151
|
Xiao Z, Chen Y, Wang X, Sun Q, Tu T, Liu J, Nie C, Gao Z. Effect of runx2b deficiency in intermuscular bones on the regulatory network of lncRNA-miRNA-mRNA. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101171. [PMID: 38103500 DOI: 10.1016/j.cbd.2023.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Intermuscular bones (IBs) are mineralized spicules that negatively impact the quality and value of fish products. Runx2b is a crucial modulator in promoting bone formation through regulating osteoblast differentiation. Previous studies suggested that loss of runx2b gene completely inhibited IBs formation in zebrafish. However, how the whole transcriptome, including mRNA and non-coding RNA (ncRNA), affects the IBs development in runx2b-/- zebrafish are not known. The aim of this study was to identify the regulatory networks of differentially expressed (DE) lncRNAs, miRNAs, and mRNAs in zebrafish with and without IBs (runx2b+/+ fish and runx2b-/- fish) utilizing high-throughput sequencing techniques. All together there are 1051 mRNAs, 456 lncRNAs, and 18 miRNAs differentially expressed were found between these two strains. The analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) has highlighted significant pathways linked to the development of IBs, specifically the TGF-beta and Wnt signaling pathways, and a number of genes concentrated on these two signaling pathways related to the formation of IBs. Further, 1989 competing endogenous RNA (ceRNA) networks were created according to the correlation among mRNAs, miRNAs and lncRNAs. The ceRNA networks results revealed 52 ceRNA pairs related to the IBs formation, consisting of 52 mRNAs, 37 lncRNAs, and 6 miRNAs. Of these, we found that dre-miR-2189 was the key element of ceRNA pairs, interacting with 19 mRNAs and 11 lncRNAs, and MSTRG.13175.1 could regulate sp7 expression by interacting with dre-miR-2189 to function in osteogenic differentiation. Subsequent experiments at the cellular level also revealed the interaction mechanism. The outcomes indicated a crucial role of miRNAs and lncRNAs in the development of fish IBs, which offer new views into the functions of ncRNAs involved in IBs formation.
Collapse
Affiliation(s)
- Zhengyu Xiao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yulong Chen
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xudong Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiujie Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Tan Tu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Junqi Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunhong Nie
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Zexia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
152
|
Fang X, Chen J, Meng F, Chen F, Chen X, Wang Y, Fang X, Zhang C, Song C. Linc-smad7 is involved in the regulation of lipid synthesis in mouse mammary epithelial cells. Int J Biol Macromol 2024; 262:129875. [PMID: 38320638 DOI: 10.1016/j.ijbiomac.2024.129875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Long intergenic non-coding RNA(lincRNA) is transcribed from the intermediate regions of coding genes and plays a pivotal role in the regulation of lipid synthesis. N6-methyladenosine (m6A) modification is widely prevalent in eukaryotic mRNAs and serves as a regulatory factor in diverse biological processes. This study aims to delineate the mechanism by which Linc-smad7 mediates m6A methylation to regulate milk fat synthesis. Tissue expression analysis in this study revealed a high expression of Linc-smad7 in breast tissue during pregnancy. Cell proliferation assays, including CCK8 and EdU assays, demonstrated that Linc-smad7 had no significant impact on the proliferation of mammary epithelial cells. However, during mammary epithelial cell differentiation, the overexpression of Linc-smad7 led to reduced lipid formation, whereas interference with Linc-smad7 promoted lipogenesis. Mechanistically, Linc-smad7 was found to modulate RNA m6A levels, as evidenced by dot blot assays and methylated RNA immunoprecipitation sequencing (MeRIP-Seq). Subsequent validation through RT-qPCR corroborated these findings, aligning with the m6A sequencing outcomes. Furthermore, co-transfection experiments elucidated that Linc-smad7 regulates lipid synthesis in mammary epithelial cells by influencing the expression of METTL14. In summary, these findings underscore the regulatory role of Linc-smad7 in controlling METTL14 gene expression, thereby mediating m6A modifications to regulate lipid synthesis in mammary epithelial cells.
Collapse
Affiliation(s)
- Xue Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Junhao Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Fantong Meng
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Fang Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
153
|
Sadri F, Hosseini SF, Rezaei Z, Fereidouni M. Hippo-YAP/TAZ signaling in breast cancer: Reciprocal regulation of microRNAs and implications in precision medicine. Genes Dis 2024; 11:760-771. [PMID: 37692482 PMCID: PMC10491881 DOI: 10.1016/j.gendis.2023.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/09/2022] [Accepted: 01/29/2023] [Indexed: 09/12/2023] Open
Abstract
Breast cancer is a molecularly heterogeneous disease and the most common female malignancy. In recent years, therapy approaches have evolved to accommodate molecular diversity, with a focus on more biologically based therapies to minimize negative consequences. To regulate cell fate in human breast cells, the Hippo signaling pathway has been associated with the alpha subtype of estrogen receptors. This pathway regulates tissue size, regeneration, and healing, as well as the survival of tissue-specific stem cells, proliferation, and apoptosis in a variety of organs, allowing for cell differentiation. Hippo signaling is mediated by the kinases MST1, MST2, LATS1, and LATS2, as well as the adaptor proteins SAV1 and MOB. These kinases phosphorylate the downstream effectors of the Hippo pathway, yes-associated protein (YAP), and transcriptional coactivator with PDZ-binding motif (TAZ), suppressing the expression of their downstream target genes. The Hippo signaling pathway kinase cascade plays a significant role in all cancers. Understanding the principles of this kinase cascade would prevent the occurrence of breast cancer. In recent years, small noncoding RNAs, or microRNAs, have been implicated in the development of several malignancies, including breast cancer. The interconnections between miRNAs and Hippo signaling pathway core proteins in the breast, on the other hand, remain poorly understood. In this review, we focused on highlighting the Hippo signaling system, its key parts, its importance in breast cancer, and its regulation by miRNAs and other related pathways.
Collapse
Affiliation(s)
- Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | | | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan 9816745785, Iran
| | - Mohammad Fereidouni
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| |
Collapse
|
154
|
Chattopadhyay P, Mehta P, Soni J, Tardalkar K, Joshi M, Pandey R. Cell-specific housekeeping role of lncRNAs in COVID-19-infected and recovered patients. NAR Genom Bioinform 2024; 6:lqae023. [PMID: 38426128 PMCID: PMC10903533 DOI: 10.1093/nargab/lqae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
A plethora of studies have demonstrated the roles of lncRNAs in modulating disease severity and outcomes during infection. However, the spatio-temporal expression of these lncRNAs is poorly understood. In this study, we used single-cell RNA-seq to understand the spatio-temporal expression dynamics of lncRNAs across healthy, SARS-CoV-2-infected, and recovered individuals and their functional role in modulating the disease and recovery. We identified 203 differentially expressed lncRNAs, including cell type-specific ones like MALAT1, NEAT1, ZFAS1, SNHG7, SNHG8, and SNHG25 modulating immune function in classical monocyte, NK T, proliferating NK, plasmablast, naive, and activated B/T cells. Interestingly, we found invariant lncRNAs (no significant change in expression across conditions) regulating essential housekeeping functions (for example, HOTAIR, NRAV, SNHG27, SNHG28, and UCA1) in infected and recovered individuals. Despite similar repeat element abundance, variant lncRNAs displayed higher Alu content, suggesting increased interactions with proximal and distal genes, crucial for immune response modulation. The comparable repeat abundance but distinct expression levels of variant and invariant lncRNAs highlight the significance of investigating the regulatory mechanisms of invariant lncRNAs. Overall, this study offers new insights into the spatio-temporal expression patterns and functional roles of lncRNAs in SARS-CoV-2-infected and recovered individuals while highlighting the importance of invariant lncRNAs in the disease context.
Collapse
Affiliation(s)
- Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Jyoti Soni
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Kishore Tardalkar
- Department of Stem Cells & Regenerative Medicine, D.Y. Patil Education Society, Kadamwadi, Kolhapur-416003,Maharashtra, India
| | - Meghnad Joshi
- Department of Stem Cells & Regenerative Medicine, D.Y. Patil Education Society, Kadamwadi, Kolhapur-416003,Maharashtra, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
155
|
Li B, Xiong X, Xu J, Peng D, Nie G, Wen N, Wang Y, Lu J. METTL3-mediated m 6A modification of lncRNA TSPAN12 promotes metastasis of hepatocellular carcinoma through SENP1-depentent deSUMOylation of EIF3I. Oncogene 2024; 43:1050-1062. [PMID: 38374407 DOI: 10.1038/s41388-024-02970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
In a previous study, we discovered that the level of lnc-TSPAN12 was significantly elevated in hepatocellular carcinoma (HCC) and correlated with a low survival rate. However, the function and mechanism of lnc-TSPAN12 in modulating epithelial-mesenchymal transition (EMT) and metastasis in HCC remains poorly understood. This study demonstrates that lnc-TSPAN12 positively influences migration, invasion, and EMT of HCC cells in vitro and promotes hepatic metastasis in vivo. The modification of N6-methyladenosine, driven by METTL3, is essential for the stability of lnc-TSPAN12, which may partially contribute to the upregulation of lnc-TSPAN12. Mechanistically, lnc-TSPAN12 exhibits direct interactions with EIF3I and SENP1, acting as a scaffold to enhance the SENP1-EIF3I interaction. As a result, the SUMOylation of EIF3I is inhibited, preventing its ubiquitin-mediated degradation. Ultimately, this activates the Wnt/β-catenin signaling pathway, stimulating EMT and metastasis in HCC. Our findings shed light on the regulatory mechanism of lnc-TSPAN12 in HCC metastasis and identify the lnc-TSPAN12-EIF3I/SENP1 axis as a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Bei Li
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianze Xiong
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianrong Xu
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dingzhong Peng
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guilin Nie
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ningyuan Wen
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yaoqun Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiong Lu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
156
|
Elkahwagy DM, Kiriacos CJ, Sobeih ME, Khorshid OMR, Mansour M. The lncRNAs Gas5, MALAT1 and SNHG8 as diagnostic biomarkers for epithelial malignant pleural mesothelioma in Egyptian patients. Sci Rep 2024; 14:4823. [PMID: 38413635 PMCID: PMC10899637 DOI: 10.1038/s41598-024-55083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Long noncoding RNAs have been shown to be involved in a myriad of physiological and pathological pathways. To date, malignant pleural mesothelioma (MPM) is considered an extremely aggressive cancer. One reason for this is the late diagnosis of the disease, which can occur within 30-40 years of asbestos exposure. There is an immense need for the development of new, sensitive, inexpensive and easy methods for the early detection of this disease other than invasive methods such as biopsy. The aim of this study was to determine the expression of circulating lncRNAs in mesothelioma patient plasma to identify potential biomarkers. Ten previously identified lncRNAs that were shown to be aberrantly expressed in mesothelioma tissues were selected as candidates for subsequent validation. The expression of the ten selected candidate lncRNAs was verified via quantitative PCR (qPCR) in human plasma samples from mesothelioma patients versus healthy controls. The expression levels of circulating GAS5, SNHG8 and MALAT1 were significantly greater in plasma samples from patients than in those from controls. The ROC analysis of both MALAT1 and SNHG8 revealed 88.89% sensitivity and 66.67% specificity. The sensitivity of these markers was greater than that of GAS5 (sensitivity 72.22% and specificity 66.67%). The regression model for GAS5 was statistically significant, while that for SNHG8 and MALAT1 was not significant due to the small sample size. The area under the curve (AUC) of the three ROC curves was acceptable and significant: 0.7519 for GAS5, 0.7352 for SNHG8 and 0.7185 for MALAT1. This finding confirmed their ability to be used as markers. The three lncRNAs were not affected by age, sex or smoking status. The three lncRNAs showed great potential as independent predictive diagnostic biomarkers. Although the prediction model for MALAT1 did not significantly differ, MALAT1 was significantly expressed in patients more than in controls (p = 0.0266), and the recorded sensitivity and specificity were greater than those of GAS5.
