151
|
STAT3 promotes melanoma metastasis by CEBP-induced repression of the MITF pathway. Oncogene 2020; 40:1091-1105. [PMID: 33323974 PMCID: PMC7116782 DOI: 10.1038/s41388-020-01584-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 10/30/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022]
Abstract
Metastatic melanoma is hallmarked by its ability of phenotype switching to more slowly proliferating, but highly invasive cells. Here, we tested the impact of signal transducer and activator of transcription 3 (STAT3) on melanoma progression in association with melanocyte inducing transcription factor (MITF) expression levels. We established a mouse melanoma model for deleting Stat3 in melanocytes with specific expression of human hyperactive NRASQ61K in an Ink4a deficient background, two frequent driver mutations in human melanoma. Mice devoid of Stat3 showed early disease onset with higher proliferation in primary tumors, but displayed significantly diminished lung, brain and liver metastases. Whole genome expression profiling of tumor-derived cells also showed a reduced invasion phenotype, which was further corroborated by 3D melanoma model analysis. Notably, loss or knockdown of STAT3 in mouse or human cells resulted in up-regulation of MITF and induction of cell proliferation. Mechanistically we show that STAT3-induced CEBPa/b expression was sufficient to suppress MITF transcription. Epigenetic analysis by ATAC-seq confirmed that CEBPa/b binding to the MITF enhancer region silenced the MITF locus. Finally, by classification of patient-derived melanoma samples, we show that STAT3 and MITF act antagonistically and hence contribute differentially to melanoma progression. We conclude that STAT3 is a driver of the metastatic process in melanoma and able to antagonize MITF via direct induction of CEBP family member transcription.
Collapse
|
152
|
Shim WJ, Sinniah E, Xu J, Vitrinel B, Alexanian M, Andreoletti G, Shen S, Sun Y, Balderson B, Boix C, Peng G, Jing N, Wang Y, Kellis M, Tam PPL, Smith A, Piper M, Christiaen L, Nguyen Q, Bodén M, Palpant NJ. Conserved Epigenetic Regulatory Logic Infers Genes Governing Cell Identity. Cell Syst 2020; 11:625-639.e13. [PMID: 33278344 PMCID: PMC7781436 DOI: 10.1016/j.cels.2020.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/31/2020] [Accepted: 11/09/2020] [Indexed: 01/06/2023]
Abstract
Determining genes that orchestrate cell differentiation in development and disease remains a fundamental goal of cell biology. This study establishes a genome-wide metric based on the gene-repressive trimethylation of histone H3 at lysine 27 (H3K27me3) across hundreds of diverse cell types to identify genetic regulators of cell differentiation. We introduce a computational method, TRIAGE, which uses discordance between gene-repressive tendency and expression to identify genetic drivers of cell identity. We apply TRIAGE to millions of genome-wide single-cell transcriptomes, diverse omics platforms, and eukaryotic cells and tissue types. Using a wide range of data, we validate the performance of TRIAGE in identifying cell-type-specific regulatory factors across diverse species including human, mouse, boar, bird, fish, and tunicate. Using CRISPR gene editing, we use TRIAGE to experimentally validate RNF220 as a regulator of Ciona cardiopharyngeal development and SIX3 as required for differentiation of endoderm in human pluripotent stem cells. A record of this paper’s transparent peer review process is included in the Supplemental Information. Perturbing genes controlling cell decisions have major implications in development or disease. However, identifying key regulatory genes from the thousands expressed in a cell is challenging. TRIAGE is a computational method that distills patterns of epigenetic repression across diverse cell types to infer regulatory genes using input gene expression data from any cell type. Demonstrating its utility, we combine single-cell RNA-seq and TRIAGE to identify and experimentally confirm novel regulators of heart development in evolutionarily distant species.
Collapse
Affiliation(s)
- Woo Jun Shim
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Enakshi Sinniah
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jun Xu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Burcu Vitrinel
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Michael Alexanian
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
| | - Gaia Andreoletti
- Institute for Computational Health Sciences, University of California, San Francisco, CA 94158, USA
| | - Sophie Shen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Yuliangzi Sun
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Brad Balderson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Carles Boix
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Guangdun Peng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences and Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Naihe Jing
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences and Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuliang Wang
- Paul G. Allen School of Computer Science and Engineering and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | - Patrick P L Tam
- The University of Sydney, Children's Medical Research Institute, and School of Medical Sciences, Faculty of Medicine and Health, Westmead, NSW 2145, Australia
| | - Aaron Smith
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
153
|
Minnoye L, Taskiran II, Mauduit D, Fazio M, Van Aerschot L, Hulselmans G, Christiaens V, Makhzami S, Seltenhammer M, Karras P, Primot A, Cadieu E, van Rooijen E, Marine JC, Egidy G, Ghanem GE, Zon L, Wouters J, Aerts S. Cross-species analysis of enhancer logic using deep learning. Genome Res 2020; 30:1815-1834. [PMID: 32732264 PMCID: PMC7706731 DOI: 10.1101/gr.260844.120] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022]
Abstract
Deciphering the genomic regulatory code of enhancers is a key challenge in biology because this code underlies cellular identity. A better understanding of how enhancers work will improve the interpretation of noncoding genome variation and empower the generation of cell type-specific drivers for gene therapy. Here, we explore the combination of deep learning and cross-species chromatin accessibility profiling to build explainable enhancer models. We apply this strategy to decipher the enhancer code in melanoma, a relevant case study owing to the presence of distinct melanoma cell states. We trained and validated a deep learning model, called DeepMEL, using chromatin accessibility data of 26 melanoma samples across six different species. We show the accuracy of DeepMEL predictions on the CAGI5 challenge, where it significantly outperforms existing models on the melanoma enhancer of IRF4 Next, we exploit DeepMEL to analyze enhancer architectures and identify accurate transcription factor binding sites for the core regulatory complexes in the two different melanoma states, with distinct roles for each transcription factor, in terms of nucleosome displacement or enhancer activation. Finally, DeepMEL identifies orthologous enhancers across distantly related species, where sequence alignment fails, and the model highlights specific nucleotide substitutions that underlie enhancer turnover. DeepMEL can be used from the Kipoi database to predict and optimize candidate enhancers and to prioritize enhancer mutations. In addition, our computational strategy can be applied to other cancer or normal cell types.
Collapse
Affiliation(s)
- Liesbeth Minnoye
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Ibrahim Ihsan Taskiran
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - David Mauduit
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Maurizio Fazio
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Linde Van Aerschot
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
- Laboratory for Disease Mechanisms in Cancer, KU Leuven, 3000 Leuven, Belgium
| | - Gert Hulselmans
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Valerie Christiaens
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Samira Makhzami
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Monika Seltenhammer
- Center for Forensic Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Division of Livestock Sciences (NUWI) - BOKU University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Panagiotis Karras
- VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium
- KU Leuven, Department of Oncology KU Leuven, 3000 Leuven, Belgium
| | - Aline Primot
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, 35000 Rennes, France
| | - Edouard Cadieu
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, 35000 Rennes, France
| | - Ellen van Rooijen
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Jean-Christophe Marine
- VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium
- KU Leuven, Department of Oncology KU Leuven, 3000 Leuven, Belgium
| | - Giorgia Egidy
- Université Paris-Saclay, INRA, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Ghanem-Elias Ghanem
- Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Leonard Zon
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Jasper Wouters
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Stein Aerts
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
154
|
Chen GL, Li R, Chen XX, Wang J, Cao S, Song R, Zhao MC, Li LM, Hannemmann N, Schett G, Qian C, Bozec A. Fra-2/AP-1 regulates melanoma cell metastasis by downregulating Fam212b. Cell Death Differ 2020; 28:1364-1378. [PMID: 33188281 DOI: 10.1038/s41418-020-00660-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Metastatic melanoma remains a challenging disease. Understanding the molecular mechanisms how melanoma becomes metastatic is therefore of interest. Herein we show that downregulation of the AP-1 transcription factor member Fra-2 in melanoma cells is associated with an aggressive melanoma phenotype in vitro and in vivo. In vitro, Fra-2 knockdown in melanoma cells promoted cell migration and invasion associated with increased Snail-1, Twist-1/2, and matrix metalloproteinase-2 (MMP-2) expression. In vivo, Fra-2 knockdown in a melanoma cell line led to increased metastasis into the lungs and liver. The increased metastatic potential of Fra-2 knockdown melanoma cells was likely due to an accelerated cell cycle transition and increased tissue angiogenesis. Using Fra-2 knockdown cell lines microarray analysis, we identified the protein Fam212b (family with sequence similarity 212 member B) as a downstream target of Fra-2. By additional knockdown of Fam212b in Fra-2 mutant cells, we mitigated the cell migration, invasion, and cell cycle transition phenotype induced by Fra-2 knockdown. Furthermore, Fam212b overexpression enhanced β-catenin pathway. Finally, Fam212b expression is correlated with increased melanoma metastasis and poor clinical outcomes in human patients. In summary, these findings reveal the Fra-2-Fam212b axis as a new pathway of melanoma metastasis, which can be in the future used as potential marker of the metastatic properties of melanoma.
Collapse
Affiliation(s)
- Guang-Liang Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Li
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Rheumatology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiao-Xiang Chen
- Department of Rheumatology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Rheumatology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shan Cao
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Rheumatology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Rui Song
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Rheumatology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ming-Chun Zhao
- Department of Pathology, Guilin People's Hospital, Guilin, Guangxi, China
| | - Li-Ming Li
- Department of Pediatric Surgery, Guigang People's Hospital, Guigang, Guangxi, China
| | - Nicole Hannemmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Cheng Qian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aline Bozec
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
155
|
Human Endogenous Retrovirus K Rec forms a Regulatory Loop with MITF that Opposes the Progression of Melanoma to an Invasive Stage. Viruses 2020; 12:v12111303. [PMID: 33202765 PMCID: PMC7696977 DOI: 10.3390/v12111303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
The HML2 subfamily of HERV-K (henceforth HERV-K) represents the most recently endogenized retrovirus in the human genome. While the products of certain HERV-K genomic copies are expressed in normal tissues, they are upregulated in several pathological conditions, including various tumors. It remains unclear whether HERV-K(HML2)-encoded products overexpressed in cancer contribute to disease progression or are merely by-products of tumorigenesis. Here, we focus on the regulatory activities of the Long Terminal Repeats (LTR5_Hs) of HERV-K and the potential role of the HERV-K-encoded Rec in melanoma. Our regulatory genomics analysis of LTR5_Hs loci indicates that Melanocyte Inducing Transcription Factor (MITF) (also known as binds to a canonical E-box motif (CA(C/T)GTG) within these elements in proliferative type of melanoma, and that depletion of MITF results in reduced HERV-K expression. In turn, experimentally depleting Rec in a proliferative melanoma cell line leads to lower mRNA levels of MITF and its predicted target genes. Furthermore, Rec knockdown leads to an upregulation of epithelial-to-mesenchymal associated genes and an enhanced invasion phenotype of proliferative melanoma cells. Together these results suggest the existence of a regulatory loop between MITF and Rec that may modulate the transition from proliferative to invasive stages of melanoma. Because HERV-K(HML2) elements are restricted to hominoid primates, these findings might explain certain species-specific features of melanoma progression and point to some limitations of animal models in melanoma studies.
