151
|
Singh V, Bell M. Genotypic Variability in Architectural Development of Mungbean ( Vigna radiata L.) Root Systems and Physiological Relationships With Shoot Growth Dynamics. FRONTIERS IN PLANT SCIENCE 2021; 12:725915. [PMID: 34490024 PMCID: PMC8417475 DOI: 10.3389/fpls.2021.725915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Selection for root system architectures (RSA) to match target growing environments can improve yields through better adaptation to water and nutrient-limiting conditions in grain legume crops such as mungbean. In this study, the architectural development of root systems in four contrasting mungbean varieties was studied over time to explore their relationships to above-ground growth and development. Key findings suggested that early maturing mungbean varieties were characterized by more rapid root elongation rates and leaf area development, resulting in more vigorous root and shoot growth during early growth stages compared with a late maturing variety. The early maturing varieties also showed root morphological traits generally adapted to water-limited environments, such as deeper, longer and lighter roots. Early maturing varieties more rapidly colonized the top 10-20 cm of the soil profile during early growth stages, whereas the later maturing variety developed less prolific but 20-50% thicker roots in the same profile layers in later stages of crop growth. The diversity of root characteristics identified in these commercial varieties suggests that there are opportunities to combine desirable root traits with maturity types to target different production environments. Examples include deeper, longer, and thinner roots for crops to exploit deep profile reserves of water and nutrients, and thicker and shallower root systems for crops grown in shallow soils with stratified nutrient reserves and/or more favorable in-season rainfall.
Collapse
Affiliation(s)
- Vijaya Singh
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Michael Bell
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
- The School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, Australia
| |
Collapse
|
152
|
Yang Z, Zheng J, Zhou H, Chen S, Gao Z, Yang Y, Li X, Liao H. The soybean β-expansin gene GmINS1 contributes to nodule development in response to phosphate starvation. PHYSIOLOGIA PLANTARUM 2021; 172:2034-2047. [PMID: 33887063 DOI: 10.1111/ppl.13436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Legume biological nitrogen fixation (BNF) is the most important N source in agricultural ecosystems. Nodule organogenesis from the primordia to the development of mature nodules with the ability to fix N2 largely determines BNF capacity. However, nodule growth is often limited by low phosphorus (P) availability, while the mechanisms underlying nodule development responses to P deficiency remain largely unknown. In this study, we found that nodule enlargement is severely inhibited by P deficiency, as reflected by the smaller individual nodule size from a soybean core collection in the field. Wide-ranging natural diversity in nodule size was further identified in soybeans reared in low P soils, with the FC-1 genotype outperforming FC-2 in assessments of nodulation under low P conditions. Among β-expansin members, GmINS1 expression is most abundantly enhanced by P deficiency in FC-1 nodules, and its transcript level is further displayed to be tightly associated with nodule enlargement. Four single nucleotide polymorphisms discovered in the GmINS1 promoter distinguished the FC-1 and FC-2 genotypes and accounted for the differential expression levels of GmINS1 responses to P deficiency. GmINS1 overexpression led to increases in nodule size, infected cell abundance, and N2 fixation capacity and subsequently promoted increases in N and P content, soybean biomass, and yield. Our findings provide a candidate gene for optimizing BNF capacity responses to low P stress in soybean molecular breeding programs.
Collapse
Affiliation(s)
- Zhaojun Yang
- Root Biology Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiakun Zheng
- Root Biology Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiwen Zhou
- Root Biology Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengnan Chen
- Root Biology Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi Gao
- Root Biology Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongqing Yang
- Root Biology Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinxin Li
- Root Biology Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Liao
- Root Biology Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
153
|
Grant JE, Ninan A, Cripps-Guazzone N, Shaw M, Song J, Pet Ík I, Novák OE, Tegeder M, Jameson PE. Concurrent overexpression of amino acid permease AAP1(3a) and SUT1 sucrose transporter in pea resulted in increased seed number and changed cytokinin and protein levels. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:889-904. [PMID: 34366001 DOI: 10.1071/fp21011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/30/2021] [Indexed: 06/13/2023]
Abstract
Using pea as our model crop, we sought to understand the regulatory control over the import of sugars and amino acids into the developing seeds and its importance for seed yield and quality. Transgenic peas simultaneously overexpressing a sucrose transporter and an amino acid transporter were developed. Pod walls, seed coats, and cotyledons were analysed separately, as well as leaves subtending developing pods. Sucrose, starch, protein, free amino acids, and endogenous cytokinins were measured during development. Temporal gene expression analyses (RT-qPCR) of amino acid (AAP), sucrose (SUT), and SWEET transporter family members, and those from cell wall invertase, cytokinin biosynthetic (IPT) and degradation (CKX) gene families indicated a strong effect of the transgenes on gene expression. In seed coats of the double transgenics, increased content and prolonged presence of cytokinin was particularly noticeable. The transgenes effectively promoted transition of young sink leaves into source leaves. We suggest the increased flux of sucrose and amino acids from source to sink, along with increased interaction between cytokinin and cell wall invertase in developing seed coats led to enhanced sink activity, resulting in higher cotyledon sucrose at process pea harvest, and increased seed number and protein content at maturity.
Collapse
Affiliation(s)
- Jan E Grant
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand; and Corresponding authors. Emails: ;
| | - Annu Ninan
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; and The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Natalia Cripps-Guazzone
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand; and Faculty of Agriculture and Life Sciences, Lincoln University, New Zealand
| | - Martin Shaw
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Jiancheng Song
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; and School of Life Sciences, Yantai University, Yantai 264005, China
| | - Ivan Pet Ík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelu 27, CZ-78371 Olomouc, Czech Republic
| | - Ond Ej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelu 27, CZ-78371 Olomouc, Czech Republic
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Paula E Jameson
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; and Corresponding authors. Emails: ;
| |
Collapse
|
154
|
Iannetta PPM, Hawes C, Begg GS, Maaß H, Ntatsi G, Savvas D, Vasconcelos M, Hamann K, Williams M, Styles D, Toma L, Shrestha S, Balázs B, Kelemen E, Debeljak M, Trajanov A, Vickers R, Rees RM. A Multifunctional Solution for Wicked Problems: Value-Chain Wide Facilitation of Legumes Cultivated at Bioregional Scales Is Necessary to Address the Climate-Biodiversity-Nutrition Nexus. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.692137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Well-managed legume-based food systems are uniquely positioned to curtail the existential challenge posed by climate change through the significant contribution that legumes can make toward limiting Green House Gas (GHG) emissions. This potential is enabled by the specific functional attributes offered only by legumes, which deliver multiple co-benefits through improved ecosystem functions, including reduced farmland biodiversity loss, and better human-health and -nutrition provisioning. These three critical societal challenges are referred to collectively here as the “climate-biodiversity-nutrition nexus.” Despite the unparalleled potential of the provisions offered by legumes, this diverse crop group remains characterized as underutilized throughout Europe, and in many regions world-wide. This commentary highlights that integrated, diverse, legume-based, regenerative agricultural practices should be allied with more-concerted action on ex-farm gate factors at appropriate bioregional scales. Also, that this can be achieved whilst optimizing production, safeguarding food-security, and minimizing additional land-use requirements. To help avoid forfeiting the benefits of legume cultivation for system function, a specific and practical methodological and decision-aid framework is offered. This is based upon the identification and management of sustainable-development indicators for legume-based value chains, to help manage the key facilitative capacities and dependencies. Solving the wicked problems of the climate-biodiversity-nutrition nexus demands complex solutions and multiple benefits and this legume-focus must be allied with more-concerted policy action, including improved facilitation of the catalytic provisions provided by collaborative capacity builders—to ensure that the knowledge networks are established, that there is unhindered information flow, and that new transformative value-chain capacities and business models are established.
Collapse
|
155
|
Nutritional and Rheological Features of Lentil Protein Isolate for Yoghurt-Like Application. Foods 2021; 10:foods10081692. [PMID: 34441469 PMCID: PMC8391921 DOI: 10.3390/foods10081692] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/31/2022] Open
Abstract
The substitution of animal protein with proteins of plant origin is a viable way to decrease the negative impact caused by animal husbandry on the environment. Pulse consumption has been widely promoted as a nutritious contribution to protein supplementation. In this study, an emulsion of lentil (Lens culinaris) protein isolate is fermented with lactic acid bacteria (LAB) to manufacture a yoghurt alternative and the techno-functional properties compared to a dairy- and a soy-based product with similar protein contents. The yoghurt-like products are subjected to large and small deformation analysis, quantification of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP), water holding capacity tests, protein profile analysis and the gel structure is visualised by confocal laser scanning microscopy (CLSM). The lentil yoghurt alternative shows good water holding capacity, high firmness and consistency values in large deformation analysis, with cohesiveness and viscosity not significantly different from that of dairy yoghurt. The high gel strength and rigidity of the lentil yoghurt gels measured by small deformation analysis is well-reflected in the dense protein matrix in the CLSM graphs. FODMAP content of the lentil yoghurt is very low, making it suitable for consumption by irritable bowel syndrome (IBS) patients. Our results show that lentil protein isolate is an excellent base material for producing a plant-based yoghurt alternative.
Collapse
|
156
|
Tognetti PM, Prober SM, Báez S, Chaneton EJ, Firn J, Risch AC, Schuetz M, Simonsen AK, Yahdjian L, Borer ET, Seabloom EW, Arnillas CA, Bakker JD, Brown CS, Cadotte MW, Caldeira MC, Daleo P, Dwyer JM, Fay PA, Gherardi LA, Hagenah N, Hautier Y, Komatsu KJ, McCulley RL, Price JN, Standish RJ, Stevens CJ, Wragg PD, Sankaran M. Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proc Natl Acad Sci U S A 2021; 118:e2023718118. [PMID: 34260386 PMCID: PMC8285913 DOI: 10.1073/pnas.2023718118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in low-nutrient environments by enhancing their nitrogen-fixing capacity. We present a global-scale experiment confirming these predictions for nitrogen-fixing legumes (Fabaceae) across 45 grasslands on six continents. Nitrogen addition reduced legume cover, richness, and biomass, particularly in nitrogen-poor soils, while cover of non-nitrogen-fixing plants increased. The addition of phosphorous, potassium, and other nutrients enhanced legume abundance, but did not mitigate the negative effects of nitrogen addition. Increasing nitrogen supply thus has the potential to decrease the diversity and abundance of grassland legumes worldwide regardless of the availability of other nutrients, with consequences for biodiversity, food webs, ecosystem resilience, and genetic improvement of protein-rich agricultural plant species.
