collapse
Affiliation(s)
- Neil C. Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Justin Leal
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Charles A. Whittaker
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Yuchen Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Joseph R. Brady
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Kerry R. Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - J. Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| |
Collapse
|
173
|
Schizosaccharomyces pombe Assays to Study Mitotic Recombination Outcomes. Genes (Basel) 2020; 11:genes11010079. [PMID: 31936815 PMCID: PMC7016768 DOI: 10.3390/genes11010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 01/16/2023] Open
Abstract
The fission yeast—Schizosaccharomyces pombe—has emerged as a powerful tractable system for studying DNA damage repair. Over the last few decades, several powerful in vivo genetic assays have been developed to study outcomes of mitotic recombination, the major repair mechanism of DNA double strand breaks and stalled or collapsed DNA replication forks. These assays have significantly increased our understanding of the molecular mechanisms underlying the DNA damage response pathways. Here, we review the assays that have been developed in fission yeast to study mitotic recombination.
Collapse
|
174
|
Kim SM, Tripathi VP, Shen KF, Forsburg SL. Checkpoint Regulation of Nuclear Tos4 Defines S Phase Arrest in Fission Yeast. G3 (BETHESDA, MD.) 2020; 10:255-266. [PMID: 31719112 PMCID: PMC6945033 DOI: 10.1534/g3.119.400726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/11/2019] [Indexed: 01/21/2023]
Abstract
From yeast to humans, the cell cycle is tightly controlled by regulatory networks that regulate cell proliferation and can be monitored by dynamic visual markers in living cells. We have observed S phase progression by monitoring nuclear accumulation of the FHA-containing DNA binding protein Tos4, which is expressed in the G1/S phase transition. We use Tos4 localization to distinguish three classes of DNA replication mutants: those that arrest with an apparent 1C DNA content and accumulate Tos4 at the restrictive temperature; those that arrest with an apparent 2C DNA content, that do not accumulate Tos4; and those that proceed into mitosis despite a 1C DNA content, again without Tos4 accumulation. Our data indicate that Tos4 localization in these conditions is responsive to checkpoint kinases, with activation of the Cds1 checkpoint kinase promoting Tos4 retention in the nucleus, and activation of the Chk1 damage checkpoint promoting its turnover. Tos4 localization therefore allows us to monitor checkpoint-dependent activation that responds to replication failure in early vs. late S phase.
Collapse
Affiliation(s)
- Seong M Kim
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| | - Vishnu P Tripathi
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| | - Kuo-Fang Shen
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| | - Susan L Forsburg
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| |
Collapse
|
175
|
Abstract
The RNA exosome is a ribonucleolytic multiprotein complex that is conserved and essential in all eukaryotes. Although we tend to speak of "the" exosome complex, it should be more correctly viewed as several different subtypes that share a common core. Subtypes of the exosome complex are present in the cytoplasm, the nucleus and the nucleolus of all eukaryotic cells, and carry out the 3'-5' processing and/or degradation of a wide range of RNA substrates.Because the substrate specificity of the exosome complex is determined by cofactors, the system is highly adaptable, and different organisms have adjusted the machinery to their specific needs. Here, we present an overview of exosome complexes and their cofactors that have been described in different eukaryotes.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Institut für Biochemie, Justus-Liebig-Universität Gießen, Gießen, Germany.
| |
Collapse
|
176
|
Abstract
The evolutionarily conserved RNA exosome is a multisubunit ribonuclease complex that processes and/or degrades numerous RNAs. Recently, mutations in genes encoding both structural and catalytic subunits of the RNA exosome have been linked to human disease. Mutations in the structural exosome gene EXOSC2 cause a distinct syndrome that includes retinitis pigmentosa, hearing loss, and mild intellectual disability. In contrast, mutations in the structural exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are related autosomal recessive, neurodegenerative diseases. In addition, mutations in the structural exosome gene EXOSC9 cause a PCH-like disease with cerebellar atrophy and spinal motor neuronopathy. Finally, mutations in the catalytic exosome gene DIS3 have been linked to multiple myeloma, a neoplasm of plasma B cells. How mutations in these RNA exosome genes lead to distinct, tissue-specific diseases is not currently well understood. In this chapter, we examine the role of the RNA exosome complex in human disease and discuss the mechanisms by which mutations in different exosome subunit genes could impair RNA exosome function and give rise to diverse diseases.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA.
| | - Derrick J Morton
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
| | - Emily G Kuiper
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephanie K Jones
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA, USA
| | - Sara W Leung
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
| | - Anita H Corbett
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA.
| |
Collapse
|
177
|
Heimlicher MB, Bächler M, Liu M, Ibeneche-Nnewihe C, Florin EL, Hoenger A, Brunner D. Reversible solidification of fission yeast cytoplasm after prolonged nutrient starvation. J Cell Sci 2019; 132:jcs.231688. [PMID: 31558680 PMCID: PMC6857596 DOI: 10.1242/jcs.231688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Cells depend on a highly ordered organisation of their content and must develop strategies to maintain the anisotropic distribution of organelles during periods of nutrient shortage. One of these strategies is to solidify the cytoplasm, which was observed in bacteria and yeast cells with acutely interrupted energy production. Here, we describe a different type of cytoplasm solidification fission yeast cells switch to, after having run out of nutrients during multiple days in culture. It provides the most profound reversible cytoplasmic solidification of yeast cells described to date. Our data exclude the previously proposed mechanisms for cytoplasm solidification in yeasts and suggest a mechanism that immobilises cellular components in a size-dependent manner. We provide experimental evidence that, in addition to time, cells use intrinsic nutrients and energy sources to reach this state. Such cytoplasmic solidification may provide a robust means to protect cellular architecture in dormant cells. Summary: After prolonged quiescence, fission yeast cell populations switch state to immobilise subcellular components much more profoundly than cells experiencing acute energy depletion.
