151
|
Avvenuti G, Bernardi G. Local sleep: A new concept in brain plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:35-52. [PMID: 35034748 DOI: 10.1016/b978-0-12-819410-2.00003-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Traditionally, sleep and wakefulness have been considered as two global, mutually exclusive states. However, this view has been challenged by the discovery that sleep and wakefulness are actually locally regulated and that islands of these two states may often coexist in the same individual. Importantly, such a local regulation seems to be the key for many essential functions of sleep, including the maintenance of cognitive efficiency and the consolidation of new skills and memories. Indeed, local changes in sleep-related oscillations occur in brain areas that are used and involved in learning during wakefulness. In turn, these changes directly modulate experience-dependent brain adaptations and the consolidation of newly acquired memories. In line with these observations, alterations in the regional balance between wake- and sleep-like activity have been shown to accompany many pathologic conditions, including psychiatric and neurologic disorders. In the last decade, experimental research has started to shed light on the mechanisms involved in the local regulation of sleep and wakefulness. The results of this research have opened new avenues of investigation regarding the function of sleep and have revealed novel potential targets for the treatment of several pathologic conditions.
Collapse
Affiliation(s)
- Giulia Avvenuti
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy.
| |
Collapse
|
152
|
Baird B, Aparicio MK, Alauddin T, Riedner B, Boly M, Tononi G. Episodic thought distinguishes spontaneous cognition in waking from REM and NREM sleep. Conscious Cogn 2022; 97:103247. [PMID: 34864360 PMCID: PMC8752510 DOI: 10.1016/j.concog.2021.103247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023]
Abstract
Evidence suggests continuity between cognition in waking and sleeping states. However, one type of cognition that may differ is episodic thoughts of the past and future. The current study investigated this across waking, NREM sleep and REM sleep. We analyzed thought reports obtained from a large sample of individuals (N = 138) who underwent experience-sampling during wakefulness as well as serial awakenings in sleep. Our data suggest that while episodic thoughts are common during waking spontaneous thought, episodic thoughts of both the past and the future rarely occur in either N2 or REM sleep. Moreover, replicating previous findings, episodic thoughts during wakefulness exhibit a strong prospective bias and frequently involve autobiographical planning. Together, these results suggest that the occurrence of spontaneous episodic thoughts differs substantially across waking and dreaming sleep states. We suggest that this points to a difference in the way that human consciousness is typically experienced across the sleep-wake cycle.
Collapse
Affiliation(s)
- Benjamin Baird
- Center for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin - Madison, Madison, WI, USA.
| | - Mariel Kalkach Aparicio
- Center for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin - Madison, Madison, WI, USA
| | - Tariq Alauddin
- Center for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin - Madison, Madison, WI, USA
| | - Brady Riedner
- Center for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin - Madison, Madison, WI, USA
| | - Melanie Boly
- Center for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin - Madison, Madison, WI, USA; Department of Neurology, University of Wisconsin - Madison, Madison, WI, USA
| | - Giulio Tononi
- Center for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
153
|
What déjà vu and the “dreamy state” tell us about episodic memory networks. Clin Neurophysiol 2022; 136:173-181. [DOI: 10.1016/j.clinph.2022.01.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/22/2022]
|
154
|
Sleep: Feeling awake while asleep. Curr Biol 2021; 31:R1578-R1580. [PMID: 34932967 DOI: 10.1016/j.cub.2021.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
What makes a good night's sleep? It is often assumed that sleep is the deepest when brain activity is dominated by hyper-synchronized slow waves. However, sleep appears subjectively the deepest in rapid eye movement (REM) sleep, when slow waves are absent.
Collapse
|
155
|
Kalantari N, McDuff P, Pilon M, Desautels A, Montplaisir JY, Zadra A. Self-reported developmental changes in the frequency and characteristics of somnambulistic and sleep terror episodes in chronic sleepwalkers. Sleep Med 2021; 89:147-155. [PMID: 34990921 DOI: 10.1016/j.sleep.2021.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/10/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Far from being benign, somnambulistic episodes can be frequent and/or severe and potentially injurious. Episodes may also be accompanied by sleep mentation with variable degrees of retrograde amnesia. The present study investigated how somnambulistic episodes unfold from childhood through adulthood, a topic that remains understudied. METHODS Adult sleepwalkers with a diagnosis of primary somnambulism and a childhood onset of the disorder (n = 113) were assessed for changes in frequency of their episodes, recall of episode-related sleep mentation and aggressive episodes during childhood, adolescence and adulthood. In addition, sleepwalkers (n = 52) with childhood-onset of sleep terrors were assessed for developmental changes in sleep terror frequency. RESULTS Results indicate that the frequency of somnambulistic episodes remains unchanged during childhood and adolescence before increasing during adulthood. An opposite trend was observed for sleep terrors. The frequency of aggressive somnambulistic episodes and of sleep mentation associated with somnambulism increased from childhood to adolescence and into adulthood. By contrast, the recall of sleep mentation associated with sleep terrors did not change over time. Additionally, a higher frequency of aggressive somnambulistic episodes predicted a higher frequency of sleep mentation associated with somnambulism. These patterns were similar across men and women. CONCLUSION Our study demonstrates that in chronic sleepwalkers, sleep mentation associated with somnambulistic episodes increases with age while episodes worsen in frequency and severity from childhood to adulthood. These findings add to the limited literature in the field and provide valuable insights into how key clinical characteristics of somnambulism evolve across the lifespan.
Collapse
Affiliation(s)
- Narges Kalantari
- Centre for Advanced Research in Sleep Medicine, Hôpital Du Sacré-Coeur de Montréal, CIUSSS-NIM, Québec, Canada; Department of Psychology, Université de Montréal, Montréal, Québec, Canada
| | - Pierre McDuff
- Department of Psychology, Université de Montréal, Montréal, Québec, Canada
| | - Mathieu Pilon
- Department of Psychology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alex Desautels
- Centre for Advanced Research in Sleep Medicine, Hôpital Du Sacré-Coeur de Montréal, CIUSSS-NIM, Québec, Canada; Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Jacques-Yves Montplaisir
- Centre for Advanced Research in Sleep Medicine, Hôpital Du Sacré-Coeur de Montréal, CIUSSS-NIM, Québec, Canada; Department of Psychiatry, Université de Montréal, Montréal, Québec, Canada
| | - Antonio Zadra
- Centre for Advanced Research in Sleep Medicine, Hôpital Du Sacré-Coeur de Montréal, CIUSSS-NIM, Québec, Canada; Department of Psychology, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
156
|
Winters JJ. The Temporally-Integrated Causality Landscape: Reconciling Neuroscientific Theories With the Phenomenology of Consciousness. Front Hum Neurosci 2021; 15:768459. [PMID: 34803643 PMCID: PMC8599361 DOI: 10.3389/fnhum.2021.768459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022] Open
Abstract
In recent years, there has been a proliferation of neuroscientific theories of consciousness. These include theories which explicitly point to EM fields, notably Operational Architectonics and, more recently, the General Resonance Theory. In phenomenological terms, human consciousness is a unified composition of contents. These contents are specific and meaningful, and they exist from a subjective point of view. Human conscious experience is temporally continuous, limited in content, and coherent. Based upon those phenomenal observations, pre-existing theories of consciousness, and a large body of experimental evidence, I derived the Temporally-Integrated Causality Landscape (TICL). In brief, the TICL proposes that the neural correlate of consciousness is a structure of temporally integrated causality occurring over a large portion of the thalamocortical system. This structure is composed of a large, integrated set of neuronal elements (the System), which contains some subsystems, defined as having a higher level of temporally-integrated causality than the System as a whole. Each Subsystem exists from the point of view of the System, in the form of meaningful content. In this article, I review the TICL and consider the importance of EM forces as a mechanism of neural causality. I compare the fundamentals of TICL to those of several other neuroscientific theories. Using five major characteristics of phenomenal consciousness as a standard, I compare the basic tenets of Integrated Information Theory, Global Neuronal Workspace, General Resonance Theory, Operational Architectonics, and the Temporo-spatial Theory of Consciousness with the framework of the TICL. While the literature concerned with these theories tends to focus on different lines of evidence, there are fundamental areas of agreement. This means that, in time, it may be possible for many of them to converge upon the truth. In this analysis, I conclude that a primary distinction which divides these theories is the feature of spatial and temporal nesting. Interestingly, this distinction does not separate along the fault line between theories explicitly concerned with EM fields and those which are not. I believe that reconciliation is possible, at least in principle, among those theories that recognize the following: just as the contents of consciousness are distinctions within consciousness, the neural correlates of conscious content should be distinguishable from but fall within the spatial and temporal boundaries of the full neural correlates of consciousness.
Collapse
Affiliation(s)
- Jesse J Winters
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, United States
| |
Collapse
|
157
|
Raduga M. Detecting lucid dreams only by submentalis electromyography. Sleep Med 2021; 88:221-230. [PMID: 34798438 DOI: 10.1016/j.sleep.2021.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 11/17/2022]
Abstract
Lucid dreams (LDs) occur when people become aware that they are dreaming. This phenomenon has a wide range of possible applications from the perspectives of psychology, training physical movements, and controlling computers while asleep, among others. However, research on LDs might lack efficiency because the standard LD verification protocol uses polysomnography (PSG), which requires an expensive apparatus and skilled staff. The standard protocol also may reduce LD-induction efficiency. The current study examines whether humans can send phasic signals through submentalis electromyography (EMG) during muscle atonia via pre-agreed chin movements (PACM). This ability would manifest both REM sleep and consciousness, which are the main features of LDs. In laboratory conditions volunteers were instructed to open their jaws three times while in an LD right after the standard verification protocol to achieve the research goal. Results: 4 of 5 volunteers proved to be in an LD using the standard protocol, and then all of them made PACM. The outcomes show that dream signals cannot be blocked in the submentalis area during muscle atonia. Also, this finding can be considered to develop a simplified, reliable LD protocol that needs only one EMG sensor. The cost of this protocol could be only a small percentage of the current protocol, making it more convenient for researchers and volunteers. It can also be used remotely by inbuilt in wearable gadgets. Considering PACM could speed up LD research and provide many discoveries and new opportunities. Also, it can be used in sleep paralysis studies.
Collapse
|
158
|
Hong CCH, Fallon JH, Friston KJ. fMRI Evidence for Default Mode Network Deactivation Associated with Rapid Eye Movements in Sleep. Brain Sci 2021; 11:brainsci11111528. [PMID: 34827529 PMCID: PMC8615877 DOI: 10.3390/brainsci11111528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
System-specific brain responses—time-locked to rapid eye movements (REMs) in sleep—are characteristically widespread, with robust and clear activation in the primary visual cortex and other structures involved in multisensory integration. This pattern suggests that REMs underwrite hierarchical processing of visual information in a time-locked manner, where REMs index the generation and scanning of virtual-world models, through multisensory integration in dreaming—as in awake states. Default mode network (DMN) activity increases during rest and reduces during various tasks including visual perception. The implicit anticorrelation between the DMN and task-positive network (TPN)—that persists in REM sleep—prompted us to focus on DMN responses to temporally-precise REM events. We timed REMs during sleep from the video recordings and quantified the neural correlates of REMs—using functional MRI (fMRI)—in 24 independent studies of 11 healthy participants. A reanalysis of these data revealed that the cortical areas exempt from widespread REM-locked brain activation were restricted to the DMN. Furthermore, our analysis revealed a modest temporally-precise REM-locked decrease—phasic deactivation—in key DMN nodes, in a subset of independent studies. These results are consistent with hierarchical predictive coding; namely, permissive deactivation of DMN at the top of the hierarchy (leading to the widespread cortical activation at lower levels; especially the primary visual cortex). Additional findings indicate REM-locked cerebral vasodilation and suggest putative mechanisms for dream forgetting.