Collapse
Affiliation(s)
- Pedro M Tognetti
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina;
| | - Suzanne M Prober
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Wembley, WA 6913, Australia;
| | - Selene Báez
- Department of Biology, Escuela Politécnica Nacional del Ecuador, 17-01-2759 Quito, Ecuador
| | - Enrique J Chaneton
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Jennifer Firn
- Centre for the Environment, School of Biological and Environmental Sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Anita C Risch
- Community Ecology, Swiss Federal Institute for Forest, Snow, and Landscape Research, 8903 Birmensdorf, Switzerland
| | - Martin Schuetz
- Community Ecology, Swiss Federal Institute for Forest, Snow, and Landscape Research, 8903 Birmensdorf, Switzerland
| | - Anna K Simonsen
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - Laura Yahdjian
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Elizabeth T Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108
| | - Eric W Seabloom
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108
| | - Carlos Alberto Arnillas
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Jonathan D Bakker
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195
| | - Cynthia S Brown
- Graduate Degree Program in Ecology, Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| | - Marc W Cadotte
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Maria C Caldeira
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Pedro Daleo
- Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, 7600 Mar del Plata, Argentina
| | - John M Dwyer
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Ecosciences Precinct, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia
| | - Philip A Fay
- Grassland, Soil, and Water Research Lab, US Department of Agriculture-Agricultural Research Service, Temple, TX 76502
| | | | - Nicole Hagenah
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, 0028 Pretoria, South Africa
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | - Rebecca L McCulley
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312
| | - Jodi N Price
- Institute of Land, Water and Society, Charles Sturt University, Albury, NSW 2640, Australia
| | - Rachel J Standish
- Environmental and Conservation Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Carly J Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Peter D Wragg
- Department of Forest Resources, University of Minnesota, St. Paul, MN 55108
| | - Mahesh Sankaran
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, Karnataka, India
- School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
157
|
Cusworth G, Garnett T, Lorimer J. Legume dreams: The contested futures of sustainable plant-based food systems in Europe. GLOBAL ENVIRONMENTAL CHANGE : HUMAN AND POLICY DIMENSIONS 2021; 69:102321. [PMID: 34471332 PMCID: PMC8381765 DOI: 10.1016/j.gloenvcha.2021.102321] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/23/2021] [Accepted: 06/07/2021] [Indexed: 05/27/2023]
Abstract
With the intensification of agriculture, the simplification of crop rotations, and the rise in demand for meat, dairy and cereal products, legume production and consumption are at an historic low in Europe. But as the environmental consequences of agriculture (biodiversity loss, high greenhouse gas emissions, water pollution) and the health outcomes of modern diets (heart disease, cancer, diabetes, obesity) become better known, so great and varied hopes are being expressed about the future role of legumes in the food system. This paper catalogues and scrutinises these hopes, mapping the promissory narratives now orbiting around legumes. It identifies six food futures, each of which is made possible through the greater use of legumes in various production, processing, marketing and consumption contexts. These promissory narratives are theorised as contrasting responses to three major areas of contestation in the food systems literature. Namely i) the sustainability of livestock management, ii) the role of technology in different visions of the 'good diet', and iii) the merits of different models for how to make agricultural management more sustainable. It identifies the promiscuity of legumes - in terms of the range of food futures they permit - before distilling three points of consensus amongst advocates of the potential of legumes. These points of consensus relate to their nitrogen fixing capacity, their high protein content, and their long-standing historical role in the context of European food and farming. This map of legume dreams serves to guide deliberations amongst researchers, policymakers and industry stakeholders about the futures of plant-based food in Europe.
Collapse
Affiliation(s)
- George Cusworth
- Oxford Martin Programme on the Future of Food, c/o Oxford Martin School, University of Oxford, 34 Broad Street, Oxford OX1 3BD, UK
| | - Tara Garnett
- Oxford Martin Programme on the Future of Food, c/o Oxford Martin School, University of Oxford, 34 Broad Street, Oxford OX1 3BD, UK
| | | |
Collapse
|
158
|
Rahman M, Mostofa MG, Keya SS, Rahman A, Das AK, Islam R, Abdelrahman M, Bhuiyan SU, Naznin T, Ansary MU, Tran LSP. Acetic acid improves drought acclimation in soybean: an integrative response of photosynthesis, osmoregulation, mineral uptake and antioxidant defense. PHYSIOLOGIA PLANTARUM 2021; 172:334-350. [PMID: 32797626 DOI: 10.1111/ppl.13191] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/14/2020] [Accepted: 08/12/2020] [Indexed: 05/08/2023]
Abstract
Exposure to drought stress negatively affects plant productivity and consequently threatens global food security. As global climates change, identifying solutions to increase the resilience of plants to drought is increasingly important. Several chemical treatments have recently emerged as promising techniques for various individual and combined abiotic stresses. This study shows compelling evidence on how acetic acid application promotes drought acclimation responses in soybean by investigating several morphological, physiological and biochemical attributes. Foliar applications of acetic acid to drought-exposed soybean resulted in improvements in root biomass, leaf area, photosynthetic rate and water use efficiency; leading to improved growth performance. Drought-induced accumulation of reactive oxygen species, and the resultant increased levels of malondialdehyde and electrolyte leakage, were considerably reverted by acetic acid treatment. Acetic acid-sprayed plants suffered less oxidative stress due to the enhancement of antioxidant defense mechanisms, as evidenced by the increased activities of superoxide dismutase, ascorbate peroxidase, catalase, glutathione peroxidase and glutathione S-transferase. Improved shoot relative water content was also linked to the increased levels of soluble sugars and free amino acids, indicating a better osmotic adjustment following acetic acid treatment in drought-exposed plants. Acetic acid also increased stem/root, leaf/stem and leaf/root mineral ratios and improved overall mineral status in drought-stressed plants. Taken together, our results demonstrated that acetic acid treatment enabled soybean plants to positively regulate photosynthetic ability, water balance, mineral homeostasis and antioxidant responses; thereby suggesting acetic acid as a cost-effective and easily accessible chemical for the management of soybean growth and productivity in drought-prone areas.
Collapse
Affiliation(s)
- Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Sanjida Sultana Keya
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Abiar Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Ashim Kumar Das
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Robyul Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Shahab Uddin Bhuiyan
- Department of Entomology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Tahia Naznin
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mesbah Uddin Ansary
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| |
Collapse
|
159
|
Muktadir MA, Adhikari KN, Ahmad N, Merchant A. Chemical composition and reproductive functionality of contrasting faba bean genotypes in response to water deficit. PHYSIOLOGIA PLANTARUM 2021; 172:540-551. [PMID: 33305355 DOI: 10.1111/ppl.13309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/05/2020] [Accepted: 12/05/2020] [Indexed: 05/11/2023]
Abstract
Water deficit (WD), a major contributor to yield reductions in faba bean (Vicia faba), is a complex phenomenon that varies across daily to seasonal cycles. Several studies have identified various morphological and physiological indicators of WD tolerance, which generally show limited water use during WD. Limited information is available on the impact of WD on nutrient content and reproductive biology of the faba bean. We studied carbohydrates, amino acids, mineral nutrients and the abundance of naturally occurring carbon isotopes (δ13 C) in leaf and grain tissues of faba bean genotypes grown under well-watered (WW) and WD conditions. δ13 C of leaf tissues were found to indicate changes in water use due to WD but this was not reflected in grain tissues. Nutrient concentrations with regard to amino acids and minerals were not influenced by WD. However, carbohydrate accumulation was found to be significant for WD, specifically through the presence of a higher concentration of myo-inositol in WD leaf tissues. Alternatively, sucrose concentration in grain tissues was reduced under WD treatment. WD hampered reproductive functionality by reducing pollen viability and germination with the severity and duration of stress and this reduction was less prominent in the drought-tolerant genotype (AC0805#4912) compared to the sensitive one (11NF010c-4). It was also demonstrated that WD caused developmental impairment in the stamen and pistil, where the pistil appeared more sensitive than stamen. These findings suggest that WD impairs pollen viability and pistil function reducing yield volume, but the nutrient content of the resulting yield is not significantly affected.
Collapse
Affiliation(s)
- Md Abdul Muktadir
- Centre for Carbon Water and Food, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
- IA Watson Grains Research Centre, Faculty of Science, The University of Sydney, Narrabri, New South Wales, Australia
- Pulses Research Centre, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Kedar N Adhikari
- IA Watson Grains Research Centre, Faculty of Science, The University of Sydney, Narrabri, New South Wales, Australia
| | - Nabil Ahmad
- Plant Breeding Institute, Faculty of Science, The University of Sydney, Cobbitty, New South Wales, Australia
| | - Andrew Merchant
- Centre for Carbon Water and Food, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| |
Collapse
|
160
|
Guiguitant J, Marrou H, Vile D, Sinclair TR, Pradhan D, Ramirez M, Ghanem ME. An exploration of the variability of physiological responses to soil drying in relation with C/N balance across three species of the under-utilized genus Vigna. PHYSIOLOGIA PLANTARUM 2021; 172:477-486. [PMID: 33002192 DOI: 10.1111/ppl.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/09/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
The genus Vigna (Fabaceae) is an agriculturally important taxon, which includes several crop species such as cowpea (Vigna unguiculata L.), mung bean (Vigna radiata) and azuki bean (Vigna angularis). Most studies have focused on cowpea (V. unguiculata (L.) as a drought-resistant crop, although insights on the mechanisms that confer this species the ability to grow in dry environment are still not fully resolved. The diversity of this rich genus has been overlooked in many physiological studies. This study explores the physiological mechanisms of response to soil drying (N2 fixation, transpiration rate and changes in C and N allocation) across three species of the Vigna genus: V. radiata, V. unguiculata, V. vexillata (tuber cowpea). A significant variability among the studied Vigna accessions was found for the threshold in decline of N2 fixation with soil drying. Less variability was observed in the transpiration threshold. Through the analysis of leaf traits variation under well-watered and water-deficit conditions, we were able to relate the variability in N2 fixation and transpiration response to C/N metabolism modifications resulting in different allocation of carbon and nitrogen to leaves under water deficit.
Collapse
Affiliation(s)
- Julie Guiguitant
- SYSTEM, Univ Montpellier, Institut Agro, INRAE, CIRAD, IAMM, Montpellier, France
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Hélène Marrou
- Plant Physiology and Crop Improvement Program, AgroBioSciences, University Mohammed VI Polytechnic, Hay Moulay Rachid, Morocco
- Institut Agro, Univ Montpellier, Montpellier, France
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Thomas R Sinclair
- Crop and Soil Science Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Deepti Pradhan
- Crop and Soil Science Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Martha Ramirez
- US Department of Agriculture, ARS, Raleigh, North Carolina, USA
| | - Michel Edmond Ghanem
- Plant Physiology and Crop Improvement Program, AgroBioSciences, University Mohammed VI Polytechnic, Hay Moulay Rachid, Morocco
| |
Collapse
|
161
|
Wainaina I, Wafula E, Sila D, Kyomugasho C, Grauwet T, Van Loey A, Hendrickx M. Thermal treatment of common beans (Phaseolus vulgaris L.): Factors determining cooking time and its consequences for sensory and nutritional quality. Compr Rev Food Sci Food Saf 2021; 20:3690-3718. [PMID: 34056842 DOI: 10.1111/1541-4337.12770] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 11/26/2022]
Abstract
Over the past years, the shift toward plant-based foods has largely increased the global awareness of the nutritional importance of legumes (common beans (Phaseolus vulgaris L.) in particular) and their potential role in sustainable food systems. Nevertheless, the many benefits of bean consumption may not be realized in large parts of the world, since long cooking time (lack of convenience) limits their utilization. This review focuses on the current insights in the cooking behavior (cookability) of common beans and the variables that have a direct and/or indirect impact on cooking time. The review includes the various methods to evaluate textural changes and the effect of cooking on sensory attributes and nutritional quality of beans. In this review, it is revealed that the factors involved in cooking time of beans are diverse and complex and thus necessitate a careful consideration of the choice of (pre)processing conditions to conveniently achieve palatability while ensuring maximum nutrient retention in beans. In order to harness the full potential of beans, there is a need for a multisectoral collaboration between breeders, processors, and nutritionists.