Collapse
Affiliation(s)
- Maria B Heimlicher
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mirjam Bächler
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Minghua Liu
- Dept. of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, UCB-0347, Boulder, CO 80309, USA
| | - Chieze Ibeneche-Nnewihe
- Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, TX 78712, USA
| | - Ernst-Ludwig Florin
- Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, TX 78712, USA
| | - Andreas Hoenger
- Dept. of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, UCB-0347, Boulder, CO 80309, USA
| | - Damian Brunner
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
178
|
Mourer T, Brault A, Labbé S. Heme acquisition by Shu1 requires Nbr1 and proteins of the ESCRT complex in Schizosaccharomyces pombe. Mol Microbiol 2019; 112:1499-1518. [PMID: 31442344 DOI: 10.1111/mmi.14374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2019] [Indexed: 12/19/2022]
Abstract
Assimilation of heme is mediated by the cell surface protein Shu1 in Schizosaccharomyces pombe. Shu1 undergoes internalization from the cell surface to the vacuole in response to high concentrations of hemin. Here, we have identified cellular components that are involved in mediating vacuolar targeting of Shu1. Cells deficient in heme biosynthesis and lacking the polyubiquitin gene ubi4+ exhibit poor growth in the presence of exogenous hemin as a sole source of heme. Microscopic analyses of hem1Δ shu1Δ ubi4Δ cells expressing a functional HA4 -tagged Shu1 show that Shu1 localizes to the cell surface. Ubiquitinated Nbr1 functions as a receptor for the endosomal sorting complexes required for transport (ESCRT) that delivers cargos to the vacuole. Inactivation of nbr1+ , ESCRT-0 hse1+ or ESCRT-I sst6+ results in hem1Δ cells being unable to use exogenous hemin for the growth. Using lysate preparations from hemin-treated cells, Shu1-Nbr1 and Shu1-Hse1 complexes are detected by coimmunoprecipitation experiments. Further analysis by immunofluorescence microscopy shows that Shu1 is unable to reach vacuoles of hemin-treated cells harboring a deletion for one of the following genes: ubi4+ , nbr1+ , hse1+ and sst6+ . Together, these results reveal that hemin-mediated vacuolar targeting of Shu1 requires Ubi4-dependent ubiquitination, the receptor Nbr1 and the ESCRT proteins Hse1 and Sst6.
Collapse
Affiliation(s)
- Thierry Mourer
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Ariane Brault
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Simon Labbé
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| |
Collapse
|
179
|
Cellular models of Batten disease. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165559. [PMID: 31655107 PMCID: PMC7338907 DOI: 10.1016/j.bbadis.2019.165559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 12/22/2022]
Abstract
The Neuronal Ceroid Lipofuscinoses (NCL), otherwise known as Batten disease, are a group of neurodegenerative diseases caused by mutations in 13 known genes. All except one NCL is autosomal recessive in inheritance, with similar aetiology and characterised by the accumulation of autofluorescent storage material in the lysosomes of cells. Age of onset and the rate of progression vary between the NCLs. They are collectively one of the most common lysosomal storage diseases, but the enigma remains of how genetically distinct diseases result in such remarkably similar pathogenesis. Much has been learnt from cellular studies about the function of the proteins encoded by the affected genes. Such research has utilised primitive unicellular models such as yeast and amoeba containing gene orthologues, cells derived from naturally occurring (sheep) and genetically engineered (mouse) animal models or patient-derived cells. Most recently, patient-derived induced pluripotent stem cell (iPSC) lines have been differentiated into neural cell-types to study molecular pathogenesis in the cells most profoundly affected by disease. Here, we review how cell models have informed much of the biochemical understanding of the NCLs and how more complex models are being used to further this understanding and potentially act as platforms for therapeutic efficacy studies in the future. Developments made in cellular models for neuronal ceroid lipofuscinosis (NCL) in basic biology and use as therapeutic platforms. Cellular models elucidating function of NCL proteins. NCL proteins implicated in the mTor signalling pathway. Patient-derived induced pluripotent stem cell (iPSC) lines have been differentiated into neural cell-types providing insights into the molecular pathogenesis of NCL.
Collapse
|
180
|
Kim DU, Lee M, Han S, Nam M, Lee S, Lee J, Woo J, Kim D, Hoe KL. Optimization of a microarray for fission yeast. Genomics Inform 2019; 17:e28. [PMID: 31610624 PMCID: PMC6808646 DOI: 10.5808/gi.2019.17.3.e28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/28/2019] [Indexed: 11/30/2022] Open
Abstract
Bar-code (tag) microarrays of yeast gene-deletion collections facilitate the systematic identification of genes required for growth in any condition of interest. Anti-sense strands of amplified bar-codes hybridize with ~10,000 (5,000 each for up- and down-tags) different kinds of sense-strand probes on an array. In this study, we optimized the hybridization processes of an array for fission yeast. Compared to the first version of the array (11 µm, 100K) consisting of three sectors with probe pairs (perfect match and mismatch), the second version (11 µm, 48K) could represent ~10,000 up-/down-tags in quadruplicate along with 1,508 negative controls in quadruplicate and a single set of 1,000 unique negative controls at random dispersed positions without mismatch pairs. For PCR, the optimal annealing temperature (maximizing yield and minimizing extra bands) was 58℃ for both tags. Intriguingly, up-tags required 3× higher amounts of blocking oligonucleotides than down-tags. A 1:1 mix ratio between up- and down-tags was satisfactory. A lower temperature (25℃) was optimal for cultivation instead of a normal temperature (30℃) because of extra temperature-sensitive mutants in a subset of the deletion library. Activation of frozen pooled cells for >1 day showed better resolution of intensity than no activation. A tag intensity analysis showed that tag(s) of 4,316 of the 4,526 strains tested were represented at least once; 3,706 strains were represented by both tags, 4,072 strains by up-tags only, and 3,950 strains by down-tags only. The results indicate that this microarray will be a powerful analytical platform for elucidating currently unknown gene functions.