Collapse
|
156
|
ShcD Binds DOCK4, Promotes Ameboid Motility and Metastasis Dissemination, Predicting Poor Prognosis in Melanoma. Cancers (Basel) 2020; 12:cancers12113366. [PMID: 33202906 PMCID: PMC7696252 DOI: 10.3390/cancers12113366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Metastasis formation and dissemination is a complex process that relies on several steps. Even though highly inefficient, metastasis spreading is the primary cause of cancer morbidity and mortality in patients. The aim of our study was to investigate the molecular pathways leading to metastases making use of human-in-mouse melanoma models of patient-derived xenografts. We demonstrate that the modulation of the expression of an adaptor protein of the Shc family, ShcD, can change the phenotype and the invasive properties of melanoma cells when highly expressed. We also show that ShcD binds DOCK4 and confines it into the cytoplasm, blocking the Rac1 signaling pathways, thus leading to metastasis development. Moreover, our results indicate that melanoma cells are more sensitive to therapeutic treatments when the ShcD molecular pathway is inactivated, suggesting that new therapeutic strategies can be designed in melanomas. Abstract Metastases are the primary cause of cancer-related deaths. The underlying molecular and biological mechanisms remain, however, elusive, thus preventing the design of specific therapies. In melanomas, the metastatic process is influenced by the acquisition of metastasis-associated mutational and epigenetic traits and the activation of metastatic-specific signaling pathways in the primary melanoma. In the current study, we investigated the role of an adaptor protein of the Shc family (ShcD) in the acquisition of metastatic properties by melanoma cells, exploiting our cohort of patient-derived xenografts (PDXs). We provide evidence that the depletion of ShcD expression increases a spread cell shape and the capability of melanoma cells to attach to the extracellular matrix while its overexpression switches their morphology from elongated to rounded on 3D matrices, enhances cells’ invasive phenotype, as observed on collagen gel, and favors metastasis formation in vivo. ShcD overexpression sustains amoeboid movement in melanoma cells, by suppressing the Rac1 signaling pathway through the confinement of DOCK4 in the cytoplasm. Inactivation of the ShcD signaling pathway makes melanoma cells more sensitive to therapeutic treatments. Consistently, ShcD expression predicts poor outcome in a cohort of 183 primary melanoma patients.
Collapse
|
157
|
Kinker GS, Greenwald AC, Tal R, Orlova Z, Cuoco MS, McFarland JM, Warren A, Rodman C, Roth JA, Bender SA, Kumar B, Rocco JW, Fernandes PACM, Mader CC, Keren-Shaul H, Plotnikov A, Barr H, Tsherniak A, Rozenblatt-Rosen O, Krizhanovsky V, Puram SV, Regev A, Tirosh I. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat Genet 2020; 52:1208-1218. [PMID: 33128048 PMCID: PMC8135089 DOI: 10.1038/s41588-020-00726-6] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022]
Abstract
Cultured cell lines are the workhorse of cancer research, but the extent to which they recapitulate the heterogeneity observed among malignant cells in tumors is unclear. Here we used multiplexed single-cell RNA-seq to profile 198 cancer cell lines from 22 cancer types. We identified 12 expression programs that are recurrently heterogeneous within multiple cancer cell lines. These programs are associated with diverse biological processes, including cell cycle, senescence, stress and interferon responses, epithelial-mesenchymal transition and protein metabolism. Most of these programs recapitulate those recently identified as heterogeneous within human tumors. We prioritized specific cell lines as models of cellular heterogeneity and used them to study subpopulations of senescence-related cells, demonstrating their dynamics, regulation and unique drug sensitivities, which were predictive of clinical response. Our work describes the landscape of heterogeneity within diverse cancer cell lines and identifies recurrent patterns of heterogeneity that are shared between tumors and specific cell lines.
Collapse
Affiliation(s)
- Gabriela S Kinker
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Institute of Bioscience, University of Sao Paulo, Sao Paulo, Brazil
| | - Alissa C Greenwald
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Tal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zhanna Orlova
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael S Cuoco
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James M McFarland
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Allison Warren
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher Rodman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer A Roth
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samantha A Bender
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bhavna Kumar
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - James W Rocco
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | | | - Hadas Keren-Shaul
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Plotnikov
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Haim Barr
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Aviad Tsherniak
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Valery Krizhanovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sidharth V Puram
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
158
|
Rodriguez-Hernandez I, Maiques O, Kohlhammer L, Cantelli G, Perdrix-Rosell A, Monger J, Fanshawe B, Bridgeman VL, Karagiannis SN, Penin RM, Marcolval J, Marti RM, Matias-Guiu X, Fruhwirth GO, Orgaz JL, Malanchi I, Sanz-Moreno V. WNT11-FZD7-DAAM1 signalling supports tumour initiating abilities and melanoma amoeboid invasion. Nat Commun 2020; 11:5315. [PMID: 33082334 PMCID: PMC7575593 DOI: 10.1038/s41467-020-18951-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Melanoma is a highly aggressive tumour that can metastasize very early in disease progression. Notably, melanoma can disseminate using amoeboid invasive strategies. We show here that high Myosin II activity, high levels of ki-67 and high tumour-initiating abilities are characteristic of invasive amoeboid melanoma cells. Mechanistically, we find that WNT11-FZD7-DAAM1 activates Rho-ROCK1/2-Myosin II and plays a crucial role in regulating tumour-initiating potential, local invasion and distant metastasis formation. Importantly, amoeboid melanoma cells express both proliferative and invasive gene signatures. As such, invasive fronts of human and mouse melanomas are enriched in amoeboid cells that are also ki-67 positive. This pattern is further enhanced in metastatic lesions. We propose eradication of amoeboid melanoma cells after surgical removal as a therapeutic strategy.
Collapse
Affiliation(s)
- Irene Rodriguez-Hernandez
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Gaia Cantelli
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC, USA
| | - Anna Perdrix-Rosell
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
- Tumour Host Interaction Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Joanne Monger
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Bruce Fanshawe
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Kings' College London, London, SE1 7EH, UK
| | - Victoria L Bridgeman
- Tumour Host Interaction Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Sophia N Karagiannis
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London and NIHR Biomedical Research Centre at Guy's and St Thomas' Hospitals and King's College London, London, SE1 9RT, UK
| | - Rosa M Penin
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, l'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Joaquim Marcolval
- Department of Dermatology, Hospital Universitari de Bellvitge, IDIBELL, l'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Rosa M Marti
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB LleidaI, CIBERONC, 25198, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB Lleida, CIBERONC, 25198, Lleida, Spain
| | - Gilbert O Fruhwirth
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Kings' College London, London, SE1 7EH, UK
| | - Jose L Orgaz
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
- Instituto de Investigaciones Biomedicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Ilaria Malanchi
- Tumour Host Interaction Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Victoria Sanz-Moreno
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK.
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
159
|
Halstead MM, Kern C, Saelao P, Wang Y, Chanthavixay G, Medrano JF, Van Eenennaam AL, Korf I, Tuggle CK, Ernst CW, Zhou H, Ross PJ. A comparative analysis of chromatin accessibility in cattle, pig, and mouse tissues. BMC Genomics 2020; 21:698. [PMID: 33028202 PMCID: PMC7541309 DOI: 10.1186/s12864-020-07078-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/17/2020] [Indexed: 12/25/2022] Open
Abstract
Background Although considerable progress has been made towards annotating the noncoding portion of the human and mouse genomes, regulatory elements in other species, such as livestock, remain poorly characterized. This lack of functional annotation poses a substantial roadblock to agricultural research and diminishes the value of these species as model organisms. As active regulatory elements are typically characterized by chromatin accessibility, we implemented the Assay for Transposase Accessible Chromatin (ATAC-seq) to annotate and characterize regulatory elements in pigs and cattle, given a set of eight adult tissues. Results Overall, 306,304 and 273,594 active regulatory elements were identified in pig and cattle, respectively. 71,478 porcine and 47,454 bovine regulatory elements were highly tissue-specific and were correspondingly enriched for binding motifs of known tissue-specific transcription factors. However, in every tissue the most prevalent accessible motif corresponded to the insulator CTCF, suggesting pervasive involvement in 3-D chromatin organization. Taking advantage of a similar dataset in mouse, open chromatin in pig, cattle, and mice were compared, revealing that the conservation of regulatory elements, in terms of sequence identity and accessibility, was consistent with evolutionary distance; whereas pig and cattle shared about 20% of accessible sites, mice and ungulates only had about 10% of accessible sites in common. Furthermore, conservation of accessibility was more prevalent at promoters than at intergenic regions. Conclusions The lack of conserved accessibility at distal elements is consistent with rapid evolution of enhancers, and further emphasizes the need to annotate regulatory elements in individual species, rather than inferring elements based on homology. This atlas of chromatin accessibility in cattle and pig constitutes a substantial step towards annotating livestock genomes and dissecting the regulatory link between genome and phenome.
Collapse
Affiliation(s)
- Michelle M Halstead
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Colin Kern
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Perot Saelao
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Ying Wang
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Ganrea Chanthavixay
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Juan F Medrano
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | | | - Ian Korf
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | | | - Catherine W Ernst
- Department of Animal Science, Michigan State University, East Lansing, 48824, MI, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA.
| | - Pablo J Ross
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
160
|
Maitituoheti M, Keung EZ, Tang M, Yan L, Alam H, Han G, Singh AK, Raman AT, Terranova C, Sarkar S, Orouji E, Amin SB, Sharma S, Williams M, Samant NS, Dhamdhere M, Zheng N, Shah T, Shah A, Axelrad JB, Anvar NE, Lin YH, Jiang S, Chang EQ, Ingram DR, Wang WL, Lazar A, Lee MG, Muller F, Wang L, Ying H, Rai K. Enhancer Reprogramming Confers Dependence on Glycolysis and IGF Signaling in KMT2D Mutant Melanoma. Cell Rep 2020; 33:108293. [PMID: 33086062 PMCID: PMC7649750 DOI: 10.1016/j.celrep.2020.108293] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/11/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
Histone methyltransferase KMT2D harbors frequent loss-of-function somatic point mutations in several tumor types, including melanoma. Here, we identify KMT2D as a potent tumor suppressor in melanoma through an in vivo epigenome-focused pooled RNAi screen and confirm the finding by using a genetically engineered mouse model (GEMM) based on conditional and melanocyte-specific deletion of KMT2D. KMT2D-deficient tumors show substantial reprogramming of key metabolic pathways, including glycolysis. KMT2D deficiency aberrantly upregulates glycolysis enzymes, intermediate metabolites, and glucose consumption rates. Mechanistically, KMT2D loss causes genome-wide reduction of H3K4me1-marked active enhancer chromatin states. Enhancer loss and subsequent repression of IGFBP5 activates IGF1R-AKT to increase glycolysis in KMT2D-deficient cells. Pharmacological inhibition of glycolysis and insulin growth factor (IGF) signaling reduce proliferation and tumorigenesis preferentially in KMT2D-deficient cells. We conclude that KMT2D loss promotes tumorigenesis by facilitating an increased use of the glycolysis pathway for enhanced biomass needs via enhancer reprogramming, thus presenting an opportunity for therapeutic intervention through glycolysis or IGF pathway inhibitors.
Collapse
Affiliation(s)
- Mayinuer Maitituoheti
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Z Keung
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming Tang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liang Yan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hunain Alam
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangchun Han
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anand K Singh
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ayush T Raman
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate Program in Quantitative Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Christopher Terranova
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharmistha Sarkar
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Orouji
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir B Amin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Sneha Sharma
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maura Williams
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neha S Samant
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayura Dhamdhere
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Norman Zheng
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tara Shah
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amiksha Shah
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jacob B Axelrad
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nazanin E Anvar
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu-Hsi Lin
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Jiang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edward Q Chang
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Davis R Ingram
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei-Lien Wang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander Lazar
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florian Muller
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate Program in Quantitative Sciences, Baylor College of Medicine, Houston, TX, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
161
|
Baron M, Tagore M, Hunter MV, Kim IS, Moncada R, Yan Y, Campbell NR, White RM, Yanai I. The Stress-Like Cancer Cell State Is a Consistent Component of Tumorigenesis. Cell Syst 2020; 11:536-546.e7. [PMID: 32910905 DOI: 10.1016/j.cels.2020.08.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/23/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Transcriptional profiling of tumors has revealed a stress-like state among the cancer cells with the concerted expression of genes such as fos, jun, and heat-shock proteins, though this has been controversial given possible dissociation-effects associated with single-cell RNA sequencing. Here, we validate the existence of this state using a combination of zebrafish melanoma modeling, spatial transcriptomics, and human samples. We found that the stress-like subpopulation of cancer cells is present from the early stages of tumorigenesis. Comparing with previously reported single-cell RNA sequencing datasets from diverse cancer types, including triple-negative breast cancer, oligodendroglioma, and pancreatic adenocarcinoma, indicated the conservation of this state during tumorigenesis. We also provide evidence that this state has higher tumor-seeding capabilities and that its induction leads to increased growth under both MEK and BRAF inhibitors. Collectively, our study supports the stress-like cells as a cancer cell state expressing a coherent set of genes and exhibiting drug-resistance properties.
