151
|
Einarsson H, Runarsdottir JR, Tryggvason T, Snaebjornsson P, Smaradottir A, Stefansdottir V, Thoroddsen A, Arngrimsson R, Jonasson JG, Haraldsdottir S. Universal tumor screening in a population with MSH6- and PMS2-associated Lynch syndrome. Genet Med 2022; 24:999-1007. [PMID: 35172941 DOI: 10.1016/j.gim.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Universal screening for Lynch syndrome (LS) on resected colorectal carcinomas (CRCs) and endometrial carcinomas (ECs) was implemented in Iceland in 2017 using immunohistochemistry (IHC) for mismatch repair (MMR) proteins. We examined the efficacy of the universal screening algorithm to detect LS and the diagnostic accuracy of MMR IHC by comparing results with a population-based genotype database. METHODS All patients diagnosed with CRC or EC per the Icelandic Cancer Registry from 2017 to 2019 who had tumor MMR IHC performed were included. Pathology reports and patient charts were reviewed. MMR IHC stains were crossmatched with genotyping results obtained from the deCODE database. RESULTS IHC staining was done on 404 patients with CRC and 74 patients with EC. A total of 61 (15.1%) patients with CRC and 15 (20.3%) patients with EC were MMR-deficient. MMR IHC had 88.9% sensitivity in identifying patients with LS and a positive predictive value of 10.7%. Only 50% of individuals were appropriately referred for genetic testing, leading to underdiagnosis of LS. CONCLUSION Universal screening for LS using MMR protein IHC in CRC and EC accurately identified patients appropriate for genetic testing in a population with MSH6 and PMS2 LS predominance. Because of lack of referral to genetic counseling, only 50% of patients with LS were identified through the screening algorithm.
Collapse
Affiliation(s)
- Haukur Einarsson
- Department of Pathology, Landspitali University Hospital of Iceland, Reykjavik, Iceland
| | | | - Thordur Tryggvason
- Department of Pathology, Landspitali University Hospital of Iceland, Reykjavik, Iceland
| | - Petur Snaebjornsson
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Agnes Smaradottir
- Department of Oncology, Landspitali University Hospital of Iceland, Reykjavik, Iceland
| | - Vigdis Stefansdottir
- Department of Genetics and Molecular Medicine, Landspitali University Hospital of Iceland, Reykjavik, Iceland
| | - Asgeir Thoroddsen
- Department of Obstetrics and Gynecology, Landspitali University Hospital of Iceland, Reykjavik, Iceland
| | - Reynir Arngrimsson
- Department of Genetics and Molecular Medicine, Landspitali University Hospital of Iceland, Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Jon Gunnlaugur Jonasson
- Department of Pathology, Landspitali University Hospital of Iceland, Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Sigurdis Haraldsdottir
- Department of Oncology, Landspitali University Hospital of Iceland, Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
152
|
The Thousand Polish Genomes-A Database of Polish Variant Allele Frequencies. Int J Mol Sci 2022; 23:ijms23094532. [PMID: 35562925 PMCID: PMC9104289 DOI: 10.3390/ijms23094532] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
Abstract
Although Slavic populations account for over 4.5% of world inhabitants, no centralised, open-source reference database of genetic variation of any Slavic population exists to date. Such data are crucial for clinical genetics, biomedical research, as well as archeological and historical studies. The Polish population, which is homogenous and sedentary in its nature but influenced by many migrations of the past, is unique and could serve as a genetic reference for the Slavic nations. In this study, we analysed whole genomes of 1222 Poles to identify and genotype a wide spectrum of genomic variation, such as small and structural variants, runs of homozygosity, mitochondrial haplogroups, and de novo variants. Common variant analyses showed that the Polish cohort is highly homogenous and shares ancestry with other European populations. In rare variant analyses, we identified 32 autosomal-recessive genes with significantly different frequencies of pathogenic alleles in the Polish population as compared to the non-Finish Europeans, including C2, TGM5, NUP93, C19orf12, and PROP1. The allele frequencies for small and structural variants, calculated for 1076 unrelated individuals, are released publicly as The Thousand Polish Genomes database, and will contribute to the worldwide genomic resources available to researchers and clinicians.
Collapse
|
153
|
Rossi A, Kontarakis Z. Beyond Mendelian Inheritance: Genetic Buffering and Phenotype Variability. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:79-87. [PMID: 36939776 PMCID: PMC9590499 DOI: 10.1007/s43657-021-00030-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 06/18/2023]
Abstract
Understanding the way genes work amongst individuals and across generations to shape form and function is a common theme for many genetic studies. The recent advances in genetics, genome engineering and DNA sequencing reinforced the notion that genes are not the only players that determine a phenotype. Due to physiological or pathological fluctuations in gene expression, even genetically identical cells can behave and manifest different phenotypes under the same conditions. Here, we discuss mechanisms that can influence or even disrupt the axis between genotype and phenotype; the role of modifier genes, the general concept of genetic redundancy, genetic compensation, the recently described transcriptional adaptation, environmental stressors, and phenotypic plasticity. We furthermore highlight the usage of induced pluripotent stem cells (iPSCs), the generation of isogenic lines through genome engineering, and sequencing technologies can help extract new genetic and epigenetic mechanisms from what is hitherto considered 'noise'.
Collapse
Affiliation(s)
- Andrea Rossi
- Genome Engineering and Model Development Lab (GEMD), IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Zacharias Kontarakis
- Genome Engineering and Measurement Laboratory (GEML), Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich of ETH Zurich, University of Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
154
|
Zhang Y, Garrett S, Carroll RE, Xia Y, Sun J. Vitamin D receptor upregulates tight junction protein claudin-5 against colitis-associated tumorigenesis. Mucosal Immunol 2022; 15:683-697. [PMID: 35338345 PMCID: PMC9262815 DOI: 10.1038/s41385-022-00502-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/28/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023]
Abstract
Tight junctions are essential for barrier integrity, inflammation, and cancer. Vitamin D and the vitamin D receptor (VDR) play important roles in colorectal cancer (CRC). Using the human CRC database, we found colonic VDR expression was low and significantly correlated with a reduction of Claudin-5 mRNA and protein. In the colon of VDRΔIEC mice, deletion of intestinal VDR led to lower protein and mRNA levels of Claudin-5. Intestinal permeability was increased in the VDR-/- colon cancer model. Lacking VDR and a reduction of Claudin-5 are associated with an increased number of tumors in the VDR-/- and VDRΔIEC mice. Furthermore, gain and loss functional studies have identified CLDN-5 as a downstream target of VDR. We identified the Vitamin D response element (VDRE) binding sites in a reporter system showed that VDRE in the Claudin-5 promoter is required for vitamin D3-induced Claudin-5 expression. Conditional epithelial VDR overexpression protected against the loss of Claudin-5 in response to inflammation and tumorigenesis in vivo. We also reported fecal VDR reduction in a colon cancer model. This study advances the understanding of how VDR regulates intestinal barrier functions in tumorigenesis and the possibility for identifying new biomarker and therapeutic targets to restore VDR-dependent functions in CRC.
Collapse
Affiliation(s)
- Yongguo Zhang
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Shari Garrett
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA,Department of Microbiology/Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert E. Carroll
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yinglin Xia
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jun Sun
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA,UIC Cancer Center, University of Illinois at Chicago, Chicago, IL, USA,Department of Microbiology/Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA,Jesse Brown VA Medical Center Chicago, IL (537), USA
| |
Collapse
|
155
|
Skuladottir AT, Bjornsdottir G, Ferkingstad E, Einarsson G, Stefansdottir L, Nawaz MS, Oddsson A, Olafsdottir TA, Saevarsdottir S, Walters GB, Magnusson SH, Bjornsdottir A, Sveinsson OA, Vikingsson A, Hansen TF, Jacobsen RL, Erikstrup C, Schwinn M, Brunak S, Banasik K, Ostrowski SR, Troelsen A, Henkel C, Pedersen OB, Jonsdottir I, Gudbjartsson DF, Sulem P, Thorgeirsson TE, Stefansson H, Stefansson K. A genome-wide meta-analysis identifies 50 genetic loci associated with carpal tunnel syndrome. Nat Commun 2022; 13:1598. [PMID: 35332129 PMCID: PMC8948232 DOI: 10.1038/s41467-022-29133-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Carpal tunnel syndrome (CTS) is the most common entrapment neuropathy and has a largely unknown underlying biology. In a genome-wide association study of CTS (48,843 cases and 1,190,837 controls), we found 53 sequence variants at 50 loci associated with the syndrome. The most significant association is with a missense variant (p.Glu366Lys) in SERPINA1 that protects against CTS (P = 2.9 × 10-24, OR = 0.76). Through various functional analyses, we conclude that at least 22 genes mediate CTS risk and highlight the role of 19 CTS variants in the biology of the extracellular matrix. We show that the genetic component to the risk is higher in bilateral/recurrent/persistent cases than nonrecurrent/nonpersistent cases. Anthropometric traits including height and BMI are genetically correlated with CTS, in addition to early hormonal-replacement therapy, osteoarthritis, and restlessness. Our findings suggest that the components of the extracellular matrix play a key role in the pathogenesis of CTS.
Collapse
Affiliation(s)
| | | | | | | | | | - Muhammad Sulaman Nawaz
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | - Saedis Saevarsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Landspitali-the National University Hospital of Iceland, Reykjavik, Iceland
| | - G Bragi Walters
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Arnor Vikingsson
- Landspitali-the National University Hospital of Iceland, Reykjavik, Iceland
| | - Thomas Folkmann Hansen
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Louise Jacobsen
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Schwinn
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Troelsen
- Department of Orthopaedic Surgery, CAG ROAD - Research OsteoArthritis Denmark, Copenhagen University Hospital, Hvidovre, Denmark
| | - Cecilie Henkel
- Department of Orthopaedic Surgery, CORH, Copenhagen University Hospital, Hvidovre, Denmark
| | - Ole Birger Pedersen
- Department of Clinical Immunology, Zealand University Hospital-Køge, Køge, Denmark.
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland. .,Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
156
|
Smetana J, Brož P. National Genome Initiatives in Europe and the United Kingdom in the Era of Whole-Genome Sequencing: A Comprehensive Review. Genes (Basel) 2022; 13:556. [PMID: 35328109 PMCID: PMC8953625 DOI: 10.3390/genes13030556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Identification of genomic variability in population plays an important role in the clinical diagnostics of human genetic diseases. Thanks to rapid technological development in the field of massive parallel sequencing technologies, also known as next-generation sequencing (NGS), complex genomic analyses are now easier and cheaper than ever before, which consequently leads to more effective utilization of these techniques in clinical practice. However, interpretation of data from NGS is still challenging due to several issues caused by natural variability of DNA sequences in human populations. Therefore, development and realization of projects focused on description of genetic variability of local population (often called "national or digital genome") with a NGS technique is one of the best approaches to address this problem. The next step of the process is to share such data via publicly available databases. Such databases are important for the interpretation of variants with unknown significance or (likely) pathogenic variants in rare diseases or cancer or generally for identification of pathological variants in a patient's genome. In this paper, we have compiled an overview of published results of local genome sequencing projects from United Kingdom and Europe together with future plans and perspectives for newly announced ones.
Collapse
Affiliation(s)
- Jan Smetana
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Petr Brož
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic;
| |
Collapse
|
157
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145:e153-e639. [PMID: 35078371 DOI: 10.1161/cir.0000000000001052] [Citation(s) in RCA: 3161] [Impact Index Per Article: 1053.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
158
|
Population-level deficit of homozygosity unveils CPSF3 as an intellectual disability syndrome gene. Nat Commun 2022; 13:705. [PMID: 35121750 PMCID: PMC8817032 DOI: 10.1038/s41467-022-28330-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
AbstractPredicting the pathogenicity of biallelic missense variants can be challenging. Here, we use a deficit of observed homozygous carriers of missense variants, versus an expected number in a set of 153,054 chip-genotyped Icelanders, to identify potentially pathogenic genotypes. We follow three missense variants with a complete deficit of homozygosity and find that their pathogenic effect in homozygous state ranges from severe childhood disease to early embryonic lethality. One of these variants is in CPSF3, a gene not previously linked to disease. From a set of clinically sequenced Icelanders, and by sequencing archival samples targeted through the Icelandic genealogy, we find four homozygous carriers. Additionally, we find two homozygous carriers of Mexican descent of another missense variant in CPSF3. All six homozygous carriers of missense variants in CPSF3 show severe intellectual disability, seizures, microcephaly, and abnormal muscle tone. Here, we show how the absence of certain homozygous genotypes from a large population set can elucidate causes of previously unexplained recessive diseases and early miscarriage.
Collapse
|
159
|
Bjornsdottir G, Stefansdottir L, Thorleifsson G, Sulem P, Norland K, Ferkingstad E, Oddsson A, Zink F, Lund SH, Nawaz MS, Bragi Walters G, Skuladottir AT, Gudjonsson SA, Einarsson G, Halldorsson GH, Bjarnadottir V, Sveinbjornsson G, Helgadottir A, Styrkarsdottir U, Gudmundsson LJ, Pedersen OB, Hansen TF, Werge T, Banasik K, Troelsen A, Skou ST, Thørner LW, Erikstrup C, Nielsen KR, Mikkelsen S, Jonsdottir I, Bjornsson A, Olafsson IH, Ulfarsson E, Blondal J, Vikingsson A, Brunak S, Ostrowski SR, Ullum H, Thorsteinsdottir U, Stefansson H, Gudbjartsson DF, Thorgeirsson TE, Stefansson K. Rare SLC13A1 variants associate with intervertebral disc disorder highlighting role of sulfate in disc pathology. Nat Commun 2022; 13:634. [PMID: 35110524 PMCID: PMC8810832 DOI: 10.1038/s41467-022-28167-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Back pain is a common and debilitating disorder with largely unknown underlying biology. Here we report a genome-wide association study of back pain using diagnoses assigned in clinical practice; dorsalgia (119,100 cases, 909,847 controls) and intervertebral disc disorder (IDD) (58,854 cases, 922,958 controls). We identify 41 variants at 33 loci. The most significant association (ORIDD = 0.92, P = 1.6 × 10-39; ORdorsalgia = 0.92, P = 7.2 × 10-15) is with a 3'UTR variant (rs1871452-T) in CHST3, encoding a sulfotransferase enzyme expressed in intervertebral discs. The largest effects on IDD are conferred by rare (MAF = 0.07 - 0.32%) loss-of-function (LoF) variants in SLC13A1, encoding a sodium-sulfate co-transporter (LoF burden OR = 1.44, P = 3.1 × 10-11); variants that also associate with reduced serum sulfate. Genes implicated by this study are involved in cartilage and bone biology, as well as neurological and inflammatory processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Muhammad S Nawaz
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - G Bragi Walters
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Gisli H Halldorsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Ole B Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Folkmann Hansen
- Danish Headache Center, Dept. Neurology, Rigshospitalet-Glostrup, Glostrup, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Lundbeck Foundation for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Troelsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Orthopaedic Surgery, CAG ROAD-Research OsteoArthritis Denmark, Copenhagen University Hospital, Hvidovre, Denmark
| | - Soren T Skou
- Research Unit for Musculoskeletal Function and Physiotherapy, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
- The Research Unit PROgrez, Department of Physiotherapy and Occupational Therapy, Næstved-Slagelse-Ringsted Hospitals, Næstved, Denmark
| | - Lise Wegner Thørner
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Kaspar Rene Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Ingileif Jonsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Aron Bjornsson
- Department of Neurosurgery, Landspitali University Hospital, Reykjavik, Iceland
| | - Ingvar H Olafsson
- Department of Neurosurgery, Landspitali University Hospital, Reykjavik, Iceland
| | - Elfar Ulfarsson
- Department of Neurosurgery, Landspitali University Hospital, Reykjavik, Iceland
| | - Josep Blondal
- Health Care Institution of West Iceland, Stykkisholmur, Iceland
| | | | - Soren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henrik Ullum
- Statens Serum Institut, Copenhagen, Copenhagen, Denmark
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
160
|
Mbarek H, Devadoss Gandhi G, Selvaraj S, Al-Muftah W, Badji R, Al-Sarraj Y, Saad C, Darwish D, Alvi M, Fadl T, Yasin H, Alkuwari F, Razali R, Aamer W, Abbaszadeh F, Ahmed I, Mokrab Y, Suhre K, Albagha O, Fakhro K, Badii R, Ismail SI, Althani A. Qatar Genome: Insights on Genomics from the Middle East. Hum Mutat 2022; 43:499-510. [PMID: 35112413 DOI: 10.1002/humu.24336] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/16/2021] [Accepted: 01/29/2022] [Indexed: 11/09/2022]
Abstract
Despite recent biomedical breakthroughs and large genomic studies growing momentum, the Middle Eastern population, home to over 400 million people, is under-represented in the human genome variation databases. Here we describe insights from phase 1 of the Qatar Genome Program with whole genome sequenced 6,047 individuals from Qatar. We identified more than 88 million variants of which 24 million are novel and 23 million are singletons. Consistent with the high consanguinity and founder effects in the region, we found that several rare deleterious variants were more common in the Qatari population while others seem to provide protection against diseases and have shaped the genetic architecture of adaptive phenotypes. These results highlight the value of our data as a resource to advance genetic studies in the Arab and neighbouring Middle Eastern populations and will significantly boost the current efforts to improve our understanding of global patterns of human variations, human history and genetic contributions to health and diseases in diverse populations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hamdi Mbarek
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Geethanjali Devadoss Gandhi
- Department of Biomedical Sciences, College of Health Sciences, Qatar University.,College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Senthil Selvaraj
- Department of Biomedical Sciences, College of Health Sciences, Qatar University
| | - Wadha Al-Muftah
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Radja Badji
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Yasser Al-Sarraj
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar.,Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Chadi Saad
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Dima Darwish
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Muhammad Alvi
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Tasnim Fadl
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Heba Yasin
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Fatima Alkuwari
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Rozaimi Razali
- Department of Biomedical Sciences, College of Health Sciences, Qatar University
| | - Waleed Aamer
- Human Genetics Department, Sidra Medicine, Doha, Qatar
| | | | - Ikhlak Ahmed
- Sidra Medicine, Biomedical Informatics - Research Branch, Doha, Qatar
| | - Younes Mokrab
- Human Genetics Department, Sidra Medicine, Doha, Qatar
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Omar Albagha
- College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar.,Center of Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Khalid Fakhro
- Department of Biomedical Sciences, College of Health Sciences, Qatar University
| | - Ramin Badii
- Molecular Genetics Laboratory, Hamad Medical Corporation, Doha, Qatar
| | | | - Asma Althani
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
161
|
Falcão D, Pedroto I, Moreira T. The wide phenotypic and genetic spectrum of ABCB4 gene deficiency: A case series. Dig Liver Dis 2022; 54:221-227. [PMID: 34376370 DOI: 10.1016/j.dld.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND ABCB4-gene mutations are responsible for several cholestatic diseases with a heterogeneous clinical spectrum. AIMS To analyse phenotype/genotype relationships in ABCB4-mutations. METHODS Retrospective characterization of adult patients with ABCB4-variations diagnosed between 2015 and 2020. Genotype-phenotype correlations were analysed and compared with previously reported data. RESULTS Twenty patients from 12 families were included. Thirteen patients presented recurrent elevated liver tests, eight fulfilled Low-Phospholipid-Associated-Cholelithiasis syndrome criteria, five had Intrahepatic Cholestasis of Pregnancy and three patients developed Drug-Induced-Liver-Injury. ABCB4 screening identified eight different mutations. Five patients were homozygotes to the variant c.504T > C. Ten patients had one mutation in heterozygote-state and five patients had two mutations in compound-heterozygosity. Portal fibrosis occurred in two patients. One of these patients presented progressive fibrosis and progression of cholestasis despite ursodeoxycholic-acid treatment, this patient also harbours a ABCB11 polymorphism. CONCLUSION Although, phenotype-genotype relationships have not been clearly defined, an early diagnosis of ABCB4-variants may have an important role in management decisions and patient outcomes. To our knowledge, we describe a not previously reported deletion (c.1181delT) in ABCB4. The c.504T > C polymorphism, although a silent mutation at the protein level, seems to be associated to different cholestatic diseases. The role of other genes variants, namely ABCB11, as co-factor for progression, needs to be clarified.
Collapse
Affiliation(s)
- Daniela Falcão
- Largo do Prof. Abel Salazar, Centro Hospitalar Universitário do Porto, Praça D. Filipa de Lencastre n° 189, 2° frente, Porto 4050-189, Portugal.
| | - Isabel Pedroto
- Largo do Prof. Abel Salazar, Centro Hospitalar Universitário do Porto, Praça D. Filipa de Lencastre n° 189, 2° frente, Porto 4050-189, Portugal
| | - Teresa Moreira
- Largo do Prof. Abel Salazar, Centro Hospitalar Universitário do Porto, Praça D. Filipa de Lencastre n° 189, 2° frente, Porto 4050-189, Portugal
| |
Collapse
|
162
|
van Wijk SW, Su W, Wijdeveld LFJM, Ramos KS, Brundel BJJM. Cytoskeletal Protein Variants Driving Atrial Fibrillation: Potential Mechanisms of Action. Cells 2022; 11:416. [PMID: 35159226 PMCID: PMC8834312 DOI: 10.3390/cells11030416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
The most common clinical tachyarrhythmia, atrial fibrillation (AF), is present in 1-2% of the population. Although common risk factors, including hypertension, diabetes, and obesity, frequently underlie AF onset, it has been recognized that in 15% of the AF population, AF is familial. In these families, genome and exome sequencing techniques identified variants in the non-coding genome (i.e., variant regulatory elements), genes encoding ion channels, as well as genes encoding cytoskeletal (-associated) proteins. Cytoskeletal protein variants include variants in desmin, lamin A/C, titin, myosin heavy and light chain, junctophilin, nucleoporin, nesprin, and filamin C. These cytoskeletal protein variants have a strong association with the development of cardiomyopathy. Interestingly, AF onset is often represented as the initial manifestation of cardiac disease, sometimes even preceding cardiomyopathy by several years. Although emerging research findings reveal cytoskeletal protein variants to disrupt the cardiomyocyte structure and trigger DNA damage, exploration of the pathophysiological mechanisms of genetic AF is still in its infancy. In this review, we provide an overview of cytoskeletal (-associated) gene variants that relate to genetic AF and highlight potential pathophysiological pathways that drive this arrhythmia.
Collapse
Affiliation(s)
| | | | | | | | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (S.W.v.W.); (W.S.); (L.F.J.M.W.); (K.S.R.)
| |
Collapse
|
163
|
Schatz MC, Philippakis AA, Afgan E, Banks E, Carey VJ, Carroll RJ, Culotti A, Ellrott K, Goecks J, Grossman RL, Hall IM, Hansen KD, Lawson J, Leek JT, Luria AO, Mosher S, Morgan M, Nekrutenko A, O’Connor BD, Osborn K, Paten B, Patterson C, Tan FJ, Taylor CO, Vessio J, Waldron L, Wang T, Wuichet K. Inverting the model of genomics data sharing with the NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space. CELL GENOMICS 2022; 2:100085. [PMID: 35199087 PMCID: PMC8863334 DOI: 10.1016/j.xgen.2021.100085] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL; https://anvilproject.org) was developed to address a widespread community need for a unified computing environment for genomics data storage, management, and analysis. In this perspective, we present AnVIL, describe its ecosystem and interoperability with other platforms, and highlight how this platform and associated initiatives contribute to improved genomic data sharing efforts. The AnVIL is a federated cloud platform designed to manage and store genomics and related data, enable population-scale analysis, and facilitate collaboration through the sharing of data, code, and analysis results. By inverting the traditional model of data sharing, the AnVIL eliminates the need for data movement while also adding security measures for active threat detection and monitoring and provides scalable, shared computing resources for any researcher. We describe the core data management and analysis components of the AnVIL, which currently consists of Terra, Gen3, Galaxy, RStudio/Bioconductor, Dockstore, and Jupyter, and describe several flagship genomics datasets available within the AnVIL. We continue to extend and innovate the AnVIL ecosystem by implementing new capabilities, including mechanisms for interoperability and responsible data sharing, while streamlining access management. The AnVIL opens many new opportunities for analysis, collaboration, and data sharing that are needed to drive research and to make discoveries through the joint analysis of hundreds of thousands to millions of genomes along with associated clinical and molecular data types.
Collapse
Affiliation(s)
- Michael C. Schatz
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | | | - Enis Afgan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Eric Banks
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Robert J. Carroll
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alessandro Culotti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Translational Data Science, University of Chicago, Chicago, IL, USA
| | - Kyle Ellrott
- Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Jeremy Goecks
- Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Robert L. Grossman
- Center for Translational Data Science, University of Chicago, Chicago, IL, USA
| | - Ira M. Hall
- Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Kasper D. Hansen
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | | | - Jeffrey T. Leek
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | | | - Stephen Mosher
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Martin Morgan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA, USA
| | | | - Kevin Osborn
- UC Santa Cruz Genomics Institute, UC Santa Cruz, Santa Cruz, CA, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, UC Santa Cruz, Santa Cruz, CA, USA
| | | | - Frederick J. Tan
- Department of Embryology, Carnegie Institution, Baltimore, MD, USA
| | - Casey Overby Taylor
- Departments of Medicine and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer Vessio
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Levi Waldron
- Department of Epidemiology and Biostatistics, City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Ting Wang
- Department of Genetics, Washington University of St. Louis, St. Louis, MO, USA
| | - Kristin Wuichet
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
164
|
Rout M, Lerner M, Blackett PR, Peyton MD, Stavrakis S, Sidorov E, Sanghera DK. Ethnic differences in ApoC-III concentration and the risk of cardiovascular disease: No evidence for the cardioprotective role of rare/loss of function APOC3 variants in non-Europeans. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 13:100128. [PMID: 35528316 PMCID: PMC9075110 DOI: 10.1016/j.ahjo.2022.100128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Hypertriglyceridemia is as an independent risk factor for cardiovascular disease (CVD). Apolipoprotein C-III (ApoC-III) is known to regulate triglyceride (TG) metabolism. However, the causal association between ApoC-III and CVD development is unclear. The objectives were to examine the impact of ApoC-III concentration on TG and lipoproteins and investigate the role of known rare loss-of-function APOC3 variants for modulating ApoC-III, TG concentrations and CVD risk in different ethnic groups. METHODS Plasma ApoC-III levels were measured in a multiethnic sample of 518 individuals comprising 271 Asian Indians (Sikhs), 87 Caucasians, 80 African Americans, and 80 Hispanics. RESULTS ApoC-III levels showed a robust association with TG in Asian Indians (r = 0.5, p = 1.1 × 10-23), Caucasians (r = 0.4, p = 7.2 × 10-4), and Hispanics (r = 0.9, p = 2.7x × 10-28). African Americans had lowest ApoC-III and TG concentrations and highest (44%) prevalence of coronary artery disease (CAD). ApoC-III levels correlated with fasting blood glucose (r = 0.25, p = 6.1 × 10-5) in Asian Indians and central adiposity in Hispanics (waist: r = 0.22, p = 0.05; waist-hip ratio: r = 0.24, p = 0.04). The carriers of rare variants IVS1-2G-A (rs373975305); A43T (rs147210663) and IVS3 + 1G-T (rs140621530) showed high TG but not low ApoC-III levels in Asian Indians and Caucasians. CONCLUSION These results highlight the challenges of generalizing antisense ApoC-III inhibition for treating atherosclerotic disease in dyslipidemia that may benefit only specific sub-populations. The observed ethnic differences in ApoC-III concentrations and CAD risk factors, emphasize in-depth genetic and metabolomics evaluations on diverse ancestries.
Collapse
Affiliation(s)
- Madhusmita Rout
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Megan Lerner
- Department of Surgery, Oklahoma University of Health Sciences Center, Oklahoma City, OK, USA
| | - Piers R. Blackett
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Marvin D. Peyton
- Department of Surgery, Oklahoma University of Health Sciences Center, Oklahoma City, OK, USA
| | - Stavros Stavrakis
- Department of Cardiology, Oklahoma University of Health Sciences Center, Oklahoma City, OK, USA
| | - Evgeny Sidorov
- Department of Neurology, University of Oklahoma Health Sciences Center, 920 S.L Young Blvd #2040, 73104 Oklahoma City, OK, USA
| | - Dharambir K. Sanghera
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
165
|
Li JF, Tian GL, Pan H, Zhang WT, Li DC, Liu JD, Zhao L, Li HL. An Analysis of the Pathogenic Genes and Mutation Sites of Macrodactyly. Pharmgenomics Pers Med 2022; 15:55-64. [PMID: 35125881 PMCID: PMC8809672 DOI: 10.2147/pgpm.s346373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/20/2022] [Indexed: 11/23/2022] Open
Abstract
Objective This study aimed to explore the pathogenic genes and mutation sites of macrodactyly. Methods Whole-exome sequencing was performed on the pathological tissue and peripheral blood of 12 patients with macrodactyly who were operated in our hospital between June 2018 and May 2020. In order to conduct comprehensive bioinformatics analysis and screen the pathogenic genes of macrodactyly, the patients were divided into four groups: macrodactyly of finger group, macrodactyly of foot group, macrodactyly and syndactyly of finger group, and macrodactyly and syndactyly of foot group. The results of the whole-exome sequencing were verified using Sanger sequencing in order to clarify the pathogenic genes and mutation sites of macrodactyly, and immunohistochemical analysis of the protein signaling pathways encoded by the pathogenic genes was performed to observe the protein expression and further verify the mutant genes. Results In the comprehensive bioinformatics analysis and Sanger verification of the whole-exome sequencing, the PIK3CA gene mutation was screened as the pathogenic gene of macrodactyly. The mutation sites were identified as the p.E542K (c.G1624A) and p.E545K (c.G1633A) sites of exon10 and the p.H1047R (c.A3140G) and p.G1049R (c.G3145C) sites of exon21. Among these, the p.G1049R (c.G3145C) locus was found in macrodactyly for the first time. The mutation of the PIK3CA gene was also found to lead to increased expression of serine-threonine kinase (AKT) in adipocytes in the PI3K-AKT-mTOR signaling pathway. Conclusion Mutation of the PIK3CA gene leads to the enhancement of the PI3K-AKT-mTOR signaling pathway, which is the cause of macrodactyly. There is also some diversity in PIK3CA gene mutation sites.
Collapse
Affiliation(s)
- Jian-Feng Li
- Department of Hand Surgery, Beijing Shunyi District Hospital; Shunyi Teaching Hospital of Capital Medical University, Beijing, 101300, People’s Republic of China
- Correspondence: Jian-Feng Li, Department of Hand Surgery, Beijing Shunyi District Hospital; Shunyi Teaching Hospital of Capital Medical University, No. 3 Guangming South Street, Shunyi District, Beijing, 101300, People’s Republic of China, Tel +86 10 69423220, Email
| | - Guang-Lei Tian
- Department of Hand Surgery, Beijing Jishuitan Hospital; Peking University Fourth School of Clinical Medicine, Beijing, 100035, People’s Republic of China
| | - Hui Pan
- Department of Pathology, Beijing Shunyi District Hospital; Shunyi Teaching Hospital of Capital Medical University, Beijing, 101300, People’s Republic of China
| | - Wen-Tong Zhang
- Department of Hand Surgery, Beijing Shunyi District Hospital; Shunyi Teaching Hospital of Capital Medical University, Beijing, 101300, People’s Republic of China
| | - Da-Cun Li
- Department of Hand Surgery, Beijing Shunyi District Hospital; Shunyi Teaching Hospital of Capital Medical University, Beijing, 101300, People’s Republic of China
| | - Jing-Da Liu
- Department of Hand Surgery, Beijing Shunyi District Hospital; Shunyi Teaching Hospital of Capital Medical University, Beijing, 101300, People’s Republic of China
| | - Liang Zhao
- Department of Hand Surgery, Beijing Shunyi District Hospital; Shunyi Teaching Hospital of Capital Medical University, Beijing, 101300, People’s Republic of China
| | - Hai-Lei Li
- Department of Hand Surgery, Beijing Shunyi District Hospital; Shunyi Teaching Hospital of Capital Medical University, Beijing, 101300, People’s Republic of China
| |
Collapse
|
166
|
Abstract
Cholestatic and non-alcoholic fatty liver disease (NAFLD) share several key pathophysiological mechanisms which can be targeted by novel therapeutic concepts that are currently developed for both areas. Nuclear receptors (NRs) are ligand-activated transcriptional regulators of key metabolic processes including hepatic lipid and glucose metabolism, energy expenditure and bile acid (BA) homoeostasis, as well as inflammation, fibrosis and cellular proliferation. Dysregulation of these processes contributes to the pathogenesis and progression of cholestatic as well as fatty liver disease, placing NRs at the forefront of novel therapeutic approaches. This includes BA and fatty acid activated NRs such as farnesoid-X receptor (FXR) and peroxisome proliferator-activated receptors, respectively, for which high affinity therapeutic ligands targeting specific or multiple isoforms have been developed. Moreover, novel liver-specific ligands for thyroid hormone receptor beta 1 complete the spectrum of currently available NR-targeted drugs. Apart from FXR ligands, BA signalling can be targeted by mimetics of FXR-activated fibroblast growth factor 19, modulation of their enterohepatic circulation through uptake inhibitors in hepatocytes and enterocytes, as well as novel BA derivatives undergoing cholehepatic shunting (instead of enterohepatic circulation). Other therapeutic approaches more directly target inflammation and/or fibrosis as critical events of disease progression. Combination strategies synergistically targeting metabolic disturbances, inflammation and fibrosis may be ultimately necessary for successful treatment of these complex and multifactorial disorders.
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Claudia Daniela Fuchs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
167
|
Nawaz MS, Einarsson G, Bustamante M, Gisladottir RS, Walters GB, Jonsdottir GA, Skuladottir AT, Bjornsdottir G, Magnusson SH, Asbjornsdottir B, Unnsteinsdottir U, Sigurdsson E, Jonsson PV, Palmadottir VK, Gudjonsson SA, Halldorsson GH, Ferkingstad E, Jonsdottir I, Thorleifsson G, Holm H, Thorsteinsdottir U, Sulem P, Gudbjartsson DF, Stefansson H, Thorgeirsson TE, Ulfarsson MO, Stefansson K. Thirty novel sequence variants impacting human intracranial volume. Brain Commun 2022; 4:fcac271. [PMID: 36415660 PMCID: PMC9677475 DOI: 10.1093/braincomms/fcac271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/16/2022] [Accepted: 10/20/2022] [Indexed: 11/14/2022] Open
Abstract
Intracranial volume, measured through magnetic resonance imaging and/or estimated from head circumference, is heritable and correlates with cognitive traits and several neurological disorders. We performed a genome-wide association study meta-analysis of intracranial volume (n = 79 174) and found 64 associating sequence variants explaining 5.0% of its variance. We used coding variation, transcript and protein levels, to uncover 12 genes likely mediating the effect of these variants, including GLI3 and CDK6 that affect cranial synostosis and microcephaly, respectively. Intracranial volume correlates genetically with volumes of cortical and sub-cortical regions, cognition, learning, neonatal and neurological traits. Parkinson's disease cases have greater and attention deficit hyperactivity disorder cases smaller intracranial volume than controls. Our Mendelian randomization studies indicate that intracranial volume associated variants either increase the risk of Parkinson's disease and decrease the risk of attention deficit hyperactivity disorder and neuroticism or correlate closely with a confounder.
Collapse
Affiliation(s)
- Muhammad Sulaman Nawaz
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | | | | | - Rosa S Gisladottir
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,School of Humanities, University of Iceland, Saemundargata 2, 102 Reykjavik, Iceland
| | - G Bragi Walters
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | | | | | | | | | | | | | - Engilbert Sigurdsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland.,Department of Psychiatry, Landspitali-National University Hospital, Hringbraut 101, 101 Reykjavik, Iceland
| | - Palmi V Jonsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland.,Department of Geriatric Medicine, Landspitali University Hospital, Hringbraut 101, 101 Reykjavik, Iceland
| | - Vala Kolbrun Palmadottir
- Department of Internal Medicine, Landspitali University Hospital, Hringbraut 101, 101 Reykjavik, Iceland
| | | | - Gisli H Halldorsson
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Taeknigardur, Dunhagi 5, 107 Reykjavik, Iceland
| | - Egil Ferkingstad
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland
| | | | | | - Hilma Holm
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland
| | | | - Patrick Sulem
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland
| | | | | | | | - Magnus O Ulfarsson
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,Faculty of Electrical and Computer Engineering, University of Iceland, Taeknigardur, Dunhagi 5, 107 Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| |
Collapse
|
168
|
Genotype imputation and polygenic score estimation in northwestern Russian population. PLoS One 2022; 17:e0269434. [PMID: 35763490 PMCID: PMC9239469 DOI: 10.1371/journal.pone.0269434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/21/2022] [Indexed: 11/19/2022] Open
Abstract
Numerous studies demonstrated the lack of transferability of polygenic score (PGS) models across populations and the problem arising from unequal presentation of ancestries across genetic studies. However, even within European ancestry there are ethnic groups that are rarely presented in genetic studies. For instance, Russians, being one of the largest, diverse, and yet understudied group in Europe. In this study, we evaluated the reliability of genotype imputation for the Russian cohort by testing several commonly used imputation reference panels (e.g. HRC, 1000G, HGDP). HRC, in comparison with two other panels, showed the most accurate results based on both imputation accuracy and allele frequency concordance between masked and imputed genotypes. We built polygenic score models based on GWAS results from the UK biobank, measured the explained phenotypic variance in the Russian cohort attributed to polygenic scores for 11 phenotypes, collected in the clinic for each participant, and finally explored the role of allele frequency discordance between the UK biobank and the study cohort in the resulting PGS performance.
Collapse
|
169
|
Laursen IH, Banasik K, Haue AD, Petersen O, Holm PC, Westergaard D, Bundgaard H, Brunak S, Frikke-Schmidt R, Holm H, Sørensen E, Thørner LW, Larsen MAH, Schwinn M, Køber L, Torp-Pedersen C, Ostrowski SR, Erikstrup C, Nyegaard M, Stefánsson H, Gylfason A, Zink F, Walters GB, Oddsson A, Þorleifsson G, Másson G, Thorsteinsdottir U, Gudbjartsson D, Pedersen OB, Stefánsson K, Ullum H. Cohort profile: Copenhagen Hospital Biobank - Cardiovascular Disease Cohort (CHB-CVDC): Construction of a large-scale genetic cohort to facilitate a better understanding of heart diseases. BMJ Open 2021; 11:e049709. [PMID: 36070241 PMCID: PMC8719218 DOI: 10.1136/bmjopen-2021-049709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The aim of Copenhagen Hospital Biobank-Cardiovascular Disease Cohort (CHB-CVDC) is to establish a cohort that can accelerate our understanding of CVD initiation and progression by jointly studying genetics, diagnoses, treatments and risk factors. PARTICIPANTS The CHB-CVDC is a large genomic cohort of patients with CVD. CHB-CVDC currently includes 96 308 patients. The cohort is part of CHB initiated in 2009 in the Capital Region of Denmark. CHB is continuously growing with ~40 000 samples/year. Patients in CHB were included in CHB-CVDC if they were above 18 years of age and assigned at least one cardiovascular diagnosis. Additionally, up-to 110 000 blood donors can be analysed jointly with CHB-CVDC. Linkage with the Danish National Health Registries, Electronic Patient Records, and Clinical Quality Databases allow up-to 41 years of medical history. All individuals are genotyped using the Infinium Global Screening Array from Illumina and imputed using a reference panel consisting of whole-genome sequence data from 8429 Danes along with 7146 samples from North-Western Europe. Currently, 39 539 of the patients are deceased. FINDINGS TO DATE Here, we demonstrate the utility of the cohort by showing concordant effects between known variants and selected CVDs, that is, >93% concordance for coronary artery disease, atrial fibrillation, heart failure and cholesterol measurements and 85% concordance for hypertension. Furthermore, we evaluated multiple study designs and the validity of using Danish blood donors as part of CHB-CVDC. Lastly, CHB-CVDC has already made major contributions to studies of sick sinus syndrome and the role of phytosterols in development of atherosclerosis. FUTURE PLANS In addition to genetics, electronic patient records, national socioeconomic and health registries extensively characterise each patient in CHB-CVDC and provides a promising framework for improved understanding of risk and protective variants. We aim to include other measurable biomarkers for example, proteins in CHB-CVDC making it a platform for multiomics cardiovascular studies.
Collapse
Affiliation(s)
- Ina H Laursen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Amalie D Haue
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Oscar Petersen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Peter C Holm
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, The Heart Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lise W Thørner
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Margit A H Larsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Michael Schwinn
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lars Køber
- Department of Cardiology, The Heart Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Torp-Pedersen
- Department of Clinical Investigation and Cardiology, Nordsjællands Hospital, Hillerød, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | | | - G Bragi Walters
- deCODE genetics, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Unnur Thorsteinsdottir
- deCODE genetics, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daniel Gudbjartsson
- deCODE genetics, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Ole B Pedersen
- Department of Clinical Immunology, Zealand University Hospital Køge, Køge, Denmark
| | - Kári Stefánsson
- deCODE genetics, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
170
|
Ke X, Tian X, Yao S, Wu H, Duan YY, Wang NN, Shi W, Yang TL, Dong SS, Huang D, Guo Y. Transcriptome-wide association study identifies multiple genes and pathways associated with thyroid function. Hum Mol Genet 2021; 31:1871-1883. [PMID: 34962261 DOI: 10.1093/hmg/ddab371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 11/12/2022] Open
Abstract
Thyroid dysfunction is a common endocrine disease measured by thyroid-stimulating hormone (TSH) level. Although more than 70 genetic loci associated with TSH have been reported through genome-wide association studies (GWASs), the variants can only explain a small fraction of the thyroid function heritability. To identify novel candidate genes for thyroid function, we conducted the first large-scale transcriptome-wide association study (TWAS) for thyroid function using GWAS-summary data for TSH levels in up to 119 715 individuals combined with pre-computed gene expression weights of six panels from four tissue types. The candidate genes identified by TWAS were further validated by TWAS replication and gene expression profiles. We identified 74 conditionally independent genes significantly associated with thyroid function, such as PDE8B (P = 1.67 × 10-282), PDE10A (P = 7.61 × 10-119), NR3C2 (P = 1.50 × 10-92), and CAPZB (P = 3.13 × 10-79). After TWAS replication using UKBB datasets, 26 genes were replicated for significant associations with thyroid-relevant diseases/traits. Among them, 16 gene were causal for their associations to thyroid-relevant diseases/traits and further validated in differential expression analyses, including two novel genes (MFSD6 and RBM47) that did not implicate in previous GWASs. Enrichment analyses detected several pathways associated with thyroid function, such as the cAMP signaling pathway (P = 7.27 × 10-4), hemostasis (P = 3.74 × 10-4), and platelet activation, signaling, and aggregation (P = 9.98 × 10-4). Our study identified multiple candidate genes and pathways associated with thyroid function, providing novel clues for revealing the genetic mechanisms of thyroid function and disease.
Collapse
Affiliation(s)
- Xin Ke
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710049
| | - Xin Tian
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Shi Yao
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710004
| | - Hao Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710049
| | - Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710049
| | - Nai-Ning Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710049
| | - Wei Shi
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710049
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710049.,National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710004
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710049.,Research Institute of Xi'an Jiaotong University, Hangzhou, Zhejiang, P. R. China
| | - Dageng Huang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China, 710049.,Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
171
|
Zhang T, Li Q, Dong B, Liang X, Jia M, Bai J, Yu J, Fu S. Genetic Polymorphism of Drug Metabolic Gene CYPs, VKORC1, NAT2, DPYD and CHST3 of Five Ethnic Minorities in Heilongjiang Province, Northeast China. Pharmgenomics Pers Med 2021; 14:1537-1547. [PMID: 34876832 PMCID: PMC8643223 DOI: 10.2147/pgpm.s339854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Genetic variability in genes encoding drug-metabolizing enzymes may contribute to the heterogeneity of drug responses in different populations. Extensive research in pharmacogenomics in major populations around the world provides us with a great deal of information about drug-related genetic polymorphisms. Objective The purpose of this study was to detect the genetic variation of drug-metabolism-related genes in the five ethnic minorities Daur, Hezhen, Ewenki, Mongolian and Manchu in China, and to analyze the distribution differences among ethnic groups. Methods We genotyped 32 SNPs of drug metabolism genes in 882 healthy Chinese volunteers from five ethnic groups. The genotype frequency and allele frequency of the five ethnic groups were calculated, and the different variants among the five ethnic groups were compared by chi-square test. Genetic parameters were analyzed using Popgene software. The genetic structure of five ethnic minorities was analyzed by principal component analysis, and compared with 26 populations. Results We found that SNPs of genes related to drug metabolism existed diversity in different populations. Among them, rs8192766 and rs9419082 in CYP2E1 showed statistical differences between Daur and Manchu, and NAT2 rs1801280 showed statistical differences between Hezhen and Mongolian. In addition, the five populations we studied had the smallest differences with EAS populations. There was haplotype diversity in CHST3, VKORC1, CYP1A2 and CYP2E1 genes in the five ethnic minorities, and these haplotype polymorphisms were related to the use of corresponding drug doses. Cluster analysis shows that the five ethnic minorities in Heilongjiang Province are clustered together with the EAS populations. Conclusion These results suggest that understanding the diversity of drug-related genetic markers is critical for individualized drug gene therapy programs in ethnic minorities in China as well as in populations highly mixed with these ethnic groups.
Collapse
Affiliation(s)
- Tingting Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, People's Republic of China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, People's Republic of China
| | - Qiuyan Li
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, People's Republic of China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, People's Republic of China.,Editorial Department of International Journal of Genetics, Harbin Medical University, Harbin, People's Republic of China
| | - Bonan Dong
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, People's Republic of China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, People's Republic of China
| | - Xiao Liang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, People's Republic of China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, People's Republic of China
| | - Mansha Jia
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jing Bai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, People's Republic of China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, People's Republic of China
| | - Jingcui Yu
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, People's Republic of China.,Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, People's Republic of China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, People's Republic of China
| |
Collapse
|
172
|
Large-scale integration of the plasma proteome with genetics and disease. Nat Genet 2021; 53:1712-1721. [PMID: 34857953 DOI: 10.1038/s41588-021-00978-w] [Citation(s) in RCA: 648] [Impact Index Per Article: 162.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/22/2021] [Indexed: 11/08/2022]
Abstract
The plasma proteome can help bridge the gap between the genome and diseases. Here we describe genome-wide association studies (GWASs) of plasma protein levels measured with 4,907 aptamers in 35,559 Icelanders. We found 18,084 associations between sequence variants and levels of proteins in plasma (protein quantitative trait loci; pQTL), of which 19% were with rare variants (minor allele frequency (MAF) < 1%). We tested plasma protein levels for association with 373 diseases and other traits and identified 257,490 associations. We integrated pQTL and genetic associations with diseases and other traits and found that 12% of 45,334 lead associations in the GWAS Catalog are with variants in high linkage disequilibrium with pQTL. We identified 938 genes encoding potential drug targets with variants that influence levels of possible biomarkers. Combining proteomics, genomics and transcriptomics, we provide a valuable resource that can be used to improve understanding of disease pathogenesis and to assist with drug discovery and development.
Collapse
|
173
|
Belbin GM, Rutledge S, Dodatko T, Cullina S, Turchin MC, Kohli S, Torre D, Yee MC, Gignoux CR, Abul-Husn NS, Houten SM, Kenny EE. Leveraging health systems data to characterize a large effect variant conferring risk for liver disease in Puerto Ricans. Am J Hum Genet 2021; 108:2099-2111. [PMID: 34678161 PMCID: PMC8595966 DOI: 10.1016/j.ajhg.2021.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022] Open
Abstract
The integration of genomic data into health systems offers opportunities to identify genomic factors underlying the continuum of rare and common disease. We applied a population-scale haplotype association approach based on identity-by-descent (IBD) in a large multi-ethnic biobank to a spectrum of disease outcomes derived from electronic health records (EHRs) and uncovered a risk locus for liver disease. We used genome sequencing and in silico approaches to fine-map the signal to a non-coding variant (c.2784-12T>C) in the gene ABCB4. In vitro analysis confirmed the variant disrupted splicing of the ABCB4 pre-mRNA. Four of five homozygotes had evidence of advanced liver disease, and there was a significant association with liver disease among heterozygotes, suggesting the variant is linked to increased risk of liver disease in an allele dose-dependent manner. Population-level screening revealed the variant to be at a carrier rate of 1.95% in Puerto Rican individuals, likely as the result of a Puerto Rican founder effect. This work demonstrates that integrating EHR and genomic data at a population scale can facilitate strategies for understanding the continuum of genomic risk for common diseases, particularly in populations underrepresented in genomic medicine.
Collapse
Affiliation(s)
- Gillian M Belbin
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Stephanie Rutledge
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sinead Cullina
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael C Turchin
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sumita Kohli
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Denis Torre
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Muh-Ching Yee
- Stanford Functional Genomics Facility, Stanford University, Stanford, CA 94305, USA
| | - Christopher R Gignoux
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Noura S Abul-Husn
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
174
|
Krannich T, White WTJ, Niehus S, Holley G, Halldórsson BV, Kehr B. Population-scale detection of non-reference sequence variants using colored de Bruijn graphs. Bioinformatics 2021; 38:604-611. [PMID: 34726732 PMCID: PMC8756200 DOI: 10.1093/bioinformatics/btab749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/27/2021] [Accepted: 10/28/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION With the increasing throughput of sequencing technologies, structural variant (SV) detection has become possible across tens of thousands of genomes. Non-reference sequence (NRS) variants have drawn less attention compared with other types of SVs due to the computational complexity of detecting them. When using short-read data, the detection of NRS variants inevitably involves a de novo assembly which requires high-quality sequence data at high coverage. Previous studies have demonstrated how sequence data of multiple genomes can be combined for the reliable detection of NRS variants. However, the algorithms proposed in these studies have limited scalability to larger sets of genomes. RESULTS We introduce PopIns2, a tool to discover and characterize NRS variants in many genomes, which scales to considerably larger numbers of genomes than its predecessor PopIns. In this article, we briefly outline the PopIns2 workflow and highlight our novel algorithmic contributions. We developed an entirely new approach for merging contig assemblies of unaligned reads from many genomes into a single set of NRS using a colored de Bruijn graph. Our tests on simulated data indicate that the new merging algorithm ranks among the best approaches in terms of quality and reliability and that PopIns2 shows the best precision for a growing number of genomes processed. Results on the Polaris Diversity Cohort and a set of 1000 Icelandic human genomes demonstrate unmatched scalability for the application on population-scale datasets. AVAILABILITY AND IMPLEMENTATION The source code of PopIns2 is available from https://github.com/kehrlab/PopIns2. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Sebastian Niehus
- Regensburg Center for Interventional Immunology (RCI), 93053 Regensburg, Germany
| | | | - Bjarni V Halldórsson
- deCODE Genetics, Reykjavík 102, Iceland,Department of Engineering, School of Technology, Reykjavík University, Reykjavík 102, Iceland
| | - Birte Kehr
- To whom correspondence should be addressed. or
| |
Collapse
|
175
|
Frazer J, Notin P, Dias M, Gomez A, Min JK, Brock K, Gal Y, Marks DS. Disease variant prediction with deep generative models of evolutionary data. Nature 2021; 599:91-95. [PMID: 34707284 DOI: 10.1038/s41586-021-04043-8] [Citation(s) in RCA: 362] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/20/2021] [Indexed: 12/25/2022]
Abstract
Quantifying the pathogenicity of protein variants in human disease-related genes would have a marked effect on clinical decisions, yet the overwhelming majority (over 98%) of these variants still have unknown consequences1-3. In principle, computational methods could support the large-scale interpretation of genetic variants. However, state-of-the-art methods4-10 have relied on training machine learning models on known disease labels. As these labels are sparse, biased and of variable quality, the resulting models have been considered insufficiently reliable11. Here we propose an approach that leverages deep generative models to predict variant pathogenicity without relying on labels. By modelling the distribution of sequence variation across organisms, we implicitly capture constraints on the protein sequences that maintain fitness. Our model EVE (evolutionary model of variant effect) not only outperforms computational approaches that rely on labelled data but also performs on par with, if not better than, predictions from high-throughput experiments, which are increasingly used as evidence for variant classification12-16. We predict the pathogenicity of more than 36 million variants across 3,219 disease genes and provide evidence for the classification of more than 256,000 variants of unknown significance. Our work suggests that models of evolutionary information can provide valuable independent evidence for variant interpretation that will be widely useful in research and clinical settings.
Collapse
Affiliation(s)
- Jonathan Frazer
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Pascal Notin
- OATML Group, Department of Computer Science, University of Oxford, Oxford, UK
| | - Mafalda Dias
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Aidan Gomez
- OATML Group, Department of Computer Science, University of Oxford, Oxford, UK
| | - Joseph K Min
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Kelly Brock
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Yarin Gal
- OATML Group, Department of Computer Science, University of Oxford, Oxford, UK.
| | - Debora S Marks
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
176
|
Razali RM, Rodriguez-Flores J, Ghorbani M, Naeem H, Aamer W, Aliyev E, Jubran A, Clark AG, Fakhro KA, Mokrab Y. Thousands of Qatari genomes inform human migration history and improve imputation of Arab haplotypes. Nat Commun 2021; 12:5929. [PMID: 34642339 PMCID: PMC8511259 DOI: 10.1038/s41467-021-25287-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Arab populations are largely understudied, notably their genetic structure and history. Here we present an in-depth analysis of 6,218 whole genomes from Qatar, revealing extensive diversity as well as genetic ancestries representing the main founding Arab genealogical lineages of Qahtanite (Peninsular Arabs) and Adnanite (General Arabs and West Eurasian Arabs). We find that Peninsular Arabs are the closest relatives of ancient hunter-gatherers and Neolithic farmers from the Levant, and that founder Arab populations experienced multiple splitting events 12–20 kya, consistent with the aridification of Arabia and farming in the Levant, giving rise to settler and nomadic communities. In terms of recent genetic flow, we show that these ancestries contributed significantly to European, South Asian as well as South American populations, likely as a result of Islamic expansion over the past 1400 years. Notably, we characterize a large cohort of men with the ChrY J1a2b haplogroup (n = 1,491), identifying 29 unique sub-haplogroups. Finally, we leverage genotype novelty to build a reference panel of 12,432 haplotypes, demonstrating improved genotype imputation for both rare and common alleles in Arabs and the wider Middle East. Arab populations are relatively understudied, especially their genetic architecture and historical relationship with early founders of the ancient Near East. Here, the authors examine 6,218 Qatari whole genomes, revealing insights on migration, population history and genetic structure of populations across the Middle Eastern region.
Collapse
Affiliation(s)
| | | | | | - Haroon Naeem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Waleed Aamer
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Elbay Aliyev
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Ali Jubran
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, New York, NY, USA
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar. .,Weill Cornell Medicine-Qatar, Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Younes Mokrab
- Department of Human Genetics, Sidra Medicine, Doha, Qatar. .,Weill Cornell Medicine-Qatar, Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
177
|
Breton G, Johansson ACV, Sjödin P, Schlebusch CM, Jakobsson M. Comparison of sequencing data processing pipelines and application to underrepresented African human populations. BMC Bioinformatics 2021; 22:488. [PMID: 34627144 PMCID: PMC8502359 DOI: 10.1186/s12859-021-04407-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/27/2021] [Indexed: 11/10/2022] Open
Abstract
Background Population genetic studies of humans make increasing use of high-throughput sequencing in order to capture diversity in an unbiased way. There is an abundance of sequencing technologies, bioinformatic tools and the available genomes are increasing in number. Studies have evaluated and compared some of these technologies and tools, such as the Genome Analysis Toolkit (GATK) and its “Best Practices” bioinformatic pipelines. However, studies often focus on a few genomes of Eurasian origin in order to detect technical issues. We instead surveyed the use of the GATK tools and established a pipeline for processing high coverage full genomes from a diverse set of populations, including Sub-Saharan African groups, in order to reveal challenges from human diversity and stratification. Results We surveyed 29 studies using high-throughput sequencing data, and compared their strategies for data pre-processing and variant calling. We found that processing of data is very variable across studies and that the GATK “Best Practices” are seldom followed strictly. We then compared three versions of a GATK pipeline, differing in the inclusion of an indel realignment step and with a modification of the base quality score recalibration step. We applied the pipelines on a diverse set of 28 individuals. We compared the pipelines in terms of count of called variants and overlap of the callsets. We found that the pipelines resulted in similar callsets, in particular after callset filtering. We also ran one of the pipelines on a larger dataset of 179 individuals. We noted that including more individuals at the joint genotyping step resulted in different counts of variants. At the individual level, we observed that the average genome coverage was correlated to the number of variants called. Conclusions We conclude that applying the GATK “Best Practices” pipeline, including their recommended reference datasets, to underrepresented populations does not lead to a decrease in the number of called variants compared to alternative pipelines. We recommend to aim for coverage of > 30X if identifying most variants is important, and to work with large sample sizes at the variant calling stage, also for underrepresented individuals and populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04407-x.
Collapse
Affiliation(s)
- Gwenna Breton
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 752 36, Uppsala, Sweden.
| | - Anna C V Johansson
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Per Sjödin
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 752 36, Uppsala, Sweden
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 752 36, Uppsala, Sweden.,Palaeo-Research Institute, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa.,Science for Life Laboratory, Uppsala, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 752 36, Uppsala, Sweden. .,Palaeo-Research Institute, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa. .,Science for Life Laboratory, Uppsala, Sweden.
| |
Collapse
|
178
|
Skuladottir AT, Bjornsdottir G, Nawaz MS, Petersen H, Rognvaldsson S, Moore KHS, Olafsson PI, Magnusson SH, Bjornsdottir A, Sveinsson OA, Sigurdardottir GR, Saevarsdottir S, Ivarsdottir EV, Stefansdottir L, Gunnarsson B, Muhlestein JB, Knowlton KU, Jones DA, Nadauld LD, Hartmann AM, Rujescu D, Strupp M, Walters GB, Thorgeirsson TE, Jonsdottir I, Holm H, Thorleifsson G, Gudbjartsson DF, Sulem P, Stefansson H, Stefansson K. A genome-wide meta-analysis uncovers six sequence variants conferring risk of vertigo. Commun Biol 2021; 4:1148. [PMID: 34620984 PMCID: PMC8497462 DOI: 10.1038/s42003-021-02673-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Vertigo is the leading symptom of vestibular disorders and a major risk factor for falls. In a genome-wide association study of vertigo (Ncases = 48,072, Ncontrols = 894,541), we uncovered an association with six common sequence variants in individuals of European ancestry, including missense variants in ZNF91, OTOG, OTOGL, and TECTA, and a cis-eQTL for ARMC9. The association of variants in ZNF91, OTOGL, and OTOP1 was driven by an association with benign paroxysmal positional vertigo. Using previous reports of sequence variants associating with age-related hearing impairment and motion sickness, we found eight additional variants that associate with vertigo. Although disorders of the auditory and the vestibular system may co-occur, none of the six genome-wide significant vertigo variants were associated with hearing loss and only one was associated with age-related hearing impairment. Our results uncovered sequence variants associating with vertigo in a genome-wide association study and implicated genes with known roles in inner ear development, maintenance, and disease.
Collapse
Affiliation(s)
| | | | - Muhammad Sulaman Nawaz
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Hannes Petersen
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Akureyri Hospital, Akureyri, Iceland
| | | | | | | | | | | | - Olafur A Sveinsson
- Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Saedis Saevarsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | | | - Joseph B Muhlestein
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, USA
- University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Kirk U Knowlton
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, USA
- University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - David A Jones
- Precision Genomics, Intermountain Healthcare, Saint George, UT, USA
| | - Lincoln D Nadauld
- Precision Genomics, Intermountain Healthcare, Saint George, UT, USA
- Stanford University, School of Medicine, Stanford, CA, USA
| | - Annette M Hartmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany
| | - G Bragi Walters
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | | | | | | | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
179
|
Björnsson E, Thorgeirsson G, Helgadóttir A, Thorleifsson G, Sveinbjörnsson G, Kristmundsdóttir S, Jónsson H, Jónasdóttir A, Jónasdóttir Á, Sigurðsson Á, Guðnason T, Ólafsson Í, Sigurðsson EL, Sigurðardóttir Ó, Viðarsson B, Baldvinsson M, Bjarnason R, Danielsen R, Matthíasson SE, Thórarinsson BL, Grétarsdóttir S, Steinthórsdóttir V, Halldórsson BV, Andersen K, Arnar DO, Jónsdóttir I, Guðbjartsson DF, Hólm H, Thorsteinsdóttir U, Sulem P, Stefánsson K. Large-Scale Screening for Monogenic and Clinically Defined Familial Hypercholesterolemia in Iceland. Arterioscler Thromb Vasc Biol 2021; 41:2616-2628. [PMID: 34407635 PMCID: PMC8454500 DOI: 10.1161/atvbaha.120.315904] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/02/2021] [Indexed: 01/07/2023]
Abstract
Objective: Familial hypercholesterolemia (FH) is traditionally defined as a monogenic disease characterized by severely elevated LDL-C (low-density lipoprotein cholesterol) levels. In practice, FH is commonly a clinical diagnosis without confirmation of a causative mutation. In this study, we sought to characterize and compare monogenic and clinically defined FH in a large sample of Icelanders. Approach and Results: We whole-genome sequenced 49 962 Icelanders and imputed the identified variants into an overall sample of 166 281 chip-genotyped Icelanders. We identified 20 FH mutations in LDLR, APOB, and PCSK9 with combined prevalence of 1 in 836. Monogenic FH was associated with severely elevated LDL-C levels and increased risk of premature coronary disease, aortic valve stenosis, and high burden of coronary atherosclerosis. We used a modified version of the Dutch Lipid Clinic Network criteria to screen for the clinical FH phenotype among living adult participants (N=79 058). Clinical FH was found in 2.2% of participants, of whom only 5.2% had monogenic FH. Mutation-negative clinical FH has a strong polygenic basis. Both individuals with monogenic FH and individuals with mutation-negative clinical FH were markedly undertreated with cholesterol-lowering medications and only a minority attained an LDL-C target of <2.6 mmol/L (<100 mg/dL; 11.0% and 24.9%, respectively) or <1.8 mmol/L (<70 mg/dL; 0.0% and 5.2%, respectively), as recommended for primary prevention by European Society of Cardiology/European Atherosclerosis Society cholesterol guidelines. Conclusions: Clinically defined FH is a relatively common phenotype that is explained by monogenic FH in only a minority of cases. Both monogenic and clinical FH confer high cardiovascular risk but are markedly undertreated.
Collapse
Affiliation(s)
- Eythór Björnsson
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
- Faculty of Medicine, University of Iceland, Reykjavík (E.B., E.L.S., R.B., K.A., D.O.A., I.J., U.T., K.S.)
- Department of Internal Medicine (E.B.), Landspítali-The National University Hospital of Iceland, Reykjavík
| | - Guðmundur Thorgeirsson
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
- Division of Cardiology, Department of Internal Medicine (G. Thorgeirsson, R.D., K.A., D.O.A.), Landspítali-The National University Hospital of Iceland, Reykjavík
| | - Anna Helgadóttir
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Guðmar Thorleifsson
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Garðar Sveinbjörnsson
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Snaedís Kristmundsdóttir
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Hákon Jónsson
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Aðalbjörg Jónasdóttir
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Áslaug Jónasdóttir
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Ásgeir Sigurðsson
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | | | - Ísleifur Ólafsson
- Department of Clinical Biochemistry (I.O.), Landspítali-The National University Hospital of Iceland, Reykjavík
| | - Emil L. Sigurðsson
- Faculty of Medicine, University of Iceland, Reykjavík (E.B., E.L.S., R.B., K.A., D.O.A., I.J., U.T., K.S.)
- Development Centre for the Primary Care, Reykjavík, Iceland (E.L.S.)
| | | | - Brynjar Viðarsson
- Department of Hematology (B.V.), Landspítali-The National University Hospital of Iceland, Reykjavík
- The Laboratory in Mjódd, Reykjavík, Iceland (B.V.)
| | | | - Ragnar Bjarnason
- Faculty of Medicine, University of Iceland, Reykjavík (E.B., E.L.S., R.B., K.A., D.O.A., I.J., U.T., K.S.)
- Children’s Medical Center (R.B.), Landspítali-The National University Hospital of Iceland, Reykjavík
| | - Ragnar Danielsen
- Division of Cardiology, Department of Internal Medicine (G. Thorgeirsson, R.D., K.A., D.O.A.), Landspítali-The National University Hospital of Iceland, Reykjavík
| | | | - Björn L. Thórarinsson
- Department of Neurology (B.L.T.), Landspítali-The National University Hospital of Iceland, Reykjavík
| | - Sólveig Grétarsdóttir
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Valgerður Steinthórsdóttir
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Bjarni V. Halldórsson
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Karl Andersen
- Faculty of Medicine, University of Iceland, Reykjavík (E.B., E.L.S., R.B., K.A., D.O.A., I.J., U.T., K.S.)
- Division of Cardiology, Department of Internal Medicine (G. Thorgeirsson, R.D., K.A., D.O.A.), Landspítali-The National University Hospital of Iceland, Reykjavík
| | - Davíð O. Arnar
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
- Faculty of Medicine, University of Iceland, Reykjavík (E.B., E.L.S., R.B., K.A., D.O.A., I.J., U.T., K.S.)
- Division of Cardiology, Department of Internal Medicine (G. Thorgeirsson, R.D., K.A., D.O.A.), Landspítali-The National University Hospital of Iceland, Reykjavík
| | - Ingileif Jónsdóttir
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
- Faculty of Medicine, University of Iceland, Reykjavík (E.B., E.L.S., R.B., K.A., D.O.A., I.J., U.T., K.S.)
| | - Daníel F. Guðbjartsson
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
- School of Engineering and Natural Sciences, University of Iceland, Reykjavík (D.F.G.)
| | - Hilma Hólm
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Unnur Thorsteinsdóttir
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
- Faculty of Medicine, University of Iceland, Reykjavík (E.B., E.L.S., R.B., K.A., D.O.A., I.J., U.T., K.S.)
| | - Patrick Sulem
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Kári Stefánsson
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
- Faculty of Medicine, University of Iceland, Reykjavík (E.B., E.L.S., R.B., K.A., D.O.A., I.J., U.T., K.S.)
| |
Collapse
|
180
|
Mikaelsdottir E, Thorleifsson G, Stefansdottir L, Halldorsson G, Sigurdsson JK, Lund SH, Tragante V, Melsted P, Rognvaldsson S, Norland K, Helgadottir A, Magnusson MK, Ragnarsson GB, Kristinsson SY, Reykdal S, Vidarsson B, Gudmundsdottir IJ, Olafsson I, Onundarson PT, Sigurdardottir O, Sigurdsson EL, Grondal G, Geirsson AJ, Geirsson G, Gudmundsson J, Holm H, Saevarsdottir S, Jonsdottir I, Thorgeirsson G, Gudbjartsson DF, Thorsteinsdottir U, Rafnar T, Stefansson K. Genetic variants associated with platelet count are predictive of human disease and physiological markers. Commun Biol 2021; 4:1132. [PMID: 34580418 PMCID: PMC8476563 DOI: 10.1038/s42003-021-02642-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Platelets play an important role in hemostasis and other aspects of vascular biology. We conducted a meta-analysis of platelet count GWAS using data on 536,974 Europeans and identified 577 independent associations. To search for mechanisms through which these variants affect platelets, we applied cis-expression quantitative trait locus, DEPICT and IPA analyses and assessed genetic sharing between platelet count and various traits using polygenic risk scoring. We found genetic sharing between platelet count and counts of other blood cells (except red blood cells), in addition to several other quantitative traits, including markers of cardiovascular, liver and kidney functions, height, and weight. Platelet count polygenic risk score was predictive of myeloproliferative neoplasms, rheumatoid arthritis, ankylosing spondylitis, hypertension, and benign prostate hyperplasia. Taken together, these results advance understanding of diverse aspects of platelet biology and how they affect biological processes in health and disease. Evgenia Mikaelsdottir et al. report a study of variants associated with platelet count among European individuals where they identify 577 associations. They also report a genetic overlap between platelet count and human diseases, including myeloproliferative neoplasms, rheumatoid arthritis, and hypertension, as well as a genetic overlap between platelet count and various physiological markers.
Collapse
Affiliation(s)
| | | | | | | | | | - Sigrun H Lund
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | | | - Pall Melsted
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Magnus K Magnusson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Gunnar B Ragnarsson
- Department of Oncology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Sigurdur Y Kristinsson
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.,Department of Hematology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Sigrun Reykdal
- Department of Hematology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Brynjar Vidarsson
- Department of Hematology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | | | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Pall T Onundarson
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.,Laboratory Hematology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Olof Sigurdardottir
- Department of Clinical Biochemistry, Akureyri Hospital, 600, Akureyri, Iceland
| | | | - Gerdur Grondal
- Department of Rheumatology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Arni J Geirsson
- Department of Rheumatology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Gudmundur Geirsson
- Department of Urology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | | | - Hilma Holm
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | - Saedis Saevarsdottir
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.,Department of Rheumatology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Gudmundur Thorgeirsson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Department of Cardiology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Thorunn Rafnar
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland. .,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.
| |
Collapse
|
181
|
Jonsdottir GA, Einarsson G, Thorleifsson G, Magnusson SH, Gunnarsson AF, Frigge ML, Gisladottir RS, Unnsteinsdottir U, Gunnarsson B, Walters GB, Steinthorsdottir V, Helgadottir A, Jonsdottir I, Gislason T, Thorsteinsson HS, Sigurdsson E, Haraldsson M, Sigurdsson EL, Bjarnason R, Olafsson I, Thorgeirsson G, Sulem P, Holm H, Thorsteinsdottir U, Gudbjartsson DF, Bjornsdottir G, Thorgeirsson TE, Stefansson H, Stefansson K. Genetic propensities for verbal and spatial ability have opposite effects on body mass index and risk of schizophrenia. INTELLIGENCE 2021. [DOI: 10.1016/j.intell.2021.101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
182
|
Sequence variants in malignant hyperthermia genes in Iceland: classification and actionable findings in a population database. Eur J Hum Genet 2021; 29:1819-1824. [PMID: 34462577 PMCID: PMC8633338 DOI: 10.1038/s41431-021-00954-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Malignant hyperthermia (MH) susceptibility is a rare life-threatening disorder that occurs upon exposure to a triggering agent. MH is commonly due to protein-altering variants in RYR1 and CACNA1S. The American College of Medical Genetics and Genomics recommends that when pathogenic and likely pathogenic variants in RYR1 and CACNA1S are incidentally found, they should be reported to the carriers. The detection of actionable variants allows the avoidance of exposure to triggering agents during anesthesia. First, we report a 10-year-old Icelandic proband with a suspected MH event, harboring a heterozygous missense variant NM_000540.2:c.6710G>A r.(6710g>a) p.(Cys2237Tyr) in the RYR1 gene that is likely pathogenic. The variant is private to four individuals within a three-generation family and absent from 62,240 whole-genome sequenced (WGS) Icelanders. Haplotype sharing and WGS revealed that the variant occurred as a somatic mosaicism also present in germline of the proband’s paternal grandmother. Second, using a set of 62,240 Icelanders with WGS, we assessed the carrier frequency of actionable pathogenic and likely pathogenic variants in RYR1 and CACNA1S. We observed 13 actionable variants in RYR1, based on ClinVar classifications, carried by 43 Icelanders, and no actionable variant in CACNA1S. One in 1450 Icelanders carries an actionable variant for MH. Extensive sequencing allows for better classification and precise dating of variants, and WGS of a large fraction of the population has led to incidental findings of actionable MH genotypes.
Collapse
|
183
|
Brunham LR, Hegele RA. What Is the Prevalence of Familial Hypercholesterolemia? Arterioscler Thromb Vasc Biol 2021; 41:2629-2631. [PMID: 34433299 DOI: 10.1161/atvbaha.121.316862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Liam R Brunham
- Department of Medicine, Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada (L.R.B.)
| | - Robert A Hegele
- Department of Medicine, Robarts Research Institute, Western University, London, Ontario, Canada (R.A.H.)
| |
Collapse
|
184
|
Voicu AA, Krützen M, Bilgin Sonay T. Short Tandem Repeats as a High-Resolution Marker for Capturing Recent Orangutan Population Evolution. FRONTIERS IN BIOINFORMATICS 2021; 1:695784. [PMID: 36303734 PMCID: PMC9581056 DOI: 10.3389/fbinf.2021.695784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
The genus Pongo is ideal to study population genetics adaptation, given its remarkable phenotypic divergence and the highly contrasting environmental conditions it’s been exposed to. Studying its genetic variation bears the promise to reveal a motion picture of these great apes’ evolutionary and adaptive history, and also helps us expand our knowledge of the patterns of adaptation and evolution. In this work, we advance the understanding of the genetic variation among wild orangutans through a genome-wide study of short tandem repeats (STRs). Their elevated mutation rate makes STRs ideal markers for the study of recent evolution within a given population. Current technological and algorithmic advances have rendered their sequencing and discovery more accurate, therefore their potential can be finally leveraged in population genetics studies. To study patterns of population variation within the wild orangutan population, we genotyped the short tandem repeats in a population of 21 individuals spanning four Sumatran and Bornean (sub-) species and eight Southeast Asian regions. We studied the impact of sequencing depth on our ability to genotype STRs and found that the STR copy number changes function as a powerful marker, correctly capturing the demographic history of these populations, even the divergences as recent as 10 Kya. Moreover, gene ontology enrichments for genes close to STR variants are aligned with local adaptations in the two islands. Coupled with more advanced STR-compatible population models, and selection tests, genomic studies based on STRs will be able to reduce the gap caused by the missing heritability for species with recent adaptations.
Collapse
Affiliation(s)
| | - Michael Krützen
- Department of Anthropology, University of Zurich, Zurich, Switzerland
| | - Tugce Bilgin Sonay
- Department of Anthropology, University of Zurich, Zurich, Switzerland
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, United States
- *Correspondence: Tugce Bilgin Sonay,
| |
Collapse
|
185
|
Hagenbeck C, Hamza A, Kehl S, Maul H, Lammert F, Keitel V, Hütten MC, Pecks U. Management of Intrahepatic Cholestasis of Pregnancy: Recommendations of the Working Group on Obstetrics and Prenatal Medicine - Section on Maternal Disorders. Geburtshilfe Frauenheilkd 2021; 81:922-939. [PMID: 34393256 PMCID: PMC8354365 DOI: 10.1055/a-1386-3912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disease specific to pregnancy. The cardinal symptom of pruritus and a concomitant elevated level of bile acids in the serum and/or alanine aminotransferase (ALT) are suggestive for the diagnosis. Overall, the maternal prognosis is good. The fetal outcome depends on the bile acid level. ICP is associated with increased risks for adverse perinatal outcomes, including preterm delivery, meconium-stained amniotic fluid, and stillbirth. Acute fetal asphyxia and not chronic uteroplacental dysfunction leads to stillbirth. Therefore, predictive fetal monitoring is not possible. While medication with ursodeoxycholic acid (UDCA) improves pruritus, it has not been shown to affect fetal outcome. The indication for induction of labour depends on bile acid levels and gestational age. There is a high risk of recurrence in subsequent pregnancies.
Collapse
Affiliation(s)
| | - Amr Hamza
- Universitätsklinikum des Saarlandes, Klinik für Frauenheilkunde, Geburtshilfe und Reproduktionsmedizin, Homburg, Germany
- Kantonsspital Baden AG, Baden, Switzerland
| | - Sven Kehl
- Frauenklinik, Friedrich Alexander University Erlangen Nuremberg, Faculty of Medicine, Erlangen, Germany
| | - Holger Maul
- Section of Prenatal Disgnostics and Therapy, Asklepios Klinik Barmbek, Hamburg, Germany
| | - Frank Lammert
- Klinik für Innere Medizin II, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg, Germany
| | - Verena Keitel
- Universitätsklinikum Düsseldorf, Klinik für Gastroenterologie, Hepatologie und Infektiologie, Düsseldorf, Germany
| | - Matthias C. Hütten
- Clinique E2 Neonatology, Maastricht Universitair Medisch Centrum+, Maastricht, Netherlands
| | - Ulrich Pecks
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Klinik für Gynäkologie und Geburtshilfe, Kiel, Germany
| |
Collapse
|
186
|
The genetic architecture of primary biliary cholangitis. Eur J Med Genet 2021; 64:104292. [PMID: 34303876 DOI: 10.1016/j.ejmg.2021.104292] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/03/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Primary biliary cholangitis (PBC) is a rare autoimmune disease of the liver affecting the small bile ducts. From a genetic point of view, PBC is a complex trait and several genetic and environmental factors have been called in action to explain its etiopathogenesis. Similarly to other complex traits, PBC has benefited from the introduction of genome-wide association studies (GWAS), which identified many variants predisposing or protecting toward the development of the disease. While a progressive endeavour toward the characterization of candidate loci and downstream pathways is currently ongoing, there is still a relatively large portion of heritability of PBC to be revealed. In addition, genetic variation behind progression of the disease and therapeutic response are mostly to be investigated yet. This review outlines the state-of-the-art regarding the genetic architecture of PBC and provides some hints for future investigations, focusing on the study of gene-gene interactions, the application of whole-genome sequencing techniques, and the investigation of X chromosome that can be helpful to cover the missing heritability gap in PBC.
Collapse
|
187
|
Pluta J, Pyle LC, Nead KT, Wilf R, Li M, Mitra N, Weathers B, D'Andrea K, Almstrup K, Anson-Cartwright L, Benitez J, Brown CD, Chanock S, Chen C, Cortessis VK, Ferlin A, Foresta C, Gamulin M, Gietema JA, Grasso C, Greene MH, Grotmol T, Hamilton RJ, Haugen TB, Hauser R, Hildebrandt MAT, Johnson ME, Karlsson R, Kiemeney LA, Lessel D, Lothe RA, Loud JT, Loveday C, Martin-Gimeno P, Meijer C, Nsengimana J, Quinn DI, Rafnar T, Ramdas S, Richiardi L, Skotheim RI, Stefansson K, Turnbull C, Vaughn DJ, Wiklund F, Wu X, Yang D, Zheng T, Wells AD, Grant SFA, Rajpert-De Meyts E, Schwartz SM, Bishop DT, McGlynn KA, Kanetsky PA, Nathanson KL. Identification of 22 susceptibility loci associated with testicular germ cell tumors. Nat Commun 2021; 12:4487. [PMID: 34301922 PMCID: PMC8302763 DOI: 10.1038/s41467-021-24334-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Testicular germ cell tumors (TGCT) are the most common tumor in young white men and have a high heritability. In this study, the international Testicular Cancer Consortium assemble 10,156 and 179,683 men with and without TGCT, respectively, for a genome-wide association study. This meta-analysis identifies 22 TGCT susceptibility loci, bringing the total to 78, which account for 44% of disease heritability. Men with a polygenic risk score (PRS) in the 95th percentile have a 6.8-fold increased risk of TGCT compared to men with median scores. Among men with independent TGCT risk factors such as cryptorchidism, the PRS may guide screening decisions with the goal of reducing treatment-related complications causing long-term morbidity in survivors. These findings emphasize the interconnected nature of two known pathways that promote TGCT susceptibility: male germ cell development within its somatic niche and regulation of chromosomal division and structure, and implicate an additional biological pathway, mRNA translation.
Collapse
Affiliation(s)
- John Pluta
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Louise C Pyle
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kevin T Nead
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rona Wilf
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benita Weathers
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt D'Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark
| | - Lynn Anson-Cartwright
- Department of Surgery (Urology), University of Toronto and The Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Javier Benitez
- Human Genetics Group, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Chu Chen
- Program in Epidemiology, Fred Hutchinson Cancer Research Center; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Victoria K Cortessis
- Departments of Preventive Medicine and Obstetrics and Gynecology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Alberto Ferlin
- Unit of Endocrinology and Metabolism, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Marija Gamulin
- Department of Oncology, Division of Medical Oncology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jourik A Gietema
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Chiara Grasso
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Tom Grotmol
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Robert J Hamilton
- Department of Surgery (Urology), University of Toronto and The Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Trine B Haugen
- Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Russ Hauser
- Department of Environmental Health, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Matthew E Johnson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jennifer T Loud
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Chey Loveday
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | | | - Coby Meijer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - David I Quinn
- Division of Oncology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | | | - Shweta Ramdas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | | - Clare Turnbull
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- William Harvey Research Institute, Queen Mary University, London, UK
| | - David J Vaughn
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Xifeng Wu
- School of Public Health, Zhejiang University, Zhejiang, China
| | - Daphne Yang
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tongzhang Zheng
- Department of Epidemiology, Brown School of Public Health, Brown University, Providence, RI, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F A Grant
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Stephen M Schwartz
- Program in Epidemiology, Fred Hutchinson Cancer Research Center; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - D Timothy Bishop
- Department of Haematology and Immunology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
188
|
Trost B, Loureiro LO, Scherer SW. Discovery of genomic variation across a generation. Hum Mol Genet 2021; 30:R174-R186. [PMID: 34296264 PMCID: PMC8490016 DOI: 10.1093/hmg/ddab209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022] Open
Abstract
Over the past 30 years (the timespan of a generation), advances in genomics technologies have revealed tremendous and unexpected variation in the human genome and have provided increasingly accurate answers to long-standing questions of how much genetic variation exists in human populations and to what degree the DNA complement changes between parents and offspring. Tracking the characteristics of these inherited and spontaneous (or de novo) variations has been the basis of the study of human genetic disease. From genome-wide microarray and next-generation sequencing scans, we now know that each human genome contains over 3 million single nucleotide variants when compared with the ~ 3 billion base pairs in the human reference genome, along with roughly an order of magnitude more DNA—approximately 30 megabase pairs (Mb)—being ‘structurally variable’, mostly in the form of indels and copy number changes. Additional large-scale variations include balanced inversions (average of 18 Mb) and complex, difficult-to-resolve alterations. Collectively, ~1% of an individual’s genome will differ from the human reference sequence. When comparing across a generation, fewer than 100 new genetic variants are typically detected in the euchromatic portion of a child’s genome. Driven by increasingly higher-resolution and higher-throughput sequencing technologies, newer and more accurate databases of genetic variation (for instance, more comprehensive structural variation data and phasing of combinations of variants along chromosomes) of worldwide populations will emerge to underpin the next era of discovery in human molecular genetics.
Collapse
Affiliation(s)
- Brett Trost
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Livia O Loureiro
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
189
|
Juliusdottir T, Steinthorsdottir V, Stefansdottir L, Sveinbjornsson G, Ivarsdottir EV, Thorolfsdottir RB, Sigurdsson JK, Tragante V, Hjorleifsson KE, Helgadottir A, Frigge ML, Thorgeirsson G, Benediktsson R, Sigurdsson EL, Arnar DO, Steingrimsdottir T, Jonsdottir I, Holm H, Gudbjartsson DF, Thorleifsson G, Thorsteinsdottir U, Stefansson K. Distinction between the effects of parental and fetal genomes on fetal growth. Nat Genet 2021; 53:1135-1142. [PMID: 34282336 DOI: 10.1038/s41588-021-00896-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/11/2021] [Indexed: 01/12/2023]
Abstract
Birth weight is a common measure of fetal growth that is associated with a range of health outcomes. It is directly affected by the fetal genome and indirectly by the maternal genome. We performed genome-wide association studies on birth weight in the genomes of the child and parents and further analyzed birth length and ponderal index, yielding a total of 243 fetal growth variants. We clustered those variants based on the effects of transmitted and nontransmitted alleles on birth weight. Out of 141 clustered variants, 22 were consistent with parent-of-origin-specific effects. We further used haplotype-specific polygenic risk scores to directly test the relationship between adult traits and birth weight. Our results indicate that the maternal genome contributes to increased birth weight through blood-glucose-raising alleles while blood-pressure-raising alleles reduce birth weight largely through the fetal genome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kristjan E Hjorleifsson
- deCODE genetics/Amgen, Reykjavik, Iceland.,Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | | | | | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Medicine, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Rafn Benediktsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Medicine, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - David O Arnar
- deCODE genetics/Amgen, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Medicine, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Thora Steingrimsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Obstetrics and Gynecology, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Immunology, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland. .,Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
190
|
Drljaca T, Zukic B, Kovacevic V, Gemovic B, Klaassen-Ljubicic K, Perovic V, Lazarevic M, Pavlovic S, Veljkovic N. The first insight into the genetic structure of the population of modern Serbia. Sci Rep 2021; 11:13995. [PMID: 34234178 PMCID: PMC8263702 DOI: 10.1038/s41598-021-93129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
The complete understanding of the genomic contribution to complex traits, diseases, and response to treatments, as well as genomic medicine application to the well-being of all humans will be achieved through the global variome that encompasses fine-scale genetic diversity. Despite significant efforts in recent years, uneven representation still characterizes genomic resources and among the underrepresented European populations are the Western Balkans including the Serbian population. Our research addresses this gap and presents the first ever targeted sequencing dataset of variants in clinically relevant genes. By measuring population differentiation and applying the Principal Component and Admixture analysis we demonstrated that the Serbian population differs little from other European populations, yet we identified several novel and more frequent variants that appear as its unique genetic determinants. We explored thoroughly the functional impact of frequent variants and its correlation with the health burden of the population of Serbia based on a sample of 144 individuals. Our variants catalogue improves the understanding of genetics of modern Serbia, contributes to research on ancestry, and aids in improvements of well-being and health equity. In addition, this resource may also be applicable in neighboring regions and valuable in worldwide functional analyses of genetic variants in individuals of European descent.
Collapse
Affiliation(s)
- Tamara Drljaca
- Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka Zukic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Branislava Gemovic
- Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Vladimir Perovic
- Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | - Nevena Veljkovic
- Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
- Heliant Ltd, Belgrade, Serbia.
| |
Collapse
|
191
|
Jüngst C, Justinger C, Fischer J, Berg T, Lammert F. Common ABCB4 and ABCB11 Genotypes Are Associated with Idiopathic Chronic Cholestasis in Adults. Dig Dis 2021; 40:489-496. [PMID: 34348275 DOI: 10.1159/000518203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/14/2021] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Pathogenic mutations in genes encoding the hepatocanalicular transporters ATP8B1, ABCB11 and ABCB4 are causative for progressive cholestatic liver disease in children. In adults, less severe variants such as the common ABCB4 c.711A>T polymorphism have been associated with intrahepatic cholestasis in pregnancy and elevated liver enzymes. Hence, our aim was to study the role of common polymorphisms in adult patients with chronic unexplained cholestasis. METHODS Screening of outpatients of two university hospitals identified a cohort of 94 patients with chronic cholestasis of unknown origin after thorough exclusion of other causes. Genotyping was performed using TaqMan assays, and frequencies for the ABCB4 rs2109505 (c.711A>T), rs1202283 (c.504T>C), ABCB11 rs2287622 (p.A444V) and rs497692 (c.3084A>G) variants of the study cohort were compared to a cohort of 254 healthy controls. RESULTS The dominating symptoms of the patients were pruritus and jaundice, though the majority of them did not report symptoms at inclusion. Advanced fibrosis or cirrhosis was present in 11 patients (11.7%) only. Genotyping revealed the presence of the ABCB4 c.711A>T risk variant in 79 patients (84%), a frequency that is significantly (p = 0.037) higher than that in controls (71%). The ABCB11 p.A444V variant was also more frequent in cholestatic patients (p = 0.042). CONCLUSION The common ABCB4 c.711A>T and ABCB11 p.A444V polymorphisms are more prevalent in adult patients with idiopathic cholestasis than in healthy controls and may therefore represent risk factors for the development of chronic cholestatic liver disease.
Collapse
Affiliation(s)
- Christoph Jüngst
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.,Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Christina Justinger
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Janett Fischer
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.,Hannover Medical School (MHH), Hannover, Germany
| |
Collapse
|
192
|
Zhang X, Zhang C, Prokopenko D, Liang Y, Han W, Tanzi RE, Sisodia SS. Negative evidence for a role of APH1B T27I variant in Alzheimer's disease. Hum Mol Genet 2021; 29:955-966. [PMID: 31995180 DOI: 10.1093/hmg/ddaa017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 01/10/2023] Open
Abstract
γ-secretase is a macromolecular complex that catalyzes intramembranous hydrolysis of more than 100 membrane-bound substrates. The complex is composed of presenilin (PS1 or PS2), anterior pharynx defect-1 (APH-1), nicastrin (NCT) and PEN-2 and early-onset; autosomal dominant forms of Alzheimer's disease (AD) are caused by inheritance of mutations of PS. No mutations in genes encoding NCT, or PEN-2 have been identified to date that cause AD. In this regard, a large genetic meta-analysis of four cohorts consisting of more than 600 000 individuals identified a common missense variant, rs117618017 in the APH1B gene that results in a T27I mutation, as a novel genome-wide significant locus. In order to confirm the findings that rs117618017 is associated with risk of AD, we performed a genetic screen from deep whole genome sequencing of the large NIMH family-based Alzheimer's Disease (AD) dataset. In parallel, we sought to uncover potential molecular mechanism(s) by which APH-1B T27I might be associated with AD by generating stable HEK293 cell lines, wherein endogenous APH-1A and APH-1B expression was silenced and into which either the wild type APH-1B or the APH-1B T27I variant was stably expressed. We then tested the impact of expressing either the wild type APH-1B or the APH-1B T27I variant on γ-secretase processing of human APP, the murine Notch derivative mNΔE and human neuregulin-1. We now report that we fail to confirm the association of rs1047552 with AD in our cohort and that cells expressing the APH-1B T27I variant show no discernable impact on the γ-secretase processing of established substrates compared with cells expressing wild-type APH-1B.
Collapse
Affiliation(s)
- Xulun Zhang
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Can Zhang
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA 02114, USA
| | - Dmitry Prokopenko
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA 02114, USA
| | - Yingxia Liang
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Weinong Han
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Rudolph E Tanzi
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Charlestown, MA 02114, USA
| | - Sangram S Sisodia
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
193
|
Ivarsdottir EV, Holm H, Benonisdottir S, Olafsdottir T, Sveinbjornsson G, Thorleifsson G, Eggertsson HP, Halldorsson GH, Hjorleifsson KE, Melsted P, Gylfason A, Arnadottir GA, Oddsson A, Jensson BO, Jonasdottir A, Jonasdottir A, Juliusdottir T, Stefansdottir L, Tragante V, Halldorsson BV, Petersen H, Thorgeirsson G, Thorsteinsdottir U, Sulem P, Hinriksdottir I, Jonsdottir I, Gudbjartsson DF, Stefansson K. The genetic architecture of age-related hearing impairment revealed by genome-wide association analysis. Commun Biol 2021; 4:706. [PMID: 34108613 PMCID: PMC8190123 DOI: 10.1038/s42003-021-02224-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
Age-related hearing impairment (ARHI) is the most common sensory disorder in older adults. We conducted a genome-wide association meta-analysis of 121,934 ARHI cases and 591,699 controls from Iceland and the UK. We identified 21 novel sequence variants, of which 13 are rare, under either additive or recessive models. Of special interest are a missense variant in LOXHD1 (MAF = 1.96%) and a tandem duplication in FBF1 covering 4 exons (MAF = 0.22%) associating with ARHI (OR = 3.7 for homozygotes, P = 1.7 × 10-22 and OR = 4.2 for heterozygotes, P = 5.7 × 10-27, respectively). We constructed an ARHI genetic risk score (GRS) using common variants and showed that a common variant GRS can identify individuals at risk comparable to carriers of rare high penetrance variants. Furthermore, we found that ARHI and tinnitus share genetic causes. This study sheds a new light on the genetic architecture of ARHI, through several rare variants in both Mendelian deafness genes and genes not previously linked to hearing.
Collapse
Affiliation(s)
- Erna V Ivarsdottir
- deCODE Genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Hilma Holm
- deCODE Genetics/Amgen, Reykjavik, Iceland
| | | | | | | | | | | | - Gisli H Halldorsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Kristjan E Hjorleifsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Pall Melsted
- deCODE Genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | | | | | | | | | - Bjarni V Halldorsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | - Hannes Petersen
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Akureyri Hospital, Akureyri, Iceland
| | - Gudmundur Thorgeirsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Division of Cardiology, Department of Internal Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Ingileif Jonsdottir
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali University Hospital, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Reykjavik, Iceland.
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland.
| | - Kari Stefansson
- deCODE Genetics/Amgen, Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
194
|
Eleven genomic loci affect plasma levels of chronic inflammation marker soluble urokinase-type plasminogen activator receptor. Commun Biol 2021; 4:655. [PMID: 34079037 PMCID: PMC8172928 DOI: 10.1038/s42003-021-02144-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Soluble urokinase-type plasminogen activator receptor (suPAR) is a chronic inflammation marker associated with the development of a range of diseases, including cancer and cardiovascular disease. The genetics of suPAR remain unexplored but may shed light on the biology of the marker and its connection to outcomes. We report a heritability estimate of 60% for the variation in suPAR and performed a genome-wide association meta-analysis on suPAR levels measured in Iceland (N = 35,559) and in Denmark (N = 12,177). We identified 13 independently genome-wide significant sequence variants associated with suPAR across 11 distinct loci. Associated variants were found in and around genes encoding uPAR (PLAUR), its ligand uPA (PLAU), the kidney-disease-associated gene PLA2R1 as well as genes with relations to glycosylation, glycoprotein biosynthesis, and the immune response. These findings provide new insight into the causes of variation in suPAR plasma levels, which may clarify suPAR's potential role in associated diseases, as well as the underlying mechanisms that give suPAR its prognostic value as a unique marker of chronic inflammation.
Collapse
|
195
|
Thorolfsdottir RB, Sveinbjornsson G, Aegisdottir HM, Benonisdottir S, Stefansdottir L, Ivarsdottir EV, Halldorsson GH, Sigurdsson JK, Torp-Pedersen C, Weeke PE, Brunak S, Westergaard D, Pedersen OB, Sorensen E, Nielsen KR, Burgdorf KS, Banasik K, Brumpton B, Zhou W, Oddsson A, Tragante V, Hjorleifsson KE, Davidsson OB, Rajamani S, Jonsson S, Torfason B, Valgardsson AS, Thorgeirsson G, Frigge ML, Thorleifsson G, Norddahl GL, Helgadottir A, Gretarsdottir S, Sulem P, Jonsdottir I, Willer CJ, Hveem K, Bundgaard H, Ullum H, Arnar DO, Thorsteinsdottir U, Gudbjartsson DF, Holm H, Stefansson K. Genetic insight into sick sinus syndrome. Eur Heart J 2021; 42:1959-1971. [PMID: 36282123 PMCID: PMC8140484 DOI: 10.1093/eurheartj/ehaa1108] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/24/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Aims The aim of this study was to use human genetics to investigate the pathogenesis of sick sinus syndrome (SSS) and the role of risk factors in its development. Methods and results We performed a genome-wide association study of 6469 SSS cases and 1 000 187 controls from deCODE genetics, the Copenhagen Hospital Biobank, UK Biobank, and the HUNT study. Variants at six loci associated with SSS, a reported missense variant in MYH6, known atrial fibrillation (AF)/electrocardiogram variants at PITX2, ZFHX3, TTN/CCDC141, and SCN10A and a low-frequency (MAF = 1.1–1.8%) missense variant, p.Gly62Cys in KRT8 encoding the intermediate filament protein keratin 8. A full genotypic model best described the p.Gly62Cys association (P = 1.6 × 10−20), with an odds ratio (OR) of 1.44 for heterozygotes and a disproportionally large OR of 13.99 for homozygotes. All the SSS variants increased the risk of pacemaker implantation. Their association with AF varied and p.Gly62Cys was the only variant not associating with any other arrhythmia or cardiovascular disease. We tested 17 exposure phenotypes in polygenic score (PGS) and Mendelian randomization analyses. Only two associated with the risk of SSS in Mendelian randomization, AF, and lower heart rate, suggesting causality. Powerful PGS analyses provided convincing evidence against causal associations for body mass index, cholesterol, triglycerides, and type 2 diabetes (P > 0.05). Conclusion We report the associations of variants at six loci with SSS, including a missense variant in KRT8 that confers high risk in homozygotes and points to a mechanism specific to SSS development. Mendelian randomization supports a causal role for AF in the development of SSS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jon K Sigurdsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | - Christian Torp-Pedersen
- Department of Clinical Research and Cardiology, Nordsjaelland Hospital, Dyrehavevej 29, Hillerød 3400, Denmark
| | - Peter E Weeke
- Department of Cardiology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, Copenhagen 2200, Denmark
| | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, Copenhagen 2200, Denmark
| | - Ole B Pedersen
- Department of Clinical Immunology, Naestved Hospital, Ringstedgade 77B, Naestved 4700, Denmark
| | - Erik Sorensen
- Department of Clinical Immunology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Kaspar R Nielsen
- Department of Clinical Immunology, Aalborg University Hospital North, Urbansgade 36, Aalborg 9000, Denmark
| | - Kristoffer S Burgdorf
- Department of Clinical Immunology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, Copenhagen 2200, Denmark
| | - Ben Brumpton
- Department of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, Trondheim 7030, Norway
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109-2218, USA
| | - Asmundur Oddsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | | | - Kristjan E Hjorleifsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,Department of Computing and Mathematical Sciences, California Institute of Technology, 1200 E California Blvd. MC 305-16, Pasadena, CA 91125, USA
| | | | | | - Stefan Jonsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | - Bjarni Torfason
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland.,Department of Cardiothoracic Surgery, Landspitali-The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Atli S Valgardsson
- Department of Cardiothoracic Surgery, Landspitali-The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland.,Department of Medicine, Landspitali-The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Michael L Frigge
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | | | | | - Anna Helgadottir
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | | | - Patrick Sulem
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland.,Department of Immunology, Landspitali-The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Cristen J Willer
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109-2218, USA.,Department of Internal Medicine: Cardiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109 -5368, USA.,Department of Human Genetics, University of Michigan, 4909 Buhl Building, 1241 E. Catherine St., Ann Arbor, MI 48109 -5618, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Erling Skjalgssons gt. 1, Trondheim 7491, Norway.,Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks 8905, Trondheim 7491, Norway.,HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Forskningsveien 2, Levanger 7600, Norway
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark.,Statens Serum Institut, Artillerivej 5, Copenhagen 2300, Denmark
| | - David O Arnar
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland.,Department of Medicine, Landspitali-The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Hjardarhagi 4, Reykjavik 107, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
| | | |
Collapse
|
196
|
Kummeling J, Stremmelaar DE, Raun N, Reijnders MRF, Willemsen MH, Ruiterkamp-Versteeg M, Schepens M, Man CCO, Gilissen C, Cho MT, McWalter K, Sinnema M, Wheless JW, Simon MEH, Genetti CA, Casey AM, Terhal PA, van der Smagt JJ, van Gassen KLI, Joset P, Bahr A, Steindl K, Rauch A, Keller E, Raas-Rothschild A, Koolen DA, Agrawal PB, Hoffman TL, Powell-Hamilton NN, Thiffault I, Engleman K, Zhou D, Bodamer O, Hoefele J, Riedhammer KM, Schwaibold EMC, Tasic V, Schubert D, Top D, Pfundt R, Higgs MR, Kramer JM, Kleefstra T. Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome. Mol Psychiatry 2021; 26:2013-2024. [PMID: 32346159 DOI: 10.1038/s41380-020-0725-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Defects in histone methyltransferases (HMTs) are major contributing factors in neurodevelopmental disorders (NDDs). Heterozygous variants of SETD1A involved in histone H3 lysine 4 (H3K4) methylation were previously identified in individuals with schizophrenia. Here, we define the clinical features of the Mendelian syndrome associated with haploinsufficiency of SETD1A by investigating 15 predominantly pediatric individuals who all have de novo SETD1A variants. These individuals present with a core set of symptoms comprising global developmental delay and/or intellectual disability, subtle facial dysmorphisms, behavioral and psychiatric problems. We examined cellular phenotypes in three patient-derived lymphoblastoid cell lines with three variants: p.Gly535Alafs*12, c.4582-2_4582delAG, and p.Tyr1499Asp. These patient cell lines displayed DNA damage repair defects that were comparable to previously observed RNAi-mediated depletion of SETD1A. This suggested that these variants, including the p.Tyr1499Asp in the catalytic SET domain, behave as loss-of-function (LoF) alleles. Previous studies demonstrated a role for SETD1A in cell cycle control and differentiation. However, individuals with SETD1A variants do not show major structural brain defects or severe microcephaly, suggesting that defective proliferation and differentiation of neural progenitors is unlikely the single underlying cause of the disorder. We show here that the Drosophila melanogaster SETD1A orthologue is required in postmitotic neurons of the fly brain for normal memory, suggesting a role in post development neuronal function. Together, this study defines a neurodevelopmental disorder caused by dominant de novo LoF variants in SETD1A and further supports a role for H3K4 methyltransferases in the regulation of neuronal processes underlying normal cognitive functioning.
Collapse
Affiliation(s)
- Joost Kummeling
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Diante E Stremmelaar
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Nicholas Raun
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Margot R F Reijnders
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6229 ER, Maastricht, The Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Martina Ruiterkamp-Versteeg
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marga Schepens
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Calvin C O Man
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | - Margje Sinnema
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6229 ER, Maastricht, The Netherlands
| | - James W Wheless
- Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.,Neuroscience Institute & Le Bonheur Comprehensive Epilepsy Program, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Marleen E H Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Casie A Genetti
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Alicia M Casey
- Division of Pulmonary and Respiratory Diseases, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jasper J van der Smagt
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Koen L I van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Angela Bahr
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Elmar Keller
- Division of Neuropediatrics, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Annick Raas-Rothschild
- Institute of Rare Disease, Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Trevor L Hoffman
- Regional Department of Genetics, Southern California Kaiser Permanente Medical Group, 1188N. Euclid Street, Anaheim, CA, 92801, USA
| | - Nina N Powell-Hamilton
- Division of Medical Genetics, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, USA.,Department of Pathology and Laboratory Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA.,Division of Clinical Genetics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Kendra Engleman
- Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Dihong Zhou
- Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Velibor Tasic
- Medical School Skopje, University Children's Hospital, Skopje, North Macedonia
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Deniz Top
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jamie M Kramer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
197
|
Mullins N, Forstner AJ, O'Connell KS, Coombes B, Coleman JRI, Qiao Z, Als TD, Bigdeli TB, Børte S, Bryois J, Charney AW, Drange OK, Gandal MJ, Hagenaars SP, Ikeda M, Kamitaki N, Kim M, Krebs K, Panagiotaropoulou G, Schilder BM, Sloofman LG, Steinberg S, Trubetskoy V, Winsvold BS, Won HH, Abramova L, Adorjan K, Agerbo E, Al Eissa M, Albani D, Alliey-Rodriguez N, Anjorin A, Antilla V, Antoniou A, Awasthi S, Baek JH, Bækvad-Hansen M, Bass N, Bauer M, Beins EC, Bergen SE, Birner A, Bøcker Pedersen C, Bøen E, Boks MP, Bosch R, Brum M, Brumpton BM, Brunkhorst-Kanaan N, Budde M, Bybjerg-Grauholm J, Byerley W, Cairns M, Casas M, Cervantes P, Clarke TK, Cruceanu C, Cuellar-Barboza A, Cunningham J, Curtis D, Czerski PM, Dale AM, Dalkner N, David FS, Degenhardt F, Djurovic S, Dobbyn AL, Douzenis A, Elvsåshagen T, Escott-Price V, Ferrier IN, Fiorentino A, Foroud TM, Forty L, Frank J, Frei O, Freimer NB, Frisén L, Gade K, Garnham J, Gelernter J, Giørtz Pedersen M, Gizer IR, Gordon SD, Gordon-Smith K, Greenwood TA, Grove J, Guzman-Parra J, Ha K, Haraldsson M, Hautzinger M, Heilbronner U, Hellgren D, Herms S, Hoffmann P, Holmans PA, Huckins L, Jamain S, Johnson JS, Kalman JL, et alMullins N, Forstner AJ, O'Connell KS, Coombes B, Coleman JRI, Qiao Z, Als TD, Bigdeli TB, Børte S, Bryois J, Charney AW, Drange OK, Gandal MJ, Hagenaars SP, Ikeda M, Kamitaki N, Kim M, Krebs K, Panagiotaropoulou G, Schilder BM, Sloofman LG, Steinberg S, Trubetskoy V, Winsvold BS, Won HH, Abramova L, Adorjan K, Agerbo E, Al Eissa M, Albani D, Alliey-Rodriguez N, Anjorin A, Antilla V, Antoniou A, Awasthi S, Baek JH, Bækvad-Hansen M, Bass N, Bauer M, Beins EC, Bergen SE, Birner A, Bøcker Pedersen C, Bøen E, Boks MP, Bosch R, Brum M, Brumpton BM, Brunkhorst-Kanaan N, Budde M, Bybjerg-Grauholm J, Byerley W, Cairns M, Casas M, Cervantes P, Clarke TK, Cruceanu C, Cuellar-Barboza A, Cunningham J, Curtis D, Czerski PM, Dale AM, Dalkner N, David FS, Degenhardt F, Djurovic S, Dobbyn AL, Douzenis A, Elvsåshagen T, Escott-Price V, Ferrier IN, Fiorentino A, Foroud TM, Forty L, Frank J, Frei O, Freimer NB, Frisén L, Gade K, Garnham J, Gelernter J, Giørtz Pedersen M, Gizer IR, Gordon SD, Gordon-Smith K, Greenwood TA, Grove J, Guzman-Parra J, Ha K, Haraldsson M, Hautzinger M, Heilbronner U, Hellgren D, Herms S, Hoffmann P, Holmans PA, Huckins L, Jamain S, Johnson JS, Kalman JL, Kamatani Y, Kennedy JL, Kittel-Schneider S, Knowles JA, Kogevinas M, Koromina M, Kranz TM, Kranzler HR, Kubo M, Kupka R, Kushner SA, Lavebratt C, Lawrence J, Leber M, Lee HJ, Lee PH, Levy SE, Lewis C, Liao C, Lucae S, Lundberg M, MacIntyre DJ, Magnusson SH, Maier W, Maihofer A, Malaspina D, Maratou E, Martinsson L, Mattheisen M, McCarroll SA, McGregor NW, McGuffin P, McKay JD, Medeiros H, Medland SE, Millischer V, Montgomery GW, Moran JL, Morris DW, Mühleisen TW, O'Brien N, O'Donovan C, Olde Loohuis LM, Oruc L, Papiol S, Pardiñas AF, Perry A, Pfennig A, Porichi E, Potash JB, Quested D, Raj T, Rapaport MH, DePaulo JR, Regeer EJ, Rice JP, Rivas F, Rivera M, Roth J, Roussos P, Ruderfer DM, Sánchez-Mora C, Schulte EC, Senner F, Sharp S, Shilling PD, Sigurdsson E, Sirignano L, Slaney C, Smeland OB, Smith DJ, Sobell JL, Søholm Hansen C, Soler Artigas M, Spijker AT, Stein DJ, Strauss JS, Świątkowska B, Terao C, Thorgeirsson TE, Toma C, Tooney P, Tsermpini EE, Vawter MP, Vedder H, Walters JTR, Witt SH, Xi S, Xu W, Yang JMK, Young AH, Young H, Zandi PP, Zhou H, Zillich L, Adolfsson R, Agartz I, Alda M, Alfredsson L, Babadjanova G, Backlund L, Baune BT, Bellivier F, Bengesser S, Berrettini WH, Blackwood DHR, Boehnke M, Børglum AD, Breen G, Carr VJ, Catts S, Corvin A, Craddock N, Dannlowski U, Dikeos D, Esko T, Etain B, Ferentinos P, Frye M, Fullerton JM, Gawlik M, Gershon ES, Goes FS, Green MJ, Grigoroiu-Serbanescu M, Hauser J, Henskens F, Hillert J, Hong KS, Hougaard DM, Hultman CM, Hveem K, Iwata N, Jablensky AV, Jones I, Jones LA, Kahn RS, Kelsoe JR, Kirov G, Landén M, Leboyer M, Lewis CM, Li QS, Lissowska J, Lochner C, Loughland C, Martin NG, Mathews CA, Mayoral F, McElroy SL, McIntosh AM, McMahon FJ, Melle I, Michie P, Milani L, Mitchell PB, Morken G, Mors O, Mortensen PB, Mowry B, Müller-Myhsok B, Myers RM, Neale BM, Nievergelt CM, Nordentoft M, Nöthen MM, O'Donovan MC, Oedegaard KJ, Olsson T, Owen MJ, Paciga SA, Pantelis C, Pato C, Pato MT, Patrinos GP, Perlis RH, Posthuma D, Ramos-Quiroga JA, Reif A, Reininghaus EZ, Ribasés M, Rietschel M, Ripke S, Rouleau GA, Saito T, Schall U, Schalling M, Schofield PR, Schulze TG, Scott LJ, Scott RJ, Serretti A, Shannon Weickert C, Smoller JW, Stefansson H, Stefansson K, Stordal E, Streit F, Sullivan PF, Turecki G, Vaaler AE, Vieta E, Vincent JB, Waldman ID, Weickert TW, Werge T, Wray NR, Zwart JA, Biernacka JM, Nurnberger JI, Cichon S, Edenberg HJ, Stahl EA, McQuillin A, Di Florio A, Ophoff RA, Andreassen OA. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet 2021; 53:817-829. [PMID: 34002096 PMCID: PMC8192451 DOI: 10.1038/s41588-021-00857-4] [Show More Authors] [Citation(s) in RCA: 823] [Impact Index Per Article: 205.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies.
Collapse
Affiliation(s)
- Niamh Mullins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
| | - Kevin S O'Connell
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, University of Oslo, Oslo, Norway
| | - Brandon Coombes
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jonathan R I Coleman
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- NIHR Maudsley BRC, King's College London, London, UK
| | - Zhen Qiao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas D Als
- iSEQ, Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Tim B Bigdeli
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- VA NY Harbor Healthcare System, Brooklyn, NY, USA
| | - Sigrid Børte
- Research and Communication Unit for Musculoskeletal Health, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julien Bryois
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alexander W Charney
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ole Kristian Drange
- Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Østmarka, Division of Mental Health Care, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Michael J Gandal
- Department of Psychiatry and Biobehavioral Science, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Saskia P Hagenaars
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- NIHR Maudsley BRC, King's College London, London, UK
| | - Masashi Ikeda
- Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Nolan Kamitaki
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Minsoo Kim
- Department of Psychiatry and Biobehavioral Science, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristi Krebs
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Brian M Schilder
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura G Sloofman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Vassily Trubetskoy
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
| | - Bendik S Winsvold
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Liliya Abramova
- Russian Academy of Medical Sciences, Mental Health Research Center, Moscow, Russian Federation
| | - Kristina Adorjan
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Esben Agerbo
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Mariam Al Eissa
- Division of Psychiatry, University College London, London, UK
| | - Diego Albani
- Department of Neuroscience, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
- Northwestern University, Chicago, IL, USA
| | - Adebayo Anjorin
- Psychiatry, Berkshire Healthcare NHS Foundation Trust, Bracknell, UK
| | - Verneri Antilla
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Anastasia Antoniou
- 2nd Department of Psychiatry, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
| | - Ji Hyun Baek
- Department of Psychiatry, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Marie Bækvad-Hansen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Nicholas Bass
- Division of Psychiatry, University College London, London, UK
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Eva C Beins
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Sarah E Bergen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Armin Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Carsten Bøcker Pedersen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Erlend Bøen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Marco P Boks
- Psychiatry, Brain Center UMC Utrecht, Utrecht, the Netherlands
| | - Rosa Bosch
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Murielle Brum
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ben M Brumpton
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathalie Brunkhorst-Kanaan
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Jonas Bybjerg-Grauholm
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - William Byerley
- Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Murray Cairns
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Miquel Casas
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pablo Cervantes
- Mood Disorders Program, Department of Psychiatry, McGill University Health Center, Montreal, Quebec, Canada
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Cristiana Cruceanu
- Mood Disorders Program, Department of Psychiatry, McGill University Health Center, Montreal, Quebec, Canada
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alfredo Cuellar-Barboza
- Department of Psychiatry, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Julie Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David Curtis
- Centre for Psychiatry, Queen Mary University of London, London, UK
- UCL Genetics Institute, University College London, London, UK
| | - Piotr M Czerski
- Department of Psychiatry, Laboratory of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, Departments of Neurosciences, Radiology, and Psychiatry, University of California, San Diego, CA, USA
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Friederike S David
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amanda L Dobbyn
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Athanassios Douzenis
- 2nd Department of Psychiatry, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Torbjørn Elvsåshagen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
| | - Valentina Escott-Price
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - I Nicol Ferrier
- Academic Psychiatry, Newcastle University, Newcastle upon Tyne, UK
| | | | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Liz Forty
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Oleksandr Frei
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nelson B Freimer
- Department of Psychiatry and Biobehavioral Science, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Louise Frisén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Katrin Gade
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Julie Garnham
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Marianne Giørtz Pedersen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Ian R Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Scott D Gordon
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Tiffany A Greenwood
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jakob Grove
- iSEQ, Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - José Guzman-Parra
- Mental Health Department, University Regional Hospital, Biomedicine Institute (IBIMA), Málaga, Spain
| | - Kyooseob Ha
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Martin Hautzinger
- Department of Psychology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Dennis Hellgren
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Peter A Holmans
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Laura Huckins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stéphane Jamain
- Neuropsychiatrie Translationnelle, Inserm U955, Créteil, France
- Faculté de Santé, Université Paris Est, Créteil, France
| | - Jessica S Johnson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Janos L Kalman
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - James L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - James A Knowles
- Cell Biology, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
| | | | - Maria Koromina
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Thorsten M Kranz
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ralph Kupka
- Psychiatry, Altrecht, Utrecht, the Netherlands
- Psychiatry, GGZ inGeest, Amsterdam, the Netherlands
- Psychiatry, VU Medisch Centrum, Amsterdam, the Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jacob Lawrence
- Psychiatry, North East London NHS Foundation Trust, Ilford, UK
| | - Markus Leber
- Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
| | - Phil H Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shawn E Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Catrin Lewis
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Calwing Liao
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | - Susanne Lucae
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Martin Lundberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Donald J MacIntyre
- Division of Psychiatry, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Adam Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Dolores Malaspina
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eirini Maratou
- Clinical Biochemistry Laboratory, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Lina Martinsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Mattheisen
- iSEQ, Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Nathaniel W McGregor
- Systems Genetics Working Group, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Peter McGuffin
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - James D McKay
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, Lyon, France
| | - Helena Medeiros
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
| | - Sarah E Medland
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jennifer L Moran
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Derek W Morris
- Centre for Neuroimaging and Cognitive Genomics (NICOG), National University of Ireland Galway, Galway, Ireland
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Niamh O'Brien
- Division of Psychiatry, University College London, London, UK
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Loes M Olde Loohuis
- Department of Psychiatry and Biobehavioral Science, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Lilijana Oruc
- Medical Faculty, School of Science and Technology, University Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Antonio F Pardiñas
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Amy Perry
- Psychological Medicine, University of Worcester, Worcester, UK
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Evgenia Porichi
- 2nd Department of Psychiatry, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - James B Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Digby Quested
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Towfique Raj
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark H Rapaport
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - J Raymond DePaulo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eline J Regeer
- Outpatient Clinic for Bipolar Disorder, Altrecht, Utrecht, the Netherlands
| | - John P Rice
- Department of Psychiatry, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Fabio Rivas
- Mental Health Department, University Regional Hospital, Biomedicine Institute (IBIMA), Málaga, Spain
| | - Margarita Rivera
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Neurosciences, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Julian Roth
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas M Ruderfer
- Medicine, Psychiatry, Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cristina Sánchez-Mora
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Sally Sharp
- Division of Psychiatry, University College London, London, UK
| | - Paul D Shilling
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Engilbert Sigurdsson
- Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, Department of Psychiatry, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Claire Slaney
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Olav B Smeland
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, University of Oslo, Oslo, Norway
| | - Daniel J Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Janet L Sobell
- Psychiatry and the Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Christine Søholm Hansen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Maria Soler Artigas
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | | | - Dan J Stein
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - John S Strauss
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Beata Świątkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Claudio Toma
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid and CSIC, Madrid, Spain
| | - Paul Tooney
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Evangelia-Eirini Tsermpini
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Marquis P Vawter
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Helmut Vedder
- Psychiatry, Psychiatrisches Zentrum Nordbaden, Wiesloch, Germany
| | - James T R Walters
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Simon Xi
- Computational Sciences Center of Emphasis, Pfizer Global Research and Development, Cambridge, MA, USA
| | - Wei Xu
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Mei Kay Yang
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK
| | - Hannah Young
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rolf Adolfsson
- Department of Clinical Sciences, Psychiatry, Umeå University Medical Faculty, Umeå, Sweden
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Institute of Clinical Medicine and Diakonhjemmet Hospital, University of Oslo, Oslo, Norway
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gulja Babadjanova
- Institute of Pulmonology, Russian State Medical University, Moscow, Russian Federation
| | - Lena Backlund
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Frank Bellivier
- Université de Paris, INSERM, Optimisation Thérapeutique en Neuropsychopharmacologie, UMRS 1144, Paris, France
- APHP Nord, DMU Neurosciences, Département de Psychiatrie et de Médecine Addictologique, GHU Saint Louis-Lariboisière-Fernand Widal, Paris, France
| | - Susanne Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | | | | | - Michael Boehnke
- Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Anders D Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine and the iSEQ Center, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, Aarhus, Denmark
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- NIHR Maudsley BRC, King's College London, London, UK
| | - Vaughan J Carr
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Stanley Catts
- University of Queensland, Brisbane, Queensland, Australia
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Nicholas Craddock
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Dimitris Dikeos
- 1st Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Tõnu Esko
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Division of Endocrinology, Children's Hospital Boston, Boston, MA, USA
| | - Bruno Etain
- Université de Paris, INSERM, Optimisation Thérapeutique en Neuropsychopharmacologie, UMRS 1144, Paris, France
- APHP Nord, DMU Neurosciences, Département de Psychiatrie et de Médecine Addictologique, GHU Saint Louis-Lariboisière-Fernand Widal, Paris, France
| | - Panagiotis Ferentinos
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- 2nd Department of Psychiatry, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Mark Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Micha Gawlik
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa J Green
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania
| | - Joanna Hauser
- Department of Psychiatry, Laboratory of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Frans Henskens
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kyung Sue Hong
- Department of Psychiatry, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - David M Hougaard
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kristian Hveem
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nakao Iwata
- Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Assen V Jablensky
- University of Western Australia, Nedlands, Western Australia, Australia
| | - Ian Jones
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Lisa A Jones
- Psychological Medicine, University of Worcester, Worcester, UK
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Psychiatry, Brain Center UMC Utrecht, Utrecht, the Netherlands
| | - John R Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - George Kirov
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Marion Leboyer
- Neuropsychiatrie Translationnelle, Inserm U955, Créteil, France
- Faculté de Santé, Université Paris Est, Créteil, France
- Department of Psychiatry and Addiction Medicine, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- NIHR Maudsley BRC, King's College London, London, UK
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Qingqin S Li
- Neuroscience Therapeutic Area, Janssen Research and Development, LLC, Titusville, NJ, USA
| | - Jolanta Lissowska
- Cancer Epidemiology and Prevention, M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Nicholas G Martin
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Carol A Mathews
- Department of Psychiatry and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Fermin Mayoral
- Mental Health Department, University Regional Hospital, Biomedicine Institute (IBIMA), Málaga, Spain
| | | | - Andrew M McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Francis J McMahon
- Human Genetics Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Ingrid Melle
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Division of Mental Health and Addiction, University of Oslo, Institute of Clinical Medicine, Oslo, Norway
| | - Patricia Michie
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Gunnar Morken
- Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Psychiatry, St Olavs University Hospital, Trondheim, Norway
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Risskov, Denmark
| | - Preben Bo Mortensen
- iSEQ, Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Bryan Mowry
- University of Queensland, Brisbane, Queensland, Australia
| | - Bertram Müller-Myhsok
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- University of Liverpool, Liverpool, UK
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Benjamin M Neale
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research/Psychiatry, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Merete Nordentoft
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Mental Health Services in the Capital Region of Denmark, Mental Health Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Michael C O'Donovan
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Ketil J Oedegaard
- Division of Psychiatry, Haukeland Universitetssjukehus, Bergen, Norway
- Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Tomas Olsson
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet at Karolinska University Hospital, Solna, Sweden
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Sara A Paciga
- Human Genetics and Computational Biomedicine, Pfizer Global Research and Development, Groton, CT, USA
| | | | - Carlos Pato
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
| | - Michele T Pato
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Roy H Perlis
- Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Clinical Research, Massachusetts General Hospital, Boston, MA, USA
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, the Netherlands
| | - Josep Antoni Ramos-Quiroga
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Marta Ribasés
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephan Ripke
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Takeo Saito
- Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Ulrich Schall
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Laura J Scott
- Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Rodney J Scott
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jordan W Smoller
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, USA
| | | | - Kari Stefansson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Eystein Stordal
- Department of Psychiatry, Hospital Namsos, Namsos, Norway
- Department of Neuroscience, Norges Teknisk Naturvitenskapelige Universitet Fakultet for Naturvitenskap og Teknologi, Trondheim, Norway
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gustavo Turecki
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Arne E Vaaler
- Department of Psychiatry, Sankt Olavs Hospital Universitetssykehuset i Trondheim, Trondheim, Norway
| | - Eduard Vieta
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - John B Vincent
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Irwin D Waldman
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Thomas W Weickert
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Thomas Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - John-Anker Zwart
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - John I Nurnberger
- Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eli A Stahl
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | | | - Arianna Di Florio
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Roel A Ophoff
- Department of Psychiatry and Biobehavioral Science, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
- Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
- NORMENT, University of Oslo, Oslo, Norway.
| |
Collapse
|
198
|
Yoder AD, Tiley GP. The challenge and promise of estimating the de novo mutation rate from whole-genome comparisons among closely related individuals. Mol Ecol 2021; 30:6087-6100. [PMID: 34062029 DOI: 10.1111/mec.16007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
Germline mutations are the raw material for natural selection, driving species evolution and the generation of earth's biodiversity. Without this driver of genetic diversity, life on earth would stagnate. Yet, it is a double-edged sword. An excess of mutations can have devastating effects on fitness and population viability. It is therefore one of the great challenges of molecular ecology to determine the rate and mechanisms by which these mutations accrue across the tree of life. Advances in high-throughput sequencing technologies are providing new opportunities for characterizing the rates and mutational spectra within species and populations thus informing essential evolutionary parameters such as the timing of speciation events, the intricacies of historical demography, and the degree to which lineages are subject to the burdens of mutational load. Here, we will focus on both the challenge and promise of whole-genome comparisons among parents and their offspring from known pedigrees for the detection of germline mutations as they arise in a single generation. The potential of these studies is high, but the field is still in its infancy and much uncertainty remains. Namely, the technical challenges are daunting given that pedigree-based genome comparisons are essentially searching for needles in a haystack given the very low signal to noise ratio. Despite the challenges, we predict that rapidly developing methods for whole-genome comparisons hold great promise for integrating empirically derived estimates of de novo mutation rates and mutation spectra across many molecular ecological applications.
Collapse
Affiliation(s)
- Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA
| | | |
Collapse
|
199
|
Wei G, Cao J, Huang P, An P, Badlani D, Vaid KA, Zhao S, Wang DQH, Zhuo J, Yin L, Frassetto A, Markel A, Presnyak V, Gandham S, Hua S, Lukacs C, Finn PF, Giangrande PH, Martini PGV, Popov YV. Synthetic human ABCB4 mRNA therapy rescues severe liver disease phenotype in a BALB/c.Abcb4 -/- mouse model of PFIC3. J Hepatol 2021; 74:1416-1428. [PMID: 33340584 PMCID: PMC8188846 DOI: 10.1016/j.jhep.2020.12.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare lethal autosomal recessive liver disorder caused by loss-of-function variations of the ABCB4 gene, encoding a phosphatidylcholine transporter (ABCB4/MDR3). Currently, no effective treatment exists for PFIC3 outside of liver transplantation. METHODS We have produced and screened chemically and genetically modified mRNA variants encoding human ABCB4 (hABCB4 mRNA) encapsulated in lipid nanoparticles (LNPs). We examined their pharmacological effects in a cell-based model and in a new in vivo mouse model resembling human PFIC3 as a result of homozygous disruption of the Abcb4 gene in fibrosis-susceptible BALB/c.Abcb4-/- mice. RESULTS We show that treatment with liver-targeted hABCB4 mRNA resulted in de novo expression of functional hABCB4 protein and restored phospholipid transport in cultured cells and in PFIC3 mouse livers. Importantly, repeated injections of the hABCB4 mRNA effectively rescued the severe disease phenotype in young Abcb4-/- mice, with rapid and dramatic normalisation of all clinically relevant parameters such as inflammation, ductular reaction, and liver fibrosis. Synthetic mRNA therapy also promoted favourable hepatocyte-driven liver regeneration to restore normal homeostasis, including liver weight, body weight, liver enzymes, and portal vein blood pressure. CONCLUSIONS Our data provide strong preclinical proof-of-concept for hABCB4 mRNA therapy as a potential treatment option for patients with PFIC3. LAY SUMMARY This report describes the development of an innovative mRNA therapy as a potential treatment for PFIC3, a devastating rare paediatric liver disease with no treatment options except liver transplantation. We show that administration of our mRNA construct completely rescues severe liver disease in a genetic model of PFIC3 in mice.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/administration & dosage
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Cholestasis, Intrahepatic/drug therapy
- Cholestasis, Intrahepatic/genetics
- Cholestasis, Intrahepatic/metabolism
- Disease Models, Animal
- Gene Deletion
- HEK293 Cells
- Homozygote
- Humans
- Liposomes/chemistry
- Liver/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Nanoparticle Drug Delivery System/chemistry
- Nanoparticles/chemistry
- Phenotype
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- Transfection
- Treatment Outcome
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Guangyan Wei
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | - Pinzhu Huang
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ping An
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Division of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Disha Badlani
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kahini A Vaid
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shuangshuang Zhao
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jenny Zhuo
- Rare Diseases, Moderna Inc, Cambridge, MA, USA
| | - Ling Yin
- Rare Diseases, Moderna Inc, Cambridge, MA, USA
| | | | - Arianna Markel
- Rare Diseases, Moderna Inc, Cambridge, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Serenus Hua
- Analytical Development, Moderna Inc, Cambridge, MA, USA
| | | | | | | | | | - Yury V Popov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
200
|
Burke L. Hostile environments? Down’s syndrome and genetic screening in contemporary culture. MEDICAL HUMANITIES 2021; 47:193-200. [PMCID: PMC8223681 DOI: 10.1136/medhum-2020-012066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
This essay explores the complex entanglement of new reproductive technologies, genetics, health economics, rights-based discourses and ethical considerations of the value of human life with particular reference to representations of Down’s syndrome and the identification of trisomy 21. Prompted by the debates that have occurred in the wake of the adoption of non-invasive prenatal testing (NIPT), the essay considers the representation of Down’s syndrome and prenatal testing in bioethical discourse, feminist writings on reproductive autonomy and disability studies and in a work of popular fiction, Yrsa Sigurdardóttir’s Someone To Look Over Me (2013), a novel set in Iceland during the post-2008 financial crisis. It argues that the conjunction of neo-utilitarian and neoliberal and biomedical models produce a hostile environment in which the concrete particularities of disabled people’s lives and experiences are placed under erasure for a ‘genetic fiction’ that imagines the life of the ‘not yet born’ infant with Down’s syndrome as depleted, diminished and burdensome. With close reference to the depiction of Down’s syndrome and learning disability in the novel, my reading explores the ways in which the generic conventions of crime fiction intersect with ideas about economics, politics and learning disability, to mediate an exploration of human value and social justice that troubles dominant deficit-led constructions of disability.
Collapse
Affiliation(s)
- Lucy Burke
- Department of English, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|