Collapse
Affiliation(s)
- Dong-Uk Kim
- Aging Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Minho Lee
- Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sangjo Han
- Data Analytics CoE, SK Telecom, Seongnam 13595, Korea
| | - Miyoung Nam
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea
| | - Sol Lee
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea
| | - Jaewoong Lee
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea
| | - Jihye Woo
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea
| | - Dongsup Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Korea
| | - Kwang-Lae Hoe
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
181
|
Bui DC, Kim JE, Shin J, Lim JY, Choi GJ, Lee YW, Seo JA, Son H. ARS2 Plays Diverse Roles in DNA Damage Response, Fungal Development, and Pathogenesis in the Plant Pathogenic Fungus Fusarium graminearum. Front Microbiol 2019; 10:2326. [PMID: 31681199 PMCID: PMC6803386 DOI: 10.3389/fmicb.2019.02326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/24/2019] [Indexed: 11/13/2022] Open
Abstract
Arsenite-resistance protein 2 (Ars2) is an important nuclear protein involved in various RNA metabolisms in animals and plants, but no Ars2 ortholog has been studied in filamentous fungi. Although it is an essential gene in most model eukaryotes, FgARS2 null mutants were viable in the plant pathogenic fungus Fusarium graminearum. The deletion of FgARS2 resulted in pleiotropic defects in various fungal developmental processes. Fgars2 mutants were irregular in nuclear division, and conidial germination was significantly retarded, causing the fungus to manifest its hypersensitive phenotypes under DNA damage stress. While FgARS2 deletion caused abnormal morphologies of ascospores and defective ascospore discharge, our data revealed that FgARS2 was not closely involved in small-non-coding RNA production in F. graminearum. The dominant nuclear localization of FgArs2-green fluorescent proteins (GFP) and abnormal nuclear division in FgARS2 deletion mutant implicated that FgArs2 functions in the nucleus. Intriguingly, we found that FgArs2 established a robust physical interaction with the cap binding complex (CBC) to form a tertiary complex CBC-Ars2 (CBCA), and disruption of any CBCA complex subunit drastically attenuated the virulence of F. graminearum. The results of the study indicate that Ars2 regulates fungal development, stress response, and pathogenesis via interaction with CBC in F. graminearum and provide a novel insight into understanding of the biological functions of Ars2 in filamentous fungi.
Collapse
Affiliation(s)
- Duc-Cuong Bui
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,School of Systems Biomedical Science, Soongsil University, Seoul, South Korea
| | - Jung-Eun Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jiyoung Shin
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jae Yun Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, South Korea
| | - Gyung Ja Choi
- Therapeutic & Biotechnology Division, Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul, South Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
182
|
Kemble H, Nghe P, Tenaillon O. Recent insights into the genotype-phenotype relationship from massively parallel genetic assays. Evol Appl 2019; 12:1721-1742. [PMID: 31548853 PMCID: PMC6752143 DOI: 10.1111/eva.12846] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022] Open
Abstract
With the molecular revolution in Biology, a mechanistic understanding of the genotype-phenotype relationship became possible. Recently, advances in DNA synthesis and sequencing have enabled the development of deep mutational scanning assays, capable of scoring comprehensive libraries of genotypes for fitness and a variety of phenotypes in massively parallel fashion. The resulting empirical genotype-fitness maps pave the way to predictive models, potentially accelerating our ability to anticipate the behaviour of pathogen and cancerous cell populations from sequencing data. Besides from cellular fitness, phenotypes of direct application in industry (e.g. enzyme activity) and medicine (e.g. antibody binding) can be quantified and even selected directly by these assays. This review discusses the technological basis of and recent developments in massively parallel genetics, along with the trends it is uncovering in the genotype-phenotype relationship (distribution of mutation effects, epistasis), their possible mechanistic bases and future directions for advancing towards the goal of predictive genetics.
Collapse
Affiliation(s)
- Harry Kemble
- Infection, Antimicrobials, Modelling, Evolution, INSERM, Unité Mixte de Recherche 1137Université Paris Diderot, Université Paris NordParisFrance
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), UMR CNRS‐ESPCI CBI 8231PSL Research UniversityParis Cedex 05France
| | - Philippe Nghe
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), UMR CNRS‐ESPCI CBI 8231PSL Research UniversityParis Cedex 05France
| | - Olivier Tenaillon
- Infection, Antimicrobials, Modelling, Evolution, INSERM, Unité Mixte de Recherche 1137Université Paris Diderot, Université Paris NordParisFrance
| |
Collapse
|
183
|
Takeda A, Saitoh S, Ohkura H, Sawin KE, Goshima G. Identification of 15 New Bypassable Essential Genes of Fission Yeast. Cell Struct Funct 2019; 44:113-119. [PMID: 31474649 PMCID: PMC6877344 DOI: 10.1247/csf.19025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Every organism has a different set of genes essential for its viability. This indicates that an organism can become tolerant to the loss of an essential gene under certain circumstances during evolution, via the manifestation of 'masked' alternative mechanisms. In our quest to systematically uncover masked mechanisms in eukaryotic cells, we developed an extragenic suppressor screening method using haploid spores deleted of an essential gene in the fission yeast Schizosaccharomyces pombe. We screened for the 'bypass' suppressors of lethality of 92 randomly selected genes that are essential for viability in standard laboratory culture conditions. Remarkably, extragenic mutations bypassed the essentiality of as many as 20 genes (22%), 15 of which have not been previously reported. Half of the bypass-suppressible genes were involved in mitochondria function; we also identified multiple genes regulating RNA processing. 18 suppressible genes were conserved in the budding yeast Saccharomyces cerevisiae, but 13 of them were non-essential in that species. These trends suggest that essentiality bypass is not a rare event and that each organism may be endowed with secondary or backup mechanisms that can substitute for primary mechanisms in various biological processes. Furthermore, the robustness of our simple spore-based methodology paves the way for genome-scale screening.Key words: Schizosaccharomyces pombe, extragenic suppressor screening, bypass of essentiality (BOE), cut7 (kinesin-5), hul5 (E3 ubiquitin ligase).