Collapse
Affiliation(s)
- Dina Mohamed Elkahwagy
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Caroline Joseph Kiriacos
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Mohamed Emam Sobeih
- Department of Medical Oncology, National Cancer Institute, NCI, Cairo University, Cairo, Egypt
| | - Ola M Reda Khorshid
- Department of Medical Oncology, National Cancer Institute, NCI, Cairo University, Cairo, Egypt
| | - Manar Mansour
- Pharmaceutical Biology and Microbiology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
157
|
Saha D, Dang HX, Zhang M, Quigley DA, Feng FY, Maher CA. Single cell-transcriptomic analysis informs the lncRNA landscape in metastatic castration resistant prostate cancer. NPJ Genom Med 2024; 9:14. [PMID: 38396008 PMCID: PMC10891057 DOI: 10.1038/s41525-024-00401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is a lethal form of prostate cancer. Although long-noncoding RNAs (lncRNAs) have been implicated in mCRPC, past studies have relied on bulk sequencing methods with low depth and lack of single-cell resolution. Hence, we performed a lncRNA-focused analysis of single-cell RNA-sequencing data (n = 14) from mCRPC biopsies followed by integration with bulk multi-omic datasets. This yielded 389 cell-enriched lncRNAs in prostate cancer cells and the tumor microenvironment (TME). These lncRNAs demonstrated enrichment with regulatory elements and exhibited alterations during prostate cancer progression. Prostate-lncRNAs were correlated with AR mutational status and response to treatment with enzalutamide, while TME-lncRNAs were associated with RB1 deletions and poor prognosis. Finally, lncRNAs identified between prostate adenocarcinomas and neuroendocrine tumors exhibited distinct expression and methylation profiles. Our findings demonstrate the ability of single-cell analysis to refine our understanding of lncRNAs in mCRPC and serve as a resource for future mechanistic studies.
Collapse
Affiliation(s)
- Debanjan Saha
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO, USA
- Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ha X Dang
- Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Meng Zhang
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California at San Francisco, San Francisco, CA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Christopher A Maher
- Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
158
|
Amir N, Taube R. Role of long noncoding RNA in regulating HIV infection-a comprehensive review. mBio 2024; 15:e0192523. [PMID: 38179937 PMCID: PMC10865847 DOI: 10.1128/mbio.01925-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
A complete cure against human immunodeficiency virus (HIV) infection remains out of reach, as the virus persists in stable cell reservoirs that are resistant to antiretroviral therapy. The key to eliminating these reservoirs lies in deciphering the processes that govern viral gene expression and latency. However, while we comprehensively understand how host proteins influence HIV gene expression and viral latency, the emerging role of long noncoding RNAs (lncRNAs) in the context of T cell activation, HIV gene expression, and viral latency remain unexplored. This review dives into the evolving significance of lncRNAs and their impact on HIV gene expression and viral latency. We provide an overview of the current knowledge regarding how lncRNAs regulate HIV gene expression, categorizing them as either activators or inhibitors of viral gene expression and infectivity. Furthermore, we offer insights into the potential therapeutic applications of lncRNAs in combatting HIV. A deeper understanding of how lncRNAs modulate HIV gene transcription holds promise for developing novel RNA-based therapies to complement existing treatment strategies to eradicate HIV reservoirs.
Collapse
Affiliation(s)
- Noa Amir
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Negev, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Negev, Israel
| |
Collapse
|
159
|
Zhang Y, Gao Y, Li F, Qi Q, Li Q, Gu Y, Zheng Z, Hu B, Wang T, Zhang E, Xu H, Liu L, Tian T, Jin G, Yan C. Long non-coding RNA NRAV in the 12q24.31 risk locus drives gastric cancer development through glucose metabolism reprogramming. Carcinogenesis 2024; 45:23-34. [PMID: 37950445 DOI: 10.1093/carcin/bgad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) serve as vital candidates to mediate cancer risk. Here, we aimed to identify the risk single-nucleotide polymorphisms (SNPs)-induced lncRNAs and to investigate their roles in gastric cancer (GC) development. Through integrating the differential expression analysis of lncRNAs in GC tissues and expression quantitative trait loci analysis in normal stomach tissues and GC tissues, as well as genetic association analysis based on GC genome-wide association studies and an independent validation study, we identified four lncRNA-related SNPs consistently associated with GC risk, including SNHG7 [odds ratio (OR) = 1.16, 95% confidence interval (CI): 1.09-1.23], NRAV (OR = 1.11, 95% CI: 1.05-1.17), LINC01082 (OR = 1.16, 95% CI: 1.08-1.22) and FENDRR (OR = 1.16, 95% CI: 1.07-1.25). We further found that a functional SNP rs6489786 at 12q24.31 increases binding of MEOX1 or MEOX2 at a distal enhancer and results in up-regulation of NRAV. The functional assays revealed that NRAV accelerates GC cell proliferation while inhibits GC cell apoptosis. Mechanistically, NRAV decreases the expression of key subunit genes through the electron transport chain, thereby driving the glucose metabolism reprogramming from aerobic respiration to glycolysis. These findings suggest that regulating lncRNA expression is a crucial mechanism for risk-associated variants in promoting GC development.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Yun Gao
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fengyuan Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Qi
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qian Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuanliang Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhonghua Zheng
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Beiping Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Institute of Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Liu
- Institute of Digestive Endoscopy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
- Public Health Institute of Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi, China
| |
Collapse
|
160
|
Teixeira LCR, Mamede I, Luizon MR, Gomes KB. Role of long non-coding RNAs in the pathophysiology of Alzheimer's disease and other dementias. Mol Biol Rep 2024; 51:270. [PMID: 38302810 DOI: 10.1007/s11033-023-09178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Dementia is the term used to describe a group of cognitive disorders characterized by a decline in memory, thinking, and reasoning abilities that interfere with daily life activities. Examples of dementia include Alzheimer's Disease (AD), Frontotemporal dementia (FTD), Amyotrophic lateral sclerosis (ALS), Vascular dementia (VaD) and Progressive supranuclear palsy (PSP). AD is the most common form of dementia. The hallmark pathology of AD includes formation of β-amyloid (Aβ) oligomers and tau hyperphosphorylation in the brain, which induces neuroinflammation, oxidative stress, synaptic dysfunction, and neuronal apoptosis. Emerging studies have associated long non-coding RNAs (lncRNAs) with the pathogenesis and progression of the neurodegenerative diseases. LncRNAs are defined as RNAs longer than 200 nucleotides that lack the ability to encode functional proteins. LncRNAs play crucial roles in numerous biological functions for their ability to interact with different molecules, such as proteins and microRNAs, and subsequently regulate the expression of their target genes at transcriptional and post-transcriptional levels. In this narrative review, we report the function and mechanisms of action of lncRNAs found to be deregulated in different types of dementia, with the focus on AD. Finally, we discuss the emerging role of lncRNAs as biomarkers of dementias.
Collapse
Affiliation(s)
- Lívia Cristina Ribeiro Teixeira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Izabela Mamede
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Rizzatti Luizon
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
161
|
Malgundkar SH, Tamimi Y. The pivotal role of long non-coding RNAs as potential biomarkers and modulators of chemoresistance in ovarian cancer (OC). Hum Genet 2024; 143:107-124. [PMID: 38276976 DOI: 10.1007/s00439-023-02635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
Ovarian cancer (OC) is a fatal gynecological disease that is often diagnosed at later stages due to its asymptomatic nature and the absence of efficient early-stage biomarkers. Previous studies have identified genes with abnormal expression in OC that couldn't be explained by methylation or mutation, indicating alternative mechanisms of gene regulation. Recent advances in human transcriptome studies have led to research on non-coding RNAs (ncRNAs) as regulators of cancer gene expression. Long non-coding RNAs (lncRNAs), a class of ncRNAs with a length greater than 200 nucleotides, have been identified as crucial regulators of physiological processes and human diseases, including cancer. Dysregulated lncRNA expression has also been found to play a crucial role in ovarian carcinogenesis, indicating their potential as novel and non-invasive biomarkers for improving OC management. However, despite the discovery of several thousand lncRNAs, only one has been approved for clinical use as a biomarker in cancer, highlighting the importance of further research in this field. In addition to their potential as biomarkers, lncRNAs have been implicated in modulating chemoresistance, a major problem in OC. Several studies have identified altered lncRNA expression upon drug treatment, further emphasizing their potential to modulate chemoresistance. In this review, we highlight the characteristics of lncRNAs, their function, and their potential to serve as tumor markers in OC. We also discuss a few databases providing detailed information on lncRNAs in various cancer types. Despite the promising potential of lncRNAs, further research is necessary to fully understand their role in cancer and develop effective strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shika Hanif Malgundkar
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman
| | - Yahya Tamimi
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman.
| |
Collapse
|
162
|
Fitzgerald KA, Shmuel-Galia L. Lnc-ing RNA to intestinal homeostasis and inflammation. Trends Immunol 2024; 45:127-137. [PMID: 38220553 DOI: 10.1016/j.it.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in numerous biological processes, including the immune system. Initial research in this area focused on cell-based studies, but recent advances underscore the profound significance of lncRNAs at the organismal level, providing invaluable insights into their roles in inflammatory diseases. In this rapidly evolving field, lncRNAs have been described with pivotal roles in the intestinal tract where they regulate intestinal homeostasis and inflammation by influencing processes such as immune cell development, inflammatory signaling pathways, epithelial barrier function, and cellular metabolism. Understanding the regulation and function of lncRNAs in this tissue may position lncRNAs not only as potential disease biomarkers but also as promising targets for therapeutic intervention in inflammatory bowel disease and related diseases.
Collapse
Affiliation(s)
- Katherine A Fitzgerald
- Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Liraz Shmuel-Galia
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
163
|
Jasim SA, Aziz DZ, Mustafa YF, Margiana R, Al-Alwany AA, Hjazi A, Alawadi A, Yumashev A, Alsalamy A, Fenjan MN. Role of genetically engineered mesenchymal stem cell exosomes and LncRNAs in respiratory diseases treatment. Pathol Res Pract 2024; 254:155135. [PMID: 38295461 DOI: 10.1016/j.prp.2024.155135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
The term acute respiratory disease encompasses a wide range of acute lung diseases, which in recent years have been ranked among the top three deadly diseases in the world. Since conventional treatment methods, including the use of anti-inflammatory drugs, have had no significant effect on the treatment process of these diseases, the attention of the medical community has been drawn to alternative methods. Mesenchymal stem cells (MSC) are multipotential stem/progenitor cells that have extensive immunomodulatory and anti-inflammatory properties and also play a critical role in the microenvironment of injured tissue. MSC secretomes (containing large extracellular vesicles, microvesicles, and exosomes) are a newly introduced option for cell-free therapies that can circumvent the hurdles of cell-based therapies while maintaining the therapeutic role of MSC themselves. The therapeutic capabilities of MSCs have been showed in many acute respiratory diseases, including chronic respiratory disease (CRD), novel coronavirus 2019 (COVID -19), and pneumonia. MSCs offer novel therapeutic approaches for chronic and acute lung diseases due to their anti-inflammatory and immunomodulatory properties. In this review, we summarize the current evidence on the efficacy and safety of MSC-derived products in preclinical models of lung diseases and highlight the biologically active compounds present in the MSC secretome and their mechanisms involved in anti-inflammatory activity and tissue regeneration.
Collapse
Affiliation(s)
| | - Dhifaf Zeki Aziz
- College of Science, Department of pathological Analyses, University of Kufa, Al-Najaf, Iraq.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq.
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia.
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Russia.
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq.
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq.
| |
Collapse
|
164
|
Mehta SL, Chelluboina B, Morris-Blanco KC, Bathula S, Jeong S, Arruri V, Davis CK, Vemuganti R. Post-stroke brain can be protected by modulating the lncRNA FosDT. J Cereb Blood Flow Metab 2024; 44:239-251. [PMID: 37933735 PMCID: PMC10993881 DOI: 10.1177/0271678x231212378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/09/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023]
Abstract
We previously showed that knockdown or deletion of Fos downstream transcript (FosDT; a stroke-induced brain-specific long noncoding RNA) is neuroprotective. We presently tested the therapeutic potential of FosDT siRNA in rodents subjected to transient middle cerebral artery occlusion (MCAO) using the Stroke Treatment Academic Industry Roundtable criteria, including sex, age, species, and comorbidity. FosDT siRNA (IV) given at 30 min of reperfusion significantly improved motor function recovery (rotarod test, beam walk test, and adhesive removal test) and reduced infarct size in adult and aged spontaneously hypertensive rats of both sexes. FosDT siRNA administered in a delayed fashion (3.5 h of reperfusion following 1 h transient MCAO) also significantly improved motor function recovery and decreased infarct volume. Furthermore, FosDT siRNA enhanced post-stroke functional recovery in normal and diabetic mice. Mechanistically, FosDT triggered post-ischemic neuronal damage via the transcription factor REST as REST siRNA mitigated the enhanced functional outcome in FosDT-/- rats. Additionally, NF-κB regulated FosDT expression as NF-κB inhibitor BAY 11-7082 significantly decreased post-ischemic FosDT induction. Thus, FosDT is a promising target with a favorable therapeutic window to mitigate secondary brain damage and facilitate recovery after stroke regardless of sex, age, species, and comorbidity.