Collapse
Affiliation(s)
- Charles Chong-Hwa Hong
- Patuxent Institution, Correctional Mental Health Center—Jessup, Jessup, MD 20794, USA
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: ; Tel.: +1-410-596-1956
| | - James H. Fallon
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA;
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA
| | - Karl J. Friston
- The Well Come Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK;
| |
Collapse
|
159
|
Nardelli M, Catrambone V, Grandi G, Banfi T, Bruno RM, Scilingo EP, Faraguna U, Valenza G. Activation of brain-heart axis during REM sleep: a trigger for dreaming. Am J Physiol Regul Integr Comp Physiol 2021; 321:R951-R959. [PMID: 34704848 DOI: 10.1152/ajpregu.00306.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dreams may be recalled after awakening from sleep following a defined electroencephalographic pattern that involves local decreases in low-frequency activity in the posterior cortical regions. While a dreaming experience implies bodily changes at many organ-, system-, and timescale-levels, the entity and causal role of such peripheral changes in a conscious dream experience are unknown. We performed a comprehensive, causal, multivariate analysis of physiological signals acquired during REM sleep at night, including high-density EEG and peripheral dynamics including electrocardiography and blood pressure. In this preliminary study, we investigated multiple recalls and non-recalls of dream experiences using data from nine healthy volunteers. The aim was not only to investigate the changes in central and autonomic dynamics associated with dream recalls and non-recalls, but also to characterize the central-peripheral dynamical and (causal) directional interactions, and the temporal relations of the related arousals upon awakening. We uncovered a brain-body network that drives a conscious dreaming experience that acts with specific interaction and time delays. Such a network is sustained by the blood pressure dynamics and the increasing functional information transfer from the neural heartbeat regulation to the brain. We conclude that bodily changes play a crucial and causative role in a conscious dream experience during REM sleep.
Collapse
Affiliation(s)
- Mimma Nardelli
- Bioengineering and Robotics Research Centre E. Piaggio and Department of Information Engineering, University of Pisa, Italy
| | - Vincenzo Catrambone
- Bioengineering and Robotics Research Centre E. Piaggio and Department of Information Engineering, University of Pisa, Italy
| | - Giulia Grandi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Italy
| | - Tommaso Banfi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Italy
| | - Rosa Maria Bruno
- INSERM U970 Team 7, Paris Cardiovascular Research Centre - PARCC, University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Enzo Pasquale Scilingo
- Bioengineering and Robotics Research Centre E. Piaggio and Department of Information Engineering, University of Pisa, Italy
| | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Italy.,Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Gaetano Valenza
- Bioengineering and Robotics Research Centre E. Piaggio and Department of Information Engineering, University of Pisa, Italy
| |
Collapse
|
160
|
Stephan AM, Lecci S, Cataldi J, Siclari F. Conscious experiences and high-density EEG patterns predicting subjective sleep depth. Curr Biol 2021; 31:5487-5500.e3. [PMID: 34710350 DOI: 10.1016/j.cub.2021.10.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/06/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
What accounts for feeling deeply asleep? Standard sleep recordings only incompletely reflect subjective aspects of sleep and some individuals with so-called sleep misperception frequently feel awake although sleep recordings indicate clear-cut sleep. To identify the determinants of sleep perception, we performed 787 awakenings in 20 good sleepers and 10 individuals with sleep misperception and interviewed them about their subjective sleep depth while they underwent high-density EEG sleep recordings. Surprisingly, in good sleepers, sleep was subjectively lightest in the first 2 h of non-rapid eye movement (NREM) sleep, generally considered the deepest sleep, and deepest in rapid eye movement (REM) sleep. Compared to good sleepers, sleep misperceptors felt more frequently awake during sleep and reported lighter REM sleep. At the EEG level, spatially widespread high-frequency power was inversely related to subjective sleep depth in NREM sleep in both groups and in REM sleep in misperceptors. Subjective sleep depth positively correlated with dream-like qualities of reports of mental activity. These findings challenge the widely held notion that slow wave sleep best accounts for feeling deeply asleep. Instead, they indicate that subjective sleep depth is inversely related to a neurophysiological process that predominates in early NREM sleep, becomes quiescent in REM sleep, and is reflected in high-frequency EEG activity. In sleep misperceptors, this process is more frequently active, more spatially widespread, and abnormally persists into REM sleep. These findings help identify the neuromodulatory systems involved in subjective sleep depth and are relevant for studies aiming to improve subjective sleep quality.
Collapse
Affiliation(s)
- Aurélie M Stephan
- Center for Investigation and Research on Sleep, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1010 Lausanne, Switzerland
| | - Sandro Lecci
- Center for Investigation and Research on Sleep, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1010 Lausanne, Switzerland
| | - Jacinthe Cataldi
- Center for Investigation and Research on Sleep, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1010 Lausanne, Switzerland
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1010 Lausanne, Switzerland; Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1010 Lausanne, Switzerland.
| |
Collapse
|
161
|
Frigato G. The Neural Correlates of Access Consciousness and Phenomenal Consciousness Seem to Coincide and Would Correspond to a Memory Center, an Activation Center and Eight Parallel Convergence Centers. Front Psychol 2021; 12:749610. [PMID: 34659068 PMCID: PMC8511498 DOI: 10.3389/fpsyg.2021.749610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022] Open
Abstract
An increasing number of authors suggest that the neural correlates of consciousness (NCC) have no selective, executive, or metacognitive function. It is believed that attention unconsciously selects the contents that will become conscious. Consciousness would have only the fundamental function of transforming the selected contents into a format easily used by high-level processors, such as working memory, language, or autobiographical memory. According to Dehaene, the neural correlates (NC) of access consciousness (AC; cognitive consciousness) constitute a widespread network in the frontal, parietal, and temporal cortices. While Tononi localized the correlates of phenomenal consciousness (PC; subjective consciousness) to a posterior “hot zone” in the temporo-parietal cortex. A careful examination of the works of these two groups leads to the conclusion that the correlates of access and PC coincide. The two consciousnesses are therefore two faces of the same single consciousness with both its cognitive and subjective contents. A review of the literature of the pathology called “neglect” confirms that the common correlates include 10: a memory center, an activation center, and eight parallel centers. From study of the “imagery” it can be deduced that these eight parallel centers would operate as points of convergence in the third person linking the respective eight sensory-motor-emotional areas activated by external perceptions and the corresponding memories of these perceptions deposited in the memory center. The first four centers of convergence appear in the most evolved fish and gradually reach eight in humans.
Collapse
|
162
|
Malinowski JE, Scheel D, McCloskey M. Do animals dream? Conscious Cogn 2021; 95:103214. [PMID: 34653784 DOI: 10.1016/j.concog.2021.103214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/22/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
The understanding of biological functions of sleep has improved recently, including an understanding of the deep evolutionary roots of sleep among animals. However, dreaming as an element of sleep may be particularly difficult to address in non-human animals because in humans dreaming involves a non-wakeful form of awareness typically identified through verbal report. Here, we argue that parallels that exist between the phenomenology, physiology, and sleep behaviors during human dreaming provide an avenue to investigate dreaming in non-human animals. We review three alternative measurements of human dreaming - neural correlates of dreaming, 'replay' of newly-acquired memories, and dream-enacting behaviors - and consider how these may be applied to non-human animal models. We suggest that while animals close in brain structure to humans (such as mammals and birds) may be optimal models for the first two of these measurements, cephalopods, especially octopuses, may be particularly good candidates for the third.
Collapse
Affiliation(s)
- J E Malinowski
- School of Psychology, University of East London, Stratford, UK.
| | - D Scheel
- Institute of Culture & Environment, Alaska Pacific University, Anchorage, AK, USA.
| | - M McCloskey
- Institute of Culture & Environment, Alaska Pacific University, Anchorage, AK, USA.
| |
Collapse
|
163
|
Ellia F, Hendren J, Grasso M, Kozma C, Mindt G, P. Lang J, M. Haun A, Albantakis L, Boly M, Tononi G. Consciousness and the fallacy of misplaced objectivity. Neurosci Conscious 2021; 2021:niab032. [PMID: 34667639 PMCID: PMC8519344 DOI: 10.1093/nc/niab032] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 12/03/2022] Open
Abstract
Objective correlates-behavioral, functional, and neural-provide essential tools for the scientific study of consciousness. But reliance on these correlates should not lead to the 'fallacy of misplaced objectivity': the assumption that only objective properties should and can be accounted for objectively through science. Instead, what needs to be explained scientifically is what experience is intrinsically-its subjective properties-not just what we can do with it extrinsically. And it must be explained; otherwise the way experience feels would turn out to be magical rather than physical. We argue that it is possible to account for subjective properties objectively once we move beyond cognitive functions and realize what experience is and how it is structured. Drawing on integrated information theory, we show how an objective science of the subjective can account, in strictly physical terms, for both the essential properties of every experience and the specific properties that make particular experiences feel the way they do.
Collapse
Affiliation(s)
- Francesco Ellia
- Department of Philosophy and Communication Studies, University of Bologna, Via Zamboni, 38, 40126 Bologna, Italy
| | - Jeremiah Hendren
- Graduate School Language & Literature, Ludwig Maximilian University of Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Matteo Grasso
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Csaba Kozma
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Garrett Mindt
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Jonathan P. Lang
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Andrew M. Haun
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Larissa Albantakis
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Melanie Boly
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA
| |
Collapse
|
164
|
Signorelli CM, Meling D. Towards new concepts for a biological neuroscience of consciousness. Cogn Neurodyn 2021; 15:783-804. [PMID: 34603542 PMCID: PMC8448820 DOI: 10.1007/s11571-020-09658-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/17/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
In the search for a sound model of consciousness, we aim at introducing new concepts: closure, compositionality, biobranes and autobranes. This is important to overcome reductionism and to bring life back into the neuroscience of consciousness. Using these definitions, we conjecture that consciousness co-arises with the non-trivial composition of biological closure in the form of biobranes and autobranes: conscious processes generate closed activity at various levels and are, in turn, themselves, supported by biobranes and autobranes. This approach leads to a non-reductionist biological and simultaneously phenomenological theory of conscious experience, giving new perspectives for a science of consciousness. Future works will implement experimental definitions and computational simulations to characterize these dynamical biobranes interacting.