Collapse
Affiliation(s)
- Maayan Baron
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Mohita Tagore
- Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miranda V Hunter
- Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Isabella S Kim
- Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Reuben Moncada
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Yun Yan
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Nathaniel R Campbell
- Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard M White
- Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Itai Yanai
- Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
162
|
Mirea MA, Eckensperger S, Hengstschläger M, Mikula M. Insights into Differentiation of Melanocytes from Human Stem Cells and Their Relevance for Melanoma Treatment. Cancers (Basel) 2020; 12:E2508. [PMID: 32899370 PMCID: PMC7564443 DOI: 10.3390/cancers12092508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022] Open
Abstract
Malignant melanoma represents a highly aggressive form of skin cancer. The metastatic process itself is mostly governed by the so-called epithelial mesenchymal transition (EMT), which confers cancer cells migrative, invasive and resistance abilities. Since EMT represents a conserved developmental process, it is worthwhile further examining the nature of early developmental steps fundamental for melanocyte differentiation. This can be done either in vivo by analyzing the physiologic embryo development in different species or by in vitro studies of melanocytic differentiation originating from embryonic human stem cells. Most importantly, external cues drive progenitor cell differentiation, which can be divided in stages favoring neural crest specification or melanocytic differentiation and proliferation. In this review, we describe ectopic factors which drive human pluripotent stem cell differentiation to melanocytes in 2D, as well as in organoid models. Furthermore, we compare developmental mechanisms with processes described to occur during melanoma development. Finally, we suggest differentiation factors as potential co-treatment options for metastatic melanoma patients.
Collapse
Affiliation(s)
| | | | | | - Mario Mikula
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University Vienna, Währingerstrasse 10, 1090 Vienna, Austria; (M.A.M.); (S.E.); (M.H.)
| |
Collapse
|
163
|
Adoptive T Cell Therapy Targeting Different Gene Products Reveals Diverse and Context-Dependent Immune Evasion in Melanoma. Immunity 2020; 53:564-580.e9. [DOI: 10.1016/j.immuni.2020.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/05/2020] [Accepted: 07/08/2020] [Indexed: 12/30/2022]
|
164
|
Mengoni M, Braun AD, Gaffal E, Tüting T. The aryl hydrocarbon receptor promotes inflammation-induced dedifferentiation and systemic metastatic spread of melanoma cells. Int J Cancer 2020; 147:2902-2913. [PMID: 32790916 DOI: 10.1002/ijc.33252] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/21/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand binding-transcription factor of the basic helix-loop-helix family regulating multiple cellular functions such as differentiation, cell cycle, apoptosis, and inflammatory reactions. In neoplastic diseases, the AHR has been described to modulate proliferation and differentiation in dichotomous ways, either inhibiting or augmenting the growth of tumors. The precise role of AHR in melanoma is mostly unknown. Here, we report a functional effect of AHR activation on inflammation-induced melanoma cell dedifferentiation and the development of lung metastases in a mouse model. Via in silico analyses of "The Cancer Genome Atlas" human melanoma cohort, we detected a correlation between AHR expression levels and a dedifferentiated melanoma cell phenotype with an invasive gene signature, which we were able to functionally recapitulate in a panel of human melanoma cell lines. Both human and mouse melanoma cell lines upregulated AHR expression after inflammatory stimulation with tumor necrosis factor-α (TNF-α). Activation of AHR in human and mouse melanoma cell lines with the endogenous ligand formylindolo(3,2-b)carbazole (FICZ) promoted inflammation-induced dedifferentiation in vitro. Importantly, mouse melanoma cells with CRISPR/Cas9-mediated disruption of the AHR gene showed impaired in vivo tumor growth after transplantation in the skin as well as decreased numbers of spontaneous lung metastases. Taken together, our results demonstrate a functional role for AHR expression in melanoma development and metastatic progression. This provides a scientific basis for future experiments that further dissect the underlying molecular mechanisms and assess the potential for AHR inhibition as part of multimodal melanoma treatment strategies.
Collapse
Affiliation(s)
- Miriam Mengoni
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, Magdeburg, Germany
| | - Andreas Dominik Braun
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, Magdeburg, Germany
| | - Evelyn Gaffal
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, Magdeburg, Germany
| | - Thomas Tüting
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, Magdeburg, Germany
| |
Collapse
|
165
|
Carrié L, Virazels M, Dufau C, Montfort A, Levade T, Ségui B, Andrieu-Abadie N. New Insights into the Role of Sphingolipid Metabolism in Melanoma. Cells 2020; 9:E1967. [PMID: 32858889 PMCID: PMC7565650 DOI: 10.3390/cells9091967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Cutaneous melanoma is a deadly skin cancer whose aggressiveness is directly linked to its metastatic potency. Despite remarkable breakthroughs in term of treatments with the emergence of targeted therapy and immunotherapy, the prognosis for metastatic patients remains uncertain mainly because of resistances. Better understanding the mechanisms responsible for melanoma progression is therefore essential to uncover new therapeutic targets. Interestingly, the sphingolipid metabolism is dysregulated in melanoma and is associated with melanoma progression and resistance to treatment. This review summarises the impact of the sphingolipid metabolism on melanoma from the initiation to metastatic dissemination with emphasis on melanoma plasticity, immune responses and resistance to treatments.
Collapse
Affiliation(s)
- Lorry Carrié
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Mathieu Virazels
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Carine Dufau
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Anne Montfort
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Thierry Levade
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
- Laboratoire de Biochimie Métabolique, CHU, 31059 Toulouse, France
| | - Bruno Ségui
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Nathalie Andrieu-Abadie
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| |
Collapse
|
166
|
Berthenet K, Weber K, Ichim G. Sometimes even apoptosis fails: implications for cancer. Mol Cell Oncol 2020; 7:1797430. [PMID: 33235903 PMCID: PMC7671000 DOI: 10.1080/23723556.2020.1797430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Apoptosis is vital for the correct morphogenesis of multi-cellular organisms. However, like most physiological programs, the cell's ability to commit suicide is hijacked by cancer in its own proliferative and invasive interest. We recently showed that inefficient execution of apoptosis (or failed apoptosis) is used by cancer to boost invasiveness.
Collapse
Affiliation(s)
- Kevin Berthenet
- Cancer Research Center of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France
- Cancer Cell Death Laboratory, Part of LabEx DEVweCAN, Université de Lyon, Lyon, France
| | - Kathrin Weber
- Cancer Research Center of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France
| | - Gabriel Ichim
- Cancer Research Center of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France
- Cancer Cell Death Laboratory, Part of LabEx DEVweCAN, Université de Lyon, Lyon, France
| |
Collapse
|
167
|
Shaffer SM, Emert BL, Reyes Hueros RA, Cote C, Harmange G, Schaff DL, Sizemore AE, Gupte R, Torre E, Singh A, Bassett DS, Raj A. Memory Sequencing Reveals Heritable Single-Cell Gene Expression Programs Associated with Distinct Cellular Behaviors. Cell 2020; 182:947-959.e17. [PMID: 32735851 PMCID: PMC7496637 DOI: 10.1016/j.cell.2020.07.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/04/2020] [Accepted: 07/01/2020] [Indexed: 01/25/2023]
Abstract
Non-genetic factors can cause individual cells to fluctuate substantially in gene expression levels over time. It remains unclear whether these fluctuations can persist for much longer than the time of one cell division. Current methods for measuring gene expression in single cells mostly rely on single time point measurements, making the duration of gene expression fluctuations or cellular memory difficult to measure. Here, we combined Luria and Delbrück's fluctuation analysis with population-based RNA sequencing (MemorySeq) for identifying genes transcriptome-wide whose fluctuations persist for several divisions. MemorySeq revealed multiple gene modules that expressed together in rare cells within otherwise homogeneous clonal populations. These rare cell subpopulations were associated with biologically distinct behaviors like proliferation in the face of anti-cancer therapeutics. The identification of non-genetic, multigenerational fluctuations can reveal new forms of biological memory in single cells and suggests that non-genetic heritability of cellular state may be a quantitative property.
Collapse
Affiliation(s)
- Sydney M Shaffer
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin L Emert
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Raúl A Reyes Hueros
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Cote
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guillaume Harmange
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Cell and Molecular Biology Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dylan L Schaff
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ann E Sizemore
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Rohit Gupte
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Eduardo Torre
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA; Department of Physics and Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Santa Fe Institute, Santa Fe, NM, USA
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
168
|
Intrinsic Balance between ZEB Family Members Is Important for Melanocyte Homeostasis and Melanoma Progression. Cancers (Basel) 2020; 12:cancers12082248. [PMID: 32796736 PMCID: PMC7465899 DOI: 10.3390/cancers12082248] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
It has become clear that cellular plasticity is a main driver of cancer therapy resistance. Consequently, there is a need to mechanistically identify the factors driving this process. The transcription factors of the zinc-finger E-box-binding homeobox family, consisting of ZEB1 and ZEB2, are notorious for their roles in epithelial-to-mesenchymal transition (EMT). However, in melanoma, an intrinsic balance between ZEB1 and ZEB2 seems to determine the cellular state by modulating the expression of the master regulator of melanocyte homeostasis, microphthalmia-associated transcription factor (MITF). ZEB2 drives MITF expression and is associated with a differentiated/proliferative melanoma cell state. On the other hand, ZEB1 is correlated with low MITF expression and a more invasive, stem cell-like and therapy-resistant cell state. This intrinsic balance between ZEB1 and ZEB2 could prove to be a promising therapeutic target for melanoma patients. In this review, we will summarise what is known on the functional mechanisms of these transcription factors. Moreover, we will look specifically at their roles during melanocyte-lineage development and homeostasis. Finally, we will overview the current literature on ZEB1 and ZEB2 in the melanoma context and link this to the 'phenotype-switching' model of melanoma cellular plasticity.
Collapse
|
169
|
Reversal of pre-existing NGFR-driven tumor and immune therapy resistance. Nat Commun 2020; 11:3946. [PMID: 32770055 PMCID: PMC7414147 DOI: 10.1038/s41467-020-17739-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/10/2020] [Indexed: 01/05/2023] Open
Abstract
Melanomas can switch to a dedifferentiated cell state upon exposure to cytotoxic T cells. However, it is unclear whether such tumor cells pre-exist in patients and whether they can be resensitized to immunotherapy. Here, we chronically expose (patient-derived) melanoma cell lines to differentiation antigen-specific cytotoxic T cells and observe strong enrichment of a pre-existing NGFRhi population. These fractions are refractory also to T cells recognizing non-differentiation antigens, as well as to BRAF + MEK inhibitors. NGFRhi cells induce the neurotrophic factor BDNF, which contributes to T cell resistance, as does NGFR. In melanoma patients, a tumor-intrinsic NGFR signature predicts anti-PD-1 therapy resistance, and NGFRhi tumor fractions are associated with immune exclusion. Lastly, pharmacologic NGFR inhibition restores tumor sensitivity to T cell attack in vitro and in melanoma xenografts. These findings demonstrate the existence of a stable and pre-existing NGFRhi multitherapy-refractory melanoma subpopulation, which ought to be eliminated to revert intrinsic resistance to immunotherapeutic intervention.
Collapse
|
170
|
Affiliation(s)
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
171
|
Tang Y, Durand S, Dalle S, Caramel J. EMT-Inducing Transcription Factors, Drivers of Melanoma Phenotype Switching, and Resistance to Treatment. Cancers (Basel) 2020; 12:E2154. [PMID: 32759677 PMCID: PMC7465730 DOI: 10.3390/cancers12082154] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 01/06/2023] Open
Abstract
Transcription factors, extensively described for their role in epithelial-mesenchymal transition (EMT-TFs) in epithelial cells, also display essential functions in the melanocyte lineage. Recent evidence has shown specific expression patterns and functions of these EMT-TFs in neural crest-derived melanoma compared to carcinoma. Herein, we present an update of the specific roles of EMT-TFs in melanocyte differentiation and melanoma progression. As major regulators of phenotype switching between differentiated/proliferative and neural crest stem cell-like/invasive states, these factors appear as major drivers of intra-tumor heterogeneity and resistance to treatment in melanoma, which opens new avenues in terms of therapeutic targeting.