Collapse
Affiliation(s)
- Suresh L Mehta
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
| | - Bharath Chelluboina
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
| | - Kahlilia C Morris-Blanco
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Soomin Jeong
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
| | - Charles K Davis
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
- William S. Middleton Veterans Hospital, Madison, WI, USA
| |
Collapse
|
165
|
Nylund P, Garrido-Zabala B, Párraga AA, Vasquez L, Pyl PT, Harinck GM, Ma A, Jin J, Öberg F, Kalushkova A, Wiklund HJ. PVT1 interacts with polycomb repressive complex 2 to suppress genomic regions with pro-apoptotic and tumour suppressor functions in multiple myeloma. Haematologica 2024; 109:567-577. [PMID: 37496441 PMCID: PMC10828784 DOI: 10.3324/haematol.2023.282965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Multiple myeloma is a heterogeneous hematological disease that originates from the bone marrow and is characterized by the monoclonal expansion of malignant plasma cells. Despite novel therapies, multiple myeloma remains clinically challenging. A common feature among patients with poor prognosis is the increased activity of the epigenetic silencer EZH2, which is the catalytic subunit of the PRC2. Interestingly, the recruitment of PRC2 lacks sequence specificity and, to date, the molecular mechanisms that define which genomic locations are destined for PRC2-mediated silencing remain unknown. The presence of a long non-coding RNA (lncRNA)-binding pocket on EZH2 suggests that lncRNA could potentially mediate PRC2 recruitment to specific genomic regions. Here, we coupled RNA immunoprecipitation sequencing, RNA-sequencing and chromatin immunoprecipitation-sequencing analysis of human multiple myeloma primary cells and cell lines to identify potential lncRNA partners to EZH2. We found that the lncRNA plasmacytoma variant translocation 1 (PVT1) directly interacts with EZH2 and is overexpressed in patients with a poor prognosis. Moreover, genes predicted to be targets of PVT1 exhibited H3K27me3 enrichment and were associated with pro-apoptotic and tumor suppressor functions. In fact, PVT1 inhibition independently promotes the expression of the PRC2 target genes ZBTB7C, RNF144A and CCDC136. Altogether, our work suggests that PVT1 is an interacting partner in PRC2-mediated silencing of tumor suppressor and pro-apoptotic genes in multiple myeloma, making it a highly interesting potential therapeutic target.
Collapse
Affiliation(s)
- Patrick Nylund
- Science for Life Laboratory, Department of Immunology, Genetic and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala.
| | - Berta Garrido-Zabala
- Science for Life Laboratory, Department of Immunology, Genetic and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala
| | - Alba Atienza Párraga
- Science for Life Laboratory, Department of Immunology, Genetic and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala
| | - Louella Vasquez
- Department of Laboratory Medicine, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund
| | - Paul Theodor Pyl
- Department of Clinical Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory Lund University, Lund
| | - George Mickhael Harinck
- Science for Life Laboratory, Department of Immunology, Genetic and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala
| | - Anqi Ma
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Fredrik Öberg
- Science for Life Laboratory, Department of Immunology, Genetic and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala
| | - Antonia Kalushkova
- Science for Life Laboratory, Department of Immunology, Genetic and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala
| | - Helena Jernberg Wiklund
- Science for Life Laboratory, Department of Immunology, Genetic and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala.
| |
Collapse
|
166
|
He J, Li W, Zhao W, Shen H, Chang Y, Liu B, He Q, Yu H, Wang Y, Shi L, Cai X. Potential of lncRNAs to regulate cuproptosis in hepatocellular carcinoma: Establishment and validation of a novel risk model. Heliyon 2024; 10:e24453. [PMID: 38312553 PMCID: PMC10835266 DOI: 10.1016/j.heliyon.2024.e24453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Cuproptosis, a distinct form of programmed cell death, is an emerging field in oncology with promising implications. This novel mode of cell death has the potential to become a regulatory target for tumor therapy, thus expanding the currently limited treatment options available for patients with cancer. Our research team focused on investigating the role of functional long non-coding RNA (lncRNAs) in hepatocellular carcinoma (HCC). We were particularly intrigued by the potential implications of HCC-lncRNAs on cuproptosis. Through a comprehensive analysis, we identified three cuproptosis-related lncRNAs (CRLs): AC018690.1, AL050341.2, and LINC02038. These lncRNAs were found to influence the sensitivity of HCC to cuproptosis. Based on our results, we constructed a risk model represented by the equation: risk score = 0.82 * AC018690.1 + 0.65 * AL050341.2 + 0.61 * LINC02038. Notably, significant disparities were observed in clinical features, such as the response rate to immunotherapy and targeted therapy, as well as in cellular characteristics, including the composition of the tumor immune microenvironment (TIME), when comparing the high- and low-risk groups. Most importantly, knockdown of these CRLs was confirmed to significantly weaken the resistance to cuproptosis in HCC. This effect resulted from the accelerated accumulation of lipoacylated-DLAT and lipoacylated-DLST. In summary, we identified three CRLs in HCC and established a novel risk model with potential clinical applications. Additionally, we proposed a potential therapeutic method consisting of sorafenib-copper ionophores-immunotherapy.
Collapse
Affiliation(s)
- Jing He
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Zhejiang University, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310016, China
| | - Weiqi Li
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Zhejiang University, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310016, China
| | - Weijun Zhao
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Zhejiang University, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310016, China
| | - Hao Shen
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Zhejiang University, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310016, China
| | - Yushun Chang
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Zhejiang University, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310016, China
| | - Boqiang Liu
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Zhejiang University, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310016, China
| | - Qiang He
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Hong Yu
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Zhejiang University, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310016, China
| | - Yifan Wang
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Zhejiang University, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310016, China
| | - Liang Shi
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Zhejiang University, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310016, China
| | - Xiujun Cai
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Zhejiang University, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310016, China
| |
Collapse
|
167
|
Xi Z, Huang H, Hu J, Yu Y, Ma X, Xu M, Ming J, Li L, Zhang H, Chen H, Huang T. LINC00571 drives tricarboxylic acid cycle metabolism in triple-negative breast cancer through HNRNPK/ILF2/IDH2 axis. J Exp Clin Cancer Res 2024; 43:22. [PMID: 38238853 PMCID: PMC10795234 DOI: 10.1186/s13046-024-02950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer is a complex breast malignancy subtype characterized by poor prognosis. The pursuit of effective therapeutic approaches for this subtype is considerably challenging. Notably, recent research has illuminated the key role of the tricarboxylic acid cycle in cancer metabolism and the complex landscape of tumor development. Concurrently, an emerging body of evidence underscores the noteworthy role that long non-coding RNAs play in the trajectory of breast cancer development. Despite this growing recognition, the exploration of whether long non-coding RNAs can influence breast cancer progression by modulating the tricarboxylic acid cycle has been limited. Moreover, the underlying mechanisms orchestrating these interactions have not been identified. METHODS The expression levels of LINC00571 and IDH2 were determined through the analysis of the public TCGA dataset, transcriptome sequencing, qRT‒PCR, and Western blotting. The distribution of LINC00571 was assessed using RNA fluorescence in situ hybridization. Alterations in biological effects were evaluated using CCK-8, colony formation, EdU, cell cycle, and apoptosis assays and a tumor xenograft model. To elucidate the interaction between LINC00571, HNRNPK, and ILF2, RNA pull-down, mass spectrometry, coimmunoprecipitation, and RNA immunoprecipitation assays were performed. The impacts of LINC00571 and IDH2 on tricarboxylic acid cycle metabolites were investigated through measurements of the oxygen consumption rate and metabolite levels. RESULTS This study revealed the complex interactions between a novel long non-coding RNA (LINC00571) and tricarboxylic acid cycle metabolism. We validated the tumor-promoting role of LINC00571. Mechanistically, LINC00571 facilitated the interaction between HNRNPK and ILF2, leading to reduced ubiquitination and degradation of ILF2, thereby stabilizing its expression. Furthermore, ILF2 acted as a transcription factor to enhance the expression of its downstream target gene IDH2. CONCLUSIONS Our study revealed that the LINC00571/HNRNPK/ILF2/IDH2 axis promoted the progression of triple-negative breast cancer by regulating tricarboxylic acid cycle metabolites. This discovery provides a novel theoretical foundation and new potential targets for the clinical treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Zihan Xi
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haohao Huang
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, 430070, China
- General Hospital Of Central Theater Command and Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, China
| | - Jin Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuanhang Yu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hui Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hengyu Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, China.
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
168
|
Meng L, Shang H, Liu Q, Li Z, Wang X, Li Q, Li F, Zhao Z, Liu C. Lnc-PSMA8-1 activated by GEFT promotes rhabdomyosarcoma progression via upregulation of mTOR expression by sponging miR-144-3p. BMC Cancer 2024; 24:79. [PMID: 38225540 PMCID: PMC10789031 DOI: 10.1186/s12885-023-11798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/26/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND GEFT is a key regulator of tumorigenesis in rhabdomyosarcoma (RMS), and overexpression of GEFT is significantly correlated with distant metastasis, lymph node metastasis, and a poor prognosis, yet the underlying molecular mechanism is still poorly understood. This study aimed to investigate and validate the molecular mechanism of GEFT-activated lncRNAs in regulating mTOR expression to promote the progression of RMS. METHODS GEFT-regulated lncRNAs were identified through microarray analysis. The effects of GEFT-regulated lncRNAs on the proliferation, apoptosis, invasion, and migration of RMS cells were confirmed through cell functional experiments. The target miRNAs of GEFT-activated lncRNAs in the regulation of mTOR expression were predicted by bioinformatics analysis combined with quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The expression of lnc-PSMA8-1, miR-144-3p, and mTOR was measured by qRT-PCR in RMS tissue samples and cell lines. The regulatory mechanisms of the lnc-PSMA8-1-miR-144-3p-mTOR signaling axis were verified by RNA-binding protein immunoprecipitation (RIP), a luciferase reporter assay, qRT-PCR analysis, Western blot analysis, and cell functional experiments. RESULTS The microarray-based analysis identified 31 differentially expressed lncRNAs (fold change > 2.0, P < 0.05). Silencing the 4 upregulated lncRNAs (lnc-CEACAM19-1, lnc-VWCE-2, lnc-GPX7-1, and lnc-PSMA8-1) and overexpressing the downregulated lnc-FAM59A-1 inhibited the proliferation, invasion, and migration and induced the apoptosis of RMS cells. Among the factors analyzed, the expression of lnc-PSMA8-1, miR-144-3p, and mTOR in RMS tissue samples and cells was consistent with the correlations among their expression indicated by the lncRNA-miRNA-mRNA regulatory network based on the ceRNA hypothesis. lnc-PSMA8-1 promoted RMS progression by competitively binding to miR-144-3p to regulate mTOR expression. CONCLUSION Our research demonstrated that lnc-PSMA8-1 was activated by GEFT and that the former positively regulated mTOR expression by sponging miR-144-3p to promote the progression of RMS. Therefore, targeting this network may constitute a potential therapeutic approach for the management of RMS.
Collapse
Affiliation(s)
- Lian Meng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Hao Shang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi, China
- Judicial Appraisal Institute, Tongde Hospital of Zhejiang Province (Zhejiang Mental Health Center), Hangzhou, China
| | - Qianqian Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Zhenzhen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Xiaomeng Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Qianru Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi, China
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhenguo Zhao
- Department of Orthopedics, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi, China.
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
169
|
Motawi TK, Sadik NAH, Shaker OG, Ghaleb MMH, Elbaz EM. Expression, Functional Polymorphism, and Diagnostic Values of MIAT rs2331291 and H19 rs217727 Long Non-Coding RNAs in Cerebral Ischemic Stroke Egyptian Patients. Int J Mol Sci 2024; 25:842. [PMID: 38255915 PMCID: PMC10815378 DOI: 10.3390/ijms25020842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Cerebral ischemic stroke (CIS) is a severe cerebral vascular event. This research aimed to evaluate the role of single-nucleotide polymorphisms (SNPs) of the lncRNAs MIAT rs2331291 and H19 rs217727 and epigenetic methylation in the expression patterns of serum lncRNA H19 in CIS Egyptian patients. It included 80 CIS cases and 40 healthy subjects. Serum MIAT expression levels decreased, whereas serum H19 expression levels increased among CIS compared to controls. For MIAT rs2331291, there were significant differences in the genotypic and allelic frequencies between the CIS and healthy subjects at p = 0.02 and p = 0.0001, respectively. Our findings illustrated a significantly increased MIAT T/T genotype frequency in hypertensive CIS compared to non-hypertensive CIS at p = 0.004. However, H19 rs217727 gene frequency C/C was not significantly higher in non-hypertensive CIS than in hypertensive CIS. The methylation of the H19 gene promoter was significantly higher in CIS patients compared to healthy subjects. The level of MIAT was positively correlated with serum H19 in CIS. Receiver operating characteristics (ROC) analysis revealed that serum MIAT and H19 have a high diagnostic potential for distinguishing CIS subjects from healthy ones. In conclusion, the MIAT-rs2331291 polymorphism might serve as a novel potential indicator of CIS.