Collapse
Affiliation(s)
- Aoi Takeda
- Division of Biological Science, Graduate School of Science, Nagoya
University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shigeaki Saitoh
- Division of Cell Biology, Institute of Life Science, Kurume
University, Kurume, Fukuoka 830-0011, Japan
| | - Hiroyuki Ohkura
- Wellcome Centre for Cell Biology, School of Biological Sciences,
University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9
3BF, UK
| | - Kenneth E. Sawin
- Wellcome Centre for Cell Biology, School of Biological Sciences,
University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9
3BF, UK
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya
University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan,Correspondence should be addressed to:
: Phone: +81 52-788-6175
| |
Collapse
|
184
|
Hatje K, Mühlhausen S, Simm D, Kollmar M. The Protein-Coding Human Genome: Annotating High-Hanging Fruits. Bioessays 2019; 41:e1900066. [PMID: 31544971 DOI: 10.1002/bies.201900066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/07/2019] [Indexed: 12/19/2022]
Abstract
The major transcript variants of human protein-coding genes are annotated to a certain degree of accuracy combining manual curation, transcript data, and proteomics evidence. However, there is considerable disagreement on the annotation of about 2000 genes-they can be protein-coding, noncoding, or pseudogenes-and on the annotation of most of the predicted alternative transcripts. Pure transcriptome mapping approaches seem to be limited in discriminating functional expression from noise. These limitations have partially been overcome by dedicated algorithms to detect alternative spliced micro-exons and wobble splice variants. Recently, knowledge about splice mechanism and protein structure are incorporated into an algorithm to predict neighboring homologous exons, often spliced in a mutually exclusive manner. Predicted exons are evaluated by transcript data, structural compatibility, and evolutionary conservation, revealing hundreds of novel coding exons and splice mechanism re-assignments. The emerging human pan-genome is necessitating distinctive annotations incorporating differences between individuals and between populations.
Collapse
Affiliation(s)
- Klas Hatje
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstr. 124, 4070, Basel, Switzerland
| | - Stefanie Mühlhausen
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Dominic Simm
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Goldschmidtstr. 7, 37077, Göttingen, Germany
| | - Martin Kollmar
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
185
|
Zhang J, Liu JL. Temperature-sensitive cytoophidium assembly in Schizosaccharomyces pombe. J Genet Genomics 2019; 46:423-432. [PMID: 31611173 PMCID: PMC6868507 DOI: 10.1016/j.jgg.2019.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
The metabolic enzyme CTP synthase (CTPS) is able to compartmentalize into filaments, termed cytoophidia, in a variety of organisms including bacteria, budding yeast, fission yeast, fruit flies and mammals. A previous study in budding yeast shows that the filament-forming process of CTPS is not sensitive to temperature shift. Here we study CTPS filamentation in the fission yeast Schizosaccharomyces pombe. To our surprise, we find that both the length and the occurrence of cytoophidia in S. pombe decrease upon cold shock or heat shock. The temperature-dependent changes of cytoophidia are fast and reversible. Taking advantage of yeast genetics, we demonstrate that heat-shock proteins are required for cytoophidium assembly in S. pombe. Temperature sensitivity of cytoophidia makes S. pombe an attractive model system for future investigations of this novel membraneless organelle.
Collapse
Affiliation(s)
- Jing Zhang
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Ji-Long Liu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
186
|
Larrimore KE, Rancati G. The conditional nature of gene essentiality. Curr Opin Genet Dev 2019; 58-59:55-61. [PMID: 31470233 DOI: 10.1016/j.gde.2019.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 11/18/2022]
Abstract
Essential genes are classically defined as required for cellular viability and reproductive success. Despite this deceptively simple definition, several lines of evidence suggest that gene essentiality is instead a conditional trait. Indeed, gene essentiality has been shown to depend on the environmental and genetic context as well as the variable ability of cells to acquire adaptive mutations to survive inactivation of seemingly essential genes. Here, we will discuss these findings and highlight the mechanisms underlying the ability of cells to survive an essential gene deletion. Also, since essential genes are prioritized as targets for anticancer therapy, we discuss emergence of bypass resistance mechanisms toward targeted therapies as the result of the conditional nature of gene essentiality. To identify targets associated to a lower risk of relapse (i.e. the return of cancer following remission), we finally call for a coordinated effort to quantify the variable nature of gene essentiality across species, cell types, and growth conditions.
Collapse
Affiliation(s)
- Katherine E Larrimore
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A⁎STAR), 8A Biomedical Grove, Immunos #05, Singapore 138648, Singapore
| | - Giulia Rancati
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A⁎STAR), 8A Biomedical Grove, Immunos #05, Singapore 138648, Singapore.
| |
Collapse
|
187
|
Marte L, Boronat S, García-Santamarina S, Ayté J, Kitamura K, Hidalgo E. Identification of ubiquitin-proteasome system components affecting the degradation of the transcription factor Pap1. Redox Biol 2019; 28:101305. [PMID: 31514053 PMCID: PMC6742857 DOI: 10.1016/j.redox.2019.101305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 01/06/2023] Open
Abstract
Signaling cascades respond to specific inputs, but also require active interventions to be maintained in their basal/inactive levels in the absence of the activating signal(s). In a screen to search for protein quality control components required for wild-type tolerance to oxidative stress in fission yeast, we have isolated eight gene deletions conferring resistance not only to H2O2 but also to caffeine. We show that dual resistance acquisition is totally or partially dependent on the transcription factor Pap1. Some gene products, such as the ribosomal-ubiquitin fusion protein Ubi1, the E2 conjugating enzyme Ubc2 or the E3 ligase Ubr1, participate in basal ubiquitin labeling of Pap1, and others, such as Rpt4, are non-essential constituents of the proteasome. We demonstrate here that basal nucleo-cytoplasmic shuttling of Pap1, occurring even in the absence of stress, is sufficient for the interaction of the transcription factor with nuclear Ubr1, and we identify a 30 amino acids peptide in Pap1 as the degron for this important E3 ligase. The isolated gene deletions increase only moderately the concentration of the transcription factor, but it is sufficient to enhance basal tolerance to stress, probably by disturbing the inactive stage of this signaling cascade.