Collapse
Affiliation(s)
- Yaqi Tang
- Cancer Cell Plasticity in Melanoma Laboratory, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (Y.T.); (S.D.); (S.D.)
| | - Simon Durand
- Cancer Cell Plasticity in Melanoma Laboratory, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (Y.T.); (S.D.); (S.D.)
| | - Stéphane Dalle
- Cancer Cell Plasticity in Melanoma Laboratory, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (Y.T.); (S.D.); (S.D.)
- Dermatology Unit, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, 69495 Pierre Bénite, France
| | - Julie Caramel
- Cancer Cell Plasticity in Melanoma Laboratory, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France; (Y.T.); (S.D.); (S.D.)
| |
Collapse
|
172
|
Wouters J, Kalender-Atak Z, Minnoye L, Spanier KI, De Waegeneer M, Bravo González-Blas C, Mauduit D, Davie K, Hulselmans G, Najem A, Dewaele M, Pedri D, Rambow F, Makhzami S, Christiaens V, Ceyssens F, Ghanem G, Marine JC, Poovathingal S, Aerts S. Robust gene expression programs underlie recurrent cell states and phenotype switching in melanoma. Nat Cell Biol 2020; 22:986-998. [PMID: 32753671 DOI: 10.1038/s41556-020-0547-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Melanoma cells can switch between a melanocytic and a mesenchymal-like state. Scattered evidence indicates that additional intermediate state(s) may exist. Here, to search for such states and decipher their underlying gene regulatory network (GRN), we studied 10 melanoma cultures using single-cell RNA sequencing (RNA-seq) as well as 26 additional cultures using bulk RNA-seq. Although each culture exhibited a unique transcriptome, we identified shared GRNs that underlie the extreme melanocytic and mesenchymal states and the intermediate state. This intermediate state is corroborated by a distinct chromatin landscape and is governed by the transcription factors SOX6, NFATC2, EGR3, ELF1 and ETV4. Single-cell migration assays confirmed the intermediate migratory phenotype of this state. Using time-series sampling of single cells after knockdown of SOX10, we unravelled the sequential and recurrent arrangement of GRNs during phenotype switching. Taken together, these analyses indicate that an intermediate state exists and is driven by a distinct and stable 'mixed' GRN rather than being a symbiotic heterogeneous mix of cells.
Collapse
Affiliation(s)
- Jasper Wouters
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Zeynep Kalender-Atak
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Liesbeth Minnoye
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Katina I Spanier
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Maxime De Waegeneer
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Carmen Bravo González-Blas
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - David Mauduit
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Kristofer Davie
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Gert Hulselmans
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Ahmad Najem
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Michael Dewaele
- Center for Cancer Biology, VIB-KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Dennis Pedri
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Center for Cancer Biology, VIB-KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Florian Rambow
- Center for Cancer Biology, VIB-KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Samira Makhzami
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Valerie Christiaens
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Ghanem Ghanem
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Christophe Marine
- Center for Cancer Biology, VIB-KU Leuven, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Stein Aerts
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium. .,Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
173
|
Feldker N, Ferrazzi F, Schuhwerk H, Widholz SA, Guenther K, Frisch I, Jakob K, Kleemann J, Riegel D, Bönisch U, Lukassen S, Eccles RL, Schmidl C, Stemmler MP, Brabletz T, Brabletz S. Genome-wide cooperation of EMT transcription factor ZEB1 with YAP and AP-1 in breast cancer. EMBO J 2020; 39:e103209. [PMID: 32692442 PMCID: PMC7459422 DOI: 10.15252/embj.2019103209] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/03/2023] Open
Abstract
Invasion, metastasis and therapy resistance are the major cause of cancer‐associated deaths, and the EMT‐inducing transcription factor ZEB1 is a crucial stimulator of these processes. While work on ZEB1 has mainly focused on its role as a transcriptional repressor, it can also act as a transcriptional activator. To further understand these two modes of action, we performed a genome‐wide ZEB1 binding study in triple‐negative breast cancer cells. We identified ZEB1 as a novel interactor of the AP‐1 factors FOSL1 and JUN and show that, together with the Hippo pathway effector YAP, they form a transactivation complex, predominantly activating tumour‐promoting genes, thereby synergising with its function as a repressor of epithelial genes. High expression of ZEB1, YAP, FOSL1 and JUN marks the aggressive claudin‐low subtype of breast cancer, indicating the translational relevance of our findings. Thus, our results link critical tumour‐promoting transcription factors: ZEB1, AP‐1 and Hippo pathway factors. Disturbing their molecular interaction may provide a promising treatment option for aggressive cancer types.
Collapse
Affiliation(s)
- Nora Feldker
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian A Widholz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Guenther
- Department of Visceral Surgery, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Isabell Frisch
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Jakob
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Kleemann
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Dania Riegel
- Regensburg Center for Interventional Immunology (RCI), University Regensburg and University Medical Center, Regensburg, Germany
| | - Ulrike Bönisch
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Sören Lukassen
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Rebecca L Eccles
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Schmidl
- Regensburg Center for Interventional Immunology (RCI), University Regensburg and University Medical Center, Regensburg, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
174
|
Leclair HM, Tardif N, Paris A, Galibert MD, Corre S. Role of Flavonoids in the Prevention of AhR-Dependent Resistance During Treatment with BRAF Inhibitors. Int J Mol Sci 2020; 21:ijms21145025. [PMID: 32708687 PMCID: PMC7404066 DOI: 10.3390/ijms21145025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
BRAF and MEK inhibitors (BRAFi and MEKi) are the standard of care for the treatment of metastatic melanoma in patients with BRAFV600E mutations, greatly improving progression-free survival. However, the acquisition of resistance to BRAFi and MEKi remains a difficult clinical challenge, with limited therapeutic options available for these patients. Here, we investigated the therapeutic potential of natural flavonoids as specific AhR (Aryl hydrocarbon Receptor) transcription factor antagonists in combination with BRAFi. Experimental Design: Experiments were performed in vitro and in vivo with various human melanoma cell lines (mutated for BRAFV600E) sensitive or resistant to BRAFi. We evaluated the role of various flavonoids on cell sensitivity to BRAFi and their ability to counteract resistance and the invasive phenotype of melanoma. Results: Flavonoids were highly effective in potentiating BRAFi therapy in human melanoma cell lines by increasing sensitivity and delaying the pool of resistant cells that arise during treatment. As AhR antagonists, flavonoids counteracted a gene expression program associated with the acquisition of resistance and phenotype switching that leads to an invasive and EMT-like phenotype. Conclusions: The use of natural flavonoids opens new therapeutic opportunities for the treatment of patients with BRAF-resistant disease.
Collapse
Affiliation(s)
- Héloïse M. Leclair
- Institut de Génétique et Développement de Rennes, University Rennes–UMR6290, F-35000 Rennes, France; (H.M.L.); (N.T.); (A.P.)
| | - Nina Tardif
- Institut de Génétique et Développement de Rennes, University Rennes–UMR6290, F-35000 Rennes, France; (H.M.L.); (N.T.); (A.P.)
| | - Anaïs Paris
- Institut de Génétique et Développement de Rennes, University Rennes–UMR6290, F-35000 Rennes, France; (H.M.L.); (N.T.); (A.P.)
| | - Marie-Dominique Galibert
- Institut de Génétique et Développement de Rennes, University Rennes–UMR6290, F-35000 Rennes, France; (H.M.L.); (N.T.); (A.P.)
- Department of Molecular Genetics and Genomics, Hospital University of Rennes, F-35000 Rennes, France
- Correspondence: (M.-D.G.); (S.C.)
| | - Sébastien Corre
- Institut de Génétique et Développement de Rennes, University Rennes–UMR6290, F-35000 Rennes, France; (H.M.L.); (N.T.); (A.P.)
- Correspondence: (M.-D.G.); (S.C.)
| |
Collapse
|
175
|
Lavelle TJ, Alver TN, Heintz KM, Wernhoff P, Nygaard V, Nakken S, Øy GF, Bøe SL, Urbanucci A, Hovig E. Dysregulation of MITF Leads to Transformation in MC1R-Defective Melanocytes. Cancers (Basel) 2020; 12:cancers12071719. [PMID: 32605315 PMCID: PMC7408466 DOI: 10.3390/cancers12071719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The MC1R/cAMP/MITF pathway is a key determinant for growth, differentiation, and survival of melanocytes and melanoma. MITF-M is the melanocyte-specific isoform of Microphthalmia-associated Transcription Factor (MITF) in human melanoma. Here we use two melanocyte cell lines to show that forced expression of hemagglutinin (HA) -tagged MITF-M through lentiviral transduction represents an oncogenic insult leading to consistent cell transformation of the immortalized melanocyte cell line Hermes 4C, being a melanocortin-1 receptor (MC1R) compound heterozygote, while not causing transformation of the MC1R wild type cell line Hermes 3C. The transformed HA-tagged MITF-M transduced Hermes 4C cells form colonies in soft agar and tumors in mice. Further, Hermes 4C cells display increased MITF chromatin binding, and transcriptional reprogramming consistent with an invasive melanoma phenotype. Mechanistically, forced expression of MITF-M drives the upregulation of the AXL tyrosine receptor kinase (AXL), with concomitant downregulation of phosphatase and tensin homolog (PTEN), leading to increased activation of the PI3K/AKT pathway. Treatment with AXL inhibitors reduces growth of the transformed cells by reverting AKT activation. In conclusion, we present a model system of melanoma development, driven by MITF-M in the context of MC1R loss of function, and independent of UV exposure. This model provides a basis for further studies of critical changes in the melanocyte transformation process.
Collapse
Affiliation(s)
- Timothy J. Lavelle
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Tine Norman Alver
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Karen-Marie Heintz
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Patrik Wernhoff
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Vegard Nygaard
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Sigve Nakken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0424 Oslo, Norway
| | - Geir Frode Øy
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Sigurd Leinæs Bøe
- Department of Medical Biochemistry, Oslo University Hospital, Radiumhospitalet, 0424 Oslo, Norway;
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Correspondence: (A.U.); (E.H.)
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Department of Informatics, University of Oslo, 0316 Oslo, Norway
- Correspondence: (A.U.); (E.H.)
| |
Collapse
|
176
|
The Hippo pathway oncoprotein YAP promotes melanoma cell invasion and spontaneous metastasis. Oncogene 2020; 39:5267-5281. [PMID: 32561850 DOI: 10.1038/s41388-020-1362-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/31/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Melanoma is a deadly form of skin cancer that accounts for a disproportionally large proportion of cancer-related deaths in younger people. Compared with most other skin cancers, a feature of melanoma is its high metastatic capacity, although the mechanisms that confer this are not well understood. The Hippo pathway is a key regulator of organ growth and cell fate that is deregulated in many cancers. To analyse the Hippo pathway in cutaneous melanoma, we generated a transcriptional signature of melanoma cells that overexpressed YAP, the key downstream Hippo pathway oncoprotein. YAP-mediated transcriptional activity varied in melanoma cell lines but did not cluster with known genetic drivers of melanomagenesis such as BRAF and NRAS mutations. Instead, it correlated strongly with published gene expression profiles linked to melanoma cell invasiveness and varied throughout the metastatic cascade in melanoma patient tumours. Consistent with this, YAP was both necessary and sufficient for melanoma cell invasion in vitro. In vivo, YAP promoted spontaneous melanoma metastasis, whilst the growth of YAP-expressing primary tumours was impeded. Finally, we identified the YAP target genes AXL, THBS1 and CYR61 as key mediators of YAP-induced melanoma cell invasion. These data suggest that YAP is a critical regulator of melanoma metastasis.