Collapse
Affiliation(s)
- Tarek K. Motawi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | | | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | | | - Eman M. Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
170
|
Li M, Zhou T, Han M, Wang H, Bao P, Tao Y, Chen X, Wu G, Liu T, Wang X, Lu Q, Zhu Y, Lu ZJ. cfOmics: a cell-free multi-Omics database for diseases. Nucleic Acids Res 2024; 52:D607-D621. [PMID: 37757861 PMCID: PMC10767897 DOI: 10.1093/nar/gkad777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Liquid biopsy has emerged as a promising non-invasive approach for detecting, monitoring diseases, and predicting their recurrence. However, the effective utilization of liquid biopsy data to identify reliable biomarkers for various cancers and other diseases requires further exploration. Here, we present cfOmics, a web-accessible database (https://cfomics.ncRNAlab.org/) that integrates comprehensive multi-omics liquid biopsy data, including cfDNA, cfRNA based on next-generation sequencing, and proteome, metabolome based on mass-spectrometry data. As the first multi-omics database in the field, cfOmics encompasses a total of 17 distinct data types and 13 specimen variations across 69 disease conditions, with a collection of 11345 samples. Moreover, cfOmics includes reported potential biomarkers for reference. To facilitate effective analysis and visualization of multi-omics data, cfOmics offers powerful functionalities to its users. These functionalities include browsing, profile visualization, the Integrative Genomic Viewer, and correlation analysis, all centered around genes, microbes, or end-motifs. The primary objective of cfOmics is to assist researchers in the field of liquid biopsy by providing comprehensive multi-omics data. This enables them to explore cell-free data and extract profound insights that can significantly impact disease diagnosis, treatment monitoring, and management.
Collapse
Affiliation(s)
- Mingyang Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100084, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tianxiu Zhou
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Mingfei Han
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 38 Life Science Park, Changping District, Beijing 102206, China
| | - Hongke Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Pengfei Bao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Yuhuan Tao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaoqing Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 38 Life Science Park, Changping District, Beijing 102206, China
| | - Guansheng Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianyou Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaojuan Wang
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, No. 168, Litang Road, Changping District, Beijing 102218, China
| | - Qian Lu
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, No. 168, Litang Road, Changping District, Beijing 102218, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 38 Life Science Park, Changping District, Beijing 102206, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
171
|
Wang Y, Liang Y, Xia Y, Wang M, Zhang H, Li M, Yang Z, Karrow NA, Mao Y. Identification and characterization of long non-coding RNAs in mammary gland tissues of Chinese Holstein cows. J Anim Sci 2024; 102:skae128. [PMID: 38715467 PMCID: PMC11197003 DOI: 10.1093/jas/skae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/07/2024] [Indexed: 06/26/2024] Open
Abstract
LncRNAs (Long non-coding RNA) is an RNA molecule with a length of more than 200 bp. LncRNAs can directly act on mRNA, thus affecting the expression of downstream target genes and proteins, and widely participate in many important physiological and pathological regulation processes of the body. In this study, RNA-Seq was performed to detect lncRNAs from mammary gland tissues of three Chinese Holstein cows, including three cows at 7 d before calving and the same three cows at 30 d postpartum (early lactation stage). A total of 1,905 novel lncRNAs were detected, 57.3% of the predicted lncRNAs are ≥ 500 bp and 612 lncRNAs are intronic lncRNAs. The exon number of lncRNAs ranged from 2 to 10. A total of 96 lncRNAs were significantly differentially expressed between two stages, of which 47 were upregulated and 49 were downregulated. Pathway analysis found that target genes were mainly concentrated on the ECM-receptor interaction, Jak-STAT signaling pathway, PI3K-Akt signaling pathway, and TGF-beta signaling pathway. This study revealed the expression profile and characteristics of lncRNAs in the mammary gland tissues of Holstein cows at non-lactation and early lactation periods, and provided a basis for studying the functions of lncRNAs in Holstein cows during different lactation periods.
Collapse
Affiliation(s)
- Yanru Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yan Liang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuxin Xia
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mengqi Wang
- Department of Animal Science, Laval University, Quebec, Quebec, G1V0A6, Canada
| | - Huimin Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mingxun Li
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhangping Yang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Niel A Karrow
- Center for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Yongjiang Mao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P R China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
172
|
Zhou C, Tuersong W, Liu L, Di W, He L, Li F, Wang C, Hu M. Non-coding RNA in the gut of the blood-feeding parasitic worm, Haemonchus contortus. Vet Res 2024; 55:1. [PMID: 38172997 PMCID: PMC10763314 DOI: 10.1186/s13567-023-01254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/05/2023] [Indexed: 01/05/2024] Open
Abstract
The intestine of Haemonchus contortus is an essential tissue that has been indicated to be a major target for the prevention of haemonchosis caused by this parasitic nematode of small ruminants. Biological peculiarities of the intestine warrant in-depth exploitation, which can be leveraged for future disease control efforts. Here, we determined the intestinal ncRNA (lncRNA, circRNA and miRNA) atlas using whole-transcriptome sequencing and bioinformatics approaches. In total, 4846 novel lncRNA, 982 circRNA, 96 miRNA (65 known and 31 novel) and 8821 mRNA were identified from the H. contortus intestine. The features of lncRNA, circRNA and miRNA were fully characterized. Comparison of miRNA from the intestines and extracellular vesicles supported the speculation that the miRNA from the latter were of intestinal origin in H. contortus. Further function analysis suggests that the cis-lncRNA targeted genes were involved in protein binding, intracellular anatomical structure, organelle and cellular process, whereas the circRNA parental genes were mainly enriched in molecular function categories, such as ribonucleotide binding, nucleotide binding, ATP binding and carbohydrate derivative binding. The miRNA target genes were related to the cellular process, cellular response to stimulus, cellular protein modification process and signal transduction. Moreover, competing endogenous RNA network analysis revealed that the majority of lncRNA, circRNA and mRNA only have one or two binding sites with specific miRNA. Lastly, randomly selected circRNA, lncRNA and miRNA were verified successfully using RT-PCR. Collectively, these data provide the most comprehensive compilation of intestinal transcripts and their functions, and it will be helpful to decipher the biological and molecular complexity of the intestine and lay the foundation for further functional research.
Collapse
Affiliation(s)
- Caixian Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Waresi Tuersong
- College of Veterinary Medicine, Xinjiang Agricultural University, Wulumuqi, 830052, Xinjiang, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Li He
- School of Basic Medical Sciences, Hubei University of Medicine, Hubei, 442000, Shiyan, China
| | - Fangfang Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 402020, China
| | - Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
173
|
Amin HM, Abukhairan R, Szabo B, Jacksi M, Varady G, Lozsa R, Schad E, Tantos A. KMT2D preferentially binds mRNAs of the genes it regulates, suggesting a role in RNA processing. Protein Sci 2024; 33:e4847. [PMID: 38058280 PMCID: PMC10731558 DOI: 10.1002/pro.4847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Histone lysine methyltransferases (HKMTs) perform vital roles in cellular life by controlling gene expression programs through the posttranslational modification of histone tails. Since many of them are intimately involved in the development of different diseases, including several cancers, understanding the molecular mechanisms that control their target recognition and activity is vital for the treatment and prevention of such conditions. RNA binding has been shown to be an important regulatory factor in the function of several HKMTs, such as the yeast Set1 and the human Ezh2. Moreover, many HKMTs are capable of RNA binding in the absence of a canonical RNA binding domain. Here, we explored the RNA binding capacity of KMT2D, one of the major H3K4 monomethyl transferases in enhancers, using RNA immunoprecipitation followed by sequencing. We identified a broad range of coding and non-coding RNAs associated with KMT2D and confirmed their binding through RNA immunoprecipitation and quantitative PCR. We also showed that a separated RNA binding region within KMT2D is capable of binding a similar RNA pool, but differences in the binding specificity indicate the existence of other regulatory elements in the sequence of KMT2D. Analysis of the bound mRNAs revealed that KMT2D preferentially binds co-transcriptionally to the mRNAs of the genes under its control, while also interacting with super enhancer- and splicing-related non-coding RNAs. These observations, together with the nuclear colocalization of KMT2D with differentially phosphorylated forms of RNA Polymerase II suggest a so far unexplored role of KMT2D in the RNA processing of the nascent transcripts.
Collapse
Affiliation(s)
- Harem Muhamad Amin
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
- Doctoral School of Biology and Institute of Biology, ELTE Eötvös Loránd UniversityBudapestHungary
- Department of Biology, College of ScienceUniversity of SulaimaniSulaymaniyahIraq
| | - Rawan Abukhairan
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Beata Szabo
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Mevan Jacksi
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
- Doctoral School of Biology and Institute of Biology, ELTE Eötvös Loránd UniversityBudapestHungary
| | - Gyorgy Varady
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Rita Lozsa
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Eva Schad
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Agnes Tantos
- Institute of Enzymology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| |
Collapse
|
174
|
Quan ZH, Xu FP, Huang Z, Chen RH, Xu QW, Lin L. LncRNA MYLK antisense RNA 1 activates cell division cycle 42/Neutal Wiskott-Aldrich syndrome protein pathway via microRNA-101-5p to accelerate epithelial-to-mesenchymal transition of colon cancer cells. Kaohsiung J Med Sci 2024; 40:11-22. [PMID: 37950620 DOI: 10.1002/kjm2.12773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 11/13/2023] Open
Abstract
Long noncoding RNA MYLK antisense RNA 1 (MYLK-AS1) is the crux in multiple diseases. Therefore, the purpose of this study was to investigate the possible mechanism of MYLK-AS1. A total of 62 colon cancer (CC) specimens and paired adjacent normal tissues were collected, and the expression of MYLK-AS1, microRNA (miR)-101-5p/cell division cycle 42 (CDC42) was detected. CC cell lines were transfected with MYLK-AS1, miR-101-5p, CDC42-related plasmids, and the biological functions and markers of epithelial-mesenchymal transition (EMT) were analyzed. The binding relationship between MYLK-AS1, miR-101-5p, and CDC42 was evaluated. In CC tissues and cell lines, MYLK-AS1 and CDC42 were highly expressed, and miR-101-5p was lowly expressed. Inhibition of MYLK-AS1 or upregulation of miR-101-5p can inhibit CC cell growth and EMT. miR-101-5p inhibited CDC42/N-wasp axis activation in CC cells by targeting CDC42. Knockdown of CDC42 or upregulation of miR-101-5p partially reversed the effects caused by upregulation of MYLK-AS1. MYLK-AS1, which is significantly upregulated in CC, may be a molecular sponge for miR-101-5p, and MYLK-AS1 promotes the activation of the CDC42/N-wasp axis in CC cells by targeting CDC42 through miR-101-5p, which in turn promotes tumor development. MYLK-AS1 may be a potential biomarker and target for CC therapy.
Collapse
Affiliation(s)
- Zhen-Hao Quan
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Fei-Peng Xu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhe Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ri-Hong Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qing-Wen Xu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lin Lin
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
175
|
Hayashi‐Okada M, Sato S, Nakashima K, Sakai T, Tamehisa T, Kajimura T, Tamura I, Sueoka K, Sugino N. Identification of long noncoding RNAs downregulated specifically in ovarian high-grade serous carcinoma. Reprod Med Biol 2024; 23:e12572. [PMID: 38571514 PMCID: PMC10988898 DOI: 10.1002/rmb2.12572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Purpose To investigate whether long noncoding RNAs (lncRNAs) are involved in the development or malignant behavior of ovarian high-grade serous carcinoma (HGSC), we attempted to identify lncRNAs specific to HGSC. Methods Total RNAs were isolated from HGSC, normal ovarian, and fallopian tube tissue samples and were subjected to a PCR array that can analyze 84 cancer-associated lncRNAs. The lncRNAs that were upregulated and downregulated in HGSC in comparison to multiple samples of normal ovary and fallopian tube were validated by real-time RT-PCR. To infer the function, ovarian cancer cell lines that overexpress the identified lncRNAs were established, and the activation of cell proliferation, migration, and invasion was analyzed. Results Eleven lncRNAs (ACTA2-AS1, ADAMTS9-AS2, CBR3-AS1, HAND2-AS1, IPW, LINC00312, LINC00887, MEG3, NBR2, TSIX, and XIST) were downregulated in HGSC samples. We established the cell lines that overexpress ADAMTS9-AS2, CBR3-AS1, or NBR2. In cell lines overexpressing ADAMTS9-AS2, cell proliferation was suppressed, but migration and invasion were promoted. In cell lines overexpressing CBR3-AS1 or NBR2, cell migration tended to be promoted, although cell proliferation and invasion were unchanged. Conclusion We identified eleven lncRNAs that were specifically downregulated in HGSC. Of these, CBR3-AS1, NBR2, and ADAMTS9-AS2 had unique functions in the malignant behaviors of HGSC.