Collapse
Affiliation(s)
- Irene Wainaina
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Elizabeth Wafula
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium.,Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Daniel Sila
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Clare Kyomugasho
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Tara Grauwet
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Ann Van Loey
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Marc Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| |
Collapse
|
162
|
Yang T, Evans B, Bainard LD. Pulse Frequency in Crop Rotations Alters Soil Microbial Community Networks and the Relative Abundance of Fungal Plant Pathogens. Front Microbiol 2021; 12:667394. [PMID: 34122380 PMCID: PMC8189174 DOI: 10.3389/fmicb.2021.667394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/29/2021] [Indexed: 11/28/2022] Open
Abstract
Including pulse crops in cereal-based cropping systems has become a widely accepted and useful agronomic practice to increase crop diversification and biologically fixed nitrogen in agroecosystems. However, there is a lack of knowledge regarding how the intensification of pulses in crop rotations influence soil microbial communities. In this study, we used an amplicon sequencing approach to examine the bulk and rhizosphere soil bacterial and fungal communities from the wheat (Triticum aestivum L.) phase (final year of 4 years rotations) of a long-term pulse intensification field trial in the semi-arid region of the Canadian Prairies. Our results revealed pulse frequency had a minimal impact on microbial α-diversity, but caused a significant shift in the composition of the fungal (rhizosphere and bulk soil) and bacterial (bulk soil) communities. This effect was the most pronounced in the Ascomycete and Bacteroidete communities. Increasing pulse frequency also promoted a higher proportion of fungal pathotrophs in the bulk soil, particularly those putatively identified as plant pathogens. The network analysis revealed that rotations with higher pulse frequency promoted increased competition within the soil microbial networks in the rhizosphere and bulk soil. However, we also detected more negative interactions among the dominant pathotrophic taxa with increased pulse frequency, suggesting higher soil-borne disease potential. These findings highlight the potential drawbacks and reduced sustainability of increasing pulse frequency in crop rotations in semiarid environments.
Collapse
Affiliation(s)
- Tony Yang
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Bianca Evans
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Luke D Bainard
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, BC, Canada
| |
Collapse
|
163
|
Mekkara Nikarthil Sudhakaran S, Bukkan DS. A review on nutritional composition, antinutritional components and health benefits of green gram (Vigna radiata (L.) Wilczek). J Food Biochem 2021; 45:e13743. [PMID: 33934386 DOI: 10.1111/jfbc.13743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Green gram is rich in proteins, carbohydrate, dietary fiber, vitamins, and minerals and contains a low amount of fat. Since it is rich in protein, it can be considered as the meat alternative for vegetarians. Besides being a nutritious food, green gram possesses potential health benefits such as antioxidant, anticancerous, anti-inflammatory and hypolipidemic activities. Green gram has prebiotic and nutraceutical properties. It contains an appreciable amount of galactooligosaccharides that are capable of enhancing the growth of beneficial gut microbiota. Different researchers already developed functional foods such as mung bean milk and non-diary probiotic drinks from green gram. It can also be used as a carrier material to deliver probiotic bacteria to the gut. Apart from these applications, green gram is used in cosmetics, land reclamation and incorporated into different foods such as jams, jellies, noodles, etc. Green gram is also a major ingredient used in China's traditional health foods. PRACTICAL APPLICATIONS: Green gram is rich in proteins, carbohydrate, dietary fiber, vitamins, and minerals and contains a low amount of fat. Since it is rich in protein, it can be considered as the meat alternative for vegetarians. Besides being a nutritious food, green gram possesses potential health benefits such as antioxidant, anticancerous, antioxidant, anti-inflammatory and hypolipidemic activities. Green gram has prebiotic and nutraceutical properties. It contains an appreciable amount of oligosaccharides that are capable of enhancing the growth of beneficial gut microbiota. Different researchers already developed functional foods such as mung bean milk and non-diary probiotic drinks from green gram. It can also be used as a carrier material to deliver probiotic bacteria to the gut. Apart from these applications, green gram is used in cosmetics and land reclamation and incorporated into different foods such as jams, jellies, noodles, etc. Green gram is also a major ingredient used in China's traditional health foods.
Collapse
|
164
|
Tsiknia M, Tsikou D, Papadopoulou KK, Ehaliotis C. Multi-species relationships in legume roots: From pairwise legume-symbiont interactions to the plant - microbiome - soil continuum. FEMS Microbiol Ecol 2021; 97:5957530. [PMID: 33155054 DOI: 10.1093/femsec/fiaa222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
Mutualistic relationships of legume plants with, either bacteria (like rhizobia) or fungi (like arbuscular mycorrhizal fungi), have been investigated intensively, usually as bi-partite interactions. However, diverse symbiotic interactions take place simultaneously or sequentially under field conditions. Their collective, but not additive, contribution to plant growth and performance remains hard to predict, and appears to be furthermore affected by crop species and genotype, non-symbiotic microbial interactions and environmental variables. The challenge is: (i) to unravel the complex overlapping mechanisms that operate between the microbial symbionts as well as between them, their hosts and the rhizosphere (ii) to understand the dynamics of the respective mechanisms in evolutionary and ecological terms. The target for agriculture, food security and the environment, is to use this insight as a solid basis for developing new integrated technologies, practices and strategies for the efficient use of beneficial microbes in legumes and other plants. We review recent advances in our understanding of the symbiotic interactions in legumes roots brought about with the aid of molecular and bioinformatics tools. We go through single symbiont-host interactions, proceed to tripartite symbiont-host interactions, appraise interactions of symbiotic and associative microbiomes with plants in the root-rhizoplane-soil continuum of habitats and end up by examining attempts to validate community ecology principles in the legume-microbe-soil biosystem.
Collapse
Affiliation(s)
- Myrto Tsiknia
- Soils and Soil Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75 st., Athens 11855, Greece
| | - Daniela Tsikou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Kalliope K Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Constantinos Ehaliotis
- Soils and Soil Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75 st., Athens 11855, Greece
| |
Collapse
|
165
|
Toker C, Berger J, Eker T, Sari D, Sari H, Gokturk RS, Kahraman A, Aydin B, von Wettberg EJ. Cicer turcicum: A New Cicer Species and Its Potential to Improve Chickpea. FRONTIERS IN PLANT SCIENCE 2021; 12:662891. [PMID: 33936152 PMCID: PMC8082243 DOI: 10.3389/fpls.2021.662891] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Genetic resources of the genus Cicer L. are not only limited when compared to other important food legumes and major cereal crops but also, they include several endemic species with endangered status based on the criteria of the International Union for Conservation of Nature. The chief threats to endemic and endangered Cicer species are over-grazing and habitat change in their natural environments driven by climate changes. During a collection mission in east and south-east Anatolia (Turkey), a new Cicer species was discovered, proposed here as C. turcicum Toker, Berger & Gokturk. Here, we describe the morphological characteristics, images, and ecology of the species, and present preliminary evidence of its potential utility for chickpea improvement. C. turcicum is an annual species, endemic to southeast Anatolia and to date has only been located in a single population distant from any other known annual Cicer species. It belongs to section Cicer M. Pop. of the subgenus Pseudononis M. Pop. of the genus Cicer L. (Fabaceae) and on the basis of internal transcribed spacer (ITS) sequence similarity appears to be a sister species of C. reticulatum Ladiz. and C. echinospermum P.H. Davis, both of which are inter-fertile with domestic chickpea (C. arietinum L.). With the addition of C. turcicum, the genus Cicer now comprises 10 annual and 36 perennial species. As a preliminary evaluation of its potential for chickpea improvement two accessions of C. turcicum were field screened for reproductive heat tolerance and seeds were tested for bruchid resistance alongside a representative group of wild and domestic annual Cicer species. C. turcicum expressed the highest heat tolerance and similar bruchid resistance as C. judaicum Boiss. and C. pinnatifidum Juab. & Spach, neither of which are in the primary genepool of domestic chickpea. Given that C. arietinum and C. reticulatum returned the lowest and the second lowest tolerance and resistance scores, C. turcicum may hold much potential for chickpea improvement if its close relatedness supports interspecific hybridization with the cultigen. Crossing experiments are currently underway to explore this question.
Collapse
Affiliation(s)
- Cengiz Toker
- Department of Field Crops, Akdeniz University, Antalya, Turkey
| | - Jens Berger
- CSIRO Agriculture and Food, Wembley, WA, Australia
| | - Tuba Eker
- Department of Field Crops, Akdeniz University, Antalya, Turkey
| | - Duygu Sari
- Department of Field Crops, Akdeniz University, Antalya, Turkey
| | - Hatice Sari
- Department of Field Crops, Akdeniz University, Antalya, Turkey
| | | | | | - Bilal Aydin
- Department of Field Crops, Harran University, Şanlıurfa, Turkey
| | - Eric J. von Wettberg
- Department of Plant and Soil Science and Gund Institute for Environment, University of Vermont, Burlington, VT, United States
| |
Collapse
|
166
|
Mashamaite CV, Pieterse PJ, Mothapo PN, Phiri EE. Moringa oleifera in South Africa: A review on its production, growing conditions and consumption as a food source. S AFR J SCI 2021. [DOI: 10.17159/sajs.2021/8689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Moringa oleifera (moringa) trees excel mainly in tropical and sub-tropical regions and are known to thrive in a wide range of soil types. The recent rise in moringa production in various agro-ecological zones of South Africa could be attributed to its multiple benefits, including nutritional and medicinal properties. Since its introduction as a cultivated crop, there has been a growing interest from farmers, researchers and government on various aspects of the tree such as its morphology, chemistry, growing conditions, production, processing and utilisation. We reviewed the work done on moringa within the South African context in terms of production, growing conditions and cultivation practices. The involvement of government departments on moringa-oriented activities and its consumption as food were also reviewed. In addition, gaps were outlined on its utilisation that need to be addressed, and recommendations provided on what could be done to ensure successful production of moringa in South Africa.
Collapse
Affiliation(s)
| | - Petrus J. Pieterse
- Department of Agronomy, Stellenbosch University, Stellenbosch, South Africa
| | - Palesa N. Mothapo
- Division for Research Development, Stellenbosch University, Stellenbosch, South Africa
| | - Ethel E. Phiri
- Department of Agronomy, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
167
|
Philadelpho B, Souza V, Souza F, Santos J, Batista F, Silva M, Capraro J, De Benedetti S, Heinzl GC, Cilli E, Scarafoni A, Magni C, Ferreira E. Chromatography-Independent Fractionation and Newly Identified Molecular Features of the Adzuki Bean ( Vigna angularis Willd.) β-vignin Protein. Int J Mol Sci 2021; 22:3018. [PMID: 33809562 PMCID: PMC8000399 DOI: 10.3390/ijms22063018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 01/04/2023] Open
Abstract
Adzuki seed β-vignin, a vicilin-like globulin, has proven to exert various health-promoting biological activities, notably in cardiovascular health. A simple scalable enrichment procedure of this protein for further nutritional and functional studies is crucial. In this study, a simplified chromatography-independent protein fractionation procedure has been optimized and described. The electrophoretic analysis showed a high degree of homogeneity of β-vignin isolate. Furthermore, the molecular features of the purified protein were investigated. The adzuki bean β-vignin was found to have a native size of 146 kDa, and the molecular weight determined was consistent with a trimeric structure. These were identified in two main polypeptide chains (masses of 56-54 kDa) that are glycosylated polypeptides with metal binding capacity, and one minor polypeptide chain with a mass 37 kDa, wherein these features are absent. The in vitro analysis showed a high degree of digestibility of the protein (92%) and potential anti-inflammatory capacity. The results lay the basis not only for further investigation of the health-promoting properties of the adzuki bean β-vignin protein, but also for a possible application as nutraceutical molecule.