Collapse
Affiliation(s)
- Camilo Miguel Signorelli
- Department of Computer Science, University of Oxford, Oxford, UK
- Cognitive Neuroimaging Unit, INSERM U992, NeuroSpin, Gif-sur-Yvette, France
- Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniel Meling
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
165
|
de la Chapelle A, Frauscher B, Valomon A, Ruby PM, Peter-Derex L. Relationship Between Epilepsy and Dreaming: Current Knowledge, Hypotheses, and Perspectives. Front Neurosci 2021; 15:717078. [PMID: 34552464 PMCID: PMC8451887 DOI: 10.3389/fnins.2021.717078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
The interactions between epilepsy and sleep are numerous and the impact of epilepsy on cognition is well documented. Epilepsy is therefore likely to influence dreaming as one sleep-related cognitive activity. The frequency of dream recall is indeed decreased in patients with epilepsy, especially in those with primary generalized seizures. The content of dreams is also disturbed in epilepsy patients, being more negative and with more familiar settings. While several confounding factors (anti-seizure medications, depression and anxiety disorders, cognitive impairment) may partly account for these changes, some observations suggest an effect of seizures themselves on dreams. Indeed, the incorporation of seizure symptoms in dream content has been described, concomitant or not with a focal epileptic discharge during sleep, suggesting that epilepsy might directly or indirectly interfere with dreaming. These observations, together with current knowledge on dream neurophysiology and the links between epilepsy and sleep, suggest that epilepsy may impact not only wake- but also sleep-related cognition.
Collapse
Affiliation(s)
| | - Birgit Frauscher
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Amandine Valomon
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028-PAM Team, Lyon, France
| | - Perrine Marie Ruby
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028-PAM Team, Lyon, France
| | - Laure Peter-Derex
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028-PAM Team, Lyon, France.,Center for Sleep Medicine and Respiratory Diseases, Lyon University Hospital, Lyon 1 University, Lyon, France
| |
Collapse
|
166
|
Elce V, Handjaras G, Bernardi G. The Language of Dreams: Application of Linguistics-Based Approaches for the Automated Analysis of Dream Experiences. Clocks Sleep 2021; 3:495-514. [PMID: 34563057 PMCID: PMC8482230 DOI: 10.3390/clockssleep3030035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
The study of dreams represents a crucial intersection between philosophical, psychological, neuroscientific, and clinical interests. Importantly, one of the main sources of insight into dreaming activity are the (oral or written) reports provided by dreamers upon awakening from their sleep. Classically, two main types of information are commonly extracted from dream reports: structural and semantic, content-related information. Extracted structural information is typically limited to the simple count of words or sentences in a report. Instead, content analysis usually relies on quantitative scores assigned by two or more (blind) human operators through the use of predefined coding systems. Within this review, we will show that methods borrowed from the field of linguistic analysis, such as graph analysis, dictionary-based content analysis, and distributional semantics approaches, could be used to complement and, in many cases, replace classical measures and scales for the quantitative structural and semantic assessment of dream reports. Importantly, these methods allow the direct (operator-independent) extraction of quantitative information from language data, hence enabling a fully objective and reproducible analysis of conscious experiences occurring during human sleep. Most importantly, these approaches can be partially or fully automatized and may thus be easily applied to the analysis of large datasets.
Collapse
Affiliation(s)
| | | | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, 55100 Lucca, Italy; (V.E.); (G.H.)
| |
Collapse
|
167
|
Alcaide S, Sitt J, Horikawa T, Romano A, Maldonado AC, Ibanez A, Sigman M, Kamitani Y, Barttfeld P. fMRI lag structure during waking up from early sleep stages. Cortex 2021; 142:94-103. [PMID: 34256198 PMCID: PMC11170464 DOI: 10.1016/j.cortex.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/30/2020] [Accepted: 06/04/2021] [Indexed: 11/29/2022]
Abstract
The brain mechanisms by which we transition from sleep to a conscious state remain largely unknown in humans, partly because of methodological challenges. Here we study a pre-existing dataset of waking up participants originally designed for a study of dreaming (Horikawa, Tamaki, Miyawaki, & Kamitani, 2013) and suggest that suddenly awakening from early sleep stages results from a two-stage process that involves a sequence of cortical and subcortical brain activity. First, subcortical and sensorimotor structures seem to be recruited before most cortical regions, followed by fast, ignition-like whole-brain activation-with frontal regions engaging a little after the rest of the brain. Second, a comparably slower and possibly mirror-reversed stage might take place, with cortical regions activating before subcortical structures and the cerebellum. This pattern of activation points to a key role of subcortical structures for the initiation and maintenance of conscious states.
Collapse
Affiliation(s)
- Santiago Alcaide
- Cognitive Science Group, Instituto de Investigaciones Psicológicas, Facultad de Psicología Universidad Nacional de Córdoba - CONICET, Argentina
| | - Jacobo Sitt
- INSERM, U 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Tomoyasu Horikawa
- Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
| | - Alvaro Romano
- Cognitive Science Group, Instituto de Investigaciones Psicológicas, Facultad de Psicología Universidad Nacional de Córdoba - CONICET, Argentina
| | - Ana Carolina Maldonado
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad de Córdoba, CIEM-CONICET, Spain
| | - Agustín Ibanez
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Argentina; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), USA
| | - Mariano Sigman
- Laboratorio de Neurociencia, Universidad Torcuato Di Tella, Buenos Aires, Argentina; Facultad de Lenguas y Educación, Universidad Nebrija, Madrid, Spain
| | - Yukiyasu Kamitani
- Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan; Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Pablo Barttfeld
- Cognitive Science Group, Instituto de Investigaciones Psicológicas, Facultad de Psicología Universidad Nacional de Córdoba - CONICET, Argentina.
| |
Collapse
|
168
|
Signorelli CM, Szczotka J, Prentner R. Explanatory profiles of models of consciousness - towards a systematic classification. Neurosci Conscious 2021; 2021:niab021. [PMID: 34457353 PMCID: PMC8396118 DOI: 10.1093/nc/niab021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/27/2021] [Accepted: 08/18/2021] [Indexed: 11/14/2022] Open
Abstract
Models of consciousness aim to inspire new experimental protocols and aid interpretation of empirical evidence to reveal the structure of conscious experience. Nevertheless, no current model is univocally accepted on either theoretical or empirical grounds. Moreover, a straightforward comparison is difficult for conceptual reasons. In particular, we argue that different models explicitly or implicitly subscribe to different notions of what constitutes a satisfactory explanation, use different tools in their explanatory endeavours and even aim to explain very different phenomena. We thus present a framework to compare existing models in the field with respect to what we call their 'explanatory profiles'. We focus on the following minimal dimensions: mode of explanation, mechanisms of explanation and target of explanation. We also discuss the empirical consequences of the discussed discrepancies among models. This approach may eventually lead to identifying driving assumptions, theoretical commitments, experimental predictions and a better design of future testing experiments. Finally, our conclusion points to more integrative theoretical research, where axiomatic models may play a critical role in solving current theoretical and experimental contradictions.
Collapse
Affiliation(s)
- Camilo Miguel Signorelli
- Cognitive Neuroimaging Unit, INSERM U992, NeuroSpin, CEA, Gif sur Yvette F-91191, France
- Department of Computer Science, University of Oxford, 15 Parks Rd, Oxford OX1 3QD, UK
- Center for Brain and Cognition, Universitat Pompeu Fabra, Edifici Merce Rodereda, Carrer de Ramon Trias Fargas, 25, Barcelona 08018, Spain
| | - Joanna Szczotka
- Center for Sleep and Consciousness, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison WI 53719, USA
- Consciousness Lab, Institute of Psychology, Jagiellonian University, 6 Ingardena, Kraków 30-060, Poland
| | - Robert Prentner
- Department of Cognitive Sciences, University of California, 3151 Social Science Plaza, Irvine CA 92697-5100, USA
- Center for the Future Mind, Florida Atlantic University, 777 Glades Road - SO 283, Boca Raton FL 33431-0991, USA
| |
Collapse
|
169
|
Sikka P, Valli K, Revonsuo A, Tuominen J. The dynamics of affect across the wake-sleep cycle: From waking mind-wandering to night-time dreaming. Conscious Cogn 2021; 94:103189. [PMID: 34419707 DOI: 10.1016/j.concog.2021.103189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022]
Abstract
Affective experiences occur across the wake-sleep cycle-from active wakefulness to resting wakefulness (i.e., mind-wandering) to sleep (i.e., dreaming). Yet, we know little about the dynamics of affect across these states. We compared the affective ratings of waking, mind-wandering, and dream episodes. Results showed that mind-wandering was more positively valenced than dreaming, and that both mind-wandering and dreaming were more negatively valenced than active wakefulness. We also compared participants' self-ratings of affect with external ratings of affect (i.e., analysis of affect in verbal reports). With self-ratings all episodes were predominated by positive affect. However, the affective valence of reports changed from positively valenced waking reports to affectively balanced mind-wandering reports to negatively valenced dream reports. These findings show that (1) the positivity bias characteristic to waking experiences decreases across the wake-sleep continuum, and (2) conclusions regarding affective experiences depend on whether self-ratings or verbal reports describing these experiences are analysed.
Collapse
Affiliation(s)
- Pilleriin Sikka
- Department of Psychology and Speech-Language Pathology, University of Turku, Finland; Turku Brain and Mind Center, University of Turku, Finland; Department of Cognitive Neuroscience and Philosophy, University of Skövde, Sweden.
| | - Katja Valli
- Department of Psychology and Speech-Language Pathology, University of Turku, Finland; Turku Brain and Mind Center, University of Turku, Finland; Department of Cognitive Neuroscience and Philosophy, University of Skövde, Sweden
| | - Antti Revonsuo
- Department of Psychology and Speech-Language Pathology, University of Turku, Finland; Turku Brain and Mind Center, University of Turku, Finland; Department of Cognitive Neuroscience and Philosophy, University of Skövde, Sweden
| | - Jarno Tuominen
- Department of Psychology and Speech-Language Pathology, University of Turku, Finland; Turku Brain and Mind Center, University of Turku, Finland
| |
Collapse
|
170
|
Sanz Perl Y, Bocaccio H, Pallavicini C, Pérez-Ipiña I, Laureys S, Laufs H, Kringelbach M, Deco G, Tagliazucchi E. Nonequilibrium brain dynamics as a signature of consciousness. Phys Rev E 2021; 104:014411. [PMID: 34412335 DOI: 10.1103/physreve.104.014411] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
The cognitive functions of human and nonhuman primates rely on the dynamic interplay of distributed neural assemblies. As such, it seems unlikely that cognition can be supported by macroscopic brain dynamics at the proximity of equilibrium. We confirmed this hypothesis by investigating electrocorticography data from nonhuman primates undergoing different states of unconsciousness (sleep, and anesthesia with propofol, ketamine, and ketamine plus medetomidine), and functional magnetic resonance imaging data from humans, both during deep sleep and under propofol anesthesia. Systematically, all states of reduced consciousness unfolded at higher proximity to equilibrium compared to conscious wakefulness, as demonstrated by the computation of entropy production and the curl of probability flux in phase space. Our results establish nonequilibrium macroscopic brain dynamics as a robust signature of consciousness, opening the way for the characterization of cognition and awareness using tools from statistical mechanics.