Collapse
|
177
|
Louphrasitthiphol P, Siddaway R, Loffreda A, Pogenberg V, Friedrichsen H, Schepsky A, Zeng Z, Lu M, Strub T, Freter R, Lisle R, Suer E, Thomas B, Schuster-Böckler B, Filippakopoulos P, Middleton M, Lu X, Patton EE, Davidson I, Lambert JP, Wilmanns M, Steingrímsson E, Mazza D, Goding CR. Tuning Transcription Factor Availability through Acetylation-Mediated Genomic Redistribution. Mol Cell 2020; 79:472-487.e10. [PMID: 32531202 PMCID: PMC7427332 DOI: 10.1016/j.molcel.2020.05.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/01/2020] [Accepted: 05/19/2020] [Indexed: 11/06/2022]
Abstract
It is widely assumed that decreasing transcription factor DNA-binding affinity reduces transcription initiation by diminishing occupancy of sequence-specific regulatory elements. However, in vivo transcription factors find their binding sites while confronted with a large excess of low-affinity degenerate motifs. Here, using the melanoma lineage survival oncogene MITF as a model, we show that low-affinity binding sites act as a competitive reservoir in vivo from which transcription factors are released by mitogen-activated protein kinase (MAPK)-stimulated acetylation to promote increased occupancy of their regulatory elements. Consequently, a low-DNA-binding-affinity acetylation-mimetic MITF mutation supports melanocyte development and drives tumorigenesis, whereas a high-affinity non-acetylatable mutant does not. The results reveal a paradoxical acetylation-mediated molecular clutch that tunes transcription factor availability via genome-wide redistribution and couples BRAF to tumorigenesis. Our results further suggest that p300/CREB-binding protein-mediated transcription factor acetylation may represent a common mechanism to control transcription factor availability. Reducing transcription factor DNA-binding affinity increases activity in vivo Acetylation is triggered by MAPK signaling Acetylation leads to genome-wide transcription factor redistribution Acetylation of MITF drives tumorigenesis and melanocyte development
Collapse
Affiliation(s)
- Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK; Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Robert Siddaway
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Alessia Loffreda
- Experimental Imaging Center, Cancer Imaging Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; Fondazione CEN, European Center for Nanomedicine, 20133 Milan, Italy
| | - Vivian Pogenberg
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 25a, 22607 Hamburg, Germany & University Hamburg Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Hans Friedrichsen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Alexander Schepsky
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Zhiqiang Zeng
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit and Edinburgh Cancer Research UK Centre, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Min Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Thomas Strub
- Institut de Génetique et Biologie Moléculaire et Cellulaire (IGBMC), Equipe labéllisée Ligue contre le Cancer, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Rasmus Freter
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Richard Lisle
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Eda Suer
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Benjamin Thomas
- Central Proteomics Facility, Sir William Dunn Pathology School, Oxford University, Oxford OX1 3RE, UK
| | - Benjamin Schuster-Böckler
- Ludwig Institute for Cancer Research, Big Data Institute, University of Oxford, Headington, Oxford OX3 7LF, UK
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Mark Middleton
- Oxford NIHR Biomedical Research Centre, Department of Oncology, Churchill Hospital, Oxford OX3 7LE, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - E Elizabeth Patton
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit and Edinburgh Cancer Research UK Centre, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Irwin Davidson
- Institut de Génetique et Biologie Moléculaire et Cellulaire (IGBMC), Equipe labéllisée Ligue contre le Cancer, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, Canada; CHU de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec G1V 4G2, QC, Canada
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 25a, 22607 Hamburg, Germany & University Hamburg Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Davide Mazza
- Experimental Imaging Center, Cancer Imaging Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; Fondazione CEN, European Center for Nanomedicine, 20133 Milan, Italy.
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK.
| |
Collapse
|
178
|
Vandamme N, Denecker G, Bruneel K, Blancke G, Akay Ö, Taminau J, De Coninck J, De Smedt E, Skrypek N, Van Loocke W, Wouters J, Nittner D, Köhler C, Darling DS, Cheng PF, Raaijmakers MIG, Levesque MP, Mallya UG, Rafferty M, Balint B, Gallagher WM, Brochez L, Huylebroeck D, Haigh JJ, Andries V, Rambow F, Van Vlierberghe P, Goossens S, van den Oord JJ, Marine JC, Berx G. The EMT Transcription Factor ZEB2 Promotes Proliferation of Primary and Metastatic Melanoma While Suppressing an Invasive, Mesenchymal-Like Phenotype. Cancer Res 2020; 80:2983-2995. [PMID: 32503808 DOI: 10.1158/0008-5472.can-19-2373] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/02/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT)-inducing transcription factors (TF) are well known for their ability to induce mesenchymal states associated with increased migratory and invasive properties. Unexpectedly, nuclear expression of the EMT-TF ZEB2 in human primary melanoma has been shown to correlate with reduced invasion. We report here that ZEB2 is required for outgrowth for primary melanomas and metastases at secondary sites. Ablation of Zeb2 hampered outgrowth of primary melanomas in vivo, whereas ectopic expression enhanced proliferation and growth at both primary and secondary sites. Gain of Zeb2 expression in pulmonary-residing melanoma cells promoted the development of macroscopic lesions. In vivo fate mapping made clear that melanoma cells undergo a conversion in state where ZEB2 expression is replaced by ZEB1 expression associated with gain of an invasive phenotype. These findings suggest that reversible switching of the ZEB2/ZEB1 ratio enhances melanoma metastatic dissemination. SIGNIFICANCE: ZEB2 function exerts opposing behaviors in melanoma by promoting proliferation and expansion and conversely inhibiting invasiveness, which could be of future clinical relevance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/14/2983/F1.large.jpg.
Collapse
Affiliation(s)
- Niels Vandamme
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Geertrui Denecker
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kenneth Bruneel
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Gillian Blancke
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Özden Akay
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Joachim Taminau
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jordy De Coninck
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Eva De Smedt
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Nicolas Skrypek
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Wouter Van Loocke
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and University Hospital, Ghent, Belgium
| | - Jasper Wouters
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KULeuven and UZ Leuven, Leuven, Belgium
| | - David Nittner
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Corinna Köhler
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Douglas S Darling
- Department of Oral Immunology and Infectious Diseases, and Center for Genetics and Molecular Medicine, University of Louisville, Louisville, Kentucky
| | - Phil F Cheng
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Marieke I G Raaijmakers
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Udupi Girish Mallya
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College, Dublin, Ireland.,OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin, Ireland
| | - Mairin Rafferty
- OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin, Ireland
| | - Balazs Balint
- OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin, Ireland
| | - William M Gallagher
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College, Dublin, Ireland.,OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin, Ireland
| | - Lieve Brochez
- Department of Head and Skin, Ghent University Hospital, Ghent, Belgium
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Jody J Haigh
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | | | - Florian Rambow
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and University Hospital, Ghent, Belgium
| | - Steven Goossens
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and University Hospital, Ghent, Belgium
| | - Joost J van den Oord
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KULeuven and UZ Leuven, Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
179
|
Choi J, Zhang T, Vu A, Ablain J, Makowski MM, Colli LM, Xu M, Hennessey RC, Yin J, Rothschild H, Gräwe C, Kovacs MA, Funderburk KM, Brossard M, Taylor J, Pasaniuc B, Chari R, Chanock SJ, Hoggart CJ, Demenais F, Barrett JH, Law MH, Iles MM, Yu K, Vermeulen M, Zon LI, Brown KM. Massively parallel reporter assays of melanoma risk variants identify MX2 as a gene promoting melanoma. Nat Commun 2020; 11:2718. [PMID: 32483191 PMCID: PMC7264232 DOI: 10.1038/s41467-020-16590-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified ~20 melanoma susceptibility loci, most of which are not functionally characterized. Here we report an approach integrating massively-parallel reporter assays (MPRA) with cell-type-specific epigenome and expression quantitative trait loci (eQTL) to identify susceptibility genes/variants from multiple GWAS loci. From 832 high-LD variants, we identify 39 candidate functional variants from 14 loci displaying allelic transcriptional activity, a subset of which corroborates four colocalizing melanocyte cis-eQTL genes. Among these, we further characterize the locus encompassing the HIV-1 restriction gene, MX2 (Chr21q22.3), and validate a functional intronic variant, rs398206. rs398206 mediates the binding of the transcription factor, YY1, to increase MX2 levels, consistent with the cis-eQTL of MX2 in primary human melanocytes. Melanocyte-specific expression of human MX2 in a zebrafish model demonstrates accelerated melanoma formation in a BRAFV600E background. Our integrative approach streamlines GWAS follow-up studies and highlights a pleiotropic function of MX2 in melanoma susceptibility. There are more than 20 known melanoma susceptibility genes. Here, using a massively parallel reporter assay, the authors identify risk-associated variants that alter gene transcription, and demonstrate that expression of one such gene, MX2, leads to the promotion of melanoma in a zebrafish model.
Collapse
Affiliation(s)
- Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Andrew Vu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Julien Ablain
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Matthew M Makowski
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 XZ, Nijmegen, The Netherlands
| | - Leandro M Colli
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Mai Xu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Rebecca C Hennessey
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jinhu Yin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Harriet Rothschild
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Cathrin Gräwe
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 XZ, Nijmegen, The Netherlands
| | - Michael A Kovacs
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Karen M Funderburk
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Myriam Brossard
- Université de Paris, UMRS-1124, Institut National de la Santé et de la Recherche Médicale (INSERM), F-75006, Paris, France
| | - John Taylor
- Leeds Institute for Data Analytics, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Bogdan Pasaniuc
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Lab for Cancer Research, National Cancer Institute, Frederick, MD, 21701, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Clive J Hoggart
- Department of Medicine, Imperial College London, London, SW7 2BU, UK
| | - Florence Demenais
- Université de Paris, UMRS-1124, Institut National de la Santé et de la Recherche Médicale (INSERM), F-75006, Paris, France
| | - Jennifer H Barrett
- Leeds Institute for Data Analytics, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Mark M Iles
- Leeds Institute for Data Analytics, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 XZ, Nijmegen, The Netherlands
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
180
|
The Hippo Pathway as a Driver of Select Human Cancers. Trends Cancer 2020; 6:781-796. [PMID: 32446746 DOI: 10.1016/j.trecan.2020.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
The Hippo pathway regulates myriad biological processes in diverse species and is a key cancer signaling network in humans. Although Hippo has been linked to multiple aspects of cancer, its role in this disease is incompletely understood. Large-scale pan-cancer analyses of core Hippo pathway genes reveal that the pathway is mutated at a high frequency only in select human cancers, including malignant mesothelioma and meningioma. Hippo pathway deregulation is also enriched in squamous epithelial cancers. We discuss cancer-related functions of the Hippo pathway and potential explanations for the cancer-restricted mutation profile of core Hippo pathway genes. Greater understanding of Hippo pathway deregulation in cancers will be essential to guide the imminent use of Hippo-targeted therapies.
Collapse
|
181
|
Ravindran Menon D, Hammerlindl H, Torrano J, Schaider H, Fujita M. Epigenetics and metabolism at the crossroads of stress-induced plasticity, stemness and therapeutic resistance in cancer. Theranostics 2020; 10:6261-6277. [PMID: 32483452 PMCID: PMC7255038 DOI: 10.7150/thno.42523] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in the treatment of cancers, acquired drug resistance remains a major challenge in cancer management. While earlier studies suggest Darwinian factors driving acquired drug resistance, recent studies point to a more dynamic process involving phenotypic plasticity and tumor heterogeneity in the evolution of acquired drug resistance. Chronic stress after drug treatment induces intrinsic cellular reprogramming and cancer stemness through a slow-cycling persister state, which subsequently drives cancer progression. Both epigenetic and metabolic mechanisms play an important role in this dynamic process. In this review, we discuss how epigenetic and metabolic reprogramming leads to stress-induced phenotypic plasticity and acquired drug resistance, and how the two reprogramming mechanisms crosstalk with each other.