Collapse
Affiliation(s)
- Biane Philadelpho
- Department of Bromatological Analysis, School of Pharmacy, Federal University of Bahia, 40170-115 Salvador, Brazil; (B.P.); (V.S.); (F.S.); (J.S.); (F.B.)
| | - Victória Souza
- Department of Bromatological Analysis, School of Pharmacy, Federal University of Bahia, 40170-115 Salvador, Brazil; (B.P.); (V.S.); (F.S.); (J.S.); (F.B.)
| | - Fabiani Souza
- Department of Bromatological Analysis, School of Pharmacy, Federal University of Bahia, 40170-115 Salvador, Brazil; (B.P.); (V.S.); (F.S.); (J.S.); (F.B.)
| | - Johnnie Santos
- Department of Bromatological Analysis, School of Pharmacy, Federal University of Bahia, 40170-115 Salvador, Brazil; (B.P.); (V.S.); (F.S.); (J.S.); (F.B.)
| | - Fabiana Batista
- Department of Bromatological Analysis, School of Pharmacy, Federal University of Bahia, 40170-115 Salvador, Brazil; (B.P.); (V.S.); (F.S.); (J.S.); (F.B.)
| | - Mariana Silva
- Chemistry Institute, Sao Paulo State University, 14800-900 Araraquara, Brazil; (M.S.); (E.C.)
| | - Jessica Capraro
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (J.C.); (S.D.B.); (G.C.H.); (A.S.)
| | - Stefano De Benedetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (J.C.); (S.D.B.); (G.C.H.); (A.S.)
| | - Giuditta C. Heinzl
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (J.C.); (S.D.B.); (G.C.H.); (A.S.)
| | - Eduardo Cilli
- Chemistry Institute, Sao Paulo State University, 14800-900 Araraquara, Brazil; (M.S.); (E.C.)
| | - Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (J.C.); (S.D.B.); (G.C.H.); (A.S.)
| | - Chiara Magni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (J.C.); (S.D.B.); (G.C.H.); (A.S.)
| | - Ederlan Ferreira
- Department of Bromatological Analysis, School of Pharmacy, Federal University of Bahia, 40170-115 Salvador, Brazil; (B.P.); (V.S.); (F.S.); (J.S.); (F.B.)
| |
Collapse
|
168
|
Landi N, Piccolella S, Ragucci S, Faramarzi S, Clemente A, Papa S, Pacifico S, Di Maro A. Valle Agricola Chickpeas: Nutritional Profile and Metabolomics Traits of a Typical Landrace Legume from Southern Italy. Foods 2021; 10:foods10030583. [PMID: 33802023 PMCID: PMC8002183 DOI: 10.3390/foods10030583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022] Open
Abstract
Chickpea (Cicer arietinum L.) from Valle Agricola is a legume cultivated in Southern Italy whose intake is strictly linked to rural traditions. In order to get new biochemical insight on this landrace and to promote its consumption and marketing, nutritional values (moisture content, total proteins, lipids, total and free amino acids) and metabolic traits are deeply investigated. Valle Agricola chickpea is nutritionally rich in proteins (19.70 g/100 g) and essential amino acids (7.12 g/100 g; ~40% of total). Carbohydrates, whose identity was unraveled by means of UHPLC-HR MS/MS analysis, were almost 60% of chemicals. In particular, a di-galactosylglycerol, a pinitol digalactoside, and a galactosylciceritol were found as constitutive, together with different raffinose-series oligosaccharides. Although lipids were the less constitutive compounds, glycerophospholipids were identified, while among free fatty acids linoleic acid (C18:2) was the most abundant, followed by oleic (C18:1) and palmitic (C16:0) acids. Isoflavones and hydroxybenzoic acid derivatives were also detected. Valle Agricola chickpeas showed very good levels of several mineral nutrients, especially magnesium (164 mg/100 g), potassium (748 mg/100 g), calcium (200 mg/100 g), zinc (4.20 mg/100 g) and manganese (0.45 mg/100 g). The boiling process favorably decreases anti-trypsin and anti-chymotrypsin activities, depleting this precious seed of its intrinsic antinutritional factors.
Collapse
|
169
|
Cardini A, Pellegrino E, White PJ, Mazzolai B, Mascherpa MC, Ercoli L. Transcriptional Regulation of Genes Involved in Zinc Uptake, Sequestration and Redistribution Following Foliar Zinc Application to Medicago sativa. PLANTS (BASEL, SWITZERLAND) 2021; 10:476. [PMID: 33802484 PMCID: PMC7998959 DOI: 10.3390/plants10030476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 11/19/2022]
Abstract
Zinc (Zn) is an essential micronutrient for plants and animals, and Zn deficiency is a widespread problem for agricultural production. Although many studies have been performed on biofortification of staple crops with Zn, few studies have focused on forages. Here, the molecular mechanisms of Zn transport in alfalfa (Medicago sativa L.) were investigated following foliar Zn applications. Zinc uptake and redistribution between shoot and root were determined following application of six Zn doses to leaves. Twelve putative genes encoding proteins involved in Zn transport (MsZIP1-7, MsZIF1, MsMTP1, MsYSL1, MsHMA4, and MsNAS1) were identified and changes in their expression following Zn application were quantified using newly designed RT-qPCR assays. These assays are the first designed specifically for alfalfa and resulted in being more efficient than the ones already available for Medicago truncatula (i.e., MtZIP1-7 and MtMTP1). Shoot and root Zn concentration was increased following foliar Zn applications ≥ 0.1 mg plant-1. Increased expression of MsZIP2, MsHMA4, and MsNAS1 in shoots, and of MsZIP2 and MsHMA4 in roots was observed with the largest Zn dose (10 mg Zn plant-1). By contrast, MsZIP3 was downregulated in shoots at Zn doses ≥ 0.1 mg plant-1. Three functional gene modules, involved in Zn uptake by cells, vacuolar Zn sequestration, and Zn redistribution within the plant, were identified. These results will inform genetic engineering strategies aimed at increasing the efficiency of crop Zn biofortification.
Collapse
Affiliation(s)
- Alessio Cardini
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (A.C.); (L.E.)
| | - Elisa Pellegrino
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (A.C.); (L.E.)
| | - Philip J. White
- Department of Ecological Science, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Barbara Mazzolai
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pontedera, 56025 Pisa, Italy;
| | - Marco C. Mascherpa
- Istituto di Chimica dei Composti Organo Metallici, National Research Council (CNR), 56124 Pisa, Italy;
| | - Laura Ercoli
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (A.C.); (L.E.)
| |
Collapse
|
170
|
Semba RD, Ramsing R, Rahman N, Kraemer K, Bloem MW. Legumes as a sustainable source of protein in human diets. GLOBAL FOOD SECURITY 2021. [DOI: 10.1016/j.gfs.2021.100520] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
171
|
Müller M, Schneider JR, Klein VA, da Silva E, da Silva Júnior JP, Souza AM, Chavarria G. Soybean Root Growth in Response to Chemical, Physical, and Biological Soil Variations. FRONTIERS IN PLANT SCIENCE 2021; 12:602569. [PMID: 33732272 PMCID: PMC7959720 DOI: 10.3389/fpls.2021.602569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/04/2021] [Indexed: 05/27/2023]
Abstract
Environmental conditions affect crop yield, and water deficit has been highlighted by the negative impact on soybean grain production. Radicial growth in greater volume and depth can be an alternative to minimize losses caused by a lack of water. Therefore, knowledge of how soybean roots behave before the chemical, physical, and biological attributes of the soil can help establish managements that benefit in-depth root growth. The objective was to evaluate the growth of soybean roots in response to chemical, physical, and biological variations in the soil, in different soil locations and depths. Six experiments were conducted in different locations. Soil samples were collected every 5 cm of soil up to 60 cm of soil depth for chemical, physical, and biological analysis. The roots were collected every 5 cm deep up to 45 cm deep from the ground. The six sites presented unsatisfactory values of pH and organic matter, and presented phosphorus, potassium, and calcium at high concentrations in the first centimeters of soil depth. The total porosity of the soil was above 0.50 m3 m-3, but the proportion of the volume of macropores, micropores, and cryptopores resulted in soils with resistance to penetration to the roots. Microbial biomass was higher on the soil surface when compared to deeper soil layers, however, the metabolic quotient was higher in soil depth, showing that microorganisms in depth have low ability to incorporate carbon into microbial biomass. Root growth occurred in a greater proportion in the first centimeters of soil-depth, possibly because the soil attributes that favor the root growth is concentrated on the soil surface.
Collapse
Affiliation(s)
- Mariele Müller
- Agronomy Post-Graduate Program, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Brazil
| | - Julia Renata Schneider
- Agronomy Post-Graduate Program, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Brazil
| | - Vilson Antônio Klein
- Agronomy Post-Graduate Program, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Brazil
| | - Eliardo da Silva
- Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Brazil
| | | | | | - Geraldo Chavarria
- Agronomy Post-Graduate Program, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Brazil
| |
Collapse
|
172
|
Restrepo-Montoya D, McClean PE, Osorno JM. Orthology and synteny analysis of receptor-like kinases "RLK" and receptor-like proteins "RLP" in legumes. BMC Genomics 2021; 22:113. [PMID: 33568053 PMCID: PMC7874474 DOI: 10.1186/s12864-021-07384-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Legume species are an important plant model because of their protein-rich physiology. The adaptability and productivity of legumes are limited by major biotic and abiotic stresses. Responses to these stresses directly involve plasma membrane receptor proteins known as receptor-like kinases and receptor-like proteins. Evaluating the homology relations among RLK and RLP for seven legume species, and exploring their presence among synteny blocks allow an increased understanding of evolutionary relations, physical position, and chromosomal distribution in related species and their shared roles in stress responses. RESULTS Typically, a high proportion of RLK and RLP legume proteins belong to orthologous clusters, which is confirmed in this study, where between 66 to 90% of the RLKs and RLPs per legume species were classified in orthologous clusters. One-third of the evaluated syntenic blocks had shared RLK/RLP genes among both legumes and non-legumes. Among the legumes, between 75 and 98% of the RLK/RLP were present in syntenic blocks. The distribution of chromosomal segments between Phaseolus vulgaris and Vigna unguiculata, two species that diverged ~ 8 mya, were highly similar. Among the RLK/RLP synteny clusters, seven experimentally validated resistance RLK/RLP genes were identified in syntenic blocks. The RLK resistant genes FLS2, BIR2, ERECTA, IOS1, and AtSERK1 from Arabidopsis and SLSERK1 from Solanum lycopersicum were present in different pairwise syntenic blocks among the legume species. Meanwhile, only the LYM1- RLP resistant gene from Arabidopsis shared a syntenic blocks with Glycine max. CONCLUSIONS The orthology analysis of the RLK and RLP suggests a dynamic evolution in the legume family, with between 66 to 85% of RLK and 83 to 88% of RLP belonging to orthologous clusters among the species evaluated. In fact, for the 10-species comparison, a lower number of singleton proteins were reported among RLP compared to RLK, suggesting that RLP positions are more physically conserved compared to RLK. The identification of RLK and RLP genes among the synteny blocks in legumes revealed multiple highly conserved syntenic blocks on multiple chromosomes. Additionally, the analysis suggests that P. vulgaris is an appropriate anchor species for comparative genomics among legumes.
Collapse
Affiliation(s)
- Daniel Restrepo-Montoya
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, 58108-6050, USA.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| | - Phillip E McClean
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, 58108-6050, USA.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| | - Juan M Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
173
|
Rhizobia: highways to NO. Biochem Soc Trans 2021; 49:495-505. [PMID: 33544133 DOI: 10.1042/bst20200989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/02/2023]
Abstract
The interaction between rhizobia and their legume host plants conduces to the formation of specialized root organs called nodules where rhizobia differentiate into bacteroids which fix atmospheric nitrogen to the benefit of the plant. This beneficial symbiosis is of importance in the context of sustainable agriculture as legumes do not require the addition of nitrogen fertilizer to grow. Interestingly, nitric oxide (NO) has been detected at various steps of the rhizobium-legume symbiosis where it has been shown to play multifaceted roles. Both bacterial and plant partners are involved in NO synthesis in nodules. To better understand the role of NO, and in particular the role of bacterial NO, at all steps of rhizobia-legumes interaction, the enzymatic sources of NO have to be elucidated. In this review, we discuss different enzymatic reactions by which rhizobia may potentially produce NO. We argue that there is most probably no NO synthase activity in rhizobia, and that instead the NO2- reductase nirK, which is part of the denitrification pathway, is the main bacterial source of NO. The nitrate assimilation pathway might contribute to NO production but only when denitrification is active. The different approaches to measure NO in rhizobia are also addressed.