Collapse
Affiliation(s)
- Maki Hayashi‐Okada
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Shun Sato
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Kengo Nakashima
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Takahiro Sakai
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Tetsuro Tamehisa
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Takuya Kajimura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Isao Tamura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Kotaro Sueoka
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Norihiro Sugino
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
176
|
Mishra R. Oral tumor heterogeneity, its implications for patient monitoring and designing anti-cancer strategies. Pathol Res Pract 2024; 253:154953. [PMID: 38039738 DOI: 10.1016/j.prp.2023.154953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Oral cancer tumors occur in the mouth and are mainly derived from oral mucosa linings. It is one of the most common and fatal malignant diseases worldwide. The intratumor heterogeneity (ITH) of oral cancerous tumor is vast, so it is challenging to study and interpret. Due to environmental selection pressures, ITH arises through diverse genetic, epigenetic, and metabolic alterations. The ITH also talks about peri-tumoral vascular/ lymphatic growth, perineural permeation, tumor necrosis, invasion, and clonal expansion/ the coexistence of multiple subclones in a single tumor. The heterogeneity offers tumors the adaptability to survive, induce growth/ metastasis, and, most importantly, escape antitumor therapy. Unfortunately, the ITH is prioritized less in determining disease pathology than the traditional TNM classifications or tumor grade. Understanding ITH is challenging, but with the advancement of technology, this ITH can be decoded. Tumor genomics, proteomics, metabolomics, and other modern analyses can provide vast information. This information in clinics can assist in understanding a tumor's severity and be used for diagnostic, prognostic, and therapeutic decision-making. Lastly, the oral tumor ITH can lead to individualized, targeted therapy strategies fighting against OC.
Collapse
Affiliation(s)
- Rajakishore Mishra
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Kamre, Ranchi 835 222, Jharkhand, India.
| |
Collapse
|
177
|
Liu S, Rong Y, Tang M, Zhao Q, Li C, Gao W, Yang X. The Functions and Mechanisms of Long Non-coding RNA SNHGs in Gastric Cancer. Comb Chem High Throughput Screen 2024; 27:2639-2653. [PMID: 37842903 DOI: 10.2174/0113862073268591230928100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023]
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. Despite significant advancements in surgical and adjuvant treatments, patient prognosis remains unsatisfactory. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that lack protein-coding capacity but can engage in the malignant biological behaviors of tumors through various mechanisms. Among them, small nucleolar host genes (SNHGs) represent a subgroup of lncRNAs. Studies have revealed their involvement not only in gastric cancer cell proliferation, invasion, migration, epithelial- mesenchymal transition (EMT), and apoptosis but also in chemotherapy resistance and tumor stemness. This review comprehensively summarizes the biological functions, molecular mechanisms, and clinical significance of SNHGs in gastric cancer. It provides novel insights into potential biomarkers and therapeutic targets for the exploration of gastric cancer.
Collapse
Affiliation(s)
- Songhua Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Yao Rong
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Mingzheng Tang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Qiqi Zhao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Chunyan Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
| | - Wenbin Gao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Xiaojun Yang
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
- Gansu key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
- Gansu Research Center of Prevention and Control Project for Digestive Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
- Key Laboratory of Gastrointestinal Tumor Diagnosis and Treatment of National Health and Health Commission, Lanzhou, 730000, China
| |
Collapse
|
178
|
Jiang X, Lan Y, Zhang Y, Dong Y, Song T. LncRNA FAM83H-AS1 Contributes to the Radio-resistance and Proliferation in Liver Cancer through Stability FAM83H Protein. Recent Pat Anticancer Drug Discov 2024; 19:316-327. [PMID: 37132310 DOI: 10.2174/1574892818666230427164227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Liver cancer (LC) is one of China's most common malignant tumors, with a high mortality rate, ranking third leading cause of death after gastric and esophageal cancer. Recent patents propose the LncRNA FAM83H-AS1 has been verified to perform a crucial role in the progression of LC. LncRNA FAM83H-AS1 has been verified to perform a crucial role in the progression of LC. However, the concrete mechanism remains to be pending further investigation. OBJECTIVE This study aimed to explore the embedding mechanism of FAM83H-AS1 molecules in terms of radio sensitivity of LC and provide potentially effective therapeutic targets for LC therapy. METHODS Quantitative real-time PCR (qRT-PCR) was conducted to measure the transcription levels of genes. Proliferation was determined via CCK8 and colony formation assays. Western blot was carried out to detect the relative protein expression. A xenograft mouse model was constructed to investigate the effect of LncRNA FAM83H-AS1 on tumor growth and radio-sensitivity in vivo. RESULTS The levels of lncRNA FAM83H-AS1 were remarkably increased in LC. Knockdown of FAM83H-AS1 inhibited LC cell proliferation and colony survival fraction. Deletion of FAM83H-AS1 increased the sensitivity of LC cells to 4 Gy of X-ray radiation. In the xenograft model, radiotherapy combined with FAM83H-AS1 silencing significantly reduced tumor volume and weight. Overexpression of FAM83H reversed the effects of FAM83H-AS1 deletion on proliferation and colony survival fraction in LC cells. Moreover, the over-expressing of FAM83H also restored the tumor volume and weight reduction caused by the knockdown of FAM83H-AS1 or radiation in the xenograft model. CONCLUSION Knockdown of lncRNA FAM83H-AS1 inhibited LC growth and enhanced radiosensitivity in LC. It has the potential to be a promising target for LC therapy.
Collapse
Affiliation(s)
- Xiaocong Jiang
- Department of Radiotherapy Oncology, Huizhou Municipal Central Hospital, Huizhou, 516001, Guangdong, China
| | - Yuhong Lan
- Department of Radiotherapy Oncology, Huizhou Municipal Central Hospital, Huizhou, 516001, Guangdong, China
| | - Yingchun Zhang
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, 266033, Shandong, China
| | - Yuhong Dong
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, 266033, Shandong, China
| | - Ting Song
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, 266033, Shandong, China
| |
Collapse
|
179
|
Saleh O, Albakri K, Altiti A, Abutair I, Shalan S, Mohd OB, Negida A, Mushtaq G, Kamal MA. The Role of Non-coding RNAs in Alzheimer's Disease: Pathogenesis, Novel Biomarkers, and Potential Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:731-745. [PMID: 37211844 DOI: 10.2174/1871527322666230519113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/23/2023]
Abstract
Long non-coding RNAs (IncRNAs) are regulatory RNA transcripts that have recently been associated with the onset of many neurodegenerative illnesses, including Alzheimer's disease (AD). Several IncRNAs have been found to be associated with AD pathophysiology, each with a distinct mechanism. In this review, we focused on the role of IncRNAs in the pathogenesis of AD and their potential as novel biomarkers and therapeutic targets. Searching for relevant articles was done using the PubMed and Cochrane library databases. Studies had to be published in full text in English in order to be considered. Some IncRNAs were found to be upregulated, while others were downregulated. Dysregulation of IncRNAs expression may contribute to AD pathogenesis. Their effects manifest as the synthesis of beta-amyloid (Aβ) plaques increases, thereby altering neuronal plasticity, inducing inflammation, and promoting apoptosis. Despite the need for more investigations, IncRNAs could potentially increase the sensitivity of early detection of AD. Until now, there has been no effective treatment for AD. Hence, InRNAs are promising molecules and may serve as potential therapeutic targets. Although several dysregulated AD-associated lncRNAs have been discovered, the functional characterization of most lncRNAs is still lacking.
Collapse
Affiliation(s)
- Othman Saleh
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Khaled Albakri
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Medical Research Group of Egypt, Cairo, Egypt
| | | | - Iser Abutair
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Suhaib Shalan
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | | | - Ahmed Negida
- Medical Research Group of Egypt, Cairo, Egypt
- Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Ave, Boston, MA, 02115, USA
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Gohar Mushtaq
- Center for Scientific Research, Faculty of Medicine, Idlib University, Idlib, Syria
| | - Mohammad A Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia 1216, Bangladesh
- Enzymoics, 7 Peterlee place, Hebersham, NSW 2770, Novel Global Community Educational Foundation, Hebersham, Australia
| |
Collapse
|
180
|
Huang W, Xiong T, Zhao Y, Heng J, Han G, Wang P, Zhao Z, Shi M, Li J, Wang J, Wu Y, Liu F, Xi JJ, Wang Y, Zhang QC. Computational prediction and experimental validation identify functionally conserved lncRNAs from zebrafish to human. Nat Genet 2024; 56:124-135. [PMID: 38195860 PMCID: PMC10786727 DOI: 10.1038/s41588-023-01620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/21/2023] [Indexed: 01/11/2024]
Abstract
Functional studies of long noncoding RNAs (lncRNAs) have been hindered by the lack of methods to assess their evolution. Here we present lncRNA Homology Explorer (lncHOME), a computational pipeline that identifies a unique class of long noncoding RNAs (lncRNAs) with conserved genomic locations and patterns of RNA-binding protein (RBP) binding sites (coPARSE-lncRNAs). Remarkably, several hundred human coPARSE-lncRNAs can be evolutionarily traced to zebrafish. Using CRISPR-Cas12a knockout and rescue assays, we found that knocking out many human coPARSE-lncRNAs led to cell proliferation defects, which were subsequently rescued by predicted zebrafish homologs. Knocking down coPARSE-lncRNAs in zebrafish embryos caused severe developmental delays that were rescued by human homologs. Furthermore, we verified that human, mouse and zebrafish coPARSE-lncRNA homologs tend to bind similar RBPs with their conserved functions relying on specific RBP-binding sites. Overall, our study demonstrates a comprehensive approach for studying the functional conservation of lncRNAs and implicates numerous lncRNAs in regulating vertebrate physiology.
Collapse
Affiliation(s)
- Wenze Huang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Tuanlin Xiong
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuting Zhao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jian Heng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Ge Han
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Pengfei Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhihua Zhao
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Ming Shi
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Juan Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Jiazhen Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yixia Wu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Shandong University, Qingdao, China
| | - Jianzhong Jeff Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China.
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
181
|
Wang H, Chen K, Zong L, Zhao X, Wang J, Fan S, Shen B, Zheng S. MALAT1/miR-7-5p/TCF4 Axis Regulating Menstrual Blood Mesenchymal Stem Cells Improve Thin Endometrium Fertility by the Wnt Signaling Pathway. Cell Transplant 2024; 33:9636897241259552. [PMID: 38847385 PMCID: PMC11162126 DOI: 10.1177/09636897241259552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024] Open
Abstract
Thin endometrium (TE) is a significant factor contributing to fertility challenges, and addressing this condition remains a central challenge in reproductive medicine. Menstrual blood-derived mesenchymal stem cells (MenSCs) play a crucial role in tissue repair and regeneration, including that of TE. The Wnt signaling pathway, which is highly conserved and prevalent in eukaryotes, is essential for cell proliferation, tissue development, and reproductive functions. MALAT1 is implicated in various transcriptional and molecular functions, including cell proliferation and metastasis. However, the combined effects of the Wnt signaling pathway and the long non-coding RNA (lncRNA) MALAT1 on the regulation of MenSCs' regenerative capabilities in tissue engineering have not yet been explored. To elucidate the regulatory mechanism of MALAT1 in TE, we analyzed its expression levels in normal endometrium and TE tissues, finding that low expression of MALAT1 was associated with poor clinical prognosis. In addition, we conducted both in vitro and in vivo functional assays to examine the role of the MALAT1/miR-7-5p/TCF4 axis in cell proliferation and migration. Techniques such as dual-luciferase reporter assay, fluorescent in situ hybridization, and immunoblot experiments were utilized to clarify the molecular mechanism. To corroborate these findings, we established a TE model and conducted pregnancy experiments, demonstrating a strong association between MALAT1 expression and endometrial fertility. In conclusion, our comprehensive study provides strong evidence supporting that lncRNA MALAT1 modulates TCF4 expression in the Wnt signaling pathway through interaction with miR-7-5p, thus enhancing MenSCs-mediated improvement of TE and improving fertility.