Collapse
|
182
|
Al Hashmi M, Sastry KS, Silcock L, Chouchane L, Mattei V, James N, Mathew R, Bedognetti D, De Giorgi V, Murtas D, Liu W, Chouchane A, Temanni R, Seliger B, Wang E, Marincola FM, Tomei S. Differential responsiveness to BRAF inhibitors of melanoma cell lines BRAF V600E-mutated. J Transl Med 2020; 18:192. [PMID: 32393282 PMCID: PMC7216681 DOI: 10.1186/s12967-020-02350-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background Most mutations in melanoma affect one critical amino acid on BRAF gene, resulting in the V600E substitution. Patient management is often based on the use of specific inhibitors targeting this mutation. Methods DNA and RNA mutation status was assessed in 15 melanoma cell lines by Sanger sequencing and RNA-seq. We tested the cell lines responsiveness to BRAF inhibitors (vemurafenib and PLX4720, BRAF-specific and sorafenib, BRAF non-specific). Cell proliferation was assessed by MTT colorimetric assay. BRAF V600E RNA expression was assessed by qPCR. Expression level of phosphorylated-ERK protein was assessed by Western Blotting as marker of BRAF activation. Results Three cell lines were discordant in the mutation detection (BRAF V600E at DNA level/Sanger sequencing and BRAF WT on RNA-seq). We initially postulated that those cell lines may express only the WT allele at the RNA level although mutated at the DNA level. A more careful analysis showed that they express low level of BRAF RNA and the expression may be in favor of the WT allele. We tested whether the discordant cell lines responded differently to BRAF-specific inhibitors. Their proliferation rate decreased after treatment with vemurafenib and PLX4720 but was not affected by sorafenib, suggesting a BRAF V600E biological behavior. Yet, responsiveness to the BRAF specific inhibitors was lower as compared to the control. Western Blot analysis revealed a decreased expression of p-ERK protein in the BRAF V600E control cell line and in the discordant cell lines upon treatment with BRAF-specific inhibitors. The discordant cell lines showed a lower responsiveness to BRAF inhibitors when compared to the BRAF V600E control cell line. The results obtained from the inhibition experiment and molecular analyses were also confirmed in three additional cell lines. Conclusion Cell lines carrying V600E mutation at the DNA level may respond differently to BRAF targeted treatment potentially due to a lower V600E RNA expression.
Collapse
Affiliation(s)
- Muna Al Hashmi
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Konduru S Sastry
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Lee Silcock
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Valentina Mattei
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Nicola James
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Rebecca Mathew
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Davide Bedognetti
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Valeria De Giorgi
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, USA
| | - Daniela Murtas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Wei Liu
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Aouatef Chouchane
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Ramzi Temanni
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Ena Wang
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Francesco M Marincola
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar.,Refuge Biotechnologies, Menlo Park, CA, USA
| | - Sara Tomei
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar.
| |
Collapse
|
183
|
Tankyrase inhibition sensitizes melanoma to PD-1 immune checkpoint blockade in syngeneic mouse models. Commun Biol 2020; 3:196. [PMID: 32332858 PMCID: PMC7181813 DOI: 10.1038/s42003-020-0916-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
The development of immune checkpoint inhibitors represents a major breakthrough in cancer therapy. Nevertheless, a substantial number of patients fail to respond to checkpoint pathway blockade. Evidence for WNT/β-catenin signaling-mediated immune evasion is found in a subset of cancers including melanoma. Currently, there are no therapeutic strategies available for targeting WNT/β-catenin signaling. Here we show that a specific small-molecule tankyrase inhibitor, G007-LK, decreases WNT/β-catenin and YAP signaling in the syngeneic murine B16-F10 and Clone M-3 melanoma models and sensitizes the tumors to anti-PD-1 immune checkpoint therapy. Mechanistically, we demonstrate that the synergistic effect of tankyrase and checkpoint inhibitor treatment is dependent on loss of β-catenin in the tumor cells, anti-PD-1-stimulated infiltration of T cells into the tumor and induction of an IFNγ- and CD8+ T cell-mediated anti-tumor immune response. Our study uncovers a combinatorial therapeutical strategy using tankyrase inhibition to overcome β-catenin-mediated resistance to immune checkpoint blockade in melanoma.
Collapse
|
184
|
Yue J, Vendramin R, Liu F, Lopez O, Valencia MG, Gomes Dos Santos H, Gaidosh G, Beckedorff F, Blumenthal E, Speroni L, Nimer SD, Marine JC, Shiekhattar R. Targeted chemotherapy overcomes drug resistance in melanoma. Genes Dev 2020; 34:637-649. [PMID: 32241802 PMCID: PMC7197350 DOI: 10.1101/gad.333864.119] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/13/2020] [Indexed: 12/31/2022]
Abstract
In this study, Yue et al. describe a therapeutic strategy termed “targeted chemotherapy” that involves depleting PP2A or inhibiting it using a small molecule inhibitor, phendione, in drug-resistant melanoma. The authors show phendione induces DNA damage response without causing DNA breaks or inducing cellular dormancy, therefore blocking tumor growth of BRAF mutant and NRAS mutant melanomas. The emergence of drug resistance is a major obstacle for the success of targeted therapy in melanoma. Additionally, conventional chemotherapy has not been effective as drug-resistant cells escape lethal DNA damage effects by inducing growth arrest commonly referred to as cellular dormancy. We present a therapeutic strategy termed “targeted chemotherapy” by depleting protein phosphatase 2A (PP2A) or its inhibition using a small molecule inhibitor (1,10-phenanthroline-5,6-dione [phendione]) in drug-resistant melanoma. Targeted chemotherapy induces the DNA damage response without causing DNA breaks or allowing cellular dormancy. Phendione treatment reduces tumor growth of BRAFV600E-driven melanoma patient-derived xenografts (PDX) and diminishes growth of NRASQ61R-driven melanoma, a cancer with no effective therapy. Remarkably, phendione treatment inhibits the acquisition of resistance to BRAF inhibition in BRAFV600E PDX highlighting its effectiveness in combating the advent of drug resistance.
Collapse
Affiliation(s)
- Jingyin Yue
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Roberto Vendramin
- Laboratory for Molecular Cancer Biology, Oncology Department, KULeuven, 3000 Leuven, Belgium.,Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Fan Liu
- Department of Biochemistry, University of Miami, Miami, Florida 33136, USA
| | - Omar Lopez
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Monica G Valencia
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Helena Gomes Dos Santos
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Gabriel Gaidosh
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Felipe Beckedorff
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Ezra Blumenthal
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Lucia Speroni
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Stephen D Nimer
- Department of Biochemistry, University of Miami, Miami, Florida 33136, USA.,Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Oncology Department, KULeuven, 3000 Leuven, Belgium.,Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Ramin Shiekhattar
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
185
|
Choudhury A, Neumann NM, Raleigh DR, Lang UE. Clinical Implications of Primary Cilia in Skin Cancer. Dermatol Ther (Heidelb) 2020; 10:233-248. [PMID: 31997226 PMCID: PMC7090118 DOI: 10.1007/s13555-020-00355-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Indexed: 12/25/2022] Open
Abstract
The primary cilium is a cell surface organelle that is an important component of cellular biology. While it was once believed to be a vestigial structure without biologic function, it is now known to have essential roles in critical cellular signaling pathways such as Hedgehog (HH) and Wnt. The HH and Wnt pathways are involved in pathogenesis of basal cell carcinoma and melanoma, respectively, and this knowledge is now beginning to inform therapeutic and diagnostic options for patients. The purpose of this review is to familiarize clinicians with primary cilia biology and how this complex cellular organelle has started to translate into clinical care.
Collapse
Affiliation(s)
- Abrar Choudhury
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Neil M Neumann
- Department of Pathology, Dermatopathology Service, University of California, San Francisco, CA, USA
| | - David R Raleigh
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Ursula E Lang
- Department of Pathology, Dermatopathology Service, University of California, San Francisco, CA, USA.
- Department of Dermatology, University of California, San Francisco, CA, USA.
| |
Collapse
|
186
|
Li K, Tang M, Tong S, Wang C, Sun Q, Lv M, Sun X, Wang T, Jin S. BRAFi induced demethylation of miR-152-5p regulates phenotype switching by targeting TXNIP in cutaneous melanoma. Apoptosis 2020; 25:179-191. [PMID: 32056038 DOI: 10.1007/s10495-019-01586-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Treatment of advanced BRAFV600-mutant melanoma using BRAF inhibitors (BRAFi) eventually leads to drug resistance and selects for highly metastatic tumor cells. We compared the most differentially dysregulated miRNA expression profiles of vemurafenib-resistant and highly-metastatic melanoma cell lines obtained from GEO DataSets. We discovered miR-152-5p was a potential regulator mediating melanoma drug resistance and metastasis. Functionally, knockdown of miR-152-5p significantly compromised the metastatic ability of BRAFi-resistant melanoma cells and overexpression of miR-152-5p promoted the formation of slow-cycling phenotype. Furthermore, we explored the cause of how and why miR-152-5p affected metastasis in depth. Mechanistically, miR-152-5p targeted TXNIP which affected metastasis and BRAFi altered the methylation status of MIR152 promoter. Our study highlights the crucial role of miR-152-5p on melanoma metastasis after BRAFi treatment and holds significant implying that discontinuous dosing strategy may improve the benefit of advanced BRAFV600-mutant melanoma patients.
Collapse
Affiliation(s)
- Kezhu Li
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Mingrui Tang
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Shuang Tong
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Chenchao Wang
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Qiang Sun
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Mengzhu Lv
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Xu Sun
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Ting Wang
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Shifeng Jin
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China.
| |
Collapse
|
187
|
Rowling EJ, Miskolczi Z, Nagaraju R, Wilcock DJ, Wang P, Telfer B, Li Y, Lasheras-Otero I, Redondo-Muñoz M, Sharrocks AD, Arozarena I, Wellbrock C. Cooperative behaviour and phenotype plasticity evolve during melanoma progression. Pigment Cell Melanoma Res 2020; 33:695-708. [PMID: 32145051 PMCID: PMC7496243 DOI: 10.1111/pcmr.12873] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/04/2020] [Accepted: 02/28/2020] [Indexed: 01/06/2023]
Abstract
A major challenge for managing melanoma is its tumour heterogeneity based on individual co-existing melanoma cell phenotypes. These phenotypes display variable responses to standard therapies, and they drive individual steps of melanoma progression; hence, understanding their behaviour is imperative. Melanoma phenotypes are defined by distinct transcriptional states, which relate to different melanocyte lineage development phases, ranging from a mesenchymal, neural crest-like to a proliferative, melanocytic phenotype. It is thought that adaptive phenotype plasticity based on transcriptional reprogramming drives melanoma progression, but at which stage individual phenotypes dominate and moreover, how they interact is poorly understood. We monitored melanocytic and mesenchymal phenotypes throughout melanoma progression and detected transcriptional reprogramming at different stages, with a gain in mesenchymal traits in circulating melanoma cells (CTCs) and proliferative features in metastatic tumours. Intriguingly, we found that distinct phenotype populations interact in a cooperative manner, which generates tumours of greater "fitness," supports CTCs and expands organotropic cues in metastases. Fibronectin, expressed in mesenchymal cells, acts as key player in cooperativity and promotes survival of melanocytic cells. Our data reveal an important role for inter-phenotype communications at various stages of disease progression, suggesting these communications could act as therapeutic target.
Collapse
Affiliation(s)
- Emily J Rowling
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zsofia Miskolczi
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Raghavendar Nagaraju
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Daniel J Wilcock
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ping Wang
- Bioinformatics Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Brian Telfer
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Yaoyong Li
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Irene Lasheras-Otero
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Marta Redondo-Muñoz
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Andrew D Sharrocks
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Imanol Arozarena
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
188
|
Girard CA, Lecacheur M, Ben Jouira R, Berestjuk I, Diazzi S, Prod'homme V, Mallavialle A, Larbret F, Gesson M, Schaub S, Pisano S, Audebert S, Mari B, Gaggioli C, Leucci E, Marine JC, Deckert M, Tartare-Deckert S. A Feed-Forward Mechanosignaling Loop Confers Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutant Melanoma. Cancer Res 2020; 80:1927-1941. [PMID: 32179513 DOI: 10.1158/0008-5472.can-19-2914] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 11/16/2022]
Abstract
Aberrant extracellular matrix (ECM) deposition and stiffening is a physical hallmark of several solid cancers and is associated with therapy failure. BRAF-mutant melanomas treated with BRAF and MEK inhibitors almost invariably develop resistance that is frequently associated with transcriptional reprogramming and a de-differentiated cell state. Melanoma cells secrete their own ECM proteins, an event that is promoted by oncogenic BRAF inhibition. Yet, the contribution of cancer cell-derived ECM and tumor mechanics to drug adaptation and therapy resistance remains poorly understood. Here, we show that melanoma cells can adapt to targeted therapies through a mechanosignaling loop involving the autocrine remodeling of a drug-protective ECM. Analyses revealed that therapy-resistant cells associated with a mesenchymal dedifferentiated state displayed elevated responsiveness to collagen stiffening and force-mediated ECM remodeling through activation of actin-dependent mechanosensors Yes-associated protein (YAP) and myocardin-related transcription factor (MRTF). Short-term inhibition of MAPK pathway also induced mechanosignaling associated with deposition and remodeling of an aligned fibrillar matrix. This provided a favored ECM reorganization that promoted tolerance to BRAF inhibition in a YAP- and MRTF-dependent manner. Matrix remodeling and tumor stiffening were also observed in vivo upon exposure of BRAF-mutant melanoma cell lines or patient-derived xenograft models to MAPK pathway inhibition. Importantly, pharmacologic targeting of YAP reversed treatment-induced excessive collagen deposition, leading to enhancement of BRAF inhibitor efficacy. We conclude that MAPK pathway targeting therapies mechanically reprogram melanoma cells to confer a drug-protective matrix environment. Preventing melanoma cell mechanical reprogramming might be a promising therapeutic strategy for patients on targeted therapies. SIGNIFICANCE: These findings reveal a biomechanical adaptation of melanoma cells to oncogenic BRAF pathway inhibition, which fuels a YAP/MRTF-dependent feed-forward loop associated with tumor stiffening, mechanosensing, and therapy resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/10/1927/F1.large.jpg.