Collapse
|
174
|
Zhu X, Leiser WL, Hahn V, Würschum T. Identification of seed protein and oil related QTL in 944 RILs from a diallel of early-maturing European soybean. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.cj.2020.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
175
|
Jones RAC. Global Plant Virus Disease Pandemics and Epidemics. PLANTS (BASEL, SWITZERLAND) 2021; 10:233. [PMID: 33504044 PMCID: PMC7911862 DOI: 10.3390/plants10020233] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The world's staple food crops, and other food crops that optimize human nutrition, suffer from global virus disease pandemics and epidemics that greatly diminish their yields and/or produce quality. This situation is becoming increasingly serious because of the human population's growing food requirements and increasing difficulties in managing virus diseases effectively arising from global warming. This review provides historical and recent information about virus disease pandemics and major epidemics that originated within different world regions, spread to other continents, and now have very wide distributions. Because they threaten food security, all are cause for considerable concern for humanity. The pandemic disease examples described are six (maize lethal necrosis, rice tungro, sweet potato virus, banana bunchy top, citrus tristeza, plum pox). The major epidemic disease examples described are seven (wheat yellow dwarf, wheat streak mosaic, potato tuber necrotic ringspot, faba bean necrotic yellows, pepino mosaic, tomato brown rugose fruit, and cucumber green mottle mosaic). Most examples involve long-distance virus dispersal, albeit inadvertent, by international trade in seed or planting material. With every example, the factors responsible for its development, geographical distribution and global importance are explained. Finally, an overall explanation is given of how to manage global virus disease pandemics and epidemics effectively.
Collapse
Affiliation(s)
- Roger A C Jones
- The UWA Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
176
|
Oxidative Stress Produced by Paraquat Reduces Nitrogen Fixation in Soybean-Bradyrhizobium diazoefficiens Symbiosis by Decreasing Nodule Functionality. NITROGEN 2021. [DOI: 10.3390/nitrogen2010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Soybean (Glycine max.) is one of the most important legumes cultivated worldwide. Its productivity can be altered by some biotic and abiotic stresses like global warming, soil metal pollution or over-application of herbicides like paraquat (1,1’-dimethyl-4,4’-bipyridinium dichloride). In this study, the effect of oxidative stress produced by paraquat addition (0, 20, 50 and 100 µM) during plant growth on symbiotic nitrogen fixation (SNF) and functionality of Bradyrhizobium diazoefficiens-elicited soybean nodules were evaluated. Results showed that the 50 µM was the threshold that B. diazoefficiens can tolerate under free-living conditions. In symbiosis with soybean, the paraquat addition statistically reduced the shoot and root dry weight of soybean plants, and number and development of the nodules. SNF was negatively affected by paraquat, which reduced total nitrogen content and fixed nitrogen close to 50% when 100 µM was added. These effects were due to the impairment of nodule functionality and the increased oxidative status of the nodules, as revealed by the lower leghaemoglobin content and the higher lipid peroxidation in soybean nodules from paraquat-treated plants.
Collapse
|
177
|
Abstract
A semi-hydroponic phenotyping platform was constructed using inexpensive and easily obtained materials for characterizing root trait variability in a large set of chickpea (Cicer arietinum) germplasm. The system was designed to accommodate a large number of plants in a small area allowing relatively deeper root development, and thus serves as a high-throughput phenotyping tool for studying root dynamic growth. The root trait quantitative platform could provide accurate phenotyping data for parameterizing root models and for genome-wide association analyses or mapping studies of quantitative trait loci.
Collapse
|
178
|
Ochieno DMW, Karoney EM, Muge EK, Nyaboga EN, Baraza DL, Shibairo SI, Naluyange V. Rhizobium-Linked Nutritional and Phytochemical Changes Under Multitrophic Functional Contexts in Sustainable Food Systems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.604396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rhizobia are bacteria that exhibit both endophytic and free-living lifestyles. Endophytic rhizobial strains are widely known to infect leguminous host plants, while some do infect non-legumes. Infection of leguminous roots often results in the formation of root nodules. Associations between rhizobia and host plants may result in beneficial or non-beneficial effects. Such effects are linked to various biochemical changes that have far-reaching implications on relationships between host plants and the dependent multitrophic biodiversity. This paper explores relationships that exist between rhizobia and various plant species. Emphasis is on nutritional and phytochemical changes that occur in rhizobial host plants, and how such changes affect diverse consumers at different trophic levels. The purpose of this paper is to bring into context various aspects of such interactions that could improve knowledge on the application of rhizobia in different fields. The relevance of rhizobia in sustainable food systems is addressed in context.
Collapse
|
179
|
Książkiewicz M, Rychel-Bielska S, Plewiński P, Nuc M, Irzykowski W, Jędryczka M, Krajewski P. The Resistance of Narrow-Leafed Lupin to Diaporthe toxica Is Based on the Rapid Activation of Defense Response Genes. Int J Mol Sci 2021; 22:ijms22020574. [PMID: 33430123 PMCID: PMC7827158 DOI: 10.3390/ijms22020574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 01/10/2023] Open
Abstract
Narrow-leafed lupin (Lupinus angustifolius L.) is a grain legume crop that is advantageous in animal nutrition due to its high protein content; however, livestock grazing on stubble may develop a lupinosis disease that is related to toxins produced by a pathogenic fungus, Diaporthe toxica. Two major unlinked alleles, Phr1 and PhtjR, confer L. angustifolius resistance to this fungus. Besides the introduction of these alleles into modern cultivars, the molecular mechanisms underlying resistance remained unsolved. In this study, resistant and susceptible lines were subjected to differential gene expression profiling in response to D. toxica inoculation, spanning the progress of the infection from the early to latent phases. High-throughput sequencing of stem transcriptome and PCR quantification of selected genes were performed. Gene Ontology term analysis revealed that an early (24 h) response in the resistant germplasm encompassed activation of genes controlling reactive oxygen species and oxylipin biosynthesis, whereas in the susceptible germplasm, it comprised induction of xyloglucan endotransglucosylases/hydrolases. During the first five days of the infection, the number of genes with significantly altered expressions was about 2.6 times higher in resistant lines than in the susceptible line. Global transcriptome reprogramming involving the activation of defense response genes occurred in lines conferring Phr1 and PhtjR resistance alleles about 4–8 days earlier than in the susceptible germplasm.
Collapse
Affiliation(s)
- Michał Książkiewicz
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (S.R.-B.); (P.P.)
- Correspondence: ; Tel.: +48-616-550-268
| | - Sandra Rychel-Bielska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (S.R.-B.); (P.P.)
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, 50-363 Wrocław, Poland
| | - Piotr Plewiński
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (S.R.-B.); (P.P.)
| | - Maria Nuc
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.N.); (P.K.)
| | - Witold Irzykowski
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (W.I.); (M.J.)
| | - Małgorzata Jędryczka
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (W.I.); (M.J.)
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.N.); (P.K.)
| |
Collapse
|
180
|
Kim MS, Lozano R, Kim JH, Bae DN, Kim ST, Park JH, Choi MS, Kim J, Ok HC, Park SK, Gore MA, Moon JK, Jeong SC. The patterns of deleterious mutations during the domestication of soybean. Nat Commun 2021; 12:97. [PMID: 33397978 PMCID: PMC7782591 DOI: 10.1038/s41467-020-20337-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
Globally, soybean is a major protein and oil crop. Enhancing our understanding of the soybean domestication and improvement process helps boost genomics-assisted breeding efforts. Here we present a genome-wide variation map of 10.6 million single-nucleotide polymorphisms and 1.4 million indels for 781 soybean individuals which includes 418 domesticated (Glycine max), 345 wild (Glycine soja), and 18 natural hybrid (G. max/G. soja) accessions. We describe the enhanced detection of 183 domestication-selective sweeps and the patterns of putative deleterious mutations during domestication and improvement. This predominantly selfing species shows 7.1% reduction of overall deleterious mutations in domesticated soybean relative to wild soybean and a further 1.4% reduction from landrace to improved accessions. The detected domestication-selective sweeps also show reduced levels of deleterious alleles. Importantly, genotype imputation with this resource increases the mapping resolution of genome-wide association studies for seed protein and oil traits in a soybean diversity panel.
Collapse
Affiliation(s)
- Myung-Shin Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Korea
- Plant Immunity Research Center, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Roberto Lozano
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Ji Hong Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Korea
| | - Dong Nyuk Bae
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Korea
| | - Sang-Tae Kim
- Department of Life Science, The Catholic University of Korea, Bucheon, 14662, Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Korea
| | - Man Soo Choi
- National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk, 55365, Korea
| | - Jaehyun Kim
- National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk, 55365, Korea
| | - Hyun-Choong Ok
- National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk, 55365, Korea
| | - Soo-Kwon Park
- National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk, 55365, Korea
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jung-Kyung Moon
- National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk, 55365, Korea.
- Agricultural Genome Center, National Academy of Agricultural Sciences, Rural Development Administration, Jeonju, Jeonbuk, 55365, Korea.
| | - Soon-Chun Jeong
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Korea.
| |
Collapse
|
181
|
Tsamo AT, Mohammed M, Dakora FD. Metabolite Fingerprinting of Kersting's Groundnut [ Macrotyloma geocarpum (Harms) Maréchal & Baudet] Seeds Using UPLC-qTOF-MS Reveals the Nutraceutical and Antioxidant Potentials of the Orphan Legume. Front Nutr 2021; 7:593436. [PMID: 33385005 PMCID: PMC7770220 DOI: 10.3389/fnut.2020.593436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/23/2020] [Indexed: 01/04/2023] Open
Abstract
The identification and subsequent quantification of phenolic compounds in plants is the first step toward harnessing their associated nutritional and health benefits. Due to their diverse phenolic compound compositions, grain legumes are known for their high nutritional and health values. The aim of this study was to assess the inter-variations in chemical composition, phytochemical content, and antioxidant capacity of seed extracts from eight Kersting's groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet] landraces. The chemical profiles were evaluated using UPLC-qTOF-MS. Total phenolics and flavonoids content were determined by the Folin-Ciocalteu and aluminum chloride methods, respectively. The antioxidant capacities in the forms of DPPH and ABTS were evaluated using spectrophotometric methods. Principal component analysis was used to define similarities/differences between the landraces. Based on untargeted metabolomics analysis, 57 metabolites were identified, with phenolics, triterpenes, fatty acids, and sphingolipids being the most predominant. The results showed that the black seeded KG1 (Puffeun) had the highest total phenolic (9.44 mg GAE/g) and flavonoid (3.01 mg QE/g) contents, as well as antioxidant capacity (9.17 μg/mL and 18.44 μg/mL based on DDPH and ABTS assays, respectively). The concentrations of ferulic acid hexoside, procyanidin B2, eryodictyiol-7-rutinoside and quercetin pentoside ranged from 51.78–441.31, 1.86–18.25, 3.26–13.95 to 5.44–63.85 μg/mg, respectively. This study presents a useful report on the phytochemical characterization of Kersting's groundnuts and shows that the grains can be used as a source of nutraceuticals for human consumption.