Collapse
Affiliation(s)
- Huiru Wang
- Reproductive Medicine Center & Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kai Chen
- Reproductive Medicine Center & Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lu Zong
- Reproductive Medicine Center & Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin Zhao
- Wannan Medical College, Wuhu, China
| | | | - Shiwei Fan
- Reproductive Medicine Center & Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bing Shen
- School of Basic Medicine Sciences, Anhui Medical University, Hefei, China
| | - Shengxia Zheng
- Reproductive Medicine Center & Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
182
|
Serpente M, Fenoglio C, Arcaro M, Carandini T, Sacchi L, Pintus M, Rotondo E, Borracci V, Ghezzi L, Bouzigues A, Russell LL, Foster PH, Ferry-Bolder E, van Swieten JC, Jiskoot LC, Seelaar H, Sánchez Valle R, Laforce R, Graff C, Vandenberghe R, de Mendonça A, Tiraboschi P, Santana I, Gerhard A, Levin J, Sorbi S, Otto M, Pasquier F, Ducharme S, Butler CR, Le Ber I, Finger E, Tartaglia MC, Masellis M, Rowe JB, Synofzik M, Moreno F, Borroni B, Rohrer JD, Arighi A, Galimberti D. Long Non-Coding RNA Profile in Genetic Symptomatic and Presymptomatic Frontotemporal Dementia: A GENFI Study. J Alzheimers Dis 2024; 100:S187-S196. [PMID: 39121124 PMCID: PMC11380264 DOI: 10.3233/jad-240557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 08/11/2024]
Abstract
Background Long non-coding RNAs (lncRNAs) play crucial roles in gene regulation and are implicated in neurodegenerative diseases, including frontotemporal dementia (FTD). However, their expression patterns and potential as biomarkers in genetic FTD involving Chromosome 9 Open Reading Frame (C9ORF72), Microtubule Associated Protein Tau (MAPT), and Progranulin (GRN) genes are not well understood. Objective This study aimed to profile the expression levels of lncRNAs in peripheral blood mononuclear cells collected within the GENetic Frontotemporal dementia Initiative (GENFI). Methods Fifty-three lncRNAs were analyzed with the OpenArray Custom panel, in 131 patients with mutations in C9ORF72, MAPT, and GRN, including 68 symptomatic mutation carriers (SMC) and 63 presymptomatic mutation carriers (PMC), compared with 40 non-carrier controls (NC). Results Thirty-eight lncRNAs were detectable; the relative expression of NEAT1 and NORAD was significantly higher in C9ORF72 SMC as compared with NC. GAS5 expression was instead significantly lower in the GRN group versus NC. MAPT carriers showed no significant deregulations. No significant differences were observed in PMC. Disease duration did not correlate with lncRNA expression. Conclusions NEAT1 and NORAD are upregulated in C9ORF72 SMC and GAS5 levels are downregulated in GRN SMC, underlining lncRNAs' relevance in FTD and their potential for biomarker development. Further validation and mechanistic studies are crucial for clinical implications.
Collapse
Affiliation(s)
- Maria Serpente
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fenoglio
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Marina Arcaro
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Carandini
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Sacchi
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Manuela Pintus
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Emanuela Rotondo
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Vittoria Borracci
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Ghezzi
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Arabella Bouzigues
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Lucy L. Russell
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Phoebe H. Foster
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Eve Ferry-Bolder
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | | | - Lize C. Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Raquel Sánchez Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Robert Laforce
- Département des Sciences Neurologiques, Clinique Interdisciplinaire de Mémoire, CHU de Québec, and Faculté de Médecine, Université Laval, QC, Canada
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society; Center for Alzheimer Research, Division of Neurogeriatrics, Bioclinicum, Karolinska Institutet, Solna, Sweden
- Unit for Hereditary Dementias, Theme Inflammation and Aging, Karolinska University Hospital, Solna, Sweden
| | - Rik Vandenberghe
- Department of Neurosciences, Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Alexander Gerhard
- Division of Psychology Communication and Human Neuroscience, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Department of Nuclear Medicine, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
- Department of Geriatric Medicine, Klinikum Hochsauerland, Arnsberg, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, Germany
| | - Florence Pasquier
- University of Lille, Lille, France
- Inserm 1172, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, Lille, France
| | - Simon Ducharme
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Chris R. Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute – Institut du Cerveau – ICM, Inserm U1127, CNRS UMR 7225, AP-HP – Hôpital Pitié-Salpêtrière, Paris, France
- Département de Neurologie, Centre de Référence Des Démences Rares Ou Précoces, IM2A, AP-HP – Hôpital Pitié-Salpêtrière, Paris, France
- Département de Neurologie, AP-HP – Hôpital Pitié-Salpêtrière, Paris, France
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - James B. Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain
- Biogipuzkoa Health Research Institute, Neurosciences Area, Group of Neurodegenerative Diseases, San Sebastian, Spain
- Center for Biomedical Research in Neurodegenerative Disease (CIBERNED), Carlos III Health Institute, Madrid, Spain
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Jonathan D. Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea Arighi
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
183
|
Perales SG, Rajasingh S, Zhou Z, Rajasingh J. Therapy of infectious diseases using epigenetic approaches. EPIGENETICS IN HUMAN DISEASE 2024:853-882. [DOI: 10.1016/b978-0-443-21863-7.00007-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
184
|
Darvish M. LncRNA FTH1P3: A New Biomarker for Cancer-Related Therapeutic Development. Curr Mol Med 2024; 24:576-584. [PMID: 37491858 DOI: 10.2174/1566524023666230724141353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023]
Abstract
Cancer is a persistent and urgent health problem that affects the entire world. Not long ago, regulatory biomolecules referred to as long noncoding RNAs (lncRNAs) might have value for their innate abundance and stability. These single-stranded RNAs potentially interfere with several physiological and biochemical cellular processes involved in many human pathological situations, particularly cancer diseases. Ferritin heavy chain1 pseudogene 3 (FTH1P3), a lncRNA that is ubiquitously transcribed and belongs to the ferritin heavy chain (FHC) family, represents a novel class of lncRNAs primarily found in oral squamous cell carcinoma. Further research has shown that FTH1P3 is involved in other malignancies such as uveal melanoma, glioma, esophageal squamous cell carcinoma, non-small cell lung cancer, breast cancer, laryngeal squamous cell carcinoma, and cervical cancer. Accordingly, FTH1P3 significantly enhances cancer symptoms, including cell proliferation, invasion, metastasis, chemoresistance, and inhibition of apoptosis through many specific mechanisms. Notably, the clinical data significantly demonstrated the association of FTH1P3 overexpression with poor prognosis and poor overall survival within the examined samples. Here, we summarize all the research published to date (13 articles) on FTH1P3, focusing on the biological function underlying the regulatory mechanism and its possible clinical relevance.
Collapse
Affiliation(s)
- Maryam Darvish
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
185
|
Hu Y, He Y, Luo N, Li X, Guo L, Zhang K. A feedback loop between lncRNA MALAT1 and DNMT1 promotes triple-negative breast cancer stemness and tumorigenesis. Cancer Biol Ther 2023; 24:2235768. [PMID: 37548553 PMCID: PMC10408694 DOI: 10.1080/15384047.2023.2235768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/23/2022] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND The function of long non-coding RNA (lncRNA) MALAT1 in regulating triple-negative breast cancer (TNBC) stemness and tumorigenesis was investigated. METHODS Sphere formation and colony formation assays coupled with flow cytometry were employed to evaluate the percentage of CD44high/CD44low cells, and ALDH+ cells were performed to evaluate the stemness. Bisulfite sequencing PCR (BSP) was employed to detect the methylation level of MALAT1. Tumor xenograft experiment was performed to evaluate tumorigenesis in vivo. Finally, dual-luciferase reporter and RIP assays were employed to verify the binding relationship between MALAT1 and miR-137. RESULTS Our results revealed that MALAT1 and BCL11A were highly expressed in TNBC, while miR-137 and DNMT1 were lowly expressed. Our results proved that MALAT1 positively regulated BCL11A expression through targeting miR-137. Functional experiments revealed that MALAT1 inhibited DNMT1 expression through acting on the miR-137/BCL11A pathway to enhance TNBC stemness and tumorigenesis. We also found that high MALAT1 expression in TNBC was related to the DNMT1-mediated hypomethylation of MALAT1. As expected, DNMT1 overexpression could remarkably inhibit TNBC stemness and tumorigenesis, which was eliminated by MALAT1 overexpression. CONCLUSION MALAT1 downregulated DNMT1 by miR-137/BCL11A pathway to enhance TNBC stemness and tumorigenesis; meanwhile, DNMT1/MALAT1 formed a positive feedback loop to continuously promote TNBC malignant behaviors.
Collapse
Affiliation(s)
- Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Department of General Surgery, Xiangya Hospital, Central South University, Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province, P.R. China
| | - Yuqiong He
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Department of General Surgery, Xiangya Hospital, Central South University, Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province, P.R. China
| | - Na Luo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Department of General Surgery, Xiangya Hospital, Central South University, Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province, P.R. China
| | - Xin Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Department of General Surgery, Xiangya Hospital, Central South University, Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province, P.R. China
| | - Lei Guo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Department of General Surgery, Xiangya Hospital, Central South University, Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province, P.R. China
| | - Kejing Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Department of General Surgery, Xiangya Hospital, Central South University, Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province, P.R. China
| |
Collapse
|
186
|
Bhargava A, Szachnowski U, Chazal M, Foretek D, Caval V, Aicher SM, Pipoli da Fonseca J, Jeannin P, Beauclair G, Monot M, Morillon A, Jouvenet N. Transcriptomic analysis of sorted lung cells revealed a proviral activity of the NF-κB pathway toward SARS-CoV-2. iScience 2023; 26:108449. [PMID: 38213785 PMCID: PMC10783605 DOI: 10.1016/j.isci.2023.108449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/30/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024] Open
Abstract
Investigations of cellular responses to viral infection are commonly performed on mixed populations of infected and uninfected cells or using single-cell RNA sequencing, leading to inaccurate and low-resolution gene expression interpretations. Here, we performed deep polyA+ transcriptome analyses and novel RNA profiling of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected lung epithelial cells, sorted based on the expression of the viral spike (S) protein. Infection caused a massive reduction in mRNAs and long non-coding RNAs (lncRNAs), including transcripts coding for antiviral factors, such as interferons (IFNs). This absence of IFN signaling probably explained the poor transcriptomic response of bystander cells co-cultured with S+ ones. NF-κB pathway and the inflammatory response escaped the global shutoff in S+ cells. Functional investigations revealed the proviral function of the NF-κB pathway and the antiviral activity of CYLD, a negative regulator of the pathway. Thus, our transcriptomic analysis on sorted cells revealed additional genes that modulate SARS-CoV-2 replication in lung cells.