Collapse
Affiliation(s)
- Yonatan Sanz Perl
- Universidad de San Andrés, Buenos Aires, B1644BID, Argentina.,Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina.,Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Hernán Bocaccio
- Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina
| | - Carla Pallavicini
- Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina
| | - Ignacio Pérez-Ipiña
- Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, 4000 Liège, Belgium
| | - Helmut Laufs
- Department of Neurology, Christian Albrechts University Kiel, 24118 Kiel, Germany
| | - Morten Kringelbach
- Department of Psychiatry, University of Oxford, Oxford OX12JD, United Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Enzo Tagliazucchi
- Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina.,Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago 7910000, Chile
| |
Collapse
|
171
|
Scalabrini A, Esposito R, Mucci C. Dreaming the unrepressed unconscious and beyond: repression vs dissociation in the oneiric functioning of severe patients. RESEARCH IN PSYCHOTHERAPY (MILANO) 2021; 24:545. [PMID: 34568112 PMCID: PMC8451207 DOI: 10.4081/ripppo.2021.545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022]
Abstract
Starting with Freud and Jung, dreams have always been considered a core source of information for psychoanalysis. Nowadays, neuroscientific findings suggest that dreams are related especially to limbic and right emotional brain circuit, and that during REM stages they engage self-related and visual internally generated processing. These neuroscientific findings together with contemporary psychoanalysis suggest that dreams are related to the sense of self and serve the purpose of re-integrating and re-structuring the integrity of the psyche. However, while dreams are still viewed as 'the via regia to the unconscious', it is the unconscious that has been reconsidered. The repressed unconscious seems to be related with left brain activity while the unrepressed unconscious based on dissociation seems to be associated with limbic and cortical areas of the right hemisphere. This notion of the unconscious might be seen as an implicit self-system encoded in the right brain that evolves in the interaction with a primary caregiver developing through preverbal and bodily stages of maturation enhanced by signals of dual communication. What kind of dreams for which unconscious? What are the differences regarding the capacity to dream for neurotic and borderline personality organizations? Our research aims to integrate psychodynamics, infant research, and neuroscientific findings to better understand the role of dreams in the assessment and treatment of, especially, traumatized and borderline patients. The capacity to dream is here proposed as a sort of enacted manifestation of emotional memories for the development of a more cohesive, coherent and symbolic vs fragmented, diffuse and alexithymic sense of self.
Collapse
Affiliation(s)
- Andrea Scalabrini
- Department of Psychological, Health and Territorial Sciences (DiSPuTer), G. d’Annunzio University of Chieti-Pescara, Chieti
| | - Rosy Esposito
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Clara Mucci
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| |
Collapse
|
172
|
Gummadavelli A, Martin R, Goshay D, Sieu LA, Xu J, Gruenbaum BF, McCafferty C, Gerrard JL, Blumenfeld H. Cortical low-frequency power correlates with behavioral impairment in animal model of focal limbic seizures. Epilepsia 2021; 62:1960-1970. [PMID: 34240747 PMCID: PMC8349876 DOI: 10.1111/epi.16964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Impairment in consciousness is a debilitating symptom during and after seizures; however, its mechanism remains unclear. Limbic seizures have been shown to spread to arousal circuitry to result in a "network inhibition" phenomenon. However, prior animal model studies did not relate physiological network changes to behavioral responses during or following seizures. METHODS Focal onset limbic seizures were induced while rats were performing an operant conditioned behavioral task requiring response to an auditory stimulus to quantify how and when impairment of behavioral response occurs. Correct responses were rewarded with sucrose. Cortical and hippocampal electrophysiology measured by local field potential recordings was analyzed for changes in low- and high-frequency power in relation to behavioral responsiveness during seizures. RESULTS As seen in patients with seizures, ictal (p < .0001) and postictal (p = .0015) responsiveness was variably impaired. Analysis of cortical and hippocampal electrophysiology revealed that ictal (p = .002) and postictal (p = .009) frontal cortical low-frequency 3-6-Hz power was associated with poor behavioral performance. In contrast, the hippocampus showed increased power over a wide frequency range during seizures, and suppression postictally, neither of which were related to behavioral impairment. SIGNIFICANCE These findings support prior human studies of temporal lobe epilepsy as well as anesthetized animal models suggesting that focal limbic seizures depress consciousness through remote network effects on the cortex, rather than through local hippocampal involvement. By identifying the cortical physiological changes associated with impaired arousal and responsiveness in focal seizures, these results may help guide future therapies to restore ictal and postictal consciousness, improving quality of life for people with epilepsy.
Collapse
Affiliation(s)
- Abhijeet Gummadavelli
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Reese Martin
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Derek Goshay
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Lim-Anna Sieu
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Jingwen Xu
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Benjamin F. Gruenbaum
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Cian McCafferty
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Jason L. Gerrard
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| |
Collapse
|
173
|
Różyk-Myrta A, Brodziak A, Muc-Wierzgoń M. Neural Circuits, Microtubule Processing, Brain's Electromagnetic Field-Components of Self-Awareness. Brain Sci 2021; 11:984. [PMID: 34439603 PMCID: PMC8393322 DOI: 10.3390/brainsci11080984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
The known theories discussing the essence of consciousness have been recently updated. This prompts an attempt to integrate these explanations concerning several distinct components of the consciousness phenomenon such as the ego, and qualia perceptions. Therefore, it is useful to consider the latest publications on the 'Orch OR' and 'cemi' theories, which assume that quantum processing occurs in microtubules and that the brain's endogenous electromagnetic field is important. The authors combine these explanations with their own theory describing the neural circuits realizing imagery. They try to present such an interdisciplinary, integrated theoretical model in a manner intuitively understandable to people with a typical medical education. In order to do this, they even refer to intuitively understandable metaphors. The authors maintain that an effective comprehension of consciousness is important for health care professionals because its disorders are frequent medical symptoms in emergencies, during general anesthesia and in the course of cognitive disorders in elderly people. The authors emphasize the current possibilities to verify these theses regarding the essence of consciousness thanks to the development of functional brain imaging methods-magnetoencephalography, transcranial magnetic stimulation-as well as clinical studies on the modification of perceptions and feelings by such techniques as mindfulness and the use of certain psychoactive substances, especially among people with self-awareness and identity disorders.
Collapse
Affiliation(s)
- Alicja Różyk-Myrta
- Faculty of Medical Sciences, University of Applied Sciences in Nysa, 48-300 Nysa, Poland; (A.B.); (M.M.-W.)
| | | | | |
Collapse
|
174
|
Wienke C, Bartsch MV, Vogelgesang L, Reichert C, Hinrichs H, Heinze HJ, Dürschmid S. Mind-wandering Is Accompanied by Both Local Sleep and Enhanced Processes of Spatial Attention Allocation. Cereb Cortex Commun 2021; 2:tgab001. [PMID: 34296151 PMCID: PMC8153027 DOI: 10.1093/texcom/tgab001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022] Open
Abstract
Mind-wandering (MW) is a subjective, cognitive phenomenon, in which thoughts move away from the task toward an internal train of thoughts, possibly during phases of neuronal sleep-like activity (local sleep, LS). MW decreases cortical processing of external stimuli and is assumed to decouple attention from the external world. Here, we directly tested how indicators of LS, cortical processing, and attentional selection change in a pop-out visual search task during phases of MW. Participants’ brain activity was recorded using magnetoencephalography, MW was assessed via self-report using randomly interspersed probes. As expected, the performance decreased under MW. Consistent with the occurrence of LS, MW was accompanied by a decrease in high-frequency activity (HFA, 80–150 Hz) and an increase in slow wave activity (SWA, 1–6 Hz). In contrast, visual attentional selection as indexed by the N2pc component was enhanced during MW with the N2pc amplitude being directly linked to participants’ performance. This observation clearly contradicts accounts of attentional decoupling that would predict a decrease in attention-related responses to external stimuli during MW. Together, our results suggest that MW occurs during phases of LS with processes of attentional target selection being upregulated, potentially to compensate for the mental distraction during MW.
Collapse
Affiliation(s)
- Christian Wienke
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Mandy V Bartsch
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Lena Vogelgesang
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Christoph Reichert
- Forschungscampus STIMULATE, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany.,CBBS - center of behavioral brain sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Hermann Hinrichs
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.,Forschungscampus STIMULATE, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany.,CBBS - center of behavioral brain sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.,Forschungscampus STIMULATE, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany.,CBBS - center of behavioral brain sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Stefan Dürschmid
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| |
Collapse
|
175
|
Andrillon T, Burns A, Mackay T, Windt J, Tsuchiya N. Predicting lapses of attention with sleep-like slow waves. Nat Commun 2021; 12:3657. [PMID: 34188023 PMCID: PMC8241869 DOI: 10.1038/s41467-021-23890-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
Attentional lapses occur commonly and are associated with mind wandering, where focus is turned to thoughts unrelated to ongoing tasks and environmental demands, or mind blanking, where the stream of consciousness itself comes to a halt. To understand the neural mechanisms underlying attentional lapses, we studied the behaviour, subjective experience and neural activity of healthy participants performing a task. Random interruptions prompted participants to indicate their mental states as task-focused, mind-wandering or mind-blanking. Using high-density electroencephalography, we report here that spatially and temporally localized slow waves, a pattern of neural activity characteristic of the transition toward sleep, accompany behavioural markers of lapses and preceded reports of mind wandering and mind blanking. The location of slow waves could distinguish between sluggish and impulsive behaviours, and between mind wandering and mind blanking. Our results suggest attentional lapses share a common physiological origin: the emergence of local sleep-like activity within the awake brain.
Collapse
Affiliation(s)
- Thomas Andrillon
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Paris, France.
| | - Angus Burns
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Teigane Mackay
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Jennifer Windt
- Philosophy Department, Monash University, Melbourne, VIC, Australia
| | - Naotsugu Tsuchiya
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
- Advanced Telecommunications Research Computational Neuroscience Laboratories, Soraku-gun, Kyoto, Japan
| |
Collapse
|
176
|
Perceptual awareness negativity: a physiological correlate of sensory consciousness. Trends Cogn Sci 2021; 25:660-670. [PMID: 34172384 DOI: 10.1016/j.tics.2021.05.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022]
Abstract
Much research on the neural correlates of consciousness (NCC) has focused on two evoked potentials, the P3b and the visual or auditory awareness negativity (VAN, AAN). Surveying a broad range of recent experimental evidence, we find that repeated failures to observe the P3b during conscious perception eliminate it as a putative NCC. Neither the VAN nor the AAN have been dissociated from consciousness; furthermore, a similar neural signal correlates with tactile consciousness. These awareness negativities can be maximal contralateral to the evoking stimulus, are likely generated in underlying sensory cortices, and point to the existence of a generalized perceptual awareness negativity (PAN) reflecting the onset of sensory consciousness.
Collapse
|
177
|
Hippocampus-retrosplenial cortex interaction is increased during phasic REM and contributes to memory consolidation. Sci Rep 2021; 11:13078. [PMID: 34158548 PMCID: PMC8219679 DOI: 10.1038/s41598-021-91659-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
Hippocampal (HPC) theta oscillation during post-training rapid eye movement (REM) sleep supports spatial learning. Theta also modulates neuronal and oscillatory activity in the retrosplenial cortex (RSC) during REM sleep. To investigate the relevance of theta-driven interaction between these two regions to memory consolidation, we computed the Granger causality within theta range on electrophysiological data recorded in freely behaving rats during REM sleep, both before and after contextual fear conditioning. We found a training-induced modulation of causality between HPC and RSC that was correlated with memory retrieval 24 h later. Retrieval was proportional to the change in the relative influence RSC exerted upon HPC theta oscillation. Importantly, causality peaked during theta acceleration, in synchrony with phasic REM sleep. Altogether, these results support a role for phasic REM sleep in hippocampo-cortical memory consolidation and suggest that causality modulation between RSC and HPC during REM sleep plays a functional role in that phenomenon.