Collapse
Affiliation(s)
- Armelle Tontsa Tsamo
- Department of Organic Chemistry, University of Yaoundé I, Yaounde, Cameroon.,Department of Chemistry, Tshwane University of Technology, Pretoria, South Africa
| | - Mustapha Mohammed
- Department of Chemistry, Tshwane University of Technology, Pretoria, South Africa.,Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Felix Dapare Dakora
- Department of Chemistry, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
182
|
Zhou J, Mou H, Zhou J, Ali ML, Ye H, Chen P, Nguyen HT. Qualification of Soybean Responses to Flooding Stress Using UAV-Based Imagery and Deep Learning. PLANT PHENOMICS (WASHINGTON, D.C.) 2021; 2021:9892570. [PMID: 34286285 PMCID: PMC8261669 DOI: 10.34133/2021/9892570] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/09/2021] [Indexed: 05/19/2023]
Abstract
Soybean is sensitive to flooding stress that may result in poor seed quality and significant yield reduction. Soybean production under flooding could be sustained by developing flood-tolerant cultivars through breeding programs. Conventionally, soybean tolerance to flooding in field conditions is evaluated by visually rating the shoot injury/damage due to flooding stress, which is labor-intensive and subjective to human error. Recent developments of field high-throughput phenotyping technology have shown great potential in measuring crop traits and detecting crop responses to abiotic and biotic stresses. The goal of this study was to investigate the potential in estimating flood-induced soybean injuries using UAV-based image features collected at different flight heights. The flooding injury score (FIS) of 724 soybean breeding plots was taken visually by breeders when soybean showed obvious injury symptoms. Aerial images were taken on the same day using a five-band multispectral and an infrared (IR) thermal camera at 20, 50, and 80 m above ground. Five image features, i.e., canopy temperature, normalized difference vegetation index, canopy area, width, and length, were extracted from the images at three flight heights. A deep learning model was used to classify the soybean breeding plots to five FIS ratings based on the extracted image features. Results show that the image features were significantly different at three flight heights. The best classification performance was obtained by the model developed using image features at 20 m with 0.9 for the five-level FIS. The results indicate that the proposed method is very promising in estimating FIS for soybean breeding.
Collapse
Affiliation(s)
- Jing Zhou
- Division of Food Systems and Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Huawei Mou
- Division of Food Systems and Bioengineering, University of Missouri, Columbia, MO 65211, USA
- Bioenergy and Environment Science & Technology Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jianfeng Zhou
- Division of Food Systems and Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Md Liakat Ali
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873, USA
| | - Heng Ye
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Pengyin Chen
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Henry T. Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
183
|
Thomson G, Zhang L, Wen J, Mysore KS, Putterill J. The Candidate Photoperiod Gene MtFE Promotes Growth and Flowering in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2021; 12:634091. [PMID: 33841463 PMCID: PMC8032900 DOI: 10.3389/fpls.2021.634091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/01/2021] [Indexed: 05/04/2023]
Abstract
Flowering time influences the yield and productivity of legume crops. Medicago truncatula is a reference temperate legume that, like the winter annual Arabidopsis thaliana, shows accelerated flowering in response to vernalization (extended cold) and long-day (LD) photoperiods (VLD). However, unlike A. thaliana, M. truncatula appears to lack functional homologs of core flowering time regulators CONSTANS (CO) and FLOWERING LOCUS C (FLC) which act upstream of the mobile florigen FLOWERING LOCUS T (FT). Medicago truncatula has three LD-induced FT-like genes (MtFTa1, MtFTb1, and MtFTb2) with MtFTa1 promoting M. truncatula flowering in response to VLD. Another photoperiodic regulator in A. thaliana, FE, acts to induce FT expression. It also regulates the FT transport pathway and is required for phloem development. Our study identifies a M. truncatula FE homolog Medtr6g444980 (MtFE) which complements the late flowering fe-1 mutant when expressed from the phloem-specific SUCROSE-PROTON SYMPORTER 2 (SUC2) promoter. Analysis of two M. truncatula Tnt1 insertional mutants indicate that MtFE promotes flowering in LD and VLD and growth in all conditions tested. Expression of MtFTa1, MtFTb1, and MtFTb2 are reduced in Mtfe mutant (NF5076), correlating with its delayed flowering. The NF5076 mutant plants are much smaller than wild type indicating that MtFE is important for normal plant growth. The second mutant (NF18291) displays seedling lethality, like strong fe mutants. We searched for mutants in MtFTb1 and MtFTb2 identifying a Mtftb2 knock out Tnt1 mutant (NF20803). However, it did not flower significantly later than wild type. Previously, yeast-two-hybrid assays (Y2H) suggested that Arabidopsis FE interacted with CO and NUCLEAR FACTOR-Y (NF-Y)-like proteins to regulate FT. We found that MtFE interacts with CO and also M. truncatula NF-Y-like proteins in Y2H experiments. Our study indicates that despite the apparent absence of a functional MtCO-like gene, M. truncatula FE likely influences photoperiodic FT expression and flowering time in M. truncatula via a partially conserved mechanism with A. thaliana.
Collapse
Affiliation(s)
- Geoffrey Thomson
- The Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- *Correspondence: Geoffrey Thomson, ;
| | - Lulu Zhang
- The Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jiangqi Wen
- Noble Research Institute, Ardmore, OK, United States
| | | | - Joanna Putterill
- The Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- *Correspondence: Geoffrey Thomson, ;
| |
Collapse
|
184
|
A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature 2021; 599:622-627. [PMID: 34759320 PMCID: PMC8612933 DOI: 10.1038/s41586-021-04066-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
Zero hunger and good health could be realized by 2030 through effective conservation, characterization and utilization of germplasm resources1. So far, few chickpea (Cicer arietinum) germplasm accessions have been characterized at the genome sequence level2. Here we present a detailed map of variation in 3,171 cultivated and 195 wild accessions to provide publicly available resources for chickpea genomics research and breeding. We constructed a chickpea pan-genome to describe genomic diversity across cultivated chickpea and its wild progenitor accessions. A divergence tree using genes present in around 80% of individuals in one species allowed us to estimate the divergence of Cicer over the last 21 million years. Our analysis found chromosomal segments and genes that show signatures of selection during domestication, migration and improvement. The chromosomal locations of deleterious mutations responsible for limited genetic diversity and decreased fitness were identified in elite germplasm. We identified superior haplotypes for improvement-related traits in landraces that can be introgressed into elite breeding lines through haplotype-based breeding, and found targets for purging deleterious alleles through genomics-assisted breeding and/or gene editing. Finally, we propose three crop breeding strategies based on genomic prediction to enhance crop productivity for 16 traits while avoiding the erosion of genetic diversity through optimal contribution selection (OCS)-based pre-breeding. The predicted performance for 100-seed weight, an important yield-related trait, increased by up to 23% and 12% with OCS- and haplotype-based genomic approaches, respectively.
Collapse
|
185
|
Arya H, Singh MB, Bhalla PL. Towards Developing Drought-smart Soybeans. FRONTIERS IN PLANT SCIENCE 2021; 12:750664. [PMID: 34691128 PMCID: PMC8526797 DOI: 10.3389/fpls.2021.750664] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/06/2021] [Indexed: 05/13/2023]
Abstract
Drought is one of the significant abiotic stresses threatening crop production worldwide. Soybean is a major legume crop with immense economic significance, but its production is highly dependent on optimum rainfall or abundant irrigation. Also, in dry periods, it may require supplemental irrigation for drought-susceptible soybean varieties. The effects of drought stress on soybean including osmotic adjustments, growth morphology and yield loss have been well studied. In addition, drought-resistant soybean cultivars have been investigated for revealing the mechanisms of tolerance and survival. Advanced high-throughput technologies have yielded remarkable phenotypic and genetic information for producing drought-tolerant soybean cultivars, either through molecular breeding or transgenic approaches. Further, transcriptomics and functional genomics have led to the characterisation of new genes or gene families controlling drought response. Interestingly, genetically modified drought-smart soybeans are just beginning to be released for field applications cultivation. In this review, we focus on breeding and genetic engineering approaches that have successfully led to the development of drought-tolerant soybeans for commercial use.
Collapse
|
186
|
Pulses for Healthy and Sustainable Food Systems: The Effect of Origin on Market Price. SUSTAINABILITY 2020. [DOI: 10.3390/su13010185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pulses are widely acknowledged for their high nutritional value due to high protein content, low content in calories, and low glycemic index; they are a good alternative to animal proteins thus offering a considerable number of social, environmental, and health benefits. Despite pulses being widely acknowledged as healthy and sustainable food, in mainly European countries, consumption is growing but still lower than the recommended level, production is unprofitable in comparison to the current market prices level, and a reduction in harvested area has led to a strong dependence on import for pulses supply. Pulses are particularly fitting to the feature of local food because they can be suitably grown in any context, even in the most complex areas, and consumer interest and awareness of food origin has strongly increased in recent years. Lentils were selected as a case study in this paper that aims to define which features are effective on market price and, in particular, the role of origin declaration on label plays in defining the market price and how the origin attributes may enhance market price and farms competitiveness. The methodological tool for this investigation is the hedonic price model, useful to explain the effects of attributes of pulses affecting the market price. Results contribute to a better understanding of the pulse market, emphasizing that the “origin declaration” on label may have a positive effect on market price.
Collapse
|
187
|
Disease Pandemics and Major Epidemics Arising from New Encounters between Indigenous Viruses and Introduced Crops. Viruses 2020; 12:v12121388. [PMID: 33291635 PMCID: PMC7761969 DOI: 10.3390/v12121388] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/13/2023] Open
Abstract
Virus disease pandemics and epidemics that occur in the world’s staple food crops pose a major threat to global food security, especially in developing countries with tropical or subtropical climates. Moreover, this threat is escalating rapidly due to increasing difficulties in controlling virus diseases as climate change accelerates and the need to feed the burgeoning global population escalates. One of the main causes of these pandemics and epidemics is the introduction to a new continent of food crops domesticated elsewhere, and their subsequent invasion by damaging virus diseases they never encountered before. This review focusses on providing historical and up-to-date information about pandemics and major epidemics initiated by spillover of indigenous viruses from infected alternative hosts into introduced crops. This spillover requires new encounters at the managed and natural vegetation interface. The principal virus disease pandemic examples described are two (cassava mosaic, cassava brown streak) that threaten food security in sub-Saharan Africa (SSA), and one (tomato yellow leaf curl) doing so globally. A further example describes a virus disease pandemic threatening a major plantation crop producing a vital food export for West Africa (cacao swollen shoot). Also described are two examples of major virus disease epidemics that threaten SSA’s food security (rice yellow mottle, groundnut rosette). In addition, brief accounts are provided of two major maize virus disease epidemics (maize streak in SSA, maize rough dwarf in Mediterranean and Middle Eastern regions), a major rice disease epidemic (rice hoja blanca in the Americas), and damaging tomato tospovirus and begomovirus disease epidemics of tomato that impair food security in different world regions. For each pandemic or major epidemic, the factors involved in driving its initial emergence, and its subsequent increase in importance and geographical distribution, are explained. Finally, clarification is provided over what needs to be done globally to achieve effective management of severe virus disease pandemics and epidemics initiated by spillover events.
Collapse
|
188
|
Li X, Siddique KH. Future Smart Food: Harnessing the potential of neglected and underutilized species for Zero Hunger. MATERNAL & CHILD NUTRITION 2020; 16 Suppl 3:e13008. [PMID: 33347726 PMCID: PMC7752121 DOI: 10.1111/mcn.13008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 11/29/2022]
Abstract
Achieving Sustainable Development Goal 2: 'Zero Hunger'-eradicating all forms of hunger and malnutrition-is a major challenge in many developing countries. To be successful, agriculture and food policies need to target both production and consumption. Conventional agri-food systems in developing countries could become more sustainable through agricultural diversification. In Asia, over-reliance on a few staple crops is a leading cause of low dietary diversity and persistent malnutrition. Promising neglected and underutilized species (NUS) that are nutrient dense, climate resilient, economically viable, and locally available or adaptable have been prioritized as Future Smart Food (FSF) and have a central role to play in the fight against hunger and malnutrition. An enabling environment for agriculture diversification with a food system approach-to promote sustainable production, processing and consumption of FSF-is essential for achieving Zero Hunger. This article (a) provides the context of hunger and malnutrition and highlights the features and gaps in current agriculture and food systems, (b) demonstrates the multidimensional benefits of FSF as an effective means to bridge production and nutrition gaps to address Zero Hunger and (c) offers a holistic food systems approach that promotes sustainable production, processing and consumption of FSF as a key element for achieving Zero Hunger.