Collapse
Affiliation(s)
- Anvita Bhargava
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | - Ugo Szachnowski
- CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Maxime Chazal
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | - Dominika Foretek
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
- CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Vincent Caval
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | - Sophie-Marie Aicher
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | | | - Patricia Jeannin
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Unité Épidémiologie et Physiopathologie des Virus Oncogènes, 75015 Paris, France
| | - Guillaume Beauclair
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Marc Monot
- Institut Pasteur, Université de Paris, Biomics Platform, C2RT, 75015 Paris, France
| | - Antonin Morillon
- CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| |
Collapse
|
187
|
Ao YQ, Gao J, Jiang JH, Wang HK, Wang S, Ding JY. Comprehensive landscape and future perspective of long noncoding RNAs in non-small cell lung cancer: it takes a village. Mol Ther 2023; 31:3389-3413. [PMID: 37740493 PMCID: PMC10727995 DOI: 10.1016/j.ymthe.2023.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a distinct subtype of RNA that lack protein-coding capacity but exert significant influence on various cellular processes. In non-small cell lung cancer (NSCLC), dysregulated lncRNAs act as either oncogenes or tumor suppressors, contributing to tumorigenesis and tumor progression. LncRNAs directly modulate gene expression, act as competitive endogenous RNAs by interacting with microRNAs or proteins, and associate with RNA binding proteins. Moreover, lncRNAs can reshape the tumor immune microenvironment and influence cellular metabolism, cancer cell stemness, and angiogenesis by engaging various signaling pathways. Notably, lncRNAs have shown great potential as diagnostic or prognostic biomarkers in liquid biopsies and therapeutic strategies for NSCLC. This comprehensive review elucidates the significant roles and diverse mechanisms of lncRNAs in NSCLC. Furthermore, we provide insights into the clinical relevance, current research progress, limitations, innovative research approaches, and future perspectives for targeting lncRNAs in NSCLC. By summarizing the existing knowledge and advancements, we aim to enhance the understanding of the pivotal roles played by lncRNAs in NSCLC and stimulate further research in this field. Ultimately, unraveling the complex network of lncRNA-mediated regulatory mechanisms in NSCLC could potentially lead to the development of novel diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Yong-Qiang Ao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
188
|
Huang S, Wang X, Zhu Y, Wang Y, Chen J, Zheng H. SOX2 promotes vasculogenic mimicry by accelerating glycolysis via the lncRNA AC005392.2-GLUT1 axis in colorectal cancer. Cell Death Dis 2023; 14:791. [PMID: 38044399 PMCID: PMC10694132 DOI: 10.1038/s41419-023-06274-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
Vasculogenic mimicry (VM), a new model of angiogenesis, fulfills the metabolic demands of solid tumors and contributes to tumor aggressiveness. Our previous study demonstrated the effect of SOX2 in promoting VM in colorectal cancer (CRC). However, the underlying mechanisms behind this effect remain elusive. Here, we show that SOX2 overexpression enhanced glycolysis and sustained VM formation via the transcriptional activation of lncRNA AC005392.2. Suppression of either glycolysis or AC005392.2 expression curbed SOX2-driven VM formation in vivo and in vitro. Mechanistically, SOX2 combined with the promoter of AC005392.2, which decreased H3K27me3 enrichment and thus increased its transcriptional activity. Overexpression of AC005392.2 increased the stability of GLUT1 protein by enhancing its SUMOylation, leading to a decrease in the ubiquitination and degradation of GLUT1. Accumulation of GLUT1 contributed to SOX2-mediated glycolysis and VM. Additionally, clinical analyses showed that increased levels of AC005392.2, GLUT1, and EPHA2 expression were positively correlated with SOX2 and were also associated with poor prognoses in patients with CRC. Our study conclusively demonstrates that the SOX2-lncRNA AC005392.2-GLUT1 signaling axis regulates VM formation in CRC, offering a foundation for the development of new antiangiogenic drugs or new drug combination regimens.
Collapse
Affiliation(s)
- Shimiao Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Xuan Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yin Zhu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 510515, Guangzhou, China
| | - Yadong Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Jiaxuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Haoxuan Zheng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
189
|
Fasciano S, Luo S, Wang S. Long non-coding RNA (lncRNA) MALAT1 in regulating osteogenic and adipogenic differentiation using a double-stranded gapmer locked nucleic acid nanobiosensor. Analyst 2023; 148:6261-6273. [PMID: 37937546 DOI: 10.1039/d3an01531a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Long non-coding RNAs (lncRNA) are non-protein coding RNA molecules that are longer than 200 nucleotides. The lncRNA molecule plays diverse roles in gene regulation, chromatin remodeling, and cellular processes, influencing various biological pathways. However, probing the complex dynamics of lncRNA in live cells is a challenging task. In this study, a double-stranded gapmer locked nucleic acid (ds-GapM-LNA) nanobiosensor is designed for visualizing the abundance and expression of lncRNA in live human bone-marrow-derived mesenchymal stem cells (hMSCs). The sensitivity, specificity, and stability were characterized. The results showed that this ds-GapM-LNA nanobiosensor has very good sensitivity, specificity, and stability, which allows for dissecting the regulatory roles of cellular processes during dynamic physiological events. By incorporating this nanobiosensor in living hMSC imaging, we elucidated lncRNA MALAT1 expression dynamics during osteogenic and adipogenic differentiation. The data reveal that lncRNA MALAT1 expression is correlated with distinct sub-stages of osteogenic and adipogenic differentiation.
Collapse
Affiliation(s)
- Samantha Fasciano
- Department of Chemistry, Chemical and Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, 06516, USA.
- Department of Cellular and Molecular Biology, College of Art and Science, University of New Haven, West Haven, CT, 06516, USA
| | - Shuai Luo
- Department of Chemistry, Chemical and Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, 06516, USA.
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, 06516, USA.
| |
Collapse
|
190
|
Mazarei M, Shahabi Rabori V, Ghasemi N, Salehi M, Rayatpisheh N, Jahangiri N, Saberiyan M. LncRNA MALAT1 signaling pathway and clinical applications in overcome on cancers metastasis. Clin Exp Med 2023; 23:4457-4472. [PMID: 37695391 DOI: 10.1007/s10238-023-01179-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
In spite of its high mortality rate and difficulty in finding a cure, scientific advancements have contributed to a reduction in cancer-related fatalities. Aberrant gene expression during carcinogenesis emphasizes the importance of targeting the signaling networks that control gene expression in cancer treatment. Long noncoding RNAs (lncRNAs), which are transcribed RNA molecules that play a role in gene expression regulation, are a recent innovative therapeutic approach for diagnosing and treating malignancies. MALAT1, a well-known lncRNA, functions in gene expression, RNA processing, and epigenetic control. High expression levels of MALAT1 are associated with several human disorders, including metastasis, invasion, autophagy, and proliferation of cancer cells. MALAT1 affects various signaling pathways and microRNAs (miRNAs), and this study aims to outline its functional roles in cancer metastasis and its interactions with cellular signaling pathways. Moreover, MALAT1 and its interactions with signaling pathways can be promising target for cancer treatment.
Collapse
Affiliation(s)
- Madineh Mazarei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Nazila Ghasemi
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mehrnaz Salehi
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Najmeh Rayatpisheh
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Negin Jahangiri
- Department of Biology, Faculty of Basic Sciences and Engineering, Gonbad Kavous University, Gonbad-e Kavus, Iran
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, School of Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
191
|
Gareev I, Encarnacion Ramirez MDJ, Nurmukhametov R, Ivliev D, Shumadalova A, Ilyasova T, Beilerli A, Wang C. The role and clinical relevance of long non-coding RNAs in glioma. Noncoding RNA Res 2023; 8:562-570. [PMID: 37602320 PMCID: PMC10432901 DOI: 10.1016/j.ncrna.2023.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023] Open
Abstract
Glioma represents a complex and heterogeneous disease, posing significant challenges to both clinicians and researchers. Despite notable advancements in glioma treatment, the overall survival rate for most glioma patients remains dishearteningly low. Hence, there is an urgent necessity to discover novel biomarkers and therapeutic targets specifically tailored for glioma. In recent years, long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression and have garnered attention for their involvement in the development and progression of various cancers, including glioma. The dysregulation of lncRNAs plays a critical role in glioma pathogenesis and influences clinical outcomes. Consequently, there is growing interest in exploring the potential of lncRNAs as diagnostic and prognostic biomarkers, as well as therapeutic targets. By understanding the functions and dysregulation of lncRNAs in glioma, researchers aim to unlock new avenues for the development of innovative treatment strategies catered to glioma patients. The identification and thorough characterization of lncRNAs hold the promise of novel therapeutic approaches that could potentially improve patient outcomes and enhance the management of glioma, ultimately striving for better prospects and enhanced quality of life for those affected by this challenging disease. The primary objective of this paper is to comprehensively review the current state of knowledge regarding lncRNA biology and their intricate roles in glioma. It also delves into the potential of lncRNAs as valuable diagnostic and prognostic indicators and explores their feasibility as promising targets for therapeutic interventions.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Manuel de Jesus Encarnacion Ramirez
- Department of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Renat Nurmukhametov
- Division of Spine Surgery, Central Clinical Hospital of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Denis Ivliev
- Department of Neurosurgery, Smolensk State Medical University of the Ministry of Health of the Russian Federation, Smolensk, Russia
| | - Alina Shumadalova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, Tyumen, Russia
| | - Chunlei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
192
|
Dang HX, Saha D, Jayasinghe R, Zhao S, Coonrod E, Mudd J, Goedegebuure S, Fields R, Ding L, Maher C. Single-cell transcriptomics reveals long noncoding RNAs associated with tumor biology and the microenvironment in pancreatic cancer. NAR Cancer 2023; 5:zcad055. [PMID: 38023733 PMCID: PMC10664695 DOI: 10.1093/narcan/zcad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly heterogeneous and lethal. Long noncoding RNAs (lncRNAs) are an important class of genes regulating tumorigenesis and progression. Prior bulk transcriptomic studies in PDAC have revealed the dysregulation of lncRNAs but lack single-cell resolution to distinguish lncRNAs in tumor-intrinsic biology and the tumor microenvironment (TME). We analyzed single-cell transcriptome data from 73 multiregion samples in 21 PDAC patients to evaluate lncRNAs associated with intratumoral heterogeneity and the TME in PDAC. We found 111 cell-specific lncRNAs that reflected tumor, immune and stromal cell contributions, associated with outcomes, and validated across orthogonal datasets. Single-cell analysis of tumor cells revealed lncRNAs associated with TP53 mutations and FOLFIRINOX treatment that were obscured in bulk tumor analysis. Lastly, tumor subcluster analysis revealed widespread intratumor heterogeneity and intratumoral lncRNAs associated with cancer hallmarks and tumor processes such as angiogenesis, epithelial-mesenchymal transition, metabolism and immune signaling. Intratumoral subclusters and lncRNAs were validated across six datasets and showed clinically relevant associations with patient outcomes. Our study provides the first comprehensive assessment of the lncRNA landscape in PDAC using single-cell transcriptomic data and can serve as a resource, PDACLncDB (accessible at https://www.maherlab.com/pdaclncdb-overview), to guide future functional studies.
Collapse
Affiliation(s)
- Ha X Dang
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO 63108, USA
| | - Debanjan Saha
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- MD–PhD Program, Washington University in St Louis, St Louis, MO 63110, USA
| | - Reyka Jayasinghe
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Sidi Zhao
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Emily Coonrod
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Jacqueline Mudd
- Department of Surgery, Washington University in St Louis, St Louis, MO 63110, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University in St Louis, St Louis, MO 63110, USA
| | - Ryan Fields
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63110, USA
- Department of Surgery, Washington University in St Louis, St Louis, MO 63110, USA
| | - Li Ding
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63110, USA
| | - Christopher A Maher
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO 63108, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63130, USA
| |
Collapse
|
193
|
Zheng C, Wei Y, Zhang P, Lin K, He D, Teng H, Manyam G, Zhang Z, Liu W, Lee HRL, Tang X, He W, Islam N, Jain A, Chiu Y, Cao S, Diao Y, Meyer-Gauen S, Höök M, Malovannaya A, Li W, Hu M, Wang W, Xu H, Kopetz S, Chen Y. CRISPR-Cas9-based functional interrogation of unconventional translatome reveals human cancer dependency on cryptic non-canonical open reading frames. Nat Struct Mol Biol 2023; 30:1878-1892. [PMID: 37932451 PMCID: PMC10716047 DOI: 10.1038/s41594-023-01117-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/06/2023] [Indexed: 11/08/2023]
Abstract
Emerging evidence suggests that cryptic translation beyond the annotated translatome produces proteins with developmental or physiological functions. However, functions of cryptic non-canonical open reading frames (ORFs) in cancer remain largely unknown. To fill this gap and systematically identify colorectal cancer (CRC) dependency on non-canonical ORFs, we apply an integrative multiomic strategy, combining ribosome profiling and a CRISPR-Cas9 knockout screen with large-scale analysis of molecular and clinical data. Many such ORFs are upregulated in CRC compared to normal tissues and are associated with clinically relevant molecular subtypes. We confirm the in vivo tumor-promoting function of the microprotein SMIMP, encoded by a primate-specific, long noncoding RNA, the expression of which is associated with poor prognosis in CRC, is low in normal tissues and is specifically elevated in CRC and several other cancer types. Mechanistically, SMIMP interacts with the ATPase-forming domains of SMC1A, the core subunit of the cohesin complex, and facilitates SMC1A binding to cis-regulatory elements to promote epigenetic repression of the tumor-suppressive cell cycle regulators encoded by CDKN1A and CDKN2B. Thus, our study reveals a cryptic microprotein as an important component of cohesin-mediated gene regulation and suggests that the 'dark' proteome, encoded by cryptic non-canonical ORFs, may contain potential therapeutic or diagnostic targets.