Collapse
Affiliation(s)
- Luis Marte
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Sarela García-Santamarina
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003, Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Kenji Kitamura
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Doctor Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
188
|
New AM, Lehner B. Harmonious genetic combinations rewire regulatory networks and flip gene essentiality. Nat Commun 2019; 10:3657. [PMID: 31413260 PMCID: PMC6694120 DOI: 10.1038/s41467-019-11523-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022] Open
Abstract
We lack an understanding of how the full range of genetic variants that occur in individuals can interact. To address this shortcoming, here we combine diverse mutations between genes in a model regulatory network, the galactose (GAL) switch of budding yeast. The effects of thousands of pairs of mutations fall into a limited number of phenotypic classes. While these effects are mostly predictable using simple rules that capture the ‘stereotypical’ genetic interactions of the network, some double mutants have unexpected outcomes including constituting alternative functional switches. Each of these ‘harmonious’ genetic combinations exhibits altered dependency on other regulatory genes. These cases illustrate how both pairwise and higher epistasis determines gene essentiality and how combinations of mutations rewire regulatory networks. Together, our results provide an overview of how broad spectra of mutations interact, how these interactions can be predicted, and how diverse genetic solutions can achieve ‘wild-type’ phenotypic behavior. Studying how genetic variants in different genes interact and their combinatorial output is experimentally and analytically challenging. Here, the authors quantify the effects of more than 5000 mutation pairs in the yeast GAL regulatory system, finding that many combinations can be predicted with statistical models.
Collapse
Affiliation(s)
- Aaron M New
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
189
|
Grech L, Jeffares DC, Sadée CY, Rodríguez-López M, Bitton DA, Hoti M, Biagosch C, Aravani D, Speekenbrink M, Illingworth CJR, Schiffer PH, Pidoux AL, Tong P, Tallada VA, Allshire R, Levin HL, Bähler J. Fitness Landscape of the Fission Yeast Genome. Mol Biol Evol 2019; 36:1612-1623. [PMID: 31077324 PMCID: PMC6657727 DOI: 10.1093/molbev/msz113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The relationship between DNA sequence, biochemical function, and molecular evolution is relatively well-described for protein-coding regions of genomes, but far less clear in noncoding regions, particularly, in eukaryote genomes. In part, this is because we lack a complete description of the essential noncoding elements in a eukaryote genome. To contribute to this challenge, we used saturating transposon mutagenesis to interrogate the Schizosaccharomyces pombe genome. We generated 31 million transposon insertions, a theoretical coverage of 2.4 insertions per genomic site. We applied a five-state hidden Markov model (HMM) to distinguish insertion-depleted regions from insertion biases. Both raw insertion-density and HMM-defined fitness estimates showed significant quantitative relationships to gene knockout fitness, genetic diversity, divergence, and expected functional regions based on transcription and gene annotations. Through several analyses, we conclude that transposon insertions produced fitness effects in 66-90% of the genome, including substantial portions of the noncoding regions. Based on the HMM, we estimate that 10% of the insertion depleted sites in the genome showed no signal of conservation between species and were weakly transcribed, demonstrating limitations of comparative genomics and transcriptomics to detect functional units. In this species, 3'- and 5'-untranslated regions were the most prominent insertion-depleted regions that were not represented in measures of constraint from comparative genomics. We conclude that the combination of transposon mutagenesis, evolutionary, and biochemical data can provide new insights into the relationship between genome function and molecular evolution.
Collapse
Affiliation(s)
- Leanne Grech
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Daniel C Jeffares
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Department of Biology and York Biomedical Research Institute, University of York, United Kingdom
| | - Christoph Y Sadée
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - María Rodríguez-López
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Danny A Bitton
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Mimoza Hoti
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Carolina Biagosch
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Dimitra Aravani
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | | | | | - Philipp H Schiffer
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Alison L Pidoux
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Pin Tong
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Victor A Tallada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Robin Allshire
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Henry L Levin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- UCL Genetics Institute, University College London, London, United Kingdom
| |
Collapse
|
190
|
Cipakova I, Jurcik M, Rubintova V, Borbova M, Mikolaskova B, Jurcik J, Bellova J, Barath P, Gregan J, Cipak L. Identification of proteins associated with splicing factors Ntr1, Ntr2, Brr2 and Gpl1 in the fission yeast Schizosaccharomyces pombe. Cell Cycle 2019; 18:1532-1536. [PMID: 31219728 PMCID: PMC6619935 DOI: 10.1080/15384101.2019.1632126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 01/12/2023] Open
Abstract
The spliceosome is a complex molecular machine assembled from many components, which catalyzes the removal of introns from mRNA precursors. Our previous study revealed that the Nrl1 (NRDE-2 like 1) protein associates with spliceosome proteins and regulates pre-mRNA splicing and homologous recombination-dependent R-loop formation in the fission yeast Schizosaccharomyces pombe. Here, we identify proteins associated with splicing factors Ntr1, Ntr2, Brr2 and Gpl1, a poorly characterized G-patch domain-containing protein required for efficient splicing. This work provides new evidence that Nrl1 and splicing factors physically interact and reveals additional insights into the protein interaction network of the spliceosome. We discuss implications of these findings in the light of recent progress in our understanding of how Nrl1 and splicing factors ensure genome stability.
