151
|
Zeng Y, Ren R, Kaur G, Hardikar S, Ying Z, Babcock L, Gupta E, Zhang X, Chen T, Cheng X. The inactive Dnmt3b3 isoform preferentially enhances Dnmt3b-mediated DNA methylation. Genes Dev 2020; 34:1546-1558. [PMID: 33004415 PMCID: PMC7608744 DOI: 10.1101/gad.341925.120] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022]
Abstract
The de novo DNA methyltransferases Dnmt3a and Dnmt3b play crucial roles in developmental and cellular processes. Their enzymatic activities are stimulated by a regulatory protein Dnmt3L (Dnmt3-like) in vitro. However, genetic evidence indicates that Dnmt3L functions predominantly as a regulator of Dnmt3a in germ cells. How Dnmt3a and Dnmt3b activities are regulated during embryonic development and in somatic cells remains largely unknown. Here we show that Dnmt3b3, a catalytically inactive Dnmt3b isoform expressed in differentiated cells, positively regulates de novo methylation by Dnmt3a and Dnmt3b with a preference for Dnmt3b. Dnmt3b3 is equally potent as Dnmt3L in stimulating the activities of Dnmt3a2 and Dnmt3b2 in vitro. Like Dnmt3L, Dnmt3b3 forms a complex with Dnmt3a2 with a stoichiometry of 2:2. However, rescue experiments in Dnmt3a/3b/3l triple-knockout (TKO) mouse embryonic stem cells (mESCs) reveal that Dnmt3b3 prefers Dnmt3b2 over Dnmt3a2 in remethylating genomic sequences. Dnmt3a2, an active isoform that lacks the N-terminal uncharacterized region of Dnmt3a1 including a nuclear localization signal, has very low activity in TKO mESCs, indicating that an accessory protein is absolutely required for its function. Our results suggest that Dnmt3b3 and perhaps similar Dnmt3b isoforms facilitate de novo DNA methylation during embryonic development and in somatic cells.
Collapse
Affiliation(s)
- Yang Zeng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gundeep Kaur
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhengzhou Ying
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lance Babcock
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Esha Gupta
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
152
|
Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun 2020; 11:5327. [PMID: 33087716 PMCID: PMC7577981 DOI: 10.1038/s41467-020-19119-8] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/22/2020] [Indexed: 02/04/2023] Open
Abstract
Clonal diversity is a consequence of cancer cell evolution driven by Darwinian selection. Precise characterization of clonal architecture is essential to understand the evolutionary history of tumor development and its association with treatment resistance. Here, using a single-cell DNA sequencing, we report the clonal architecture and mutational histories of 123 acute myeloid leukemia (AML) patients. The single-cell data reveals cell-level mutation co-occurrence and enables reconstruction of mutational histories characterized by linear and branching patterns of clonal evolution, with the latter including convergent evolution. Through xenotransplantion, we show leukemia initiating capabilities of individual subclones evolving in parallel. Also, by simultaneous single-cell DNA and cell surface protein analysis, we illustrate both genetic and phenotypic evolution in AML. Lastly, single-cell analysis of longitudinal samples reveals underlying evolutionary process of therapeutic resistance. Together, these data unravel clonal diversity and evolution patterns of AML, and highlight their clinical relevance in the era of precision medicine. Understanding the evolutionary trajectory of cancer samples may enable understanding resistance to treatment. Here, the authors used single cell sequencing of a cohort of acute myeloid leukemia tumours and identify features of linear and branching evolution in tumours.