Collapse
|
178
|
Camaioni M, Scarpelli S, Gorgoni M, Alfonsi V, De Gennaro L. EEG Patterns Prior to Motor Activations of Parasomnias: A Systematic Review. Nat Sci Sleep 2021; 13:713-728. [PMID: 34113199 PMCID: PMC8184251 DOI: 10.2147/nss.s306614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Non-rapid eye movement (NREM) parasomnias are defined as abnormal nocturnal behaviors that typically arise from the NREM sleep stage 3 during the first sleep cycle. The polysomnographic studies showed an increase in sleep fragmentation and an atypical slow wave activity (SWA) in participants with NREM parasomnias compared to healthy controls. To date, the pathophysiology of NREM parasomnias is still poorly understood. The recent investigation of the EEG patterns immediately before parasomnia events could shed light on the motor activations' processes. This systematic review aims to summarize empirical evidence about these studies and provide an overview of the methodological issues. METHODS A systematic literature search was carried out in PubMed, Web of Science, and Scopus, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The documents obtained were evaluated using the Newcastle-Ottawa Scale (NOS). RESULTS Nine studies were included in the qualitative synthesis. The major evidence revealed an increased slow frequency EEG activity immediately before the motor activations in frontal and central areas and increased beta activity in the anterior cingulate cortices. DISCUSSION The investigation of EEG patterns before parasomniac episodes could provide new insight into the study of NREM parasomnia pathophysiology. The high- and low-frequency EEG increase before the episodes could represent a predictive electrophysiological pattern of the motor activations' onset. Overall, identifying specific sleep markers before parasomnias might also help differentiate between NREM parasomnias and other motor sleep disorders. Different methodological protocols should be integrated for overcoming the lack of consistent empirical findings. Thus, future studies should focus on the topographical examination of canonical EEG frequency bands to better understand spatial and time dynamics before the episodes and identify the networks underlying the onset of activations.
Collapse
Affiliation(s)
- Milena Camaioni
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Serena Scarpelli
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
179
|
Imperatori LS, Cataldi J, Betta M, Ricciardi E, Ince RAA, Siclari F, Bernardi G. Cross-participant prediction of vigilance stages through the combined use of wPLI and wSMI EEG functional connectivity metrics. Sleep 2021; 44:5998102. [PMID: 33220055 DOI: 10.1093/sleep/zsaa247] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 11/01/2020] [Indexed: 11/12/2022] Open
Abstract
Functional connectivity (FC) metrics describe brain inter-regional interactions and may complement information provided by common power-based analyses. Here, we investigated whether the FC-metrics weighted Phase Lag Index (wPLI) and weighted Symbolic Mutual Information (wSMI) may unveil functional differences across four stages of vigilance-wakefulness (W), NREM-N2, NREM-N3, and REM sleep-with respect to each other and to power-based features. Moreover, we explored their possible contribution in identifying differences between stages characterized by distinct levels of consciousness (REM+W vs. N2+N3) or sensory disconnection (REM vs. W). Overnight sleep and resting-state wakefulness recordings from 24 healthy participants (27 ± 6 years, 13F) were analyzed to extract power and FC-based features in six classical frequency bands. Cross-validated linear discriminant analyses (LDA) were applied to investigate the ability of extracted features to discriminate (1) the four vigilance stages, (2) W+REM vs. N2+N3, and (3) W vs. REM. For the four-way vigilance stages classification, combining features based on power and both connectivity metrics significantly increased accuracy relative to considering only power, wPLI, or wSMI features. Delta-power and connectivity (0.5-4 Hz) represented the most relevant features for all the tested classifications, in line with a possible involvement of slow waves in consciousness and sensory disconnection. Sigma-FC, but not sigma-power (12-16 Hz), was found to strongly contribute to the differentiation between states characterized by higher (W+REM) and lower (N2+N3) probabilities of conscious experiences. Finally, alpha-FC resulted as the most relevant FC-feature for distinguishing among wakefulness and REM sleep and may thus reflect the level of disconnection from the external environment.
Collapse
Affiliation(s)
- Laura Sophie Imperatori
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy.,Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Jacinthe Cataldi
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
| | - Monica Betta
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | | | - Robin A A Ince
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
| | - Giulio Bernardi
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy.,Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
180
|
Levinson M, Podvalny E, Baete SH, He BJ. Cortical and subcortical signatures of conscious object recognition. Nat Commun 2021; 12:2930. [PMID: 34006884 PMCID: PMC8131711 DOI: 10.1038/s41467-021-23266-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
The neural mechanisms underlying conscious recognition remain unclear, particularly the roles played by the prefrontal cortex, deactivated brain areas and subcortical regions. We investigated neural activity during conscious object recognition using 7 Tesla fMRI while human participants viewed object images presented at liminal contrasts. Here, we show both recognized and unrecognized images recruit widely distributed cortical and subcortical regions; however, recognized images elicit enhanced activation of visual, frontoparietal, and subcortical networks and stronger deactivation of the default-mode network. For recognized images, object category information can be decoded from all of the involved cortical networks but not from subcortical regions. Phase-scrambled images trigger strong involvement of inferior frontal junction, anterior cingulate cortex and default-mode network, implicating these regions in inferential processing under increased uncertainty. Our results indicate that content-specific activity in both activated and deactivated cortical networks and non-content-specific subcortical activity support conscious recognition. Cortical and subcortical neural activity supporting conscious object recognition has not yet been well defined. Here, the authors describe these networks and show recognition-related category information can be decoded from widespread cortical activity but not subcortical activity.
Collapse
Affiliation(s)
- Max Levinson
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Ella Podvalny
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Steven H Baete
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Biyu J He
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA. .,Department of Radiology, New York University School of Medicine, New York, NY, USA. .,Department of Neurology, New York University School of Medicine, New York, NY, USA. .,Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
181
|
Abstract
Understanding of the evolved biological function of sleep has advanced considerably in the past decade. However, no equivalent understanding of dreams has emerged. Contemporary neuroscientific theories often view dreams as epiphenomena, and many of the proposals for their biological function are contradicted by the phenomenology of dreams themselves. Now, the recent advent of deep neural networks (DNNs) has finally provided the novel conceptual framework within which to understand the evolved function of dreams. Notably, all DNNs face the issue of overfitting as they learn, which is when performance on one dataset increases but the network's performance fails to generalize (often measured by the divergence of performance on training versus testing datasets). This ubiquitous problem in DNNs is often solved by modelers via "noise injections" in the form of noisy or corrupted inputs. The goal of this paper is to argue that the brain faces a similar challenge of overfitting and that nightly dreams evolved to combat the brain's overfitting during its daily learning. That is, dreams are a biological mechanism for increasing generalizability via the creation of corrupted sensory inputs from stochastic activity across the hierarchy of neural structures. Sleep loss, specifically dream loss, leads to an overfitted brain that can still memorize and learn but fails to generalize appropriately. Herein this "overfitted brain hypothesis" is explicitly developed and then compared and contrasted with existing contemporary neuroscientific theories of dreams. Existing evidence for the hypothesis is surveyed within both neuroscience and deep learning, and a set of testable predictions is put forward that can be pursued both in vivo and in silico.
Collapse
Affiliation(s)
- Erik Hoel
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
182
|
Gorgoni M, Scarpelli S, Alfonsi V, Annarumma L, Cordone S, Stravolo S, De Gennaro L. Pandemic dreams: quantitative and qualitative features of the oneiric activity during the lockdown due to COVID-19 in Italy. Sleep Med 2021; 81:20-32. [PMID: 33631710 PMCID: PMC7868738 DOI: 10.1016/j.sleep.2021.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The lockdown due to COVID-19 pandemic had a strong impact on daily habits, emotional experience, mental health and sleep. A large body of evidence suggests that dreams are affected by both waking experiences and sleep pattern. In this view, the lockdown should have induced intense modifications in dreaming activity. The aim of the study was to assess dream features during the lockdown in Italy. METHODS We used an online survey to collect self-reported demographic, clinical, sleep and dream data. Our sample included 1091 participants. RESULTS Results point to an increased dream frequency, emotional load, vividness, bizarreness and length during the lockdown, compared to a pre-lockdown period. Higher dream frequency and specific qualitative features were found in females and subjects with poor sleep quality, nocturnal disruptive behaviours and depressive symptoms. Most of the dream features assessed during the lockdown were predicted by age, gender, depressive symptoms, presence/absence of other people at home, and territorial area. A specific focus on sleep features revealed that sleep duration and several sleep quality indexes were the best predictors of dream variables. During the lockdown, dreams were also characterized by increased negative emotions, which were particularly frequent in females, younger adults, and participants with poor sleep quality, nocturnal disruptive behaviours, anxiety and depressive symptoms. CONCLUSIONS Our results confirm the hypothesis of a strong influence of the pandemic on dreaming, supporting both the hypothesis of continuity between wake and sleep mental processes and the view of a crucial influence of sleep quality and duration on dreaming activity.
Collapse
Affiliation(s)
- Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, Rome, Italy.
| | | | | | | | - Susanna Cordone
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Serena Stravolo
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
183
|
Aamodt A, Nilsen AS, Thürer B, Moghadam FH, Kauppi N, Juel BE, Storm JF. EEG Signal Diversity Varies With Sleep Stage and Aspects of Dream Experience. Front Psychol 2021; 12:655884. [PMID: 33967919 PMCID: PMC8102678 DOI: 10.3389/fpsyg.2021.655884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Several theories link consciousness to complex cortical dynamics, as suggested by comparison of brain signal diversity between conscious states and states where consciousness is lost or reduced. In particular, Lempel-Ziv complexity, amplitude coalition entropy and synchrony coalition entropy distinguish wakefulness and REM sleep from deep sleep and anesthesia, and are elevated in psychedelic states, reported to increase the range and vividness of conscious contents. Some studies have even found correlations between complexity measures and facets of self-reported experience. As suggested by integrated information theory and the entropic brain hypothesis, measures of differentiation and signal diversity may therefore be measurable correlates of consciousness and phenomenological richness. Inspired by these ideas, we tested three hypotheses about EEG signal diversity related to sleep and dreaming. First, diversity should decrease with successively deeper stages of non-REM sleep. Second, signal diversity within the same sleep stage should be higher for periods of dreaming vs. non-dreaming. Third, specific aspects of dream contents should correlate with signal diversity in corresponding cortical regions. We employed a repeated awakening paradigm in sleep deprived healthy volunteers, with immediate dream report and rating of dream content along a thought-perceptual axis, from exclusively thought-like to exclusively perceptual. Generalized linear mixed models were used to assess how signal diversity varied with sleep stage, dreaming and thought-perceptual rating. Signal diversity decreased with sleep depth, but was not significantly different between dreaming and non-dreaming, even though there was a significant positive correlation between Lempel-Ziv complexity of EEG recorded over the posterior cortex and thought-perceptual ratings of dream contents.