Collapse
Affiliation(s)
- Ingrid Cipakova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Matus Jurcik
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Rubintova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marianna Borbova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Mikolaskova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Jurcik
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Bellova
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Barath
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Juraj Gregan
- Advanced Microscopy Facility, VBCF and Department of Chromosome Biology, MFPL, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
191
|
Schwartz C, Cheng JF, Evans R, Schwartz CA, Wagner JM, Anglin S, Beitz A, Pan W, Lonardi S, Blenner M, Alper HS, Yoshikuni Y, Wheeldon I. Validating genome-wide CRISPR-Cas9 function improves screening in the oleaginous yeast Yarrowia lipolytica. Metab Eng 2019; 55:102-110. [PMID: 31216436 DOI: 10.1016/j.ymben.2019.06.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022]
Abstract
Genome-wide mutational screens are central to understanding the genetic underpinnings of evolved and engineered phenotypes. The widespread adoption of CRISPR-Cas9 genome editing has enabled such screens in many organisms, but identifying functional sgRNAs still remains a challenge. Here, we developed a methodology to quantify the cutting efficiency of each sgRNA in a genome-scale library, and in doing so improve screens in the biotechnologically important yeast Yarrowia lipolytica. Screening in the presence and absence of native DNA repair enabled high-throughput quantification of sgRNA function leading to the identification of high efficiency sgRNAs that cover 94% of genes. Library validation enhanced the classification of essential genes by identifying inactive guides that create false negatives and mask the effects of successful disruptions. Quantification of guide effectiveness also creates a dataset from which determinants of CRISPR-Cas9 can be identified. Finally, application of the library identified novel mutations for metabolic engineering of high lipid accumulation.
Collapse
Affiliation(s)
- Cory Schwartz
- Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, 94598, USA
| | - Robert Evans
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, 94598, USA
| | - Christopher A Schwartz
- Department of Civil and Mechanical Engineering, United States Military Academy, West Point, NY, 10996, USA
| | - James M Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Scott Anglin
- Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Adam Beitz
- Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Weihua Pan
- Computer Science and Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Stefano Lonardi
- Computer Science and Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Mark Blenner
- Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA
| | - Yasuo Yoshikuni
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, 94598, USA
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
192
|
Nurse P, Hayles J. Using genetics to understand biology. Heredity (Edinb) 2019; 123:4-13. [PMID: 31189902 PMCID: PMC6781147 DOI: 10.1038/s41437-019-0209-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Paul Nurse
- The Francis Crick Institute, 1, Midland Road, London, NW1 1AT, UK
| | | |
Collapse
|
193
|
Abstract
Natural selection works best when the two alleles in a diploid organism are transmitted to offspring at equal frequencies. Despite this, selfish loci known as meiotic drivers that bias their own transmission into gametes are found throughout eukaryotes. Drive is thought to be a powerful evolutionary force, but empirical evolutionary analyses of drive systems are limited by low numbers of identified meiotic drive genes. Here, we analyze the evolution of the wtf gene family of Schizosaccharomyces pombe that contains both killer meiotic drive genes and suppressors of drive. We completed assemblies of all wtf genes for two S. pombe isolates, as well as a subset of wtf genes from over 50 isolates. We find that wtf copy number can vary greatly between isolates and that amino acid substitutions, expansions and contractions of DNA sequence repeats, and nonallelic gene conversion between family members all contribute to dynamic wtf gene evolution. This work demonstrates the power of meiotic drive to foster rapid evolution and identifies a recombination mechanism through which transposons can indirectly mobilize meiotic drivers.
Collapse
Affiliation(s)
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sarah E Zanders
- Stowers Institute for Medical Research, Kansas City, MO
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
194
|
Preston MA, Porter DF, Chen F, Buter N, Lapointe CP, Keles S, Kimble J, Wickens M. Unbiased screen of RNA tailing activities reveals a poly(UG) polymerase. Nat Methods 2019; 16:437-445. [PMID: 30988468 PMCID: PMC6613791 DOI: 10.1038/s41592-019-0370-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/24/2019] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
Abstract
Ribonucleotidyl transferases (rNTases) add untemplated ribonucleotides to diverse RNAs. We have developed TRAID-seq, a screening strategy in Saccharomyces cerevisiae to identify sequences added to a reporter RNA at single-nucleotide resolution by overexpressed candidate enzymes from different organisms. The rNTase activities of 22 previously unexplored enzymes were determined. In addition to poly(A)- and poly(U)-adding enzymes, we identified a cytidine-adding enzyme that is likely to be part of a two-enzyme system that adds CCA to tRNAs in a eukaryote; a nucleotidyl transferase that adds nucleotides to RNA without apparent nucleotide preference; and a poly(UG) polymerase, Caenorhabditis elegans MUT-2, that adds alternating uridine and guanosine nucleotides to form poly(UG) tails. MUT-2 is known to be required for certain forms of RNA silencing, and mutants of the enzyme that result in defective silencing did not add poly(UG) tails in our assay. We propose that MUT-2 poly(UG) polymerase activity is required to promote genome integrity and RNA silencing.
Collapse
Affiliation(s)
- Melanie A Preston
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Promega Corporation, Madison, WI, USA
| | - Douglas F Porter
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Program in Epithelial Biology, Stanford University Medical School, Stanford, CA, USA
| | - Fan Chen
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Natascha Buter
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Promega Corporation, Madison, WI, USA
| | - Christopher P Lapointe
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
| | - Sunduz Keles
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
195
|
Nuclear membrane protein Lem2 regulates nuclear size through membrane flow. Nat Commun 2019; 10:1871. [PMID: 31015410 PMCID: PMC6478680 DOI: 10.1038/s41467-019-09623-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/18/2019] [Indexed: 11/08/2022] Open
Abstract
The size of the membrane-bound nucleus scales with cell size in a wide range of cell types but the mechanisms determining overall nuclear size remain largely unknown. Here we investigate the role of fission yeast inner nuclear membrane proteins in determining nuclear size, and propose that the Lap2-Emerin-Man1 domain protein Lem2 acts as a barrier to membrane flow between the nucleus and other parts of the cellular membrane system. Lem2 deletion increases membrane flow into and out of the nuclear envelope in response to changes in membrane synthesis and nucleocytoplasmic transport, altering nuclear size. The endoplasmic reticulum protein Lnp1 acts as a secondary barrier to membrane flow, functionally compensating for lack of Lem2. We propose that this is part of the mechanism that maintains nuclear size proportional to cellular membrane content and thus to cell size. Similar regulatory principles may apply to other organelles in the eukaryotic subcellular membrane network.