Collapse
Affiliation(s)
- Christophe A Girard
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Margaux Lecacheur
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Rania Ben Jouira
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Ilona Berestjuk
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Serena Diazzi
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Virginie Prod'homme
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Aude Mallavialle
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Frédéric Larbret
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Maéva Gesson
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | | | - Sabrina Pisano
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Stéphane Audebert
- Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Bernard Mari
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, France
| | | | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.,TRACE, LKI Leuven Cancer Institute, KU Leuven
| | - Jean-Christophe Marine
- Laboratory For Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Marcel Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France. .,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Sophie Tartare-Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France. .,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| |
Collapse
|
189
|
Rebecca VW, Herlyn M. Nongenetic Mechanisms of Drug Resistance in Melanoma. ANNUAL REVIEW OF CANCER BIOLOGY 2020. [DOI: 10.1146/annurev-cancerbio-030419-033533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Resistance to targeted and immune-based therapies limits cures in patients with metastatic melanoma. A growing number of reports have identified nongenetic primary resistance mechanisms including intrinsic microenvironment- and lineage plasticity–mediated processes serving critical functions in the persistence of disease throughout therapy. There is a temporally shifting spectrum of cellular identities fluidly occupied by therapy-persisting melanoma cells responsible for driving therapeutic resistance and metastasis. The key epigenetic, metabolic, and phenotypic reprogramming events requisite for the manifestation and maintenance of so-called persister melanoma populations remain poorly understood and underscore the need to comprehensively investigate actionable vulnerabilities. Here we attempt to integrate the field's observations on nongenetic mechanisms of drug resistance in melanoma. We postulate that the future design of therapeutic strategies specifically addressing therapy-persisting subpopulations of melanoma will improve the curative potential of therapy for patients with metastatic disease.
Collapse
Affiliation(s)
- Vito W. Rebecca
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
190
|
Singh K, Baird M, Fischer R, Chaitankar V, Seifuddin F, Chen YC, Tunc I, Waterman CM, Pirooznia M. Misregulation of ELK1, AP1, and E12 Transcription Factor Networks Is Associated with Melanoma Progression. Cancers (Basel) 2020; 12:E458. [PMID: 32079144 PMCID: PMC7072154 DOI: 10.3390/cancers12020458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/17/2023] Open
Abstract
Melanoma is among the most malignant cutaneous cancers and when metastasized results in dramatically high mortality. Despite advances in high-throughput gene expression profiling in cancer transcriptomic studies, our understanding of mechanisms driving melanoma progression is still limited. We present here an in-depth bioinformatic analysis of the melanoma RNAseq, chromatin immunoprecipitation (ChIP)seq, and single-cell (sc)RNA seq data to understand cancer progression. Specifically, we have performed a consensus network analysis of RNA-seq data from clinically re-grouped melanoma samples to identify gene co-expression networks that are conserved in early (stage 1) and late (stage 4/invasive) stage melanoma. Overlaying the fold-change information on co-expression networks revealed several coordinately up or down-regulated subnetworks that may play a critical role in melanoma progression. Furthermore, by incorporating histone lysine-27 acetylation information and highly expressed genes identified from the single-cell RNA data from melanoma patient samples, we present a comprehensive list of pathways, putative protein-protein interactions (PPIs) and transcription factor (TF) networks that are driving cancer progression. From this analysis, we have identified Elk1, AP1 and E12 TF networks that coordinately change expression in late melanoma when compared to early melanoma, implicating these TFs in melanoma progression. Additionally, the sumoylation-associated interactome is upregulated in invasive melanoma. Together, this bioinformatic analysis potentially implicates a combination of TF networks and PPIs in melanoma progression, which if confirmed in the experimental systems, could be used as targets for drug intervention in melanoma.
Collapse
Affiliation(s)
- Komudi Singh
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Michelle Baird
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.B.); (R.F.); (C.M.W.)
| | - Robert Fischer
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.B.); (R.F.); (C.M.W.)
| | - Vijender Chaitankar
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Yun-Ching Chen
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Ilker Tunc
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Clare M. Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.B.); (R.F.); (C.M.W.)
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| |
Collapse
|
191
|
Braun AD, Mengoni M, Bonifatius S, Tüting T, Gaffal E. Activated Hgf-Met Signaling Cooperates with Oncogenic BRAF to Drive Primary Cutaneous Melanomas and Angiotropic Lung Metastases in Mice. J Invest Dermatol 2020; 140:1410-1417.e2. [PMID: 31972251 DOI: 10.1016/j.jid.2019.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022]
Abstract
Oncogenic mutations in the BRAF kinase gene represent the most frequent genomic driver in acquired melanocytic nevi and in cutaneous melanomas. It is currently thought that oncogene-induced senescence and cell cycle arrest limit the ability of oncogenic BRAF to promote melanocyte proliferation in benign nevi. The molecular and cellular mechanisms that allow an oncogenic BRAF mutation to fully transform melanocytes into invasively growing melanoma cells that are able to metastasize systemically are only partially understood. In this study, we show in a genetic mouse model that constitutively enhanced Hgf-Met signaling cooperates with oncogenic BRAF to drive tumor development and metastatic spread. Activation of oncogenic BRAF in mice with transgenic Hgf overexpression and an oncogenic CDK4 germline mutation accelerated and increased the development of primary cutaneous melanomas. Primary melanomas showed considerable phenotypic heterogeneity with frequent signs of dedifferentiation. BRAF activation in Hgf-CDK4 mice also increased the number of lung metastases. Melanoma cells showed a pronounced angiotropic growth pattern both at the invasive front in primary tumors and in metastatic lesions of the lung. Taken together, our work supports the notion that activated Hgf-Met signaling and oncogenic BRAF can cooperate in melanoma pathogenesis.
Collapse
Affiliation(s)
- Andreas Dominik Braun
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, Magdeburg, Germany
| | - Miriam Mengoni
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, Magdeburg, Germany
| | - Susanne Bonifatius
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, Magdeburg, Germany
| | - Thomas Tüting
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, Magdeburg, Germany
| | - Evelyn Gaffal
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, Magdeburg, Germany.
| |
Collapse
|
192
|
Hanniford D, Ulloa-Morales A, Karz A, Berzoti-Coelho MG, Moubarak RS, Sánchez-Sendra B, Kloetgen A, Davalos V, Imig J, Wu P, Vasudevaraja V, Argibay D, Lilja K, Tabaglio T, Monteagudo C, Guccione E, Tsirigos A, Osman I, Aifantis I, Hernando E. Epigenetic Silencing of CDR1as Drives IGF2BP3-Mediated Melanoma Invasion and Metastasis. Cancer Cell 2020; 37:55-70.e15. [PMID: 31935372 PMCID: PMC7184928 DOI: 10.1016/j.ccell.2019.12.007] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/17/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
Abstract
Metastasis is the primary cause of death of cancer patients. Dissecting mechanisms governing metastatic spread may uncover important tumor biology and/or yield promising therapeutic insights. Here, we investigated the role of circular RNAs (circRNA) in metastasis, using melanoma as a model aggressive tumor. We identified silencing of cerebellar degeneration-related 1 antisense (CDR1as), a regulator of miR-7, as a hallmark of melanoma progression. CDR1as depletion results from epigenetic silencing of LINC00632, its originating long non-coding RNA (lncRNA) and promotes invasion in vitro and metastasis in vivo through a miR-7-independent, IGF2BP3-mediated mechanism. Moreover, CDR1as levels reflect cellular states associated with distinct therapeutic responses. Our study reveals functional, prognostic, and predictive roles for CDR1as and expose circRNAs as key players in metastasis.
Collapse
Affiliation(s)
- Douglas Hanniford
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA.
| | - Alejandro Ulloa-Morales
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Alcida Karz
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Maria Gabriela Berzoti-Coelho
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Rana S Moubarak
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | | | - Andreas Kloetgen
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Veronica Davalos
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Jochen Imig
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Pamela Wu
- Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA
| | - Varshini Vasudevaraja
- Applied Bioinformatics Laboratories, New York University Langone Medical Center, New York, NY, USA
| | - Diana Argibay
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Karin Lilja
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA
| | - Tommaso Tabaglio
- Institute of Molecular and Cell Biology, A(∗)STAR, Singapore, Singapore
| | | | - Ernesto Guccione
- Institute of Molecular and Cell Biology, A(∗)STAR, Singapore, Singapore; Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Applied Bioinformatics Laboratories, New York University Langone Medical Center, New York, NY, USA
| | - Iman Osman
- Departments of Urology and Medicine, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Eva Hernando
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
193
|
Dissecting Mechanisms of Melanoma Resistance to BRAF and MEK Inhibitors Revealed Genetic and Non-Genetic Patient- and Drug-Specific Alterations and Remarkable Phenotypic Plasticity. Cells 2020; 9:cells9010142. [PMID: 31936151 PMCID: PMC7017165 DOI: 10.3390/cells9010142] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
The clinical benefit of MAPK pathway inhibition in BRAF-mutant melanoma patients is limited by the development of acquired resistance. Using drug-naïve cell lines derived from tumor specimens, we established a preclinical model of melanoma resistance to vemurafenib or trametinib to provide insight into resistance mechanisms. Dissecting the mechanisms accompanying the development of resistance, we have shown that (i) most of genetic and non-genetic alterations are triggered in a cell line- and/or drug-specific manner; (ii) several changes previously assigned to the development of resistance are induced as the immediate response to the extent measurable at the bulk levels; (iii) reprogramming observed in cross-resistance experiments and growth factor-dependence restricted by the drug presence indicate that phenotypic plasticity of melanoma cells largely contributes to the sustained resistance. Whole-exome sequencing revealed novel genetic alterations, including a frameshift variant of RBMX found exclusively in phospho-AKThigh resistant cell lines. There was no similar pattern of phenotypic alterations among eleven resistant cell lines, including expression/activity of crucial regulators, such as MITF, AXL, SOX, and NGFR, which suggests that patient-to-patient variability is richer and more nuanced than previously described. This diversity should be considered during the development of new strategies to circumvent the acquired resistance to targeted therapies.