Collapse
Affiliation(s)
- Arnfinn Aamodt
- Brain Signalling Lab, Division of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - André Sevenius Nilsen
- Brain Signalling Lab, Division of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Benjamin Thürer
- Brain Signalling Lab, Division of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Fatemeh Hasanzadeh Moghadam
- Brain Signalling Lab, Division of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nils Kauppi
- Brain Signalling Lab, Division of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bjørn Erik Juel
- Brain Signalling Lab, Division of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Johan Frederik Storm
- Brain Signalling Lab, Division of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
184
|
González J, Cavelli M, Castro-Zaballa S, Mondino A, Tort ABL, Rubido N, Carrera I, Torterolo P. EEG Gamma Band Alterations and REM-like Traits Underpin the Acute Effect of the Atypical Psychedelic Ibogaine in the Rat. ACS Pharmacol Transl Sci 2021; 4:517-525. [PMID: 33860181 PMCID: PMC8033602 DOI: 10.1021/acsptsci.0c00164] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 02/07/2023]
Abstract
Ibogaine is a psychedelic alkaloid that has attracted large scientific interest because of its antiaddictive properties in observational studies in humans as well as in animal models. Its subjective effect has been described as intense, vivid dream-like experiences occurring while awake; hence, ibogaine is often referred to as an oneirogenic psychedelic. While this unique dream-like profile has been hypothesized to aid the antiaddictive effects, the electrophysiological signatures of this psychedelic state remain unknown. We previously showed in rats that ibogaine promotes a waking state with abnormal motor behavior along with a decrease in NREM and REM sleep. Here, we performed an in-depth analysis of the intracranial electroencephalogram during "ibogaine wakefulness". We found that ibogaine induces gamma oscillations that, despite having larger power than control levels, are less coherent and less complex. Further analysis revealed that this profile of gamma activity compares to that of natural REM sleep. Thus, our results provide novel biological evidence for the association between the psychedelic state and REM sleep, contributing to the understanding of the brain mechanisms associated with the oneirogenic psychedelic effect of ibogaine.
Collapse
Affiliation(s)
- Joaquín González
- Departamento
de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11200, Uruguay
| | - Matias Cavelli
- Departamento
de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11200, Uruguay
- Department
of Psychiatry, University of Wisconsin, Madison, Wisconsin 53558, United States
| | - Santiago Castro-Zaballa
- Departamento
de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11200, Uruguay
| | - Alejandra Mondino
- Departamento
de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11200, Uruguay
- Department
of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48103, United States
| | - Adriano B. L. Tort
- Brain
Institute, Federal University of Rio Grande
do Norte, Natal, Rio Grande do Norte 59056, Brazil
| | - Nicolás Rubido
- Aberdeen
Biomedical Imaging Centre, University of
Aberdeen, Aberdeen AB25 2ZG, United Kingdom
- Instituto
de Física de Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay
| | - Ignacio Carrera
- Departamento
de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Pablo Torterolo
- Departamento
de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, 11200, Uruguay
| |
Collapse
|
185
|
Frohlich J, Toker D, Monti MM. Consciousness among delta waves: a paradox? Brain 2021; 144:2257-2277. [PMID: 33693596 DOI: 10.1093/brain/awab095] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/12/2021] [Accepted: 02/25/2021] [Indexed: 01/29/2023] Open
Abstract
A common observation in EEG research is that consciousness vanishes with the appearance of delta (1 - 4 Hz) waves, particularly when those waves are high amplitude. High amplitude delta oscillations are very frequently observed in states of diminished consciousness, including slow wave sleep, anaesthesia, generalised epileptic seizures, and disorders of consciousness such as coma and vegetative state. This strong correlation between loss of consciousness and high amplitude delta oscillations is thought to stem from the widespread cortical deactivation that occurs during the "down states" or troughs of these slow oscillations. Recently, however, many studies have reported the presence of prominent delta activity during conscious states, which casts doubt on the hypothesis that high amplitude delta oscillations are an indicator of unconsciousness. These studies include work in Angelman syndrome, epilepsy, behavioural responsiveness during propofol anaesthesia, postoperative delirium, and states of dissociation from the environment such as dreaming and powerful psychedelic states. The foregoing studies complement an older, yet largely unacknowledged, body of literature that has documented awake, conscious patients with high amplitude delta oscillations in clinical reports from Rett syndrome, Lennox-Gastaut syndrome, schizophrenia, mitochondrial diseases, hepatic encephalopathy, and nonconvulsive status epilepticus. At the same time, a largely parallel body of recent work has reported convincing evidence that the complexity or entropy of EEG and magnetoencephalogram or MEG signals strongly relates to an individual's level of consciousness. Having reviewed this literature, we discuss plausible mechanisms that would resolve the seeming contradiction between high amplitude delta oscillations and consciousness. We also consider implications concerning theories of consciousness, such as integrated information theory and the entropic brain hypothesis. Finally, we conclude that false inferences of unconscious states can be best avoided by examining measures of electrophysiological complexity in addition to spectral power.
Collapse
Affiliation(s)
- Joel Frohlich
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, California 90095, USA
| | - Daniel Toker
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, California 90095, USA
| | - Martin M Monti
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, California 90095, USA.,Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
186
|
Hao L, Shen L, Yin Q. Clinical Diagnosis of White Matter Softening in Premature Infants Based on Electroencephalogram (EEG). JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6614191. [PMID: 33688421 PMCID: PMC7925025 DOI: 10.1155/2021/6614191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 11/18/2022]
Abstract
Periventricular white matter softening in preterm infants can lead to severe sequelae and greatly affects the quality of life of preterm infants, and early diagnosis is of great clinical significance and value. The purpose of this study is to select a diagnostic test scientifically and rationally, to interpret and evaluate the results of the diagnostic test, and to evaluate the selected diagnostic method. Although DWI is a sensitive method for early diagnosis of PVL, it is not suitable for critical preterm infants. Therefore, according to clinical research data and the basic hardware conditions of our hospital, video EEG was chosen as the target diagnostic test method to explore whether VEEG can be used for early diagnosis of PVL. According to the results of this study, video EEG may play an important role in the early diagnosis of PVL, and it is believed that video EEG can be used as an auxiliary examination tool, especially for some critical preterm infants who are not suitable for DWI examination, and it can be used as an electrophysiological examination index for the preliminary diagnosis of periventricular white matter softening in preterm infants to indicate that the clinic should carry out necessary and appropriate diagnostic tests. The timely intervention and the results of VEEG are valuable for the assessment of the prognosis of critically ill preterm infants as raw data. However, the use of VEEG to screen clinically suspicious PVL preterm infants is a new attempt, and although good results have been achieved in foreign countries, this study has been conducted only recently in China and requires further exploration.
Collapse
Affiliation(s)
- Li Hao
- Department of Neonatology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, China
| | - Lu Shen
- Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu 222002, China
| | - Qigai Yin
- Department of Neonatology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, China
| |
Collapse
|
187
|
Konkoly KR, Appel K, Chabani E, Mangiaruga A, Gott J, Mallett R, Caughran B, Witkowski S, Whitmore NW, Mazurek CY, Berent JB, Weber FD, Türker B, Leu-Semenescu S, Maranci JB, Pipa G, Arnulf I, Oudiette D, Dresler M, Paller KA. Real-time dialogue between experimenters and dreamers during REM sleep. Curr Biol 2021; 31:1417-1427.e6. [PMID: 33607035 PMCID: PMC8162929 DOI: 10.1016/j.cub.2021.01.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 12/08/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
Dreams take us to a different reality, a hallucinatory world that feels as real as any waking experience. These often-bizarre episodes are emblematic of human sleep but have yet to be adequately explained. Retrospective dream reports are subject to distortion and forgetting, presenting a fundamental challenge for neuroscientific studies of dreaming. Here we show that individuals who are asleep and in the midst of a lucid dream (aware of the fact that they are currently dreaming) can perceive questions from an experimenter and provide answers using electrophysiological signals. We implemented our procedures for two-way communication during polysomnographically verified rapid-eye-movement (REM) sleep in 36 individuals. Some had minimal prior experience with lucid dreaming, others were frequent lucid dreamers, and one was a patient with narcolepsy who had frequent lucid dreams. During REM sleep, these individuals exhibited various capabilities, including performing veridical perceptual analysis of novel information, maintaining information in working memory, computing simple answers, and expressing volitional replies. Their responses included distinctive eye movements and selective facial muscle contractions, constituting correctly answered questions on 29 occasions across 6 of the individuals tested. These repeated observations of interactive dreaming, documented by four independent laboratory groups, demonstrate that phenomenological and cognitive characteristics of dreaming can be interrogated in real time. This relatively unexplored communication channel can enable a variety of practical applications and a new strategy for the empirical exploration of dreams. Scientific investigations of dreaming have been hampered by the delay between a dream and when people report on their dream, and by a change in state from sleep to wake. To overcome this problem, Konkoly et al. show that individuals in REM sleep can perceive and answer an experimenter’s questions, allowing for real-time communication about a dream.
Collapse
Affiliation(s)
- Karen R Konkoly
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Kristoffer Appel
- Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany; Institute of Sleep and Dream Technologies, Hamburg, Germany
| | - Emma Chabani
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, Paris, France
| | - Anastasia Mangiaruga
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Jarrod Gott
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Remington Mallett
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Bruce Caughran
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Sarah Witkowski
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Nathan W Whitmore
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Christopher Y Mazurek
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, IL, USA
| | | | - Frederik D Weber
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Başak Türker
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, Paris, France
| | - Smaranda Leu-Semenescu
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, Paris, France; AP-HP, Pitié-Salpêtrière Hospital, Sleep Disorders Department, Paris, France
| | - Jean-Baptiste Maranci
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, Paris, France; AP-HP, Pitié-Salpêtrière Hospital, Sleep Disorders Department, Paris, France
| | - Gordon Pipa
- Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany
| | - Isabelle Arnulf
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, Paris, France; AP-HP, Pitié-Salpêtrière Hospital, Sleep Disorders Department, Paris, France
| | - Delphine Oudiette
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, Paris, France
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ken A Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
188
|
Abstract
Despite the fact that medical properties of Cannabis have been recognized for more than 5000 years, the use of Cannabis for medical purposes have recently reemerged and became more accessible. Cannabis is usually employed as a self-medication for the treatment of insomnia disorder. However, the effects of Cannabis on sleep depend on multiple factors such as metabolomic composition of the plant, dosage and route of administration. In the present chapter, we reviewed the main effect Cannabis on sleep. We focused on the effect of "crude or whole plant" Cannabis consumption (i.e., smoked, oral or vaporized) both in humans and experimental animal models.The data reviewed establish that Cannabis modifies sleep. Furthermore, a recent experimental study in animals suggests that vaporization (which is a recommended route for medical purposes) of Cannabis with high THC and negligible CBD, promotes NREM sleep. However, it is imperative to perform new clinical studies in order to confirm if the administration of Cannabis could be a beneficial therapy for the treatment of sleep disorders.