Collapse
|
196
|
Vassiliadis D, Wong KH, Andrianopoulos A, Monahan BJ. A genome-wide analysis of carbon catabolite repression in Schizosaccharomyces pombe. BMC Genomics 2019; 20:251. [PMID: 30922219 PMCID: PMC6440086 DOI: 10.1186/s12864-019-5602-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Optimal glucose metabolism is central to the growth and development of cells. In microbial eukaryotes, carbon catabolite repression (CCR) mediates the preferential utilization of glucose, primarily by repressing alternate carbon source utilization. In fission yeast, CCR is mediated by transcriptional repressors Scr1 and the Tup/Ssn6 complex, with the Rst2 transcription factor important for activation of gluconeogenesis and sexual differentiation genes upon derepression. Through genetic and genome-wide methods, this study aimed to comprehensively characterize CCR in fission yeast by identifying the genes and biological processes that are regulated by Scr1, Tup/Ssn6 and Rst2, the core CCR machinery. RESULTS The transcriptional response of fission yeast to glucose-sufficient or glucose-deficient growth conditions in wild type and CCR mutant cells was determined by RNA-seq and ChIP-seq. Scr1 was found to regulate genes involved in carbon metabolism, hexose uptake, gluconeogenesis and the TCA cycle. Surprisingly, a role for Scr1 in the suppression of sexual differentiation was also identified, as homothallic scr1 deletion mutants showed ectopic meiosis in carbon and nitrogen rich conditions. ChIP-seq characterised the targets of Tup/Ssn6 and Rst2 identifying regulatory roles within and independent of CCR. Finally, a subset of genes bound by all three factors was identified, implying that regulation of certain loci may be modulated in a competitive fashion between the Scr1, Tup/Ssn6 repressors and the Rst2 activator. CONCLUSIONS By identifying the genes directly and indirectly regulated by Scr1, Tup/Ssn6 and Rst2, this study comprehensively defined the gene regulatory networks of CCR in fission yeast and revealed the transcriptional complexities governing this system.
Collapse
Affiliation(s)
- Dane Vassiliadis
- Genetics, Genomics & Systems Biology, School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia. .,Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, Victoria, Australia.
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China
| | - Alex Andrianopoulos
- Genetics, Genomics & Systems Biology, School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Brendon J Monahan
- Genetics, Genomics & Systems Biology, School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia. .,Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, Victoria, Australia. .,Cancer Therapeutics (CTx), Parkville, Victoria, Australia.
| |
Collapse
|
197
|
Price C, Gill S, Ho ZV, Davidson SM, Merkel E, McFarland JM, Leung L, Tang A, Kost-Alimova M, Tsherniak A, Jonas O, Vazquez F, Hahn WC. Genome-Wide Interrogation of Human Cancers Identifies EGLN1 Dependency in Clear Cell Ovarian Cancers. Cancer Res 2019; 79:2564-2579. [PMID: 30898838 DOI: 10.1158/0008-5472.can-18-2674] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/18/2019] [Accepted: 03/14/2019] [Indexed: 12/17/2022]
Abstract
We hypothesized that candidate dependencies for which there are small molecules that are either approved or in advanced development for a nononcology indication may represent potential therapeutic targets. To test this hypothesis, we performed genome-scale loss-of-function screens in hundreds of cancer cell lines. We found that knockout of EGLN1, which encodes prolyl hydroxylase domain-containing protein 2 (PHD2), reduced the proliferation of a subset of clear cell ovarian cancer cell lines in vitro. EGLN1-dependent cells exhibited sensitivity to the pan-EGLN inhibitor FG-4592. The response to FG-4592 was reversed by deletion of HIF1A, demonstrating that EGLN1 dependency was related to negative regulation of HIF1A. We also found that ovarian clear cell tumors susceptible to both genetic and pharmacologic inhibition of EGLN1 required intact HIF1A. Collectively, these observations identify EGLN1 as a cancer target with therapeutic potential. SIGNIFICANCE: These findings reveal a differential dependency of clear cell ovarian cancers on EGLN1, thus identifying EGLN1 as a potential therapeutic target in clear cell ovarian cancer patients.