Collapse
Affiliation(s)
- Caishang Zheng
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanjun Wei
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Zhang
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kangyu Lin
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dandan He
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sema4, Inc., Stamford, CT, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ganiraju Manyam
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen Liu
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center, Institute of Biosciences of Technology, Houston, TX, USA
| | - Hye Rin Lindsay Lee
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nelufa Islam
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Yulun Chiu
- Department of Melanoma Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaolong Cao
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Sherita Meyer-Gauen
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center, Institute of Biosciences of Technology, Houston, TX, USA
| | - Anna Malovannaya
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Han Xu
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Genetics and Epigenetics Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
194
|
Saadh MJ, Almoyad MAA, Arellano MTC, Maaliw RR, Castillo-Acobo RY, Jalal SS, Gandla K, Obaid M, Abdulwahed AJ, Ibrahem AA, Sârbu I, Juyal A, Lakshmaiya N, Akhavan-Sigari R. Long non-coding RNAs: controversial roles in drug resistance of solid tumors mediated by autophagy. Cancer Chemother Pharmacol 2023; 92:439-453. [PMID: 37768333 DOI: 10.1007/s00280-023-04582-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023]
Abstract
Current genome-wide studies have indicated that a great number of long non-coding RNAs (lncRNAs) are transcribed from the human genome and appeared as crucial regulators in a variety of cellular processes. Many studies have displayed a significant function of lncRNAs in the regulation of autophagy. Autophagy is a macromolecular procedure in cells in which intracellular substrates and damaged organelles are broken down and recycled to relieve cell stress resulting from nutritional deprivation, irradiation, hypoxia, and cytotoxic agents. Autophagy can be a double-edged sword and play either a protective or a damaging role in cells depending on its activation status and other cellular situations, and its dysregulation is related to tumorigenesis in various solid tumors. Autophagy induced by various therapies has been shown as a unique mechanism of resistance to anti-cancer drugs. Growing evidence is showing the important role of lncRNAs in modulating drug resistance via the regulation of autophagy in a variety of cancers. The role of lncRNAs in drug resistance of cancers is controversial; they may promote or suppress drug resistance via either activation or inhibition of autophagy. Mechanisms by which lncRNAs regulate autophagy to affect drug resistance are different, mainly mediated by the negative regulation of micro RNAs. In this review, we summarize recent studies that investigated the role of lncRNAs/autophagy axis in drug resistance of different types of solid tumors.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, 11831, Jordan
| | | | | | - Renato R Maaliw
- College of Engineering, Southern Luzon State University, Lucban, Quezon, Philippines
| | | | - Sarah Salah Jalal
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, University of Chaitanya, Hanamkonda, India
| | | | | | - Azher A Ibrahem
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115, Iași, Romania.
| | - Ashima Juyal
- Department of Electronics & Communication Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
195
|
Tieng FYF, Abdullah-Zawawi MR, Md Shahri NAA, Mohamed-Hussein ZA, Lee LH, Mutalib NSA. A Hitchhiker's guide to RNA-RNA structure and interaction prediction tools. Brief Bioinform 2023; 25:bbad421. [PMID: 38040490 PMCID: PMC10753535 DOI: 10.1093/bib/bbad421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 12/03/2023] Open
Abstract
RNA biology has risen to prominence after a remarkable discovery of diverse functions of noncoding RNA (ncRNA). Most untranslated transcripts often exert their regulatory functions into RNA-RNA complexes via base pairing with complementary sequences in other RNAs. An interplay between RNAs is essential, as it possesses various functional roles in human cells, including genetic translation, RNA splicing, editing, ribosomal RNA maturation, RNA degradation and the regulation of metabolic pathways/riboswitches. Moreover, the pervasive transcription of the human genome allows for the discovery of novel genomic functions via RNA interactome investigation. The advancement of experimental procedures has resulted in an explosion of documented data, necessitating the development of efficient and precise computational tools and algorithms. This review provides an extensive update on RNA-RNA interaction (RRI) analysis via thermodynamic- and comparative-based RNA secondary structure prediction (RSP) and RNA-RNA interaction prediction (RIP) tools and their general functions. We also highlighted the current knowledge of RRIs and the limitations of RNA interactome mapping via experimental data. Then, the gap between RSP and RIP, the importance of RNA homologues, the relationship between pseudoknots, and RNA folding thermodynamics are discussed. It is hoped that these emerging prediction tools will deepen the understanding of RNA-associated interactions in human diseases and hasten treatment processes.
Collapse
Affiliation(s)
- Francis Yew Fu Tieng
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | | | - Nur Alyaa Afifah Md Shahri
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology (INBIOSIS), UKM, Selangor 43600, Malaysia
- Department of Applied Physics, Faculty of Science and Technology, UKM, Selangor 43600, Malaysia
| | - Learn-Han Lee
- Sunway Microbiomics Centre, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University of Malaysia, Selangor 47500, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University of Malaysia, Selangor 47500, Malaysia
- Faculty of Health Sciences, UKM, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
196
|
Salido-Guadarrama I, Romero-Cordoba SL, Rueda-Zarazua B. Multi-Omics Mining of lncRNAs with Biological and Clinical Relevance in Cancer. Int J Mol Sci 2023; 24:16600. [PMID: 38068923 PMCID: PMC10706612 DOI: 10.3390/ijms242316600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
In this review, we provide a general overview of the current panorama of mining strategies for multi-omics data to investigate lncRNAs with an actual or potential role as biological markers in cancer. Several multi-omics studies focusing on lncRNAs have been performed in the past with varying scopes. Nevertheless, many questions remain regarding the pragmatic application of different molecular technologies and bioinformatics algorithms for mining multi-omics data. Here, we attempt to address some of the less discussed aspects of the practical applications using different study designs for incorporating bioinformatics and statistical analyses of multi-omics data. Finally, we discuss the potential improvements and new paradigms aimed at unraveling the role and utility of lncRNAs in cancer and their potential use as molecular markers for cancer diagnosis and outcome prediction.
Collapse
Affiliation(s)
- Ivan Salido-Guadarrama
- Departamento de Bioinformatìca y Análisis Estadísticos, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Sandra L. Romero-Cordoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Biochemistry Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Bertha Rueda-Zarazua
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
197
|
Tao Y, Xing S, Zuo S, Bao P, Jin Y, Li Y, Li M, Wu Y, Chen S, Wang X, Zhu Y, Feng Y, Zhang X, Wang X, Xi Q, Lu Q, Wang P, Lu ZJ. Cell-free multi-omics analysis reveals potential biomarkers in gastrointestinal cancer patients' blood. Cell Rep Med 2023; 4:101281. [PMID: 37992683 PMCID: PMC10694666 DOI: 10.1016/j.xcrm.2023.101281] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023]
Abstract
During cancer progression, tumorigenic and immune signals are spread through circulating molecules, such as cell-free DNA (cfDNA) and cell-free RNA (cfRNA) in the blood. So far, they have not been comprehensively investigated in gastrointestinal cancers. Here, we profile 4 categories of cell-free omics data from patients with colorectal cancer and patients with stomach adenocarcinoma and then assay 15 types of genomic, epigenomic, and transcriptomic variations. We find that multi-omics data are more appropriate for detection of cancer genes compared with single-omics data. In particular, cfRNAs are more sensitive and informative than cfDNAs in terms of detection rate, enriched functional pathways, etc. Moreover, we identify several peripheral immune signatures that are suppressed in patients with cancer. Specifically, we establish a γδ-T cell score and a cancer-associated-fibroblast (CAF) score, providing insights into clinical statuses like cancer stage and survival. Overall, we reveal a cell-free multi-molecular landscape that is useful for blood monitoring in personalized cancer treatment.
Collapse
Affiliation(s)
- Yuhuan Tao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Shaozhen Xing
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Shuai Zuo
- Gastro-Intestinal Surgery, Peking University First Hospital, Beijing 100034, China
| | - Pengfei Bao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Yunfan Jin
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Yu Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Mingyang Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yingchao Wu
- Gastro-Intestinal Surgery, Peking University First Hospital, Beijing 100034, China
| | - Shanwen Chen
- Gastro-Intestinal Surgery, Peking University First Hospital, Beijing 100034, China
| | - Xiaojuan Wang
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China; Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, No. 168, Litang Road, Changping District, Beijing 102218, China
| | - Yumin Zhu
- Medical school, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ying Feng
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiaohua Zhang
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xianbo Wang
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qian Lu
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China; Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, No. 168, Litang Road, Changping District, Beijing 102218, China.
| | - Pengyuan Wang
- Gastro-Intestinal Surgery, Peking University First Hospital, Beijing 100034, China.
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
198
|
Dutriaux A, Diazzi S, Bresesti C, Hardouin S, Deshayes F, Collignon J, Flagiello D. LADON, a Natural Antisense Transcript of NODAL, Promotes Tumour Progression and Metastasis in Melanoma. Noncoding RNA 2023; 9:71. [PMID: 37987367 PMCID: PMC10661258 DOI: 10.3390/ncrna9060071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
The TGFβ family member NODAL, repeatedly required during embryonic development, has also been associated with tumour progression. Our aim was to clarify the controversy surrounding its involvement in melanoma tumour progression. We found that the deletion of the NODAL exon 2 in a metastatic melanoma cell line impairs its ability to form tumours and colonize distant tissues. However, we show that this phenotype does not result from the absence of NODAL, but from a defect in the expression of a natural antisense transcript of NODAL, here called LADON. We show that LADON expression is specifically activated in metastatic melanoma cell lines, that its transcript is packaged in exosomes secreted by melanoma cells, and that, via its differential impact on the expression of oncogenes and tumour suppressors, it promotes the mesenchymal to amoeboid transition that is critical for melanoma cell invasiveness. LADON is, therefore, a new player in the regulatory network governing tumour progression in melanoma and possibly in other types of cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Jérôme Collignon
- Institut Jacques Monod, Université Paris Cité, CNRS, F-75013 Paris, France; (A.D.); (S.D.)
| | - Domenico Flagiello
- Institut Jacques Monod, Université Paris Cité, CNRS, F-75013 Paris, France; (A.D.); (S.D.)
| |
Collapse
|
199
|
Ismail NH, Mussa A, Al-Khreisat MJ, Mohamed Yusoff S, Husin A, Al-Jamal HAN, Johan MF, Islam MA. Dysregulation of Non-Coding RNAs: Roles of miRNAs and lncRNAs in the Pathogenesis of Multiple Myeloma. Noncoding RNA 2023; 9:68. [PMID: 37987364 PMCID: PMC10660696 DOI: 10.3390/ncrna9060068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
The dysregulation of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), leads to the development and advancement of multiple myeloma (MM). miRNAs, in particular, are paramount in post-transcriptional gene regulation, promoting mRNA degradation and translational inhibition. As a result, miRNAs can serve as oncogenes or tumor suppressors depending on the target genes. In MM, miRNA disruption could result in abnormal gene expression responsible for cell growth, apoptosis, and other biological processes pertinent to cancer development. The dysregulated miRNAs inhibit the activity of tumor suppressor genes, contributing to disease progression. Nonetheless, several miRNAs are downregulated in MM and have been identified as gene regulators implicated in extracellular matrix remodeling and cell adhesion. miRNA depletion potentially facilitates the tumor advancement and resistance of therapeutic drugs. Additionally, lncRNAs are key regulators of numerous cellular processes, such as gene expression, chromatin remodeling, protein trafficking, and recently linked MM development. The lncRNAs are uniquely expressed and influence gene expression that supports MM growth, in addition to facilitating cellular proliferation and viability via multiple molecular pathways. miRNA and lncRNA alterations potentially result in anomalous gene expression and interfere with the regular functioning of MM. Thus, this review aims to highlight the dysregulation of these ncRNAs, which engender novel therapeutic modalities for the treatment of MM.
Collapse
Affiliation(s)
- Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman 11111, Sudan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Shafini Mohamed Yusoff
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Azlan Husin
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Md Asiful Islam
- WHO Collaborating Centre for Global Women’s Health, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
200
|
Liu W, Zuo B, Liu W, Huo Y, Zhang N, Yang M. Long non-coding RNAs in non-small cell lung cancer: implications for preventing therapeutic resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188982. [PMID: 37734560 DOI: 10.1016/j.bbcan.2023.188982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Lung cancer has the highest mortality and morbidity rates among all cancers worldwide. Despite many complex treatment options, including radiotherapy, chemotherapy, targeted drugs, immunotherapy, and combinations of these treatments, efficacy is low in cases of resistance to therapy, metastasis, and advanced disease, contributing to low overall survival. There is a pressing need for the discovery of novel biomarkers and therapeutic targets for the early diagnosis of lung cancer and to determine the efficacy and outcomes of drug treatments. There is now substantial evidence for the diagnostic and prognostic value of long noncoding RNAs (lncRNAs). This review briefly discusses recent findings on the roles and mechanisms of action of lncRNAs in the responses to therapy in non-small cell lung cancer.
Collapse
Affiliation(s)
- Wenjuan Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Bingli Zuo
- Human Resources Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Wenting Liu
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong Province 261041, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province 211166, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province 211166, China.
| |
Collapse
|