Collapse
Affiliation(s)
- Xuan Li
- Food and Agriculture Organization of the United NationsBangkokThailand
| | - Kadambot H.M. Siddique
- Institute of AgricultureThe University of Western AustraliaPerthWestern AustraliaAustralia
| |
Collapse
|
189
|
Didinger C, Thompson H. Motivating Pulse-Centric Eating Patterns to Benefit Human and Environmental Well-Being. Nutrients 2020; 12:E3500. [PMID: 33202540 PMCID: PMC7698258 DOI: 10.3390/nu12113500] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Pulses (e.g., lentil, common bean, chickpea, and dry pea) are linked to a myriad of positive human and environmental health impacts, making them an ideal food for wise and conscientious global citizens. In addition, pulses are affordable and shelf-stable. The combination of these factors, an elevated consumer interest in plant-based diets, and the COVID-19 pandemic resulted in increased purchasing of pulses and even empty grocery store shelves. Although pulses have many associated benefits, some consumers are hesitant to regularly eat pulses, claiming concerns of abdominal discomfort or a lack of knowledge on how to best prepare pulses. To capitalize on increased consumer interest and purchasing of pulses, now is the time for outreach efforts that address these concerns and the positive outcomes associated with pulses, thereby promoting public and environmental health. Consumers must actively decide to add pulses to their grocery lists and incorporate them into their regular eating patterns. Motivation to adopt new eating habits is essential because knowledge alone does not result in behavior change. Thus, to mitigate perceived barriers and drive consumption, we suggest application of the Information-Motivation-Behavioral Skills Model and emphasis of three main benefits of pulses as motivators: (1) culinary versatility, (2) sustainability, and (3) healthfulness.
Collapse
Affiliation(s)
- Chelsea Didinger
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA;
| | - Henry Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
190
|
Pulse Knowledge, Attitudes, Practices, and Cooking Experience of Midwestern US University Students. Nutrients 2020; 12:nu12113499. [PMID: 33203042 PMCID: PMC7698303 DOI: 10.3390/nu12113499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023] Open
Abstract
Many American college students fail to meet dietary guideline recommendations for fruits, vegetables, and fiber. Pulses are a subgroup of legumes, harvested solely for dry grain seeds within a pod. Commonly consumed pulses include dry beans, dry peas, lentils, and chickpeas. Pulses are high in shortfall nutrients and could fill some nutritional gaps of college students. However, little is known about pulse intakes among young adults. The study aims were: (1) to identify knowledge, attitudes, and practices regarding pulse consumption; and (2) to describe experiences of preparing dry pulses among college students. A convenience sample of 1433 students aged 18–30 enrolled at a Midwestern university in the United States completed an online survey in April 2020. Demographic and attitude variables were compared by the monthly count of pulse types eaten using chi-square, analysis of variance, and logistic regression modeling to predict pulse type intakes. Higher numbers of pulse types eaten was associated with being White, vegetarian/vegan, higher cooking self-efficacy, positive attitudes toward pulses, and greater daily intake of fruits, vegetables, and fiber. Knowledge and experience of cooking dry pulses was low, with canned pulses purchased more often. College students may not be consuming pulses due to unfamiliarity with them, low knowledge of nutrition benefits, and a general lack of cooking self-efficacy. Increased familiarization and promotion surrounding pulses may increase their consumption.
Collapse
|
191
|
Genetic and comparative mapping of Lupinus luteus L. highlight syntenic regions with major orthologous genes controlling anthracnose resistance and flowering time. Sci Rep 2020; 10:19174. [PMID: 33154532 PMCID: PMC7645761 DOI: 10.1038/s41598-020-76197-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/23/2020] [Indexed: 01/12/2023] Open
Abstract
Anthracnose susceptibility and ill-adapted flowering time severely affect Lupinus luteus yield, which has high seed protein content, is excellent for sustainable agriculture, but requires genetic improvement to fulfil its potential. This study aimed to (1) develop a genetic map; (2) define collinearity and regions of synteny with Lupinus angustifolius; and (3) map QTLs/candidate genes for anthracnose resistant and flowering time. A few linkage groups/genomic regions tended to be associated with segregation distortion, but did not affect the map. The developed map showed collinearity, and syntenic regions with L. angustifolius. Major QTLs were mapped in syntenic regions. Alleles from the wild parent and cultivar, explained 75% of the phenotypic variance for anthracnose resistance and 83% for early flowering, respectively. Marker sequences flanking the QTLs showed high homology with the Lanr1 gene and Flowering-locus-T of L. angustifolius. This suggests orthologous genes for both traits in the L. luteus genome. The findings are remarkable, revealing the potential to combine early flowering/anthracnose resistant in fulfilling yield capacity in L. luteus, and can be a major strategy in the genetic improvement and usage of this species for sustainable protein production. Allele sequences and PCR-marker tagging of these genes are being applied in marker assisted selection.
Collapse
|
192
|
Powers S, Mirsky E, Bandaranayake A, Thavarajah P, Shipe E, Bridges W, Thavarajah D. Field pea (Pisum sativum L.) shows genetic variation in phosphorus use efficiency in different P environments. Sci Rep 2020; 10:18940. [PMID: 33144592 PMCID: PMC7641124 DOI: 10.1038/s41598-020-75804-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/08/2020] [Indexed: 11/09/2022] Open
Abstract
Field pea is important to agriculture as a nutritionally dense legume, able to fix nitrogen from the atmosphere and supply it back to the soil. However, field pea requires more phosphorus (P) than other crops. Identifying field pea cultivars with high phosphorus use efficiency (PUE) is highly desirable for organic pulse crop biofortification. This study identified field pea accessions with high PUE by determining (1) the variation in P remobilization rate, (2) correlations between P and phytic acid (PA), and (3) broad-sense heritability estimates of P concentrations. Fifty field pea accessions were grown in a completely randomized design in a greenhouse with two replicates under normal (7551 ppm) and reduced (4459 ppm) P fertilizer conditions and harvested at two time points (mid-pod and full-pod). P concentrations ranged from 332 to 9520 ppm under normal P and from 83 to 8473 ppm under reduced P conditions across all tissues and both time points. Field pea accessions showed variation in remobilization rates, with PI 125840 and PI 137119 increasing remobilization of P under normal P conditions. Field pea accessions PI 411142 and PI 413683 increased P remobilization under the reduced P treatment. No correlation was evident between tissue P concentration and seed PA concentration (8-61 ppm). Finally, seed P concentration under limited P conditions was highly heritable (H2 = 0.85), as was mid-pod lower leaf P concentrations under normal P conditions (H2 = 0.81). In conclusion, breeding for PUE in field pea is possible by selecting for higher P remobilization accessions in low P soils with genetic and location sourcing.
Collapse
Affiliation(s)
- Sarah Powers
- Plant and Environmental Sciences, 270 Poole Agricultural Center, Clemson University, Clemson, SC, 29634, USA
| | - Emily Mirsky
- Plant and Environmental Sciences, 270 Poole Agricultural Center, Clemson University, Clemson, SC, 29634, USA
| | - Anuruddha Bandaranayake
- Plant and Environmental Sciences, 270 Poole Agricultural Center, Clemson University, Clemson, SC, 29634, USA
| | - Pushparajah Thavarajah
- Plant and Environmental Sciences, 270 Poole Agricultural Center, Clemson University, Clemson, SC, 29634, USA
| | - Emerson Shipe
- Plant and Environmental Sciences, 270 Poole Agricultural Center, Clemson University, Clemson, SC, 29634, USA
| | - William Bridges
- Plant and Environmental Sciences, 270 Poole Agricultural Center, Clemson University, Clemson, SC, 29634, USA
| | - Dil Thavarajah
- Plant and Environmental Sciences, 270 Poole Agricultural Center, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
193
|
Wille L, Messmer MM, Bodenhausen N, Studer B, Hohmann P. Heritable Variation in Pea for Resistance Against a Root Rot Complex and Its Characterization by Amplicon Sequencing. FRONTIERS IN PLANT SCIENCE 2020; 11:542153. [PMID: 33224157 PMCID: PMC7669989 DOI: 10.3389/fpls.2020.542153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Soil-borne pathogens cause severe root rot of pea (Pisum sativum L.) and are a major constraint to pea cultivation worldwide. Resistance against individual pathogen species is often ineffective in the field where multiple pathogens form a pea root rot complex (PRRC) and conjointly infect pea plants. On the other hand, various beneficial plant-microbe interactions are known that offer opportunities to strengthen plant health. To account for the whole rhizosphere microbiome in the assessment of root rot resistance in pea, an infested soil-based resistance screening assay was established. The infested soil originated from a field that showed severe pea root rot in the past. Initially, amplicon sequencing was employed to characterize the fungal microbiome of diseased pea roots grown in the infested soil. The amplicon sequencing evidenced a diverse fungal community in the roots including pea pathogens Fusarium oxysporum, F. solani, Didymella sp., and Rhizoctonia solani and antagonists such as Clonostachys rosea and several mycorrhizal species. The screening system allowed for a reproducible assessment of disease parameters among 261 pea cultivars, breeding lines, and landraces grown for 21 days under controlled conditions. A sterile soil control treatment was used to calculate relative shoot and root biomass in order to compare growth performance of pea lines with highly different growth morphologies. Broad sense heritability was calculated from linear mixed model estimated variance components for all traits. Emergence on the infested soil showed high (H 2 = 0.89), root rot index (H 2 = 0.43), and relative shoot dry weight (H 2 = 0.51) medium heritability. The resistance screening allowed for a reproducible distinction between PRRC susceptible and resistant pea lines. The combined assessment of root rot index and relative shoot dry weight allowed to identify resistant (low root rot index) and tolerant pea lines (low relative shoot dry weight at moderate to high root rot index). We conclude that relative shoot dry weight is a valuable trait to select disease tolerant pea lines. Subsequently, the resistance ranking was verified in an on-farm experiment with a subset of pea lines. We found a significant correlation (r s = 0.73, p = 0.03) between the controlled conditions and the resistance ranking in a field with high PRRC infestation. The screening system allows to predict PRRC resistance for a given field site and offers a tool for selection at the seedling stage in breeding nurseries. Using the complexity of the infested field soil, the screening system provides opportunities to study plant resistance in the light of diverse plant-microbe interactions occurring in the rhizosphere.