Collapse
Affiliation(s)
- Colles Price
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Stanley Gill
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zandra V Ho
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Shawn M Davidson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Erin Merkel
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Lisa Leung
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Andrew Tang
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Aviad Tsherniak
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Oliver Jonas
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Francisca Vazquez
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - William C Hahn
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
198
|
Jain A, Perisa D, Fliedner F, von Haeseler A, Ebersberger I. The Evolutionary Traceability of a Protein. Genome Biol Evol 2019; 11:531-545. [PMID: 30649284 PMCID: PMC6394115 DOI: 10.1093/gbe/evz008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Orthologs document the evolution of genes and metabolic capacities encoded in extant and ancient genomes. However, the similarity between orthologs decays with time, and ultimately it becomes insufficient to infer common ancestry. This leaves ancient gene set reconstructions incomplete and distorted to an unknown extent. Here we introduce the “evolutionary traceability” as a measure that quantifies, for each protein, the evolutionary distance beyond which the sensitivity of the ortholog search becomes limiting. Using yeast, we show that genes that were thought to date back to the last universal common ancestor are of high traceability. Their functions mostly involve catalysis, ion transport, and ribonucleoprotein complex assembly. In turn, the fraction of yeast genes whose traceability is not sufficient to infer their presence in last universal common ancestor is enriched for regulatory functions. Computing the traceabilities of genes that have been experimentally characterized as being essential for a self-replicating cell reveals that many of the genes that lack orthologs outside bacteria have low traceability. This leaves open whether their orthologs in the eukaryotic and archaeal domains have been overlooked. Looking at the example of REC8, a protein essential for chromosome cohesion, we demonstrate how a traceability-informed adjustment of the search sensitivity identifies hitherto missed orthologs in the fast-evolving microsporidia. Taken together, the evolutionary traceability helps to differentiate between true absence and nondetection of orthologs, and thus improves our understanding about the evolutionary conservation of functional protein networks. “protTrace,” a software tool for computing evolutionary traceability, is freely available at https://github.com/BIONF/protTrace.git; last accessed February 10, 2019.
Collapse
Affiliation(s)
- Arpit Jain
- Applied Bioinformatics Group, Institute of Cell Biology & Neuroscience, Goethe University, Frankfurt, Germany
| | - Dominik Perisa
- Applied Bioinformatics Group, Institute of Cell Biology & Neuroscience, Goethe University, Frankfurt, Germany
| | - Fabian Fliedner
- Applied Bioinformatics Group, Institute of Cell Biology & Neuroscience, Goethe University, Frankfurt, Germany
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University Vienna, Austria.,Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Austria
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology & Neuroscience, Goethe University, Frankfurt, Germany.,Senckenberg Biodiversity and Climate Research Center (BiK-F), Frankfurt, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| |
Collapse
|
199
|
Vijayakumari D, Sharma AK, Bawa PS, Kumar R, Srinivasan S, Vijayraghavan U. Early splicing functions of fission yeast Prp16 and its unexpected requirement for gene Silencing is governed by intronic features. RNA Biol 2019; 16:754-769. [PMID: 30810475 DOI: 10.1080/15476286.2019.1585737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Prp16 is a DEAH box pre-mRNA splicing factor that triggers a key spliceosome conformational switch to facilitate second step splicing in Saccharomyces cerevisiae. However, Prp16 functions are largely unexplored in Schizosaccharomyces pombe, an attractive model with exon-intron architecture more relevant to several other eukaryotes. Here, we generated mis-sense alleles in SpPrp16 whose consequences on genome-wide splicing uncover its nearly global splicing role with only a small subset of unaffected introns. Prp16 dependent and independent intron categories displayed a striking difference in the strength of intronic 5' splice site (5'SS)-U6 snRNA and branch site (BS)-U2 snRNA interactions. Selective weakening of these interactions could convert a Prp16 dependent intron into an independent one. These results point to the role of SpPrp16 in destabilizing 5'SS-U6snRNA and BS-U2snRNA interactions which plausibly trigger structural alterations in the spliceosome to facilitate first step catalysis. Our data suggest that SpPrp16 interactions with early acting factors, its enzymatic activities and association with intronic elements collectively account for efficient and accurate first step catalysis. In addition to splicing derangements in the spprp16F528S mutant, we show that SpPrp16 influences cell cycle progression and centromeric heterochromatinization. We propose that strong 5'SS-U6 snRNA and BS-U2 snRNA complementarity of intron-like elements in non-coding RNAs which lead to complete splicing arrest and impaired Seb1 functions at the pericentromeric loci may cumulatively account for the heterochromatin defects in spprp16F528S cells. These findings suggest that the diverse Prp16 functions within a genome are likely governed by its intronic features that influence splice site-snRNA interaction strength.
Collapse
Affiliation(s)
- Drisya Vijayakumari
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | - Amit Kumar Sharma
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | | | - Rakesh Kumar
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | | | - Usha Vijayraghavan
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| |
Collapse
|
200
|
Auxin-Inducible Depletion of the Essentialome Suggests Inhibition of TORC1 by Auxins and Inhibition of Vrg4 by SDZ 90-215, a Natural Antifungal Cyclopeptide. G3-GENES GENOMES GENETICS 2019; 9:829-840. [PMID: 30670608 PMCID: PMC6404609 DOI: 10.1534/g3.118.200748] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gene knockout and knockdown strategies have been immensely successful probes of gene function, but small molecule inhibitors (SMIs) of gene products allow much greater time resolution and are particularly useful when the targets are essential for cell replication or survival. SMIs also serve as lead compounds for drug discovery. However, discovery of selective SMIs is costly and inefficient. The action of SMIs can be modeled simply by tagging gene products with an auxin-inducible degron (AID) that triggers rapid ubiquitylation and proteasomal degradation of the tagged protein upon exposure of live cells to auxin. To determine if this approach is broadly effective, we AID-tagged over 750 essential proteins in Saccharomyces cerevisiae and observed growth inhibition by low concentrations of auxin in over 66% of cases. Polytopic transmembrane proteins in the plasma membrane, Golgi complex, and endoplasmic reticulum were efficiently depleted if the AID-tag was exposed to cytoplasmic OsTIR1 ubiquitin ligase. The auxin analog 1-napthylacetic acid (NAA) was as potent as auxin on AID-tags, but surprisingly NAA was more potent than auxin at inhibiting target of rapamycin complex 1 (TORC1) function. Auxin also synergized with known SMIs when acting on the same essential protein, indicating that AID-tagged strains can be useful for SMI screening. Auxin synergy, resistance mutations, and cellular assays together suggest the essential GMP/GDP-mannose exchanger in the Golgi complex (Vrg4) as the target of a natural cyclic peptide of unknown function (SDZ 90-215). These findings indicate that AID-tagging can efficiently model the action of SMIs before they are discovered and can facilitate SMI discovery.
Collapse
|