Collapse
|
189
|
Abstract
Sleep and wakefulness are complex, tightly regulated behaviors that occur in virtually all animals. With recent exciting developments in neuroscience methodologies such as optogenetics, chemogenetics, and cell-specific calcium imaging technology, researchers can advance our understanding of how discrete neuronal groups precisely modulate states of sleep and wakefulness. In this chapter, we provide an overview of key neurotransmitter systems, neurons, and circuits that regulate states of sleep and wakefulness. We also describe long-standing models for the regulation of sleep/wake and non-rapid eye movement/rapid eye movement cycling. We contrast previous knowledge derived from classic approaches such as brain stimulation, lesions, cFos expression, and single-unit recordings, with emerging data using the newest technologies. Our understanding of neural circuits underlying the regulation of sleep and wakefulness is rapidly evolving, and this knowledge is critical for our field to elucidate the enigmatic function(s) of sleep.
Collapse
|
190
|
Higher-order sensorimotor circuit of the brain's global network supports human consciousness. Neuroimage 2021; 231:117850. [PMID: 33582277 DOI: 10.1016/j.neuroimage.2021.117850] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/29/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Consciousness is a mental characteristic of the human mind, whose exact neural features remain unclear. We aimed to identify the critical nodes within the brain's global functional network that support consciousness. To that end, we collected a large fMRI resting state dataset with subjects in at least one of the following three consciousness states: preserved (including the healthy awake state, and patients with a brain injury history (BI) that is fully conscious), reduced (including the N1-sleep state, and minimally conscious state), and lost (including the N3-sleep state, anesthesia, and unresponsive wakefulness state). We also included a unique dataset of subjects in rapid eye movement sleep state (REM-sleep) to test for the presence of consciousness with minimum movements and sensory input. To identify critical nodes, i.e., hubs, within the brain's global functional network, we used a graph-theoretical measure of degree centrality conjoined with ROI-based functional connectivity. Using these methods, we identified various higher-order sensory and motor regions including the supplementary motor area, bilateral supramarginal gyrus (part of inferior parietal lobule), supragenual/dorsal anterior cingulate cortex, and left middle temporal gyrus, that could be important hubs whose degree centrality was significantly reduced when consciousness was reduced or absent. Additionally, we identified a sensorimotor circuit, in which the functional connectivity among these regions was significantly correlated with levels of consciousness across the different groups, and remained present in the REM-sleep group. Taken together, we demonstrated that regions forming a higher-order sensorimotor integration circuit are involved in supporting consciousness within the brain's global functional network. That offers novel and more mechanism-guided treatment targets for disorders of consciousness.
Collapse
|
191
|
Scarpelli S, Alfonsi V, Gorgoni M, Giannini AM, De Gennaro L. Investigation on Neurobiological Mechanisms of Dreaming in the New Decade. Brain Sci 2021; 11:220. [PMID: 33670180 PMCID: PMC7916906 DOI: 10.3390/brainsci11020220] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
Dream research has advanced significantly over the last twenty years, thanks to the new applications of neuroimaging and electrophysiological techniques. Many findings pointed out that mental activity during sleep and wakefulness shared similar neural bases. On the other side, recent studies have highlighted that dream experience is promoted by significant brain activation, characterized by reduced low frequencies and increased rapid frequencies. Additionally, several studies confirmed that the posterior parietal area and prefrontal cortex are responsible for dream experience. Further, early results revealed that dreaming might be manipulated by sensory stimulations that would provoke the incorporation of specific cues into the dream scenario. Recently, transcranial stimulation techniques have been applied to modulate the level of consciousness during sleep, supporting previous findings and adding new information about neural correlates of dream recall. Overall, although multiple studies suggest that both the continuity and activation hypotheses provide a growing understanding of neural processes underlying dreaming, several issues are still unsolved. The impact of state-/trait-like variables, the influence of circadian and homeostatic factors, and the examination of parasomnia-like events to access dream contents are all opened issues deserving further deepening in future research.
Collapse
Affiliation(s)
- Serena Scarpelli
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (V.A.); (L.D.G.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
| | - Valentina Alfonsi
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (V.A.); (L.D.G.)
| | - Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
| | - Anna Maria Giannini
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
| | - Luigi De Gennaro
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (V.A.); (L.D.G.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
| |
Collapse
|
192
|
How hot is the hot zone? Computational modelling clarifies the role of parietal and frontoparietal connectivity during anaesthetic-induced loss of consciousness. Neuroimage 2021; 231:117841. [PMID: 33577934 DOI: 10.1016/j.neuroimage.2021.117841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, specific cortical networks have been proposed to be crucial for sustaining consciousness, including the posterior hot zone and frontoparietal resting state networks (RSN). Here, we computationally evaluate the relative contributions of three RSNs - the default mode network (DMN), the salience network (SAL), and the central executive network (CEN) - to consciousness and its loss during propofol anaesthesia. Specifically, we use dynamic causal modelling (DCM) of 10 min of high-density EEG recordings (N = 10, 4 males) obtained during behavioural responsiveness, unconsciousness and post-anaesthetic recovery to characterise differences in effective connectivity within frontal areas, the posterior 'hot zone', frontoparietal connections, and between-RSN connections. We estimate - for the first time - a large DCM model (LAR) of resting EEG, combining the three RSNs into a rich club of interconnectivity. Consistent with the hot zone theory, our findings demonstrate reductions in inter-RSN connectivity in the parietal cortex. Within the DMN itself, the strongest reductions are in feed-forward frontoparietal and parietal connections at the precuneus node. Within the SAL and CEN, loss of consciousness generates small increases in bidirectional connectivity. Using novel DCM leave-one-out cross-validation, we show that the most consistent out-of-sample predictions of the state of consciousness come from a key set of frontoparietal connections. This finding also generalises to unseen data collected during post-anaesthetic recovery. Our findings provide new, computational evidence for the importance of the posterior hot zone in explaining the loss of consciousness, highlighting also the distinct role of frontoparietal connectivity in underpinning conscious responsiveness, and consequently, suggest a dissociation between the mechanisms most prominently associated with explaining the contrast between conscious awareness and unconsciousness, and those maintaining consciousness.
Collapse
|
193
|
Windt JM. How deep is the rift between conscious states in sleep and wakefulness? Spontaneous experience over the sleep-wake cycle. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190696. [PMID: 33308071 PMCID: PMC7741079 DOI: 10.1098/rstb.2019.0696] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 12/29/2022] Open
Abstract
Whether we are awake or asleep is believed to mark a sharp divide between the types of conscious states we undergo in either behavioural state. Consciousness in sleep is often equated with dreaming and thought to be characteristically different from waking consciousness. Conversely, recent research shows that we spend a substantial amount of our waking lives mind wandering, or lost in spontaneous thoughts. Dreaming has been described as intensified mind wandering, suggesting that there is a continuum of spontaneous experience that reaches from waking into sleep. This challenges how we conceive of the behavioural states of sleep and wakefulness in relation to conscious states. I propose a conceptual framework that distinguishes different subtypes of spontaneous thoughts and experiences independently of their occurrence in sleep or waking. I apply this framework to selected findings from dream and mind-wandering research. I argue that to assess the relationship between spontaneous thoughts and experiences and the behavioural states of sleep and wakefulness, we need to look beyond dreams to consider kinds of sleep-related experience that qualify as dreamless. I conclude that if we consider the entire range of spontaneous thoughts and experiences, there appears to be variation in subtypes both within as well as across behavioural states. Whether we are sleeping or waking does not appear to strongly constrain which subtypes of spontaneous thoughts and experiences we undergo in those states. This challenges the conventional and coarse-grained distinction between sleep and waking and their putative relation to conscious states. This article is part of the theme issue 'Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation'.
Collapse
Affiliation(s)
- Jennifer M. Windt
- Department of Philosophy, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
194
|
Krishnan D. Orchestration of dreams: a possible tool for enhancement of mental productivity and efficiency. Sleep Biol Rhythms 2021; 19:207-213. [PMID: 33526967 PMCID: PMC7839624 DOI: 10.1007/s41105-021-00313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/15/2021] [Indexed: 11/29/2022]
Abstract
Deciphering the significance of dreams, remains a dream till date. A little is known about its underlying mechanism, brain regions involved and implications with wake life. This review is aimed to investigate the latest developments to summarize the differences in nature of dreams in Rapid eye movement and Non rapid eye movement sleep, possible role of dreams in day to day life with larger focus on Lucid Dreaming- its significant role in elevating productivity and efficiency. To carry out this review, combination of keywords like Lucid Dreaming, Rapid eye movement, Non rapid eye movement, Sleep Cycle, Dream Patterns, molecular mechanism of dreaming etc. were entered in databases like National library of Medicine, Google Scholar etc. Nature and composition of dreams are distinct in different sleep phases and it tends to influence cognitive skills, memory consolidation, mood and personal temperaments. It was observed that dreams in distinct phases, can be directly/indirectly related to development of cognition, skill enhancements, learning, healing, and even stress management affecting overall performance and productivity of an individual. Understanding the nature of dream contents in different phases can possibly inculcate insights for not only recovery aid in several mental illnesses but for elevated efficiency and productivity in normal individuals as well. Realising dreams as an effective tool for its contribution in daily activities might help organising our mood and overall mental well-being, a foremost component to thrive in the contemporary world which is currently undergoing the chaos of Novel Coronavirus Disease 2019.
Collapse
Affiliation(s)
- Dolly Krishnan
- Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
195
|
Zooming-in on higher-level vision: High-resolution fMRI for understanding visual perception and awareness. Prog Neurobiol 2021; 207:101998. [PMID: 33497652 DOI: 10.1016/j.pneurobio.2021.101998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 11/11/2020] [Accepted: 01/16/2021] [Indexed: 12/24/2022]
Abstract
One of the central questions in visual neuroscience is how the sparse retinal signals leaving our eyes are transformed into a rich subjective visual experience of the world. Invasive physiology studies, which offers the highest spatial resolution, have revealed many facts about the processing of simple visual features like contrast, color, and orientation, focusing on the early visual areas. At the same time, standard human fMRI studies with comparably coarser spatial resolution have revealed more complex, functionally specialized, and category-selective responses in higher visual areas. Although the visual system is the best understood among the sensory modalities, these two areas of research remain largely segregated. High-resolution fMRI opens up a possibility for linking them. On the one hand, it allows studying how the higher-level visual functions affect the fine-scale activity in early visual areas. On the other hand, it allows discovering the fine-scale functional organization of higher visual areas and exploring their functional connectivity with visual areas lower in the hierarchy. In this review, I will discuss examples of successful work undertaken in these directions using high-resolution fMRI and discuss where this method could be applied in the future to advance our understanding of the complexity of higher-level visual processing.