Collapse
Affiliation(s)
- Lukas Wille
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Monika M. Messmer
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Natacha Bodenhausen
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Pierre Hohmann
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| |
Collapse
|
194
|
Snapp S. A Mini-Review on Overcoming a Calorie-Centric World of Monolithic Annual Crops. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.540181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
195
|
Adherence to recommended intake of pulses and related factors in university students in the UniHcos project. Br J Nutr 2020; 126:428-440. [PMID: 33107417 DOI: 10.1017/s0007114520004213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pulses such as peas, beans or lentils are one of the most complete foods at the nutritional level; however, they are one of the most often neglected foods in the diets of university students. Entrance to university translates into a major lifestyle change for many young people, and the habits acquired or cemented at this time will remain into adulthood. The objective of this study is to analyse the association between personal/sociodemographic factors, dietary intake of other food groups and the consumption of pulses in first-year university students. This cross-sectional study is part of the UniHcos project, a multicentre study of multipurpose prospective cohorts in eleven Spanish universities. Data from 9862 university students were collected through an online self-questionnaire completed by all students who met the selection criteria and agreed to participate in the project during the 2011-2018 academic years. Of students, 75·8 % presented an inadequate (≤2 times/week) consumption of pulses. Living outside the family home in either a student residence (OR 0·76; 95 % CI 0·69, 0·84) or rental (OR 0·81; 95 % CI 0·70, 0·95) decreased the compliance with recommendations on the consumption of pulses. Low consumption of pulses is seemingly not restricted to a specific profile or dietary pattern among university students, and no specific focus group for intervention can be identified. Policies promoting the consumption of pulses among the university population as a whole are necessary to increase compliance rates with the dietary recommendations.
Collapse
|
196
|
Rychel-Bielska S, Plewiński P, Kozak B, Galek R, Ksia̧żkiewicz M. Photoperiod and Vernalization Control of Flowering-Related Genes: A Case Study of the Narrow-Leafed Lupin ( Lupinus angustifolius L.). FRONTIERS IN PLANT SCIENCE 2020; 11:572135. [PMID: 33193508 PMCID: PMC7663182 DOI: 10.3389/fpls.2020.572135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Narrow-leafed lupin (Lupinus angustifolius L.) is a moderate-yielding legume crop known for its high grain protein content and contribution to soil improvement. It is cultivated under photoperiods ranging from 9 to 17 h, as a spring-sown (in colder locations) or as an autumn-sown crop (in warmer regions). Wild populations require a prolonged cold period, called vernalization, to induce flowering. The key achievement of L. angustifolius domestication was the discovery of two natural mutations (named Ku and Jul) conferring vernalization independence. These mutations are overlapping deletion variants in the promoter of LanFTc1, a homolog of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene. The third deletion, named here as Pal, was recently found in primitive germplasm. In this study, we genotyped L. angustifolius germplasm that differs in domestication status and geographical origin for LanFTc1 alleles, which we then phenotyped to establish flowering time and vernalization responsiveness. The Ku and Jul lines were vernalization-independent and early flowering, wild (ku) lines were vernalization-dependent and late flowering, whereas the Pal line conferred intermediate phenotype. Three lines representing ku, Pal, and Ku alleles were subjected to gene expression surveys under 8- and 16-h photoperiods. FT homologs (LanFTa1, LanFTa2, LanFTc1, and LanFTc2) and some genes selected by recent expression quantitative trait loci mapping were analyzed. Expression profiles of LanFTc1 and LanAGL8 (AGAMOUS-like 8) matched observed differences in flowering time between genotypes, highlighted by high induction after vernalization in the ku line. Moreover, these genes revealed altered circadian clock control in Pal line under short days. LanFD (FD) and LanCRLK1 (CALCIUM/CALMODULIN-REGULATED RECEPTOR-LIKE KINASE 1) were negatively responsive to vernalization in Ku and Pal lines but positively responsive or variable in ku, whereas LanUGT85A2 (UDP-GLUCOSYL TRANSFERASE 85A2) was significantly suppressed by vernalization in all lines. Such a pattern suggests the opposite regulation of these gene pairs in the vernalization pathway. LanCRLK1 and LanUGT85A2 are homologs of A. thaliana genes involved in the FLOWERING LOCUS C (FLC) vernalization pathway. Lupins, like many other legumes, do not have any FLC homologs. Therefore, candidate genes surveyed in this study, namely LanFTc1, LanAGL8, LanCRLK1, and LanUGT85A2, may constitute anchors for further elucidation of molecular components contributing to vernalization response in legumes.
Collapse
Affiliation(s)
- Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Piotr Plewiński
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Renata Galek
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Michał Ksia̧żkiewicz
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
197
|
Plett JM, Solomon J, Snijders F, Marlow-Conway J, Plett KL, Bithell SL. Order of microbial succession affects rhizobia-mediated biocontrol efforts against Phytophthora root rot. Microbiol Res 2020; 242:126628. [PMID: 33153885 DOI: 10.1016/j.micres.2020.126628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
The management of soilborne root diseases in pulse crops is challenged by a limited range of resistance sources and often a complete absence of in-crop management options. Therefore, alternative management strategies need to be developed. We evaluated disease limiting interactions between the rhizobia species Mesorhizobium ciceri, and the oomycete pathogen Phytophthora medicaginis, which causes Phytophthora root rot (PRR) of chickpea (Cicer arietinum). For the PRR susceptible var. Sonali plants, post-pathogen M. ciceri inoculation significantly improved probability of plant survival when compared to P. medicaginis infected plants only pre-inoculated with M. ciceri (75 % versus 35 %, respectively). Potential mechanisms for these effects were investigated: rhizobia inoculation benefits to plant nodulation were not demonstrated, but the highest nodule N-fixation activity of P. medicaginis inoculated plants occurred for the post-pathogen M. ciceri treatment; rhizobia inoculation treatment did not reduce lesion development but certain combinations of microbial inoculation led to significant reduction in root growth. Microcosm studies, however, showed that the presence of M. ciceri reduced growth of P. medicaginis isolates. Putative chickpea disease resistance gene expression was evaluated using qPCR in var. Sonali roots. When var. Sonali plants were treated with M. ciceri post-P. medicaginis inoculation, the gene regulation in the plant host became more similar to PRR moderately resistant var. PBA HatTrick. These results suggest that M. ciceri application post P. medicaginis inoculation may improve plant survival by inducing defense responses similar to a PRR moderately resistant chickpea variety. Altogether, these results indicate that order of microbial succession can significantly affect PRR plant survial in susceptible chickpea under controlled conditions and improved plant survival effects are due to a number of different mechanisms including improved host nutrition, through direct inhibiton of pathogen growth, as well as host defense priming.
Collapse
Affiliation(s)
- J M Plett
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia.
| | - J Solomon
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - F Snijders
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - J Marlow-Conway
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - K L Plett
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - S L Bithell
- New South Wales Department of Primary Industries, Tamworth, NSW, 2340, Australia
| |
Collapse
|
198
|
Zhang Z, Ali S, Zhang T, Wang W, Xie L. Identification, Evolutionary and Expression Analysis of PYL-PP2C-SnRK2s Gene Families in Soybean. PLANTS 2020; 9:plants9101356. [PMID: 33066482 PMCID: PMC7602157 DOI: 10.3390/plants9101356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
Abscisic acid (ABA) plays a crucial role in various aspects of plant growth and development, including fruit development and ripening, seed dormancy, and involvement in response to various environmental stresses. In almost all higher plants, ABA signal transduction requires three core components; namely, PYR/PYL/RCAR ABA receptors (PYLs), type 2C protein phosphatases (PP2Cs), and class III SNF-1-related protein kinase 2 (SnRK2s). The exploration of these three core components is not comprehensive in soybean. This study identified the GmPYL-PP2C-SnRK2s gene family members by using the JGI Phytozome and NCBI database. The gene family composition, conservation, gene structure, evolutionary relationship, cis-acting elements of promoter regions, and its coding protein domains were analyzed. In the entire genome of the soybean, there are 21 PYLs, 36 PP2Cs, and 21 SnRK2s genes; further, by phylogenetic and conservation analysis, 21 PYLs genes are classified into 3 groups, 36 PP2Cs genes are classified into seven groups, and 21 SnRK2s genes are classified into 3 groups. The conserved motifs and domain analysis showed that all the GmPYLs gene family members contain START-like domains, the GmPP2Cs gene family contains PP2Cc domains, and the GmSnRK2s gene family contains S_TK domains, respectively. Furthermore, based on the high-throughput transcriptome sequencing data, the results showed differences in the expression patterns of GmPYL-PP2C-SnRK2s gene families in different tissue parts of the same variety, and the same tissue part of different varieties. Our study provides a basis for further elucidation of the identification of GmPYL-PP2C-SnRK2s gene family members and analysis of their evolution and expression patterns, which helps to understand the molecular mechanism of soybean response to abiotic stress. In addition, this provides a conceptual basis for future studies of the soybean ABA core signal pathway.
Collapse
Affiliation(s)
- Zhaohan Zhang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Z.Z.); (S.A.); (T.Z.); (W.W.)
- Key Laboratory of Saline-Alkali Vegetative Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shahid Ali
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Z.Z.); (S.A.); (T.Z.); (W.W.)
- Key Laboratory of Saline-Alkali Vegetative Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Tianxu Zhang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Z.Z.); (S.A.); (T.Z.); (W.W.)
- Key Laboratory of Saline-Alkali Vegetative Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wanpeng Wang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Z.Z.); (S.A.); (T.Z.); (W.W.)
- Key Laboratory of Saline-Alkali Vegetative Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Linan Xie
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Z.Z.); (S.A.); (T.Z.); (W.W.)
- Key Laboratory of Saline-Alkali Vegetative Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence:
| |
Collapse
|
199
|
How Will Mechanizing Mung Bean Harvesting Affect Women Hired Laborers in Myanmar and Bangladesh? SUSTAINABILITY 2020. [DOI: 10.3390/su12197870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Farm mechanization can promote the economic sustainability of small farms and in the context of cereal-legume systems strengthen plant protein-based diets, which support human health and environmental sustainability. However, mechanization inevitably displaces hired laborers who depend on manual farm work for their income. Few studies have systematically analyzed the differential effects on women and men hired labor. Here, we use primarily qualitative data from Myanmar and Bangladesh to test the hypothesis that the effects of mechanizing mung bean harvesting—which is now commencing in both countries—are likely to weaken women hired workers’ economic and personal empowerment. We focus on rural landless women laborers as an important part of the agricultural labor force. The results broadly confirm the hypothesis, although there is variation between the research sites. Harvesting mung beans is the only fieldwork task available to many landless women, particularly married women with children, in both countries. Gendered restrictions on women’s mobility and their role as family caregivers, as well as norms about appropriate work for women and men, restrict women’s options regarding alternative work both locally and further away. The effects are likely to be particularly negative in locations with minimal off-farm economic diversity and more restrictive gender norms. Overall, men across all sites will be less affected since their participation rates in harvesting and post-harvest processing are low. They are less restricted by gender norms and can travel freely to find work elsewhere. However, women and men in low asset households will find it problematic to find alternative income sources. Less restrictive gender norms would help to mitigate the adverse effects of farm mechanization. It is important to invest in gender transformative approaches to stimulate change in norms and associated behaviors to make a wider range of choices possible.
Collapse
|
200
|
Crop climate suitability mapping on the cloud: a geovisualization application for sustainable agriculture. Sci Rep 2020; 10:15487. [PMID: 32968122 PMCID: PMC7511951 DOI: 10.1038/s41598-020-72384-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
Climate change, food security, and environmental sustainability are pressing issues faced by today’s global population. As production demands increase and climate threatens crop productivity, agricultural research develops innovative technologies to meet these challenges. Strategies include biodiverse cropping arrangements, new crop introductions, and genetic modification of crop varieties that are resilient to climatic and environmental stressors. Geography in particular is equipped to address a critical question in this pursuit—when and where can crop system innovations be introduced? This manuscript presents a case study of the geographic scaling potential utilizing common bean, delivers an open access Google Earth Engine geovisualization application for mapping the fundamental climate niche of any crop, and discusses food security and legume biodiversity in Sub-Saharan Africa. The application is temporally agile, allowing variable growing season selections and the production of ‘living maps’ that are continually producible as new data become available. This is an essential communication tool for the future, as practitioners can evaluate the potential geographic range for newly-developed, experimental, and underrepresented crop varieties for facilitating sustainable and innovative agroecological solutions.
Collapse
|