Collapse
|
153
|
Heller G, Nebenfuehr S, Bellutti F, Ünal H, Zojer M, Scheiblecker L, Sexl V, Kollmann K. The Effect of CDK6 Expression on DNA Methylation and DNMT3B Regulation. iScience 2020; 23:101602. [PMID: 33205015 PMCID: PMC7648139 DOI: 10.1016/j.isci.2020.101602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
CDK6 is frequently overexpressed in various cancer types and functions as a positive regulator of the cell cycle and as a coregulator of gene transcription. We provide evidence that CDK6 is involved in the process of DNA methylation, at least in ALL. We observe a positive correlation of CDK6 and DNMT expression in a large number of ALL samples. ChIP-seq analysis reveals CDK6 binding to genomic regions associated with DNA methyltransferases (DNMTs). ATAC-seq shows a strong reduction in chromatin accessibility for DNMT3B in CDK6-deficient BCR-ABL + Cdk6-/- cells, accompanied by lower levels of DNMT3B mRNA and less chromatin-bound DNMT3B, as shown by RNA-seq and chromatome analysis. Motif analysis suggests that ETS family members interact with CDK6 to regulate DNMT3B. Reduced representation bisulfite sequencing analysis uncovers reversible and cell line-specific changes in DNA methylation patterns upon CDK6 loss. The results reveal a function of CDK6 as a regulator of DNA methylation in transformed cells.
Collapse
Affiliation(s)
- Gerwin Heller
- Department of Medicine I, Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria.,Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Sofie Nebenfuehr
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Florian Bellutti
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Huriye Ünal
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Markus Zojer
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Lisa Scheiblecker
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Veronika Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Karoline Kollmann
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
154
|
Bai G, Ross H, Zhang Y, Lee K, Ro JY. The Role of DNA Methylation in Transcriptional Regulation of Pro-Nociceptive Genes in Rat Trigeminal Ganglia. Epigenet Insights 2020; 13:2516865720938677. [PMID: 32974606 PMCID: PMC7495519 DOI: 10.1177/2516865720938677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022] Open
Abstract
Epigenetic modulation by DNA methylation is associated with aberrant gene
expression in sensory neurons, which consequently leads to pathological pain
responses. In this study, we sought to investigate whether peripheral
inflammation alters global DNA methylation in trigeminal ganglia (TG) and
results in abnormal expression of pro-nociceptive genes. Our results show that
peripheral inflammation remotely reduced the level of global DNA methylation in
rat TG with a concurrent reduction in DNMT1 and
DNMT3a expression. Using unbiased steps, we selected the
following pro-nociceptive candidate genes that are potentially regulated by DNA
methylation: TRPV1, TRPA1, P2X3, and PIEZO2.
Inhibition of DNMT with 5-Aza-dC in dissociated TG cells produced dose-dependent
upregulation of TRPV1, TRPA1, and P2X3.
Systemic treatment of animals with 5-Aza-dC significantly increased the
expression of TRPV1, TRPA1, and PIEZO2 in TG.
Furthermore, the overexpression of DNMT3a, as delivered by a lentiviral vector,
significantly downregulated TRPV1 and PIEZO2
expression and also reliably decreased TRPA1 and
P2X3 transcripts. MeDIP revealed that this overexpression
also significantly enhanced methylation of CGIs associated with
TRPV1 and TRPA1. In addition, bisulfite
sequencing data indicated that the CGI associated with TRPA1
was methylated in a pattern catalyzed by DNMT3a. Taken together, our results
show that all 4 pro-nociceptive genes are subject to epigenetic modulation via
DNA methylation, likely via DNMT3a under inflammatory conditions. These findings
provide the first evidence for the functional importance of DNA methylation as
an epigenetic factor in the transcription of pro-nociceptive genes in TG that
are implicated in pathological orofacial pain responses.