Collapse
|
194
|
Janssen SM, Moscona R, Elchebly M, Papadakis AI, Redpath M, Wang H, Rubin E, van Kempen LC, Spatz A. BORIS/CTCFL promotes a switch from a proliferative towards an invasive phenotype in melanoma cells. Cell Death Discov 2020; 6:1. [PMID: 32123577 PMCID: PMC7026120 DOI: 10.1038/s41420-019-0235-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Melanoma is among the most aggressive cancers due to its tendency to metastasize early. Phenotype switching between a proliferative and an invasive state has been suggested as a critical process for metastasis, though the mechanisms that regulate state transitions are complex and remain poorly understood. Brother of Regulator of Imprinted Sites (BORIS), also known as CCCTC binding factor-Like (CTCFL), is a transcriptional modulator that becomes aberrantly expressed in melanoma. Yet, the role of BORIS in melanoma remains elusive. Here, we show that BORIS is involved in melanoma phenotype switching. Genetic modification of BORIS expression in melanoma cells combined with whole-transcriptome analysis indicated that BORIS expression contributes to an invasion-associated transcriptome. In line with these findings, inducible BORIS overexpression in melanoma cells reduced proliferation and increased migration and invasion, demonstrating that the transcriptional switch is accompanied by a phenotypic switch. Mechanistically, we reveal that BORIS binds near the promoter of transforming growth factor-beta 1 (TFGB1), a well-recognized factor involved in the transition towards an invasive state, which coincided with increased expression of TGFB1. Overall, our study indicates a pro-invasive role for BORIS in melanoma via transcriptional reprogramming.
Collapse
Affiliation(s)
- Sanne Marlijn Janssen
- Lady Davis Institute for Medical Research, Montréal, QC Canada
- Department of Pathology, McGill University, Montréal, QC Canada
| | - Roy Moscona
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Mounib Elchebly
- Lady Davis Institute for Medical Research, Montréal, QC Canada
| | | | - Margaret Redpath
- Lady Davis Institute for Medical Research, Montréal, QC Canada
- Department of Pathology, McGill University, Montréal, QC Canada
- Division of Pathology, Department of Laboratory medicine, McGill University Health Center, Montreal, QC Canada
| | - Hangjun Wang
- Lady Davis Institute for Medical Research, Montréal, QC Canada
- Department of Pathology, McGill University, Montréal, QC Canada
- Division of Pathology, Department of Laboratory medicine, McGill University Health Center, Montreal, QC Canada
| | - Eitan Rubin
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Léon Cornelis van Kempen
- Lady Davis Institute for Medical Research, Montréal, QC Canada
- Department of Pathology, McGill University, Montréal, QC Canada
- Department of Pathology, Laboratory for Molecular Pathology, University Medical Center Groningen, Groningen, The Netherlands
| | - Alan Spatz
- Lady Davis Institute for Medical Research, Montréal, QC Canada
- Department of Pathology, McGill University, Montréal, QC Canada
- Division of Pathology, Department of Laboratory medicine, McGill University Health Center, Montreal, QC Canada
- Department of Oncology, McGill University, Montréal, QC Canada
| |
Collapse
|
195
|
Koroknai V, Szász I, Hernandez-Vargas H, Fernandez-Jimenez N, Cuenin C, Herceg Z, Vízkeleti L, Ádány R, Ecsedi S, Balázs M. DNA hypermethylation is associated with invasive phenotype of malignant melanoma. Exp Dermatol 2020; 29:39-50. [PMID: 31602702 DOI: 10.1111/exd.14047] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/29/2019] [Accepted: 10/06/2019] [Indexed: 01/01/2023]
Abstract
Tumor cell invasion is one of the key processes during cancer progression, leading to life-threatening metastatic lesions in melanoma. As methylation of cancer-related genes plays a fundamental role during tumorigenesis and may lead to cellular plasticity which promotes invasion, our aim was to identify novel epigenetic markers on selected invasive melanoma cells. Using Illumina BeadChip assays and Affymetrix Human Gene 1.0 microarrays, we explored the DNA methylation landscape of selected invasive melanoma cells and examined the impact of DNA methylation on gene expression patterns. Our data revealed predominantly hypermethylated genes in the invasive cells affecting the neural crest differentiation pathway and regulation of the actin cytoskeleton. Integrative analysis of the methylation and gene expression profiles resulted in a cohort of hypermethylated genes (IL12RB2, LYPD6B, CHL1, SLC9A3, BAALC, FAM213A, SORCS1, GPR158, FBN1 and ADORA2B) with decreased expression. On the other hand, hypermethylation in the gene body of the EGFR and RBP4 genes was positively correlated with overexpression of the genes. We identified several methylation changes that can have role during melanoma progression, including hypermethylation of the promoter regions of the ARHGAP22 and NAV2 genes that are commonly altered in locally invasive primary melanomas as well as during metastasis. Interestingly, the down-regulation of the methylcytosine dioxygenase TET2 gene, which regulates DNA methylation, was associated with hypermethylated promoter region of the gene. This can probably lead to the observed global hypermethylation pattern of invasive cells and might be one of the key changes during the development of malignant melanoma cells.
Collapse
Affiliation(s)
- Viktória Koroknai
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| | - István Szász
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| | | | | | - Cyrille Cuenin
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Laura Vízkeleti
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| | - Róza Ádány
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| | - Szilvia Ecsedi
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Margit Balázs
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
196
|
Mannavola F, D’Oronzo S, Cives M, Stucci LS, Ranieri G, Silvestris F, Tucci M. Extracellular Vesicles and Epigenetic Modifications Are Hallmarks of Melanoma Progression. Int J Mol Sci 2019; 21:E52. [PMID: 31861757 PMCID: PMC6981648 DOI: 10.3390/ijms21010052] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022] Open
Abstract
Cutaneous melanoma shows a high metastatic potential based on its ability to overcome the immune system's control. The mechanisms activated for these functions vary extremely and are also represented by the production of a number of extracellular vesicles including exosomes. Other vesicles showing a potential role in the melanoma progression include oncosomes and melanosomes and the majority of them mediate tumor processes including angiogenesis, immune regulation, and modifications of the micro-environment. Moreover, a number of epigenetic modifications have been described in melanoma and abundant production of altered microRNAs (mi-RNAs), non-coding RNAs, histones, and abnormal DNA methylation have been associated with different phases of melanoma progression. In addition, exosomes, miRNAs, and other molecular factors have been used as potential biomarkers reflecting disease evolution while others have been suggested to be potential druggable molecules for therapeutic application.
Collapse
Affiliation(s)
- Francesco Mannavola
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
| | - Stella D’Oronzo
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
- National Cancer Research Center, Istituto Tumori ‘Giovanni Paolo II’, 70121 Bari, Italy;
| | - Mauro Cives
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
| | - Luigia Stefania Stucci
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
| | - Girolamo Ranieri
- National Cancer Research Center, Istituto Tumori ‘Giovanni Paolo II’, 70121 Bari, Italy;
| | - Franco Silvestris
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
| | - Marco Tucci
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, ‘Aldo Moro’, 70121 Bari, Italy; (F.M.); (S.D.); (M.C.); (L.S.S.); (F.S.)
- National Cancer Research Center, Istituto Tumori ‘Giovanni Paolo II’, 70121 Bari, Italy;
| |
Collapse
|
197
|
Abstract
The Hippo pathway and its downstream effectors, the transcriptional co-activators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), regulate organ growth and cell plasticity during animal development and regeneration. Remarkably, experimental activation of YAP/TAZ in the mouse can promote regeneration in organs with poor or compromised regenerative capacity, such as the adult heart and the liver and intestine of old or diseased mice. However, therapeutic YAP/TAZ activation may cause serious side effects. Most notably, YAP/TAZ are hyperactivated in human cancers, and prolonged activation of YAP/TAZ triggers cancer development in mice. Thus, can the power of YAP/TAZ to promote regeneration be harnessed in a safe way? Here, we review the role of Hippo signalling in animal regeneration, examine the promises and risks of YAP/TAZ activation for regenerative medicine and discuss strategies to activate YAP/TAZ for regenerative therapy while minimizing adverse side effects.
Collapse
|
198
|
Coe EA, Tan JY, Shapiro M, Louphrasitthiphol P, Bassett AR, Marques AC, Goding CR, Vance KW. The MITF-SOX10 regulated long non-coding RNA DIRC3 is a melanoma tumour suppressor. PLoS Genet 2019; 15:e1008501. [PMID: 31881017 PMCID: PMC6934268 DOI: 10.1371/journal.pgen.1008501] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/30/2019] [Indexed: 01/14/2023] Open
Abstract
The MITF and SOX10 transcription factors regulate the expression of genes important for melanoma proliferation, invasion and metastasis. Despite growing evidence of the contribution of long noncoding RNAs (lncRNAs) in cancer, including melanoma, their functions within MITF-SOX10 transcriptional programmes remain poorly investigated. Here we identify 245 candidate melanoma associated lncRNAs whose loci are co-occupied by MITF-SOX10 and that are enriched at active enhancer-like regions. Our work suggests that one of these, Disrupted In Renal Carcinoma 3 (DIRC3), may be a clinically important MITF-SOX10 regulated tumour suppressor. DIRC3 depletion in human melanoma cells leads to increased anchorage-independent growth, a hallmark of malignant transformation, whilst melanoma patients classified by low DIRC3 expression have decreased survival. DIRC3 is a nuclear lncRNA that activates expression of its neighbouring IGFBP5 tumour suppressor through modulating chromatin structure and suppressing SOX10 binding to putative regulatory elements within the DIRC3 locus. In turn, DIRC3 dependent regulation of IGFBP5 impacts the expression of genes involved in cancer associated processes and is needed for DIRC3 control of anchorage-independent growth. Our work indicates that lncRNA components of MITF-SOX10 networks are an important new class of melanoma regulators and candidate therapeutic targets that can act not only as downstream mediators of MITF-SOX10 function but as feedback regulators of MITF-SOX10 activity.
Collapse
Affiliation(s)
- Elizabeth A. Coe
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Jennifer Y. Tan
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Michael Shapiro
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - Andrew R. Bassett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ana C. Marques
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Colin R. Goding
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Keith W. Vance
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
199
|
Salgado C, Kwesi-Maliepaard EM, Jochemsen AG, Visser M, Harland M, van Leeuwen F, van Doorn R, Gruis N. A novel germline variant in the DOT1L gene co-segregating in a Dutch family with a history of melanoma. Melanoma Res 2019; 29:582-589. [DOI: 10.1097/cmr.0000000000000640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
200
|
Vivas-García Y, Falletta P, Liebing J, Louphrasitthiphol P, Feng Y, Chauhan J, Scott DA, Glodde N, Chocarro-Calvo A, Bonham S, Osterman AL, Fischer R, Ronai Z, García-Jiménez C, Hölzel M, Goding CR. Lineage-Restricted Regulation of SCD and Fatty Acid Saturation by MITF Controls Melanoma Phenotypic Plasticity. Mol Cell 2019; 77:120-137.e9. [PMID: 31733993 DOI: 10.1016/j.molcel.2019.10.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 08/08/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
Phenotypic and metabolic heterogeneity within tumors is a major barrier to effective cancer therapy. How metabolism is implicated in specific phenotypes and whether lineage-restricted mechanisms control key metabolic vulnerabilities remain poorly understood. In melanoma, downregulation of the lineage addiction oncogene microphthalmia-associated transcription factor (MITF) is a hallmark of the proliferative-to-invasive phenotype switch, although how MITF promotes proliferation and suppresses invasion is poorly defined. Here, we show that MITF is a lineage-restricted activator of the key lipogenic enzyme stearoyl-CoA desaturase (SCD) and that SCD is required for MITFHigh melanoma cell proliferation. By contrast MITFLow cells are insensitive to SCD inhibition. Significantly, the MITF-SCD axis suppresses metastasis, inflammatory signaling, and an ATF4-mediated feedback loop that maintains de-differentiation. Our results reveal that MITF is a lineage-specific regulator of metabolic reprogramming, whereby fatty acid composition is a driver of melanoma phenotype switching, and highlight that cell phenotype dictates the response to drugs targeting lipid metabolism.
Collapse
Affiliation(s)
- Yurena Vivas-García
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Paola Falletta
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Jana Liebing
- Institute of Experimental Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Yongmei Feng
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - David A Scott
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Nicole Glodde
- Institute of Experimental Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Ana Chocarro-Calvo
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK; Facultad de CC de la Salud, Edificio Dptal 1, Universidad Rey Juan Carlos, Avda Atenas s/n 28922, Alcorcón, Madrid, Spain
| | - Sarah Bonham
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 7FZ, UK
| | - Andrei L Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 7FZ, UK
| | - Ze'ev Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Custodia García-Jiménez
- Facultad de CC de la Salud, Edificio Dptal 1, Universidad Rey Juan Carlos, Avda Atenas s/n 28922, Alcorcón, Madrid, Spain
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK.
| |
Collapse
|