Collapse
|
196
|
Imagination in Autism: A Chance to Improve Early Language Therapy. Healthcare (Basel) 2021; 9:healthcare9010063. [PMID: 33440627 PMCID: PMC7826637 DOI: 10.3390/healthcare9010063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/02/2023] Open
Abstract
Children with autism often have difficulties in imaginative play, Theory of Mind, and playing out different scenarios in their minds. Research shows that the root of these problems may be the voluntary imagination network that involves the lateral prefrontal cortex and its long frontoposterior connections to the temporal-parietal-occipital area. Previously disconnected visuospatial issues (stimulus overselectivity and tunnel vision) and language issues (lack of comprehension of spatial prepositions and complex recursive sentences) may be explained by the same voluntary imagination deficit. This review highlights the new insights into the mechanism of voluntary imagination, its difference from involuntary imagination, and its unusually strong critical period. Clearer developmental terminology and a better understanding of voluntary imagination have the potential to facilitate communication between therapists and parents, and improve therapy outcomes in children.
Collapse
|
197
|
Castelnovo A, Loddo G, Provini F, Miano S, Manconi M. Mental Activity During Episodes of Sleepwalking, Night Terrors or Confusional Arousals: Differences Between Children and Adults. Nat Sci Sleep 2021; 13:829-840. [PMID: 34188578 PMCID: PMC8232850 DOI: 10.2147/nss.s309868] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE/BACKGROUND Night terrors, sleepwalking and confusional arousals are behavioral manifestations of incomplete awakenings from sleep. According to international diagnostic criteria, these behaviors occur in the absence of any mental experience, or in the presence of very limited cognition or dream imagery (eg, a single visual scene). The aim of this study was to systematically and retrospectively investigate the mental content associated with sleep terrors and/or sleepwalking in both children and adults. PATIENTS AND METHODS Forty-five consecutive patients referred for a diagnosis of disorders of arousal (DOA) of all subtypes (sleepwalking/sleep terrors/confusional arousals) (25 adults: 30 ± 6 y, 15 females; 20 children: 10 ± 3 y, 6 females) underwent a detailed semi-structured interview about the mental content associated with their nocturnal episodes. The interview was comprehensive of specific questions about their subjective recall rate, several content details (characters, emotions, actions and setting/context), and hallucinatory or dissociative experiences during clinical episodes. Patients' reports were classified for complexity (Orlinsky scale) and content (Hall and Van de Castle categories). RESULTS More than two-third of the children (n = 14) could not recall any mental activity associated with their episodes, whereas more than two-third (n = 16) of the adults recalled at least one mental experience. Half of the adult patients (n = 8) estimated that a specific mental content was subjectively present around 50% or more of the times. Seven adults and one child described clear and vivid hallucinatory experiences of "dreamed" objects or characters projected onto their real home environment, in the absence of any reality testing. Five adults and two children described one or more dissociative experiences. The content of the collected reports was dominated by dynamic actions acted out from a self-perspective, often with apprehension and in response to misfortune and danger, in a home-setting environment. CONCLUSION These results suggest that current diagnostic criteria are tailored around the typical presentation of DOA in children, and do not always fit to adult patients with DOA. Furthermore, they support the concept that consciousness may reemerge in DOA patients during clinical episodes, in a peculiar dissociated, psychotic-like form.
Collapse
Affiliation(s)
- Anna Castelnovo
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.,University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Giuseppe Loddo
- Department of Primary Care, Azienda USL di Bologna, Bologna, Italia
| | - Federica Provini
- IRCSS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italia
| | - Silvia Miano
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland
| | - Mauro Manconi
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.,Department of Neurology, University Hospital, Inselspital, Bern, Switzerland
| |
Collapse
|
198
|
Foundations of Human Consciousness: Imaging the Twilight Zone. J Neurosci 2020; 41:1769-1778. [PMID: 33372062 PMCID: PMC8115882 DOI: 10.1523/jneurosci.0775-20.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/07/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022] Open
Abstract
What happens in the brain when conscious awareness of the surrounding world fades? We manipulated consciousness in two experiments in a group of healthy males and measured brain activity with positron emission tomography. Measurements were made during wakefulness, escalating and constant levels of two anesthetic agents (experiment 1, n = 39), and during sleep-deprived wakefulness and non-rapid eye movement sleep (experiment 2, n = 37). In experiment 1, the subjects were randomized to receive either propofol or dexmedetomidine until unresponsiveness. In both experiments, forced awakenings were applied to achieve rapid recovery from an unresponsive to a responsive state, followed by immediate and detailed interviews of subjective experiences during the preceding unresponsive condition. Unresponsiveness rarely denoted unconsciousness, as the majority of the subjects had internally generated experiences. Unresponsive anesthetic states and verified sleep stages, where a subsequent report of mental content included no signs of awareness of the surrounding world, indicated a disconnected state. Functional brain imaging comparing responsive and connected versus unresponsive and disconnected states of consciousness during constant anesthetic exposure revealed that activity of the thalamus, cingulate cortices, and angular gyri are fundamental for human consciousness. These brain structures were affected independent from the pharmacologic agent, drug concentration, and direction of change in the state of consciousness. Analogous findings were obtained when consciousness was regulated by physiological sleep. State-specific findings were distinct and separable from the overall effects of the interventions, which included widespread depression of brain activity across cortical areas. These findings identify a central core brain network critical for human consciousness. SIGNIFICANCE STATEMENT Trying to understand the biological basis of human consciousness is currently one of the greatest challenges of neuroscience. While the loss and return of consciousness regulated by anesthetic drugs and physiological sleep are used as model systems in experimental studies on consciousness, previous research results have been confounded by drug effects, by confusing behavioral “unresponsiveness” and internally generated consciousness, and by comparing brain activity levels across states that differ in several other respects than only consciousness. Here, we present carefully designed studies that overcome many previous confounders and for the first time reveal the neural mechanisms underlying human consciousness and its disconnection from behavioral responsiveness, both during anesthesia and during normal sleep, and in the same study subjects.
Collapse
|
199
|
Cipolli C, Pizza F, Bellucci C, Mazzetti M, Tuozzi G, Vandi S, Plazzi G. Dream Generation and Recall in Daytime NREM Sleep of Patients With Narcolepsy Type 1. Front Neurosci 2020; 14:608757. [PMID: 33328876 PMCID: PMC7729059 DOI: 10.3389/fnins.2020.608757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/28/2020] [Indexed: 12/02/2022] Open
Abstract
The less rigid architecture of sleep in patients with narcolepsy type 1 (NT1) compared with healthy subjects may provide new insights into some unresolved issues of dream experience (DE), under the assumption that their DE frequencies are comparable. The multiple transition from wakefulness to REM sleep (sleep onset REM period: SOREMP) during the five trials of the Multiple Sleep Latency Test (MSLT) appears of particular interest. In MSLT studies, NT1 patients reported a DE after about 80% of SOREMP naps (as often as after nighttime REM sleep of themselves and healthy subjects), but only after about 30% of NREM naps compared to 60% of daytime and nighttime NREM sleep of healthy subjects. To estimate accurately the “real” DE frequency, we asked participants to report DE (“dream”) after each MSLT nap and, in case of failure, to specify if they were unable to retrieve any content (“white dream”) or DE did not occur (“no-dream”). The proportions of dreams, white dreams, and no dreams and the indicators of structural organization of DEs reported after NREM naps by 17 adult NT1 patients were compared with those reported by 25 subjects with subjective complaints of excessive daytime sleepiness (sc-EDS), who take multiple daytime NREM naps. Findings were consistent with the hypothesis of a failure in recall after awakening rather than in generation during sleep: white dreams were more frequent in NT1 patients than in sc-EDS subjects (42.86 vs 17.64%), while their frequency of dreams plus white dreams were similar (67.86 and 61.78%) and comparable with that of NREM-DEs in healthy subjects. The longer and more complex NREM-DEs of NT1 patients compared with sc-EDS subjects suggest that the difficulty in DE reporting depends on their negative attitude toward recall of contents less vivid and bizarre than those they usually retrieve after daytime SOREMP and nighttime REM sleep. As this attitude may be reversed by some recall training before MSLT, collecting wider amounts of DE reports after NREM naps would cast light on both the across-stage continuity in the functioning of cognitive processes underlying DE and the difference in content and structural organization of SOREM-DEs preceded by N1 or also N2 sleep.
Collapse
Affiliation(s)
- Carlo Cipolli
- Department of Specialty, Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico "Istituto delle Scienze Neurologiche" di Bologna, Bologna, Italy
| | - Claudia Bellucci
- Department of Specialty, Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy
| | - Michela Mazzetti
- Department of Specialty, Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy
| | - Giovanni Tuozzi
- Department of Psychology, University of Bologna, Bologna, Italy
| | - Stefano Vandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico "Istituto delle Scienze Neurologiche" di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
200
|
Vyshedskiy A, Khokhlovich E, Dunn R, Faisman A, Elgart J, Lokshina L, Gankin Y, Ostrovsky S, deTorres L, Edelson SM, Ilyinskii PO. Novel Prefrontal Synthesis Intervention Improves Language in Children with Autism. Healthcare (Basel) 2020; 8:healthcare8040566. [PMID: 33339269 PMCID: PMC7765988 DOI: 10.3390/healthcare8040566] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/03/2022] Open
Abstract
Prefrontal synthesis (PFS) is defined as the ability to juxtapose mental visuospatial objects at will. Paralysis of PFS may be responsible for the lack of comprehension of spatial prepositions, semantically-reversible sentences, and recursive sentences observed in 30 to 40% of individuals with autism spectrum disorder (ASD). In this report we present data from a three-year-long clinical trial of 6454 ASD children age 2 to 12 years, which were administered a PFS-targeting intervention. Tablet-based verbal and nonverbal exercises emphasizing mental-juxtaposition-of-objects were organized into an application called Mental Imagery Therapy for Autism (MITA). The test group included participants who completed more than one thousand exercises and made no more than one error per exercise. The control group was selected from the rest of participants by a matching procedure. Each test group participant was matched to the control group participant by age, gender, expressive language, receptive language, sociability, cognitive awareness, and health score at first evaluation using propensity score analysis. The test group showed a 2.2-fold improvement in receptive language score vs. control group (p < 0.0001) and a 1.4-fold improvement in expressive language (p = 0.0144). No statistically significant change was detected in other subscales not targeted by the exercises. These findings show that language acquisition improves after training PFS and that a further investigation of the PFS-targeting intervention in a randomized controlled study is warranted.
Collapse
Affiliation(s)
- Andrey Vyshedskiy
- Biology Department, Boston University, Boston, MA 02215, USA
- ImagiRation, Boston, MA 02135, USA; (R.D.); (J.E.); (L.L.); (S.O.); (L.d.)
- Correspondence: ; Tel.: +1-(617)-433-7724
| | | | - Rita Dunn
- ImagiRation, Boston, MA 02135, USA; (R.D.); (J.E.); (L.L.); (S.O.); (L.d.)
| | | | - Jonah Elgart
- ImagiRation, Boston, MA 02135, USA; (R.D.); (J.E.); (L.L.); (S.O.); (L.d.)
| | - Lisa Lokshina
- ImagiRation, Boston, MA 02135, USA; (R.D.); (J.E.); (L.L.); (S.O.); (L.d.)
| | | | - Simone Ostrovsky
- ImagiRation, Boston, MA 02135, USA; (R.D.); (J.E.); (L.L.); (S.O.); (L.d.)
| | - Lauren deTorres
- ImagiRation, Boston, MA 02135, USA; (R.D.); (J.E.); (L.L.); (S.O.); (L.d.)
| | | | | |
Collapse
|