Collapse
Affiliation(s)
- Guang Bai
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD, USA
| | - Holly Ross
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD, USA
| | - Youping Zhang
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD, USA
| | - KiSeok Lee
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD, USA
| | - Jin Y Ro
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD, USA
| |
Collapse
|
155
|
DiNardo CD, Beird HC, Estecio M, Hardikar S, Takahashi K, Bannon SA, Borthakur G, Jabbour E, Gumbs C, Khoury JD, Routbort M, Gong T, Kondo K, Kantarjian H, Garcia-Manero G, Chen T, Futreal PA. Germline DNMT3A mutation in familial acute myeloid leukaemia. Epigenetics 2020; 16:567-576. [PMID: 32856987 DOI: 10.1080/15592294.2020.1809871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous myeloid malignancy characterized by recurrent clonal events, including mutations in epigenetically relevant genes such as DNMT3A, ASXL1, IDH1/2, and TET2. Next-generation sequencing analysis of a mother and son pair who both developed adult-onset diploid AML identified a novel germline missense mutation DNMT3A p.P709S. The p.P709S protein-altering variant resides in the highly conserved catalytic DNMT3A methyltransferase domain. Functional studies demonstrate that the p.P709S variant confers dominant negative effects when interacting with wildtype DNMT3A. LINE-1 pyrosequencing and reduced representation bisulphite sequencing (RBBS) analysis demonstrated global DNA hypomethylation in germline samples, not present in the leukaemic samples. Somatic acquisition of IDH2 p.R172K mutations, in concert with additional acquired clonal DNMT3A events in both patients at the time of AML diagnosis, confirms the important pathogenic interaction of epigenetically active genes, and implies a strong selection and regulation of methylation in leukaemogenesis. Improved characterization of germline mutations may enable us to better predict malignant clonal evolution, improving our ability to provide customized treatment or future preventative strategies.
Collapse
Affiliation(s)
- Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcos Estecio
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah A Bannon
- Department of Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Curtis Gumbs
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D Khoury
- Center for Cancer Epigenetics, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Routbort
- Center for Cancer Epigenetics, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ting Gong
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimie Kondo
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
156
|
Jacquelin S, Kramer F, Mullally A, Lane SW. Murine Models of Myelofibrosis. Cancers (Basel) 2020; 12:cancers12092381. [PMID: 32842500 PMCID: PMC7563264 DOI: 10.3390/cancers12092381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/22/2023] Open
Abstract
Myelofibrosis (MF) is subtype of myeloproliferative neoplasm (MPN) characterized by a relatively poor prognosis in patients. Understanding the factors that drive MF pathogenesis is crucial to identifying novel therapeutic approaches with the potential to improve patient care. Driver mutations in three main genes (janus kinase 2 (JAK2), calreticulin (CALR), and myeloproliferative leukemia virus oncogene (MPL)) are recurrently mutated in MPN and are sufficient to engender MPN using animal models. Interestingly, animal studies have shown that the underlying molecular mutation and the acquisition of additional genetic lesions is associated with MF outcome and transition from early stage MPN such as essential thrombocythemia (ET) and polycythemia vera (PV) to secondary MF. In this issue, we review murine models that have contributed to a better characterization of MF pathobiology and identification of new therapeutic opportunities in MPN.
Collapse
Affiliation(s)
- Sebastien Jacquelin
- Cancer program QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- Correspondence: (S.J.); (S.W.L.)
| | - Frederike Kramer
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.K.); (A.M.)
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.K.); (A.M.)
| | - Steven W. Lane
- Cancer program QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- Cancer Care Services, The Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
- University of Queensland, St Lucia, QLD 4072, Australia
- Correspondence: (S.J.); (S.W.L.)
| |
Collapse
|
157
|
Mhaidly R, Krug A, Gaulard P, Lemonnier F, Ricci JE, Verhoeyen E. New preclinical models for angioimmunoblastic T-cell lymphoma: filling the GAP. Oncogenesis 2020; 9:73. [PMID: 32796826 PMCID: PMC7427806 DOI: 10.1038/s41389-020-00259-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Mouse models are essential to study and comprehend normal and malignant hematopoiesis. The ideal preclinical model should mimic closely the human malignancy. This means that these mice should recapitulate the clinical behavior of the human diseases such as cancer and therapeutic responses with high reproducibility. In addition, the genetic mutational status, the cell phenotype, the microenvironment of the tumor and the time until tumor development occurs, should be mimicked in a preclinical model. This has been particularly challenging for human angioimmunoblastic lymphoma (AITL), one of the most prominent forms of peripheral T-cell lymphomas. A complex network of interactions between AITL tumor cells and the various cells of the tumor microenvironment has impeded the study of AITL pathogenesis in vitro. Very recently, new mouse models that recapitulate faithfully the major features of human AITL disease have been developed. Here, we provide a summary of the pathology, the transcriptional profile and genetic and immune-phenotypic features of human AITL. In addition, we give an overview of preclinical models that recapitulate more or less faithfully human AITL characteristics and pathology. These recently engineered mouse models were essential in the evaluation of novel therapeutic agents for possible treatment of AITL, a malignancy in urgent need of new treatment options.
Collapse
Affiliation(s)
- Rana Mhaidly
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Institut Curie, Stress and Cancer Laboratory, Equipe Labellisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'ULM, F-75248, Paris, France
- Inserm, U830, 26, rue d'ULM, Paris, F-75005, France
| | - Adrien Krug
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
| | - Philippe Gaulard
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Institut Mondor de Recherche Biomédicale, INSERMU955, Université Paris Est Créteil, Créteil, France
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
| | - François Lemonnier
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Institut Mondor de Recherche Biomédicale, INSERMU955, Université Paris Est Créteil, Créteil, France
- Unité Hémopathies Lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | | | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France.
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007, Lyon, France.
| |
Collapse
|
158
|
Tovy A, Reyes JM, Gundry MC, Brunetti L, Lee-Six H, Petljak M, Park HJ, Guzman AG, Rosas C, Jeffries AR, Baple E, Mill J, Crosby AH, Sency V, Xin B, Machado HE, Castillo D, Weitzel JN, Li W, Stratton MR, Campbell PJ, Wang H, Sanders MA, Goodell MA. Tissue-Biased Expansion of DNMT3A-Mutant Clones in a Mosaic Individual Is Associated with Conserved Epigenetic Erosion. Cell Stem Cell 2020; 27:326-335.e4. [PMID: 32673568 PMCID: PMC7494054 DOI: 10.1016/j.stem.2020.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/10/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
DNA methyltransferase 3A (DNMT3A) is the most commonly mutated gene in clonal hematopoiesis (CH). Somatic DNMT3A mutations arise in hematopoietic stem cells (HSCs) many years before malignancies develop, but difficulties in comparing their impact before malignancy with wild-type cells have limited the understanding of their contributions to transformation. To circumvent this limitation, we derived normal and DNMT3A mutant lymphoblastoid cell lines from a germline mosaic individual in whom these cells co-existed for nearly 6 decades. Mutant cells dominated the blood system, but not other tissues. Deep sequencing revealed similar mutational burdens and signatures in normal and mutant clones, while epigenetic profiling uncovered the focal erosion of DNA methylation at oncogenic regulatory regions in mutant clones. These regions overlapped with those sensitive to DNMT3A loss after DNMT3A ablation in HSCs and in leukemia samples. These results suggest that DNMT3A maintains a conserved DNA methylation pattern, the erosion of which provides a distinct competitive advantage to hematopoietic cells.
Collapse
Affiliation(s)
- Ayala Tovy
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jaime M Reyes
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Michael C Gundry
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lorenzo Brunetti
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Henry Lee-Six
- Cancer, Ageing, and Somatic Mutation, Wellcome Sanger Institute, Hinxton, UK
| | - Mia Petljak
- Cancer, Ageing, and Somatic Mutation, Wellcome Sanger Institute, Hinxton, UK
| | - Hyun Jung Park
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Anna G Guzman
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Carina Rosas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Aaron R Jeffries
- RILD Wellcome Wolfson Centre, University of Exeter, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Emma Baple
- RILD Wellcome Wolfson Centre, University of Exeter, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Jonathan Mill
- RILD Wellcome Wolfson Centre, University of Exeter, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, University of Exeter, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Valerie Sency
- DDC Clinic Center for Special Needs Children, Middlefield, OH, USA; Department of Pediatrics, Rainbow Babies & Children's Hospital, Cleveland, OH, USA; Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - Baozhong Xin
- DDC Clinic Center for Special Needs Children, Middlefield, OH, USA; Department of Pediatrics, Rainbow Babies & Children's Hospital, Cleveland, OH, USA; Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - Heather E Machado
- Cancer, Ageing, and Somatic Mutation, Wellcome Sanger Institute, Hinxton, UK
| | | | | | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael R Stratton
- Cancer, Ageing, and Somatic Mutation, Wellcome Sanger Institute, Hinxton, UK
| | - Peter J Campbell
- Cancer, Ageing, and Somatic Mutation, Wellcome Sanger Institute, Hinxton, UK
| | - Heng Wang
- DDC Clinic Center for Special Needs Children, Middlefield, OH, USA; Department of Pediatrics, Rainbow Babies & Children's Hospital, Cleveland, OH, USA; Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - Mathijs A Sanders
- Cancer, Ageing, and Somatic Mutation, Wellcome Sanger Institute, Hinxton, UK; Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
159
|
Caponetti GC, Bagg A. Mutations in myelodysplastic syndromes: Core abnormalities and CHIPping away at the edges. Int J Lab Hematol 2020; 42:671-684. [PMID: 32757473 DOI: 10.1111/ijlh.13284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
The myelodysplastic syndromes (MDS) are a heterogeneous constellation of hematologic malignancies characterized by aberrant differentiation and clonal expansion of abnormal myeloid cells that initially manifest with ineffective hematopoiesis and consequent cytopenias. The prognosis of MDS is variable and depends on clinical and hematologic parameters, cytogenetic and molecular findings, as well as comorbidities. Gene sequencing studies have uncovered remarkable genomic complexity within MDS, based on the presence of recurrent and sometimes co-operating mutations in genes encoding proteins that play a role in numerous biologic pathways. Although the treatment of MDS is currently limited to the use of hypomethylating, immunomodulatory, or erythropoiesis-stimulating agents, improved understanding of the molecular underpinnings of its pathophysiology has led to the development of multiple targeted treatments that are poised to be added to the therapeutic armamentarium. This review will focus on the role of mutations in the pathogenesis, diagnosis, and prognosis of MDS and how the discovery of clonal hematopoiesis of indeterminate potential (CHIP) might impact the utility of detecting mutations in the diagnosis of MDS.
Collapse
Affiliation(s)
- Gabriel C Caponetti
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
160
|
Li Y, Jiang B, He Z, Zhu H, He R, Fan S, Wu X, Xie L, He X. circIQCH sponges miR-145 to promote breast cancer progression by upregulating DNMT3A expression. Aging (Albany NY) 2020; 12:15532-15545. [PMID: 32756009 PMCID: PMC7467367 DOI: 10.18632/aging.103746] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
As a unique type of RNA, circular RNAs (circRNAs) are important regulators of multiple biological processes in the progression of cancer. However, the potential role of most circRNAs in breast cancer lung metastasis is still unknown. In this study, we characterized and further investigated circIQCH (hsa_circ_0104345) by analyzing the circRNA microarray profiling in our previous study. circIQCH was upregulated in breast cancer tissues, especially in the metastatic sites. CCK-8, transwell, wound-healing and mouse xenograft assays were carried out to investigate the functions of circIQCH. Knockdown of circIQCH inhibited breast cancer cell proliferation and migration to lung. Moreover, luciferase reporter assays and RNA immunoprecipitation assays were performed to elucidate the underlying molecular mechanism of circIQCH. The results showed that circIQCH sponges miR-145 and promotes breast cancer progression by upregulating DNMT3A. In summary, our study demonstrated the pivotal role of circIQCH-miR-145-DNMT3A axis in breast cancer growth and metastasis via the mechanism of competing endogenous RNAs. Thus, circIQCH could be a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yuehua Li
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, China
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Baohong Jiang
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, China
| | - Zhengxi He
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Hongbo Zhu
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, China
| | - Rongfang He
- Department of Pathology, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, China
| | - Shanji Fan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, University of South China, Hengyang, 421001 Hunan Province, China
| | - Xiaoping Wu
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, China
| | - Liming Xie
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, China
| | - Xiusheng He
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| |
Collapse
|
161
|
Blecua P, Martinez‐Verbo L, Esteller M. The DNA methylation landscape of hematological malignancies: an update. Mol Oncol 2020; 14:1616-1639. [PMID: 32526054 PMCID: PMC7400809 DOI: 10.1002/1878-0261.12744] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
The rapid advances in high-throughput sequencing technologies have made it more evident that epigenetic modifications orchestrate a plethora of complex biological processes. During the last decade, we have gained significant knowledge about a wide range of epigenetic changes that crucially contribute to some of the most aggressive forms of leukemia, lymphoma, and myelodysplastic syndromes. DNA methylation is a key epigenetic player in the abnormal initiation, development, and progression of these malignancies, often acting in synergy with other epigenetic alterations. It also contributes to the acquisition of drug resistance. In this review, we summarize the role of DNA methylation in hematological malignancies described in the current literature. We discuss in detail the dual role of DNA methylation in normal and aberrant hematopoiesis, as well as the involvement of this type of epigenetic change in other aspects of the disease. Finally, we present a comprehensive overview of the main clinical implications, including a discussion of the therapeutic strategies that regulate or reverse aberrant DNA methylation patterns in hematological malignancies, including their combination with (chemo)immunotherapy.
Collapse
Affiliation(s)
- Pedro Blecua
- Cancer Epigenetics GroupJosep Carreras Leukaemia Research Institute (IJC)BarcelonaSpain
| | - Laura Martinez‐Verbo
- Cancer Epigenetics GroupJosep Carreras Leukaemia Research Institute (IJC)BarcelonaSpain
| | - Manel Esteller
- Cancer Epigenetics GroupJosep Carreras Leukaemia Research Institute (IJC)BarcelonaSpain
- Centro de Investigación Biomedica en Red Cancer (CIBERONC)MadridSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
- Physiological Sciences DepartmentSchool of Medicine and Health SciencesUniversity of BarcelonaSpain
| |
Collapse
|
162
|
Midic D, Rinke J, Perner F, Müller V, Hinze A, Pester F, Landschulze J, Ernst J, Gruhn B, Matziolis G, Heidel FH, Hochhaus A, Ernst T. Prevalence and dynamics of clonal hematopoiesis caused by leukemia-associated mutations in elderly individuals without hematologic disorders. Leukemia 2020; 34:2198-2205. [PMID: 32457355 PMCID: PMC7387320 DOI: 10.1038/s41375-020-0869-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
Clonal hematopoiesis is frequently observed in elderly people. To investigate the prevalence and dynamics of genetic alterations among healthy elderly individuals, a cohort of 50 people >80 years was genotyped for commonly mutated leukemia-associated genes by targeted deep next-generation sequencing. A total of 16 somatic mutations were identified in 13/50 (26%) individuals. Mutations occurred at low variant allele frequencies (median 11.7%) and remained virtually stable over 3 years without development of hematologic malignancies in affected individuals. With DNMT3A mutations most frequently detected, another cohort of 160 healthy people spanning all age groups was sequenced specifically for DNMT3A revealing an overall mutation rate of 6.2% (13/210) and an age-dependent increase of mutation prevalence. A significant difference (p = 0.017) in the DNMT3A expression pattern was detected between younger and healthy elderly people as determined by qRT-PCR. To evaluate the selection of clonal hematopoietic stem cells (HSCs), bone marrow of two healthy individuals with mutant DNMT3A was transplanted in a humanized mouse model. Xenografts displayed stable kinetics of DNMT3A mutations over 8 months. These findings indicate that the appearance of low-level clones with leukemia-associated mutations is a common age-associated phenomenon, but insufficient to initiate clonal selection and expansion without the additional influence of other factors.
Collapse
Affiliation(s)
- Danica Midic
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