151
|
Kong CHT, Rog-Zielinska EA, Orchard CH, Kohl P, Cannell MB. Sub-microscopic analysis of t-tubule geometry in living cardiac ventricular myocytes using a shape-based analysis method. J Mol Cell Cardiol 2017; 108:1-7. [PMID: 28483597 PMCID: PMC5529290 DOI: 10.1016/j.yjmcc.2017.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/30/2022]
Abstract
Transverse-axial tubules (TTs) are key structures involved in cardiac excitation-contraction coupling and can become deranged in disease. Although optical measurement of TTs is frequently employed to assess TT abundance and regularity, TT dimensions are generally below the diffraction limit of optical microscopy so determination of tubule size is problematic. TT diameter was measured by labeling both local surface membrane area and volume with fluorescent probes (FM4-64 and calcein, respectively), correcting image asymmetry by image processing and using the relationship between surface area and volume for a geometric primitive. This method shows that TTs have a mean (± SEM) diameter of 356 ± 18 nm in rabbit and 169 ± 15 nm in mouse (p < 0.001). Rabbit TT diameters were more variable than those of mouse (p < 0.01) and the smallest TT detected was 41 nm in mouse and the largest 695 nm in rabbit. These estimates are consistent with TT diameters derived from the more limited sampling of high-pressure frozen samples by electron tomography (which examines only a small fraction of the cell volume). Other measures of TT abundance and geometry (such as volume, membrane fractions and direction) were also derived. On the physiological time scale of E-C coupling (milliseconds), the average TT electrical space constant is ~ 175 μm in rabbit and ~ 120 μm in mouse and is ~ 50% of the steady-state space constant. This is sufficient to ensure reasonable electrical uniformity across normal cells. The image processing strategy and shape-based 3D approach to feature quantification is also generally applicable to other problems in quantification of sub-cellular anatomy. Living cardiomyocytes were dual-labeled with fluorescent surface and volume probes. A novel 3D image processing strategy enabled calculation of t-tubule diameter. The method shows rabbit and mouse t-tubules have quite different morphologies. Mean diameters of rabbit and mouse t-tubules were 360 and 170 nm, respectively. Estimated electrical space constants are sufficient to ensure electrical uniformity.
Collapse
Affiliation(s)
- Cherrie H T Kong
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Eva A Rog-Zielinska
- National Heart and Lung Institute, Harefield Heart Science Centre, Imperial College London, Harefield UB9 6JH, United Kingdom
| | - Clive H Orchard
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Peter Kohl
- National Heart and Lung Institute, Harefield Heart Science Centre, Imperial College London, Harefield UB9 6JH, United Kingdom; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg - Bad Krozingen, Medical School of the University of Freiburg, Elsaesser Str 2Q, 79110 Freiburg, Germany
| | - Mark B Cannell
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
152
|
Pinali C, Malik N, Davenport JB, Allan LJ, Murfitt L, Iqbal MM, Boyett MR, Wright EJ, Walker R, Zhang Y, Dobryznski H, Holt CM, Kitmitto A. Post-Myocardial Infarction T-tubules Form Enlarged Branched Structures With Dysregulation of Junctophilin-2 and Bridging Integrator 1 (BIN-1). J Am Heart Assoc 2017; 6:e004834. [PMID: 28473402 PMCID: PMC5524063 DOI: 10.1161/jaha.116.004834] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/26/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heart failure is a common secondary complication following a myocardial infarction (MI), characterized by impaired cardiac contraction and t-tubule (t-t) loss. However, post-MI nano-scale morphological changes to the remaining t-ts are poorly understood. METHOD AND RESULTS We utilized a porcine model of MI, using a nonlethal microembolization method to generate controlled microinfarcts. Using serial block face scanning electron microscopy, we report that post-MI, after mild left-ventricular dysfunction has developed, t-ts are not only lost in the peri-infarct region, but also the remnant t-ts form enlarged, highly branched disordered structures, containing a dense intricate inner membrane. Biochemical and proteomics analyses showed that the calcium release channel, ryanodine receptor 2 (RyR2), abundance is unchanged, but junctophilin-2 (JP2), important for maintaining t-t trajectory, is depressed (-0.5×) in keeping with the t-ts being disorganized. However, immunolabeling shows that populations of RyR2 and JP2 remain associated with the remodeled t-ts. The bridging integrator 1 protein (BIN-1), a regulator of tubulogensis, is upregulated (+5.4×), consistent with an overdeveloped internal membrane system, a feature not present in control t-ts. Importantly, we have determined that t-ts, in the remote region, are narrowed and also contain dense membrane folds (BIN-1 is up-regulated +3.4×), whereas the t-ts have a radial organization comparable to control JP2 is upregulated +1.7×. CONCLUSIONS This study reveals previously unidentified remodeling of the t-t nano-architecture in the post-MI heart that extends to the remote region. Our findings highlight that targeting JP2 may be beneficial for preserving the orientation of the t-ts, attenuating the development of hypocontractility post-MI.
Collapse
Affiliation(s)
- Christian Pinali
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Nadim Malik
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - J Bernard Davenport
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Laurence J Allan
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Lucy Murfitt
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Mohammad M Iqbal
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Mark R Boyett
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Elizabeth J Wright
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Rachel Walker
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Yu Zhang
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Halina Dobryznski
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Cathy M Holt
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Ashraf Kitmitto
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| |
Collapse
|
153
|
Galdos FX, Guo Y, Paige SL, VanDusen NJ, Wu SM, Pu WT. Cardiac Regeneration: Lessons From Development. Circ Res 2017; 120:941-959. [PMID: 28302741 DOI: 10.1161/circresaha.116.309040] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023]
Abstract
Palliative surgery for congenital heart disease has allowed patients with previously lethal heart malformations to survive and, in most cases, to thrive. However, these procedures often place pressure and volume loads on the heart, and over time, these chronic loads can cause heart failure. Current therapeutic options for initial surgery and chronic heart failure that results from failed palliation are limited, in part, by the mammalian heart's low inherent capacity to form new cardiomyocytes. Surmounting the heart regeneration barrier would transform the treatment of congenital, as well as acquired, heart disease and likewise would enable development of personalized, in vitro cardiac disease models. Although these remain distant goals, studies of heart development are illuminating the path forward and suggest unique opportunities for heart regeneration, particularly in fetal and neonatal periods. Here, we review major lessons from heart development that inform current and future studies directed at enhancing cardiac regeneration.
Collapse
Affiliation(s)
- Francisco X Galdos
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Yuxuan Guo
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Sharon L Paige
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Nathan J VanDusen
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Sean M Wu
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| | - William T Pu
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| |
Collapse
|
154
|
Veeraraghavan R, Györke S, Radwański PB. Neuronal sodium channels: emerging components of the nano-machinery of cardiac calcium cycling. J Physiol 2017; 595:3823-3834. [PMID: 28195313 DOI: 10.1113/jp273058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/05/2016] [Indexed: 01/07/2023] Open
Abstract
Excitation-contraction coupling is the bridge between cardiac electrical activation and mechanical contraction. It is driven by the influx of Ca2+ across the sarcolemma triggering Ca2+ release from the sarcoplasmic reticulum (SR) - a process termed Ca2+ -induced Ca2+ release (CICR) - followed by re-sequestration of Ca2+ into the SR. The Na+ /Ca2+ exchanger inextricably couples the cycling of Ca2+ and Na+ in cardiac myocytes. Thus, influx of Na+ via voltage-gated Na+ channels (NaV ) has emerged as an important regulator of CICR both in health and in disease. Recent insights into the subcellular distribution of cardiac and neuronal NaV isoforms and their ultrastructural milieu have important implications for the roles of these channels in mediating Ca2+ -driven arrhythmias. This review will discuss functional insights into the role of neuronal NaV isoforms vis-à-vis cardiac NaV s in triggering such arrhythmias and their potential as therapeutic targets in the context of the aforementioned structural observations.
Collapse
Affiliation(s)
- Rengasayee Veeraraghavan
- Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, VA, USA
| | - Sándor Györke
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, 473 West 12th Avenue, Room 510, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Przemysław B Radwański
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, 473 West 12th Avenue, Room 510, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH, USA.,Division of Pharmacy Practice and Science, College of Pharmacy, Ohio State University, Columbus, OH, USA
| |
Collapse
|
155
|
Abstract
Unique to striated muscle cells, transverse tubules (t-tubules) are membrane organelles that consist of sarcolemma penetrating into the myocyte interior, forming a highly branched and interconnected network. Mature t-tubule networks are found in mammalian ventricular cardiomyocytes, with the transverse components of t-tubules occurring near sarcomeric z-discs. Cardiac t-tubules contain membrane microdomains enriched with ion channels and signaling molecules. The microdomains serve as key signaling hubs in regulation of cardiomyocyte function. Dyad microdomains formed at the junctional contact between t-tubule membrane and neighboring sarcoplasmic reticulum are critical in calcium signaling and excitation-contraction coupling necessary for beat-to-beat heart contraction. In this review, we provide an overview of the current knowledge in gross morphology and structure, membrane and protein composition, and function of the cardiac t-tubule network. We also review in detail current knowledge on the formation of functional membrane subdomains within t-tubules, with a particular focus on the cardiac dyad microdomain. Lastly, we discuss the dynamic nature of t-tubules including membrane turnover, trafficking of transmembrane proteins, and the life cycles of membrane subdomains such as the cardiac BIN1-microdomain, as well as t-tubule remodeling and alteration in diseased hearts. Understanding cardiac t-tubule biology in normal and failing hearts is providing novel diagnostic and therapeutic opportunities to better treat patients with failing hearts.
Collapse
Affiliation(s)
- TingTing Hong
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California; and Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Robin M Shaw
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California; and Department of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
156
|
Zhou K, Hong T. Cardiac BIN1 (cBIN1) is a regulator of cardiac contractile function and an emerging biomarker of heart muscle health. SCIENCE CHINA-LIFE SCIENCES 2016; 60:257-263. [DOI: 10.1007/s11427-016-0249-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/06/2016] [Indexed: 12/01/2022]
|
157
|
Effects of induced Na+/Ca2+ exchanger overexpression on the spatial distribution of L-type Ca2+ channels and junctophilin-2 in pressure-overloaded hearts. Biochem Biophys Res Commun 2016; 480:564-569. [DOI: 10.1016/j.bbrc.2016.10.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/24/2016] [Indexed: 02/08/2023]
|
158
|
Bennett PM, Ehler E, Wilson AJ. Sarcoplasmic reticulum is an intermediary of mitochondrial and myofibrillar growth at the intercalated disc. J Muscle Res Cell Motil 2016; 37:55-69. [PMID: 27329158 PMCID: PMC5010836 DOI: 10.1007/s10974-016-9444-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/22/2016] [Indexed: 11/30/2022]
Abstract
In cardiomyocytes columns of intermyofibrillar mitochondria run up to the intercalated disc (ID); half are collinear with those in the neighbouring cell, suggesting coordinated addition of sarcomeres and mitochondria both within and between cells during cardiomyocyte growth. Recent evidence for an association between sarcoplasmic reticulum (SR) and mitochondria indicates that the SR may be an intermediary in this coordinated behaviour. For this reason we have investigated the arrangement of SR and t tubules with respect to mitochondria and myofibrils, particularly at the ID. In the body of the cardiomyocyte the mitochondrial columns are frequently intersected by transverse tubules. In addition, we find that a majority of axial tubules are sandwiched between mitochondria and myofibril. No tubules are found at the ID. SR coats mitochondrial columns and fibrils throughout their length and reaches towards the peaks of the ID membrane where it attaches in the form of junctional (j)SR. These peripheral ID couplings are often situated between mitochondria and ID membrane, suggesting an SR connection between the two. In dilated cardiomyopathy (DCM) the mitochondria are somewhat disordered and clumped. In a mouse model for DCM, the muscle LIM protein KO, we find that there is a lack of mitochondria near the ID, suggesting the uncoupling of the myofibril/mitochondria organisation during growth. SR still coats the fibrils and reaches the ID folds in a jSR coupling. Unlike in control tissue, however, loops and long fingers of ID membrane penetrate into the proximal sarcomere suggesting a possible intermediary state in cardiomyocyte growth.
Collapse
Affiliation(s)
- Pauline M Bennett
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| | - Elisabeth Ehler
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Amanda J Wilson
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.,Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
159
|
Laury-Kleintop LD, Mulgrew JR, Heletz I, Nedelcoviciu RA, Chang MY, Harris DM, Koch WJ, Schneider MD, Muller AJ, Prendergast GC. Cardiac-specific disruption of Bin1 in mice enables a model of stress- and age-associated dilated cardiomyopathy. J Cell Biochem 2016; 116:2541-51. [PMID: 25939245 DOI: 10.1002/jcb.25198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/14/2015] [Indexed: 12/21/2022]
Abstract
Non-compensated dilated cardiomyopathy (DCM) leading to death from heart failure is rising rapidly in developed countries due to aging demographics, and there is a need for informative preclinical models to guide the development of effective therapeutic strategies to prevent or delay disease onset. In this study, we describe a novel model of heart failure based on cardiac-specific deletion of the prototypical mammalian BAR adapter-encoding gene Bin1, a modifier of age-associated disease. Bin1 deletion during embryonic development causes hypertrophic cardiomyopathy and neonatal lethality, but there is little information on how Bin1 affects cardiac function in adult animals. Here we report that cardiomyocyte-specific loss of Bin1 causes age-associated dilated cardiomyopathy (DCM) beginning by 8-10 months of age. Echocardiographic analysis showed that Bin1 loss caused a 45% reduction in ejection fraction during aging. Younger animals rapidly developed DCM if cardiac pressure overload was created by transverse aortic constriction. Heterozygotes exhibited an intermediate phenotype indicating Bin1 is haplo-insufficient to sustain normal heart function. Bin1 loss increased left ventricle (LV) volume and diameter during aging, but it did not alter LV volume or diameter in hearts from heterozygous mice nor did it affect LV mass. Bin1 loss increased interstitial fibrosis and mislocalization of the voltage-dependent calcium channel Cav 1.2, and the lipid raft scaffold protein caveolin-3, which normally complexes with Bin1 and Cav 1.2 in cardiomyocyte membranes. Our findings show how cardiac deficiency in Bin1 function causes age- and stress-associated heart failure, and they establish a new preclinical model of this terminal cardiac disease.
Collapse
Affiliation(s)
| | | | - Ido Heletz
- Lankenau Medical Center, Wynnewood, Pennsylvania
| | | | - Mee Young Chang
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - David M Harris
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Walter J Koch
- Center for Translational Medicine, Temple University Medical School, Philadelphia, Pennsylvania
| | - Michael D Schneider
- National Heart and Lung Institute, British Heart Foundation Centre of Research Excellence, Faculty of Medicine, Imperial College London, London, UK
| | | | - George C Prendergast
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania.,Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical School and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
160
|
Electron tomography of rabbit cardiomyocyte three-dimensional ultrastructure. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:77-84. [PMID: 27210305 PMCID: PMC4959512 DOI: 10.1016/j.pbiomolbio.2016.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/01/2016] [Indexed: 12/22/2022]
Abstract
The field of cardiovascular research has benefitted from rapid developments in imaging technology over the last few decades. Accordingly, an ever growing number of large, multidimensional data sets have begun to appear, often challenging existing pre-conceptions about structure and function of biological systems. For tissue and cell structure imaging, the move from 2D section-based microscopy to true 3D data collection has been a major driver of new insight. In the sub-cellular domain, electron tomography is a powerful technique for exploration of cellular structures in 3D with unparalleled fidelity at nanometer resolution. Electron tomography is particularly advantageous for studying highly compartmentalised cells such as cardiomyocytes, where elaborate sub-cellular structures play crucial roles in electrophysiology and mechanics. Although the anatomy of specific ultra-structures, such as dyadic couplons, has been extensively explored using 2D electron microscopy of thin sections, we still lack accurate, quantitative knowledge of true individual shape, volume and surface area of sub-cellular domains, as well as their 3D spatial interrelations; let alone of how these are reshaped during the cycle of contraction and relaxation. Here we discuss and illustrate the utility of ET for identification, visualisation, and analysis of 3D cardiomyocyte ultrastructures such as the T-tubular system, sarcoplasmic reticulum, mitochondria and microtubules.
Collapse
|
161
|
Sildenafil ameliorates left ventricular T-tubule remodeling in a pressure overload-induced murine heart failure model. Acta Pharmacol Sin 2016; 37:473-82. [PMID: 26972492 DOI: 10.1038/aps.2016.13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 02/06/2016] [Indexed: 12/24/2022]
Abstract
AIM Sildenafil, a phosphodiesterase 5 (PDE5) inhibitor, has been shown to exert beneficial effects in heart failure. The purpose of this study was to test whether sildenafil suppressed transverse-tubule (T-tubule) remodeling in left ventricular (LV) failure and thereby providing the therapeutic benefits. METHODS A pressure overload-induced murine heart failure model was established in mice by thoracic aortic banding (TAB). One day after TAB, the mice received sildenafil (100 mg·kg(-1)·d(-1), sc) or saline for 5 weeks. At the end of treatment, echocardiography was used to examine LV function. Then the intact hearts were dissected out and placed in Langendorff-perfusion chamber for in situ confocal imaging of T-tubule ultrastructure from epicardial myocytes. RESULTS TAB surgery resulted in heart failure accompanied by remarkable T-tubule remodeling. Sildenafil treatment significantly attenuated TAB-induced cardiac hypertrophy and congestive heart failure, improved LV contractile function, and preserved T-tubule integrity in LV cardiomyocytes. But sildenafil treatment did not significantly affect the chamber dilation. The integrity of LV T-tubule structure was correlated with cardiac hypertrophy (R(2)=0.74, P<0.01) and global LV function (R(2)=0.47, P<0.01). CONCLUSION Sildenafil effectively ameliorates LV T-tubule remodeling in TAB mice, revealing a novel mechanism underlying the therapeutic benefits of sildenafil in heart failure.
Collapse
|
162
|
Jiang M, Zhang M, Howren M, Wang Y, Tan A, Balijepalli RC, Huizar JF, Tseng GN. JPH-2 interacts with Cai-handling proteins and ion channels in dyads: Contribution to premature ventricular contraction-induced cardiomyopathy. Heart Rhythm 2016; 13:743-52. [PMID: 26538326 PMCID: PMC4762763 DOI: 10.1016/j.hrthm.2015.10.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND In a canine model of premature ventricular contraction-induced cardiomyopathy (PVC-CM), Cav1.2 is downregulated and misplaced from transverse tubules (T tubules). Junctophilin-2 (JPH-2) is also downregulated. OBJECTIVES The objectives of this study were to understand the role of JPH-2 in PVC-CM and to probe changes in other proteins involved in dyad structure and function. METHODS We quantify T-tubule contents (di-8-ANEPPS fluorescence in live myocytes), examine myocyte ultrastructures (electron microscopy), probe JPH-2-interacting proteins (co-immunoprecipitation), quantify dyad and nondyad protein levels (immunoblotting), and examine subcellular distributions of dyad proteins (immunofluorescence/confocal microscopy). We also test direct JPH-2 modulation of channel function (vs indirect modulation through dyad formation) using heterologous expression. RESULTS PVC myocytes have reduced T-tubule contents but otherwise normal ultrastructures. Among 19 proteins examined, only JPH-2, bridging integrator-1 (BIN-1), and Cav1.2 are highly downregulated in PVC hearts. However, statistical analysis indicates a general reduction in dyad protein levels when JPH-2 is downregulated. Furthermore, several dyad proteins, including Na/Ca exchanger, are missing or shifted from dyads to the peripheral surface in PVC myocytes. JPH-2 directly or indirectly interacts with Cai-handling proteins, Cav1.2 and KCNQ1, although not BIN-1 or other scaffolding proteins tested. Expression in mammalian cells that do not have dyads confirms direct JPH-2 modulation of the L-type Ca channel current (Cav1.2/voltage-gated Ca channel β subunit 2) and slow delayed rectifier current (KCNQ1/KCNE1). CONCLUSION JPH-2 is more than a "dyad glue": it can modulate Cai handling and ion channel function in the dyad region. Downregulation of JPH-2, BIN-1, and Cav1.2 plays a deterministic role in PVC-CM. Dissecting the hierarchical relationship among the three is necessary for the design of therapeutic interventions to prevent the progression of PVC-CM.
Collapse
Affiliation(s)
- Min Jiang
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Mei Zhang
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Maureen Howren
- Department of Medicine/Cardiology Division, McGuire VA Medical Center, Richmond, Virginia
| | - Yuhong Wang
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Alex Tan
- Department of Medicine/Cardiology Division, McGuire VA Medical Center, Richmond, Virginia
| | - Ravi C Balijepalli
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Jose F Huizar
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Gea-Ny Tseng
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
163
|
Yue T, Park KH, Reese BE, Zhu H, Lyon S, Ma J, Mohler PJ, Zhang M. Quantifying Drug-Induced Nanomechanics and Mechanical Effects to Single Cardiomyocytes for Optimal Drug Administration To Minimize Cardiotoxicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1909-19. [PMID: 26738425 PMCID: PMC6083215 DOI: 10.1021/acs.langmuir.5b04314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Contrary to the well-studied dynamics and mechanics at organ and tissue levels, there is still a lack of good understanding for single cell dynamics and mechanics. Single cell dynamics and mechanics may act as an interface to provide unique information reflecting activities at the organ and tissue levels. This research was aimed at quantifying doxorubicin- and dexrazoxane-induced nanomechanics and mechanical effects to single cardiomyocytes, to reveal the therapeutic effectiveness of drugs at the single cell level and to optimize drug administration for reducing cardiotoxicity. This work employed a nanoinstrumentation platform, including a digital holographic microscope combined with an atomic force microscope, which can characterize cell stiffness and beating dynamics in response to drug exposures in real time and obtain time-dose-dependent effects of cardiotoxicity and protection. Through this research, an acute increase and a delayed decrease of surface beating force induced by doxorubicin was characterized. Dexrazoxane treated cells maintained better beating force and mechanical functions than cells without any treatment, which demonstrated cardioprotective effects of dexrazoxane. In addition, combined drug effects were quantitatively evaluated following various drug administration protocols. Preadministration of dexrazoxane was demonstrated to have protective effects against doxorubicin, which could lead to better strategies for cardiotoxicity prevention and anticancer drug administration. This study concluded that quantification of nanomechanics and mechanical effects at the single cell level could offer unique insights of molecular mechanisms involved in cellular activities influencing organ and tissue level responses to drug exposure, providing a new opportunity for the development of effective and time-dose-dependent strategies of drug administration.
Collapse
Affiliation(s)
- Tao Yue
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ki Ho Park
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Benjamin E. Reese
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hua Zhu
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Seth Lyon
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jianjie Ma
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Peter J. Mohler
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Mingjun Zhang
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Corresponding Author:
| |
Collapse
|
164
|
Latrunculin B modulates electrophysiological characteristics and arrhythmogenesis in pulmonary vein cardiomyocytes. Clin Sci (Lond) 2016; 130:721-32. [PMID: 26839418 DOI: 10.1042/cs20150593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/02/2016] [Indexed: 01/28/2023]
Abstract
AF (atrial fibrillation) is the most common sustained arrhythmia, and the PVs (pulmonary veins) play a critical role in triggering AF. Stretch causes structural remodelling, including cytoskeleton rearrangement, which may play a role in the genesis of AF. Lat-B (latrunculin B), an inhibitor of actin polymerization, is involved in Ca(2+) regulation. However, it is unclear whether Lat-B directly modulates the electrophysiological characteristics and Ca(2+) homoeostasis of the PVs. Conventional microelectrodes, whole-cell patch-clamp, and the fluo-3 fluorimetric ratio technique were used to record ionic currents and intracellular Ca(2+) within isolated rabbit PV preparations, or within isolated single PV cardiomyocytes, before and after administration of Lat-B (100 nM). Langendorff-perfused rabbit hearts were exposed to acute and continuous atrial stretch, and we studied PV electrical activity. Lat-B (100 nM) decreased the spontaneous electrical activity by 16±4% in PV preparations. Lat-B (100 nM) decreased the late Na(+) current, L-type Ca(2+) current, Na(+)/Ca(2+) exchanger current, and stretch-activated BKCa current, but did not affect the Na(+) current in PV cardiomyocytes. Lat-B reduced the transient outward K(+) current and ultra-rapid delayed rectifier K(+) current, but increased the delayed rectifier K(+) current in isolated PV cardiomyocytes. In addition, Lat-B (100 nM) decreased intracellular Ca(2+) transient and sarcoplasmic reticulum Ca(2+) content in PV cardiomyocytes. Moreover, Lat-B attenuated stretch-induced increased spontaneous electrical activity and trigger activity. The effects of Lat-B on the PV spontaneous electrical activity were attenuated in the presence of Y-27632 [10 μM, a ROCK (Rho-associated kinase) inhibitor] and cytochalasin D (10 μM, an actin polymerization inhibitor). In conclusion, Lat-B regulates PV electrophysiological characteristics and attenuates stretch-induced arrhythmogenesis.
Collapse
|
165
|
Safi F, Shteiman-Kotler A, Zhong Y, Iliadi KG, Boulianne GL, Rotin D. Drosophila Nedd4-long reduces Amphiphysin levels in muscles and leads to impaired T-tubule formation. Mol Biol Cell 2016; 27:907-18. [PMID: 26823013 PMCID: PMC4791135 DOI: 10.1091/mbc.e15-06-0420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/15/2016] [Indexed: 12/01/2022] Open
Abstract
An isoform of the fly ubiquitin ligase Nedd4 binds and degrades Amphiphysin, a postsynaptic and transverse tubule (T-tubule) protein in flies, thus impairing T-tubule formation and muscle function. Drosophila Nedd4 (dNedd4) is a HECT ubiquitin ligase with two main splice isoforms: dNedd4-short (dNedd4S) and -long (dNedd4Lo). DNedd4Lo has a unique N-terminus containing a Pro-rich region. We previously showed that whereas dNedd4S promotes neuromuscular synaptogenesis, dNedd4Lo inhibits it and impairs larval locomotion. To delineate the cause of the impaired locomotion, we searched for binding partners to the N-terminal unique region of dNedd4Lo in larval lysates using mass spectrometry and identified Amphiphysin (dAmph). dAmph is a postsynaptic protein containing SH3-BAR domains and regulates muscle transverse tubule (T-tubule) formation in flies. We validated the interaction by coimmunoprecipitation and showed direct binding between dAmph-SH3 domain and dNedd4Lo N-terminus. Accordingly, dNedd4Lo was colocalized with dAmph postsynaptically and at muscle T-tubules. Moreover, expression of dNedd4Lo in muscle during embryonic development led to disappearance of dAmph and impaired T-tubule formation, phenocopying amph-null mutants. This effect was not seen in muscles expressing dNedd4S or a catalytically-inactive dNedd4Lo(C→A). We propose that dNedd4Lo destabilizes dAmph in muscles, leading to impaired T-tubule formation and muscle function.
Collapse
Affiliation(s)
- Frozan Safi
- Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Biochemistry Department, University of Toronto, Toronto ON M5S 1A1, Canada
| | - Alina Shteiman-Kotler
- Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Biochemistry Department, University of Toronto, Toronto ON M5S 1A1, Canada
| | - Yunan Zhong
- Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Biochemistry Department, University of Toronto, Toronto ON M5S 1A1, Canada
| | | | - Gabrielle L Boulianne
- Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Molecular Genetics Department, University of Toronto, Toronto ON M5S 1A1, Canada
| | - Daniela Rotin
- Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Biochemistry Department, University of Toronto, Toronto ON M5S 1A1, Canada
| |
Collapse
|
166
|
Fu Y, Shaw SA, Naami R, Vuong CL, Basheer WA, Guo X, Hong T. Isoproterenol Promotes Rapid Ryanodine Receptor Movement to Bridging Integrator 1 (BIN1)-Organized Dyads. Circulation 2016; 133:388-97. [PMID: 26733606 DOI: 10.1161/circulationaha.115.018535] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/21/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND The key pathophysiology of human acquired heart failure is impaired calcium transient, which is initiated at dyads consisting of ryanodine receptors (RyRs) at sarcoplasmic reticulum apposing CaV1.2 channels at t-tubules. Sympathetic tone regulates myocardial calcium transients through β-adrenergic receptor (β-AR)-mediated phosphorylation of dyadic proteins. Phosphorylated RyRs (P-RyR) have increased calcium sensitivity and open probability, amplifying calcium transient at a cost of receptor instability. Given that bridging integrator 1 (BIN1) organizes t-tubule microfolds and facilitates CaV1.2 delivery, we explored whether β-AR-regulated RyRs are also affected by BIN1. METHODS AND RESULTS Isolated adult mouse hearts or cardiomyocytes were perfused for 5 minutes with the β-AR agonist isoproterenol (1 µmol/L) or the blockers CGP+ICI (baseline). Using biochemistry and superresolution fluorescent imaging, we identified that BIN1 clusters P-RyR and CaV1.2. Acute β-AR activation increases coimmunoprecipitation between P-RyR and cardiac spliced BIN1+13+17 (with exons 13 and 17). Isoproterenol redistributes BIN1 to t-tubules, recruiting P-RyRs and improving the calcium transient. In cardiac-specific Bin1 heterozygote mice, isoproterenol fails to concentrate BIN1 to t-tubules, impairing P-RyR recruitment. The resultant accumulation of uncoupled P-RyRs increases the incidence of spontaneous calcium release. In human hearts with end-stage ischemic cardiomyopathy, we find that BIN1 is also 50% reduced, with diminished P-RyR association with BIN1. CONCLUSIONS On β-AR activation, reorganization of BIN1-induced microdomains recruits P-RyR into dyads, increasing the calcium transient while preserving electric stability. When BIN1 is reduced as in human acquired heart failure, acute stress impairs microdomain formation, limiting contractility and promoting arrhythmias.
Collapse
Affiliation(s)
- Ying Fu
- From Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.A.S., R.N., C.L.V., W.A.B., T.H.); Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G.); and Departments of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, CA (T.H.)
| | - Seiji A Shaw
- From Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.A.S., R.N., C.L.V., W.A.B., T.H.); Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G.); and Departments of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, CA (T.H.)
| | - Robert Naami
- From Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.A.S., R.N., C.L.V., W.A.B., T.H.); Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G.); and Departments of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, CA (T.H.)
| | - Caresse L Vuong
- From Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.A.S., R.N., C.L.V., W.A.B., T.H.); Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G.); and Departments of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, CA (T.H.)
| | - Wassim A Basheer
- From Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.A.S., R.N., C.L.V., W.A.B., T.H.); Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G.); and Departments of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, CA (T.H.)
| | - Xiuqing Guo
- From Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.A.S., R.N., C.L.V., W.A.B., T.H.); Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G.); and Departments of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, CA (T.H.)
| | - TingTing Hong
- From Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.A.S., R.N., C.L.V., W.A.B., T.H.); Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G.); and Departments of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, CA (T.H.).
| |
Collapse
|
167
|
Osman S, Taylor KA, Allcock N, Rainbow RD, Mahaut-Smith MP. Detachment of surface membrane invagination systems by cationic amphiphilic drugs. Sci Rep 2016; 6:18536. [PMID: 26725955 PMCID: PMC4698757 DOI: 10.1038/srep18536] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/19/2015] [Indexed: 12/22/2022] Open
Abstract
Several cell types develop extensive plasma membrane invaginations to serve a specific physiological function. For example, the megakaryocyte demarcation membrane system (DMS) provides a membrane reserve for platelet production and muscle transverse (T) tubules facilitate excitation:contraction coupling. Using impermeant fluorescent indicators, capacitance measurements and electron microscopy, we show that multiple cationic amphiphilic drugs (CADs) cause complete separation of the DMS from the surface membrane in rat megakaryocytes. This includes the calmodulin inhibitor W-7, the phospholipase-C inhibitor U73122, and anti-psychotic phenothiazines. CADs also caused loss of T tubules in rat cardiac ventricular myocytes and the open canalicular system of human platelets. Anionic amphiphiles, U73343 (a less electrophilic U73122 analogue) and a range of kinase inhibitors were without effect on the DMS. CADs are known to accumulate in the inner leaflet of the cell membrane where they bind to anionic lipids, especially PI(4,5)P2. We therefore propose that surface detachment of membrane invaginations results from an ability of CADs to interfere with PI(4,5)P2 interactions with cytoskeletal or BAR domain proteins. This establishes a detubulating action of a large class of pharmaceutical compounds.
Collapse
Affiliation(s)
- Sangar Osman
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK, LE1 9HN
| | - Kirk A Taylor
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK, LE1 9HN
| | - Natalie Allcock
- Centre for Core Biotechnology Services, University of Leicester, Leicester, UK, LE1 9HN
| | - Richard D Rainbow
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK, LE1 9HN
| | - Martyn P Mahaut-Smith
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK, LE1 9HN
| |
Collapse
|
168
|
Cardiac voltage-gated calcium channel macromolecular complexes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1806-12. [PMID: 26707467 DOI: 10.1016/j.bbamcr.2015.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 11/21/2022]
Abstract
Over the past 20 years, a new field of research, called channelopathies, investigating diseases caused by ion channel dysfunction has emerged. Cardiac ion channels play an essential role in the generation of the cardiac action potential. Investigators have largely determined the physiological roles of different cardiac ion channels, but little is known about the molecular determinants of their regulation. The voltage-gated calcium channel Ca(v)1.2 shapes the plateau phase of the cardiac action potential and allows the influx of calcium leading to cardiomyocyte contraction. Studies suggest that the regulation of Ca(v)1.2 channels is not uniform in working cardiomyocytes. The notion of micro-domains containing Ca(v)1.2 channels and different calcium channel interacting proteins, called macro-molecular complex, has been proposed to explain these observations. The objective of this review is to summarize the currently known information on the Ca(v)1.2 macromolecular complexes in the cardiac cell and discuss their implication in cardiac function and disorder. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
|
169
|
Ehler E. Cardiac cytoarchitecture - why the "hardware" is important for heart function! BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1857-63. [PMID: 26577135 PMCID: PMC5104690 DOI: 10.1016/j.bbamcr.2015.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 01/05/2023]
Abstract
Cells that constitute fully differentiated tissues are characterised by an architecture that makes them perfectly suited for the job they have to do. This is especially obvious for cardiomyocytes, which have an extremely regular shape and display a paracrystalline arrangement of their cytoplasmic components. This article will focus on the two major cytoskeletal multiprotein complexes that are found in cardiomyocytes, the myofibrils, which are responsible for contraction and the intercalated disc, which mediates mechanical and electrochemical contact between individual cardiomyocytes. Recent studies have revealed that these two sites are also crucial in sensing excessive mechanical strain. Signalling processes will be triggered that## lead to changes in gene expression and eventually lead to an altered cardiac cytoarchitecture in the diseased heart, which results in a compromised function. Thus, understanding these changes and the signals that lead to them is crucial to design treatment strategies that can attenuate these processes. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Elisabeth Ehler
- BHF Centre of Research Excellence at King's College London, Cardiovascular Division and Randall Division of Cell and Molecular Biophysics, London, UK.
| |
Collapse
|
170
|
BIN1 regulates dynamic t-tubule membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1839-47. [PMID: 26578114 DOI: 10.1016/j.bbamcr.2015.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/31/2015] [Accepted: 11/09/2015] [Indexed: 11/23/2022]
Abstract
Cardiac transverse tubules (t-tubules) are specific membrane organelles critical in calcium signaling and excitation-contraction coupling required for beat-to-beat heart contraction. T-tubules are highly branched and form an interconnected network that penetrates the myocyte interior to form junctions with the sarcoplasmic reticulum. T-tubules are selectively enriched with specific ion channels and proteins crucial in calcium transient development necessary in excitation-contraction coupling, thus t-tubules are a key component of cardiac myocyte function. In this review, we focus primarily on two proteins concentrated within the t-tubular network, the L-type calcium channel (LTCC) and associated membrane anchor protein, bridging integrator 1 (BIN1). Here, we provide an overview of current knowledge in t-tubule morphology, composition, microdomains, as well as the dynamics of the t-tubule network. Secondly, we highlight multiple aspects of BIN1-dependent t-tubule function, which includes forward trafficking of LTCCs to t-tubules, LTCC clustering at t-tubule surface, microdomain organization and regulation at t-tubule membrane, and the formation of a slow diffusion barrier within t-tubules. Lastly, we describe progress in characterizing how acquired human heart failure can be attributed to abnormal BIN1 transcription and associated t-tubule remodeling. Understanding BIN1-regulated cardiac t-tubule biology in human heart failure management has the dual benefit of promoting progress in both biomarker development and therapeutic target identification. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
|
171
|
Rajagopal V, Bass G, Walker CG, Crossman DJ, Petzer A, Hickey A, Siekmann I, Hoshijima M, Ellisman MH, Crampin EJ, Soeller C. Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes. PLoS Comput Biol 2015; 11:e1004417. [PMID: 26335304 PMCID: PMC4559435 DOI: 10.1371/journal.pcbi.1004417] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 06/26/2015] [Indexed: 11/18/2022] Open
Abstract
Spatio-temporal dynamics of intracellular calcium, [Ca2+]i, regulate the contractile function of cardiac muscle cells. Measuring [Ca2+]i flux is central to the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease. However, current imaging techniques are limited in the spatial resolution to which changes in [Ca2+]i can be detected. Using spatial point process statistics techniques we developed a novel method to simulate the spatial distribution of RyR clusters, which act as the major mediators of contractile Ca2+ release, upon a physiologically-realistic cellular landscape composed of tightly-packed mitochondria and myofibrils. We applied this method to computationally combine confocal-scale (~ 200 nm) data of RyR clusters with 3D electron microscopy data (~ 30 nm) of myofibrils and mitochondria, both collected from adult rat left ventricular myocytes. Using this hybrid-scale spatial model, we simulated reaction-diffusion of [Ca2+]i during the rising phase of the transient (first 30 ms after initiation). At 30 ms, the average peak of the simulated [Ca2+]i transient and of the simulated fluorescence intensity signal, F/F0, reached values similar to that found in the literature ([Ca2+]i ≈1 μM; F/F0≈5.5). However, our model predicted the variation in [Ca2+]i to be between 0.3 and 12.7 μM (~3 to 100 fold from resting value of 0.1 μM) and the corresponding F/F0 signal ranging from 3 to 9.5. We demonstrate in this study that: (i) heterogeneities in the [Ca2+]i transient are due not only to heterogeneous distribution and clustering of mitochondria; (ii) but also to heterogeneous local densities of RyR clusters. Further, we show that: (iii) these structure-induced heterogeneities in [Ca2+]i can appear in line scan data. Finally, using our unique method for generating RyR cluster distributions, we demonstrate the robustness in the [Ca2+]i transient to differences in RyR cluster distributions measured between rat and human cardiomyocytes. Calcium (Ca2+) acts as a signal for many functions in the heart cell, from its primary role in triggering contractions during the heartbeat to acting as a signal for cell growth. Cellular function is tightly coupled to its ultra-structural organization. Spatially-realistic and biophysics-based computational models can provide quantitative insights into structure-function relationships in Ca2+ signaling. We developed a novel computational model of a rat ventricular myocyte that integrates structural information from confocal and electron microscopy datasets that were independently acquired and includes: myofibrils (protein complexes that contract during the heartbeat), mitochondria (organelles that provide energy for contraction), and ryanodine receptors (RyR, ion channels that release the Ca2+ required to trigger myofibril contraction from intracellular stores). Using this model, we examined [Ca2+]i dynamics throughout the cell cross-section at a much higher resolution than previously possible. We estimated the size of structural maladaptation that would cause disease-related alterations in [Ca2+]i dynamics. Using our methods for data integration, we also tested whether reducing the density of RyRs in human cardiomyocytes (~40% relative to rat) would have a significant effect on [Ca2+]i. We found that Ca2+ release patterns between the two species are similar, suggesting Ca2+ dynamics are robust to variations in cell ultrastructure.
Collapse
Affiliation(s)
- Vijay Rajagopal
- Department of Mechanical Engineering, University of Melbourne, Melbourne, Australia
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
- * E-mail:
| | - Gregory Bass
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
| | - Cameron G. Walker
- Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - David J. Crossman
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Amorita Petzer
- School of Biological Sciences, University of Auckland, Auckland. New Zealand
| | - Anthony Hickey
- School of Biological Sciences, University of Auckland, Auckland. New Zealand
| | - Ivo Siekmann
- Department of Mechanical Engineering, University of Melbourne, Melbourne, Australia
| | - Masahiko Hoshijima
- Department of Medicine, University of California San Diego, San Diego, United States of America
- National Center for Microscopy and Imaging Research, University of California San Diego, San Diego, United States of America
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, University of California San Diego, San Diego, United States of America
| | - Edmund J. Crampin
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Melbourne, Australia
- School of Medicine, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Australia
| | - Christian Soeller
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Biomedical Physics, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
172
|
Murfitt L, Whiteley G, Iqbal MM, Kitmitto A. Targeting caveolin-3 for the treatment of diabetic cardiomyopathy. Pharmacol Ther 2015; 151:50-71. [PMID: 25779609 DOI: 10.1016/j.pharmthera.2015.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/21/2022]
Abstract
Diabetes is a global health problem with more than 550 million people predicted to be diabetic by 2030. A major complication of diabetes is cardiovascular disease, which accounts for over two-thirds of mortality and morbidity in diabetic patients. This increased risk has led to the definition of a diabetic cardiomyopathy phenotype characterised by early left ventricular dysfunction with normal ejection fraction. Here we review the aetiology of diabetic cardiomyopathy and explore the involvement of the protein caveolin-3 (Cav3). Cav3 forms part of a complex mechanism regulating insulin signalling and glucose uptake, processes that are impaired in diabetes. Further, Cav3 is key for stabilisation and trafficking of cardiac ion channels to the plasma membrane and so contributes to the cardiac action potential shape and duration. In addition, Cav3 has direct and indirect interactions with proteins involved in excitation-contraction coupling and so has the potential to influence cardiac contractility. Significantly, both impaired contractility and rhythm disturbances are hallmarks of diabetic cardiomyopathy. We review here how changes to Cav3 expression levels and altered relationships with interacting partners may be contributory factors to several of the pathological features identified in diabetic cardiomyopathy. Finally, the review concludes by considering ways in which levels of Cav3 may be manipulated in order to develop novel therapeutic approaches for treating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Lucy Murfitt
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Gareth Whiteley
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Mohammad M Iqbal
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Ashraf Kitmitto
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK.
| |
Collapse
|
173
|
Falcone S, Roman W, Hnia K, Gache V, Didier N, Lainé J, Auradé F, Marty I, Nishino I, Charlet-Berguerand N, Romero NB, Marazzi G, Sassoon D, Laporte J, Gomes ER. N-WASP is required for Amphiphysin-2/BIN1-dependent nuclear positioning and triad organization in skeletal muscle and is involved in the pathophysiology of centronuclear myopathy. EMBO Mol Med 2015; 6:1455-75. [PMID: 25262827 PMCID: PMC4237471 DOI: 10.15252/emmm.201404436] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mutations in amphiphysin-2/BIN1, dynamin 2, and myotubularin are associated with centronuclear myopathy (CNM), a muscle disorder characterized by myofibers with atypical central nuclear positioning and abnormal triads. Mis-splicing of amphiphysin-2/BIN1 is also associated with myotonic dystrophy that shares histopathological hallmarks with CNM. How amphiphysin-2 orchestrates nuclear positioning and triad organization and how CNM-associated mutations lead to muscle dysfunction remains elusive. We find that N-WASP interacts with amphiphysin-2 in myofibers and that this interaction and N-WASP distribution are disrupted by amphiphysin-2 CNM mutations. We establish that N-WASP functions downstream of amphiphysin-2 to drive peripheral nuclear positioning and triad organization during myofiber formation. Peripheral nuclear positioning requires microtubule/Map7/Kif5b-dependent distribution of nuclei along the myofiber and is driven by actin and nesprins. In adult myofibers, N-WASP and amphiphysin-2 are only involved in the maintenance of triad organization but not in the maintenance of peripheral nuclear positioning. Importantly, we confirmed that N-WASP distribution is disrupted in CNM and myotonic dystrophy patients. Our results support a role for N-WASP in amphiphysin-2-dependent nuclear positioning and triad organization and in CNM and myotonic dystrophy pathophysiology.
Collapse
Affiliation(s)
- Sestina Falcone
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - William Roman
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | - Karim Hnia
- IGBMC-CNRS, UMR 7104 INSERM U964, Illkirch, France
| | - Vincent Gache
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Nathalie Didier
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | - Jeanne Lainé
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Frederic Auradé
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | - Isabelle Marty
- INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble, France
| | - Ichizo Nishino
- National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | - Giovanna Marazzi
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | - David Sassoon
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France
| | | | - Edgar R Gomes
- Myology Group, UMR S 787 INSERM, Université Pierre et Marie Curie Paris 6, Paris, France Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
174
|
Drum BML, Santana LF. The long and winding road home: how junctin and triadin find their way to the junctional SR. J Mol Cell Cardiol 2015; 81:15-7. [PMID: 25655931 PMCID: PMC4652856 DOI: 10.1016/j.yjmcc.2015.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 01/24/2015] [Accepted: 01/27/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin M L Drum
- Department of Physiology & Biophysics, University of Washington, Box 357290, Seattle, WA 98195, USA
| | - Luis F Santana
- Department of Physiology & Biophysics, University of Washington, Box 357290, Seattle, WA 98195, USA.
| |
Collapse
|
175
|
Balycheva M, Faggian G, Glukhov AV, Gorelik J. Microdomain-specific localization of functional ion channels in cardiomyocytes: an emerging concept of local regulation and remodelling. Biophys Rev 2015; 7:43-62. [PMID: 28509981 PMCID: PMC5425752 DOI: 10.1007/s12551-014-0159-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/18/2014] [Indexed: 12/26/2022] Open
Abstract
Cardiac excitation involves the generation of action potential by individual cells and the subsequent conduction of the action potential from cell to cell through intercellular gap junctions. Excitation of the cellular membrane results in opening of the voltage-gated L-type calcium ion (Ca2+) channels, thereby allowing a small amount of Ca2+ to enter the cell, which in turn triggers the release of a much greater amount of Ca2+ from the sarcoplasmic reticulum, the intracellular Ca2+ store, and gives rise to the systolic Ca2+ transient and contraction. These processes are highly regulated by the autonomic nervous system, which ensures the acute and reliable contractile function of the heart and the short-term modulation of this function upon changes in heart rate or workload. It has recently become evident that discrete clusters of different ion channels and regulatory receptors are present in the sarcolemma, where they form an interacting network and work together as a part of a macro-molecular signalling complex which in turn allows the specificity, reliability and accuracy of the autonomic modulation of the excitation-contraction processes by a variety of neurohormonal pathways. Disruption in subcellular targeting of ion channels and associated signalling proteins may contribute to the pathophysiology of a variety of cardiac diseases, including heart failure and certain arrhythmias. Recent methodological advances have made it possible to routinely image the topography of live cardiomyocytes, allowing the study of clustering functional ion channels and receptors as well as their coupling within a specific microdomain. In this review we highlight the emerging understanding of the functionality of distinct subcellular microdomains in cardiac myocytes (e.g. T-tubules, lipid rafts/caveolae, costameres and intercalated discs) and their functional role in the accumulation and regulation of different subcellular populations of sodium, Ca2+ and potassium ion channels and their contributions to cellular signalling and cardiac pathology.
Collapse
Affiliation(s)
- Marina Balycheva
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
- Cardiosurgery Department, University of Verona School of Medicine, Verona, Italy
| | - Giuseppe Faggian
- Cardiosurgery Department, University of Verona School of Medicine, Verona, Italy
| | - Alexey V Glukhov
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
176
|
Affiliation(s)
- Ying Fu
- From Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.X., T.T.H., R.M.S.); and Department of Medicine, University of California Los Angeles (T.T.H., R.M.S.)
| | - Shaohua Xiao
- From Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.X., T.T.H., R.M.S.); and Department of Medicine, University of California Los Angeles (T.T.H., R.M.S.)
| | - TingTing Hong
- From Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.X., T.T.H., R.M.S.); and Department of Medicine, University of California Los Angeles (T.T.H., R.M.S.)
| | - Robin M Shaw
- From Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.X., T.T.H., R.M.S.); and Department of Medicine, University of California Los Angeles (T.T.H., R.M.S.).
| |
Collapse
|
177
|
Takeshima H, Hoshijima M, Song LS. Ca²⁺ microdomains organized by junctophilins. Cell Calcium 2015; 58:349-56. [PMID: 25659516 PMCID: PMC5159448 DOI: 10.1016/j.ceca.2015.01.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 11/21/2022]
Abstract
Excitable cells typically possess junctional membrane complexes (JMCs) constructed by the plasma membrane and the endo/sarcoplasmic reticulum (ER/SR) for channel crosstalk. These JMCs are termed triads in skeletal muscle, dyads in cardiac muscle, peripheral couplings in smooth and developing striated muscles, and subsurface cisterns in neurons. Junctophilin subtypes contribute to the formation and maintenance of JMCs by serving as a physical bridge between the plasma membrane and ER/SR membrane in different cell types. In muscle cells, junctophilin deficiency prevents JMC formation and functional crosstalk between cell-surface Ca2+ channels and ER/SR Ca2+ release channels. Human genetic mutations in junctophilin subtypes are linked to congenital hypertrophic cardiomyopathy and neurodegenerative diseases. Furthermore, growing evidence suggests that dysregulation of junctophilins induces pathological alterations in skeletal and cardiac muscle.
Collapse
Affiliation(s)
- Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | - Masahiko Hoshijima
- Department of Medicine and Center for Research in Biological Systems, University of California, San Diego, CA 92093, USA.
| | - Long-Sheng Song
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
178
|
Xiao S, Shaw RM. Cardiomyocyte protein trafficking: Relevance to heart disease and opportunities for therapeutic intervention. Trends Cardiovasc Med 2014; 25:379-89. [PMID: 25649302 DOI: 10.1016/j.tcm.2014.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 11/30/2022]
Abstract
Cardiomyocytes, the individual contractile units of heart muscle, are long-lived and robust. Given the longevity of these cells, it can be easy to overlook their dynamic intracellular environment that contain rapid protein movements and frequent protein turnover. Critical gene transcription and protein translation occur continuously, as well as trafficking and localization of proteins to specific functional zones of cell membrane. As heart failure becomes an increasingly important clinical entity, growing numbers of investigative teams are examining the cell biology of healthy and diseased cardiomyocytes. In this review, we introduce the major architectural structures and types of protein movements within cardiac cells, and then review recent studies that explore the regulation of such movements. We conclude by introducing current translational directions of the basic studies with a focus on novel areas of therapeutic development.
Collapse
Affiliation(s)
- Shaohua Xiao
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Robin M Shaw
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA; Department of Medicine, University of California Los Angeles, Los Angeles, CA.
| |
Collapse
|
179
|
Jayasinghe ID, Clowsley AH, Munro M, Hou Y, Crossman DJ, Soeller C. Revealing T-Tubules in Striated Muscle with New Optical Super-Resolution Microscopy Techniquess. Eur J Transl Myol 2014; 25:4747. [PMID: 26913143 PMCID: PMC4748971 DOI: 10.4081/ejtm.2015.4747] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/18/2014] [Indexed: 01/03/2023] Open
Abstract
The t-tubular system plays a central role in the synchronisation of calcium signalling and excitation-contraction coupling in most striated muscle cells. Light microscopy has been used for imaging t-tubules for well over 100 years and together with electron microscopy (EM), has revealed the three-dimensional complexities of the t-system topology within cardiomyocytes and skeletal muscle fibres from a range of species. The emerging super-resolution single molecule localisation microscopy (SMLM) techniques are offering a near 10-fold improvement over the resolution of conventional fluorescence light microscopy methods, with the ability to spectrally resolve nanometre scale distributions of multiple molecular targets. In conjunction with the next generation of electron microscopy, SMLM has allowed the visualisation and quantification of intricate t-tubule morphologies within large areas of muscle cells at an unprecedented level of detail. In this paper, we review recent advancements in the t-tubule structural biology with the utility of various microscopy techniques. We outline the technical considerations in adapting SMLM to study t-tubules and its potential to further our understanding of the molecular processes that underlie the sub-micron scale structural alterations observed in a range of muscle pathologies.
Collapse
Affiliation(s)
| | | | - Michelle Munro
- Department of Physiology, The University of Auckland , New Zealand
| | - Yufeng Hou
- Department of Physiology, The University of Auckland , New Zealand
| | - David J Crossman
- Department of Physiology, The University of Auckland , New Zealand
| | - Christian Soeller
- Biomedical Physics, University of Exeter, UK, New Zealand; Biomedical Physics, University of Exeter, UK, New Zealand
| |
Collapse
|
180
|
Jungbluth H, Gautel M. Pathogenic mechanisms in centronuclear myopathies. Front Aging Neurosci 2014; 6:339. [PMID: 25566070 PMCID: PMC4271577 DOI: 10.3389/fnagi.2014.00339] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/02/2014] [Indexed: 12/30/2022] Open
Abstract
Centronuclear myopathies (CNMs) are a genetically heterogeneous group of inherited neuromuscular disorders characterized by clinical features of a congenital myopathy and abundant central nuclei as the most prominent histopathological feature. The most common forms of congenital myopathies with central nuclei have been attributed to X-linked recessive mutations in the MTM1 gene encoding myotubularin (“X-linked myotubular myopathy”), autosomal-dominant mutations in the DNM2 gene encoding dynamin-2 and the BIN1 gene encoding amphiphysin-2 (also named bridging integrator-1, BIN1, or SH3P9), and autosomal-recessive mutations in BIN1, the RYR1 gene encoding the skeletal muscle ryanodine receptor, and the TTN gene encoding titin. Models to study and rescue the affected cellular pathways are now available in yeast, C. elegans, drosophila, zebrafish, mouse, and dog. Defects in membrane trafficking have emerged as a key pathogenic mechanisms, with aberrant T-tubule formation, abnormalities of triadic assembly, and disturbance of the excitation–contraction machinery the main downstream effects studied to date. Abnormal autophagy has recently been recognized as another important collateral of defective membrane trafficking in different genetic forms of CNM, suggesting an intriguing link to primary disorders of defective autophagy with overlapping histopathological features. The following review will provide an overview of clinical, histopathological, and genetic aspects of the CNMs in the context of the key pathogenic mechanism, outline unresolved questions, and indicate promising future lines of enquiry.
Collapse
Affiliation(s)
- Heinz Jungbluth
- Neuromuscular Service, Department of Paediatric Neurology, Evelina Children's Hospital, St Thomas' Hospital , London , UK ; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London , London , UK ; Randall Division of Cell and Molecular Biophysics and Cardiovascular Division, King's College London BHF Centre of Research Excellence , London , UK
| | - Mathias Gautel
- Randall Division of Cell and Molecular Biophysics and Cardiovascular Division, King's College London BHF Centre of Research Excellence , London , UK
| |
Collapse
|
181
|
Nivala M, Song Z, Weiss JN, Qu Z. T-tubule disruption promotes calcium alternans in failing ventricular myocytes: mechanistic insights from computational modeling. J Mol Cell Cardiol 2014; 79:32-41. [PMID: 25450613 DOI: 10.1016/j.yjmcc.2014.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/25/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
Abstract
In heart failure (HF), T-tubule (TT) disruption contributes to dyssynchronous calcium (Ca) release and impaired contraction, but its role in arrhythmogenesis remains unclear. In this study, we investigate the effects of TT disruption and other HF remodeling factors on Ca alternans in ventricular myocytes using computer modeling. A ventricular myocyte model with detailed spatiotemporal Ca cycling modeled by a coupled Ca release unit (CRU) network was used, in which the L-type Ca channels and the ryanodine receptor (RyR) channels were simulated by random Markov transitions. TT disruption, which removes the L-type Ca channels from the associated CRUs, results in "orphaned" RyR clusters and thus provides increased opportunity for spark-induced Ca sparks to occur. This effect combined with other HF remodeling factors promoted alternans by two distinct mechanisms: 1) for normal sarco-endoplasmic reticulum Ca ATPase (SERCA) activity, alternans was caused by both CRU refractoriness and coupling. The increased opportunity for spark-induced sparks by TT disruption combined with the enhanced CRU coupling by Ca elevation in the presence or absence of increased RyR leakiness facilitated spark synchronization on alternate beats to promote Ca alternans; 2) for down-regulated SERCA, alternans was caused by the sarcoplasmic reticulum (SR) Ca load-dependent mechanism, independent of CRU refractoriness. TT disruption and increased RyR leakiness shifted and steepened the SR Ca release-load relationship, which combines with down-regulated SERCA to promote Ca alternans. In conclusion, the mechanisms of Ca alternans for normal and down-regulated SERCA are different, and TT disruption promotes Ca alternans by both mechanisms, which may contribute to alternans at different stages of HF.
Collapse
Affiliation(s)
- Michael Nivala
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Zhen Song
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - James N Weiss
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
182
|
Adachi-Akahane S. [Regulation of L-type Ca(2+) channels via cross-talk of Ca(2+) signaling in cardiac myocytes]. Nihon Yakurigaku Zasshi 2014; 144:211-216. [PMID: 25381889 DOI: 10.1254/fpj.144.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
183
|
Caldwell JL, Smith CER, Taylor RF, Kitmitto A, Eisner DA, Dibb KM, Trafford AW. Dependence of cardiac transverse tubules on the BAR domain protein amphiphysin II (BIN-1). Circ Res 2014; 115:986-96. [PMID: 25332206 DOI: 10.1161/circresaha.116.303448] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Transverse tubules (t-tubules) regulate cardiac excitation-contraction coupling and exhibit interchamber and interspecies differences in expression. In cardiac disease, t-tubule loss occurs and affects the systolic calcium transient. However, the mechanisms controlling t-tubule maintenance and whether these factors differ between species, cardiac chambers, and in a disease setting remain unclear. OBJECTIVE To determine the role of the Bin/Amphiphysin/Rvs domain protein amphiphysin II (AmpII) in regulating t-tubule maintenance and the systolic calcium transient. METHODS AND RESULTS T-tubule density was assessed by di-4-ANEPPS, FM4-64 or WGA staining using confocal microscopy. In rat, ferret, and sheep hearts t-tubule density and AmpII protein levels were lower in the atrium than in the ventricle. Heart failure (HF) was induced in sheep using right ventricular tachypacing and ferrets by ascending aortic coarctation. In both HF models, AmpII protein and t-tubule density were decreased in the ventricles. In the sheep, atrial t-tubules were also lost in HF and AmpII levels decreased. Conversely, junctophilin 2 levels did not show interchamber differences in the rat and ferret nor did they change in HF in the sheep or ferret. In addition, in rat atrial and sheep HF atrial cells where t-tubules were absent, junctophilin 2 had sarcomeric intracellular distribution. Small interfering RNA-induced knockdown of AmpII protein reduced t-tubule density, calcium transient amplitude, and the synchrony of the systolic calcium transient. CONCLUSIONS AmpII is intricately involved in t-tubule maintenance. Reducing AmpII protein decreases t-tubule density, reduces the amplitude, and increases the heterogeneity of the systolic calcium transient.
Collapse
Affiliation(s)
- Jessica L Caldwell
- From the Unit of Cardiac Physiology and Cardiac Biophysics Group, Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Charlotte E R Smith
- From the Unit of Cardiac Physiology and Cardiac Biophysics Group, Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Rebecca F Taylor
- From the Unit of Cardiac Physiology and Cardiac Biophysics Group, Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Ashraf Kitmitto
- From the Unit of Cardiac Physiology and Cardiac Biophysics Group, Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - David A Eisner
- From the Unit of Cardiac Physiology and Cardiac Biophysics Group, Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Katharine M Dibb
- From the Unit of Cardiac Physiology and Cardiac Biophysics Group, Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Andrew W Trafford
- From the Unit of Cardiac Physiology and Cardiac Biophysics Group, Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
184
|
Kumari A, Iwasaki T, Pyndiah S, Cassimere EK, Palani CD, Sakamuro D. Regulation of E2F1-induced apoptosis by poly(ADP-ribosyl)ation. Cell Death Differ 2014; 22:311-22. [PMID: 25257171 DOI: 10.1038/cdd.2014.146] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/16/2014] [Accepted: 08/18/2014] [Indexed: 11/09/2022] Open
Abstract
The transcription factor adenovirus E2 promoter-binding factor (E2F)-1 normally enhances cell-cycle progression, but it also induces apoptosis under certain conditions, including DNA damage and serum deprivation. Although DNA damage facilitates the phosphorylation and stabilization of E2F1 to trigger apoptosis, how serum starvation renders cells vulnerable to E2F1-induced apoptosis remains unclear. Because poly(ADP-ribose) polymerase 1 (PARP1), a nuclear enzyme essential for genomic stability and chromatin remodeling, interacts directly with E2F1, we investigated the effects of PARP1 on E2F1-mediated functions in the presence and absence of serum. PARP1 attenuation, which increased E2F1 transactivation, induced G2/M cell-cycle arrest under normal growth conditions, but enhanced E2F1-induced apoptosis in serum-starved cells. Interestingly, basal PARP1 activity was sufficient to modify E2F1 by poly(ADP-ribosyl)ation, which stabilized the interaction between E2F1 and the BIN1 tumor suppressor in the nucleus. Accordingly, BIN1 acted as an RB1-independent E2F1 corepressor. Because E2F1 directly activates the BIN1 gene promoter, BIN1 curbed E2F1 activity through a negative-feedback mechanism. Conversely, when the BIN1-E2F1 interaction was abolished by PARP1 suppression, E2F1 continuously increased BIN1 levels. This is functionally germane, as PARP1-depletion-associated G2/M arrest was reversed by the transfection of BIN1 siRNA. Moreover, PARP-inhibitor-associated anti-transformation activity was compromised by the coexpression of dominant-negative BIN1. Because serum starvation massively reduced the E2F1 poly(ADP-ribosyl)ation, we conclude that the release of BIN1 from hypo-poly(ADP-ribosyl)ated E2F1 is a mechanism by which serum starvation promotes E2F1-induced apoptosis.
Collapse
Affiliation(s)
- A Kumari
- 1] Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University Cancer Center, Augusta, GA 30912, USA [2] Molecular Signaling Program, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - T Iwasaki
- 1] Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University Cancer Center, Augusta, GA 30912, USA [2] Laboratory of Molecular Biology, Research Center for Environmental Genomics, Kobe University, Kobe 657, Japan
| | - S Pyndiah
- Molecular Signaling Program, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - E K Cassimere
- Molecular Signaling Program, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - C D Palani
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University Cancer Center, Augusta, GA 30912, USA
| | - D Sakamuro
- 1] Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University Cancer Center, Augusta, GA 30912, USA [2] Molecular Signaling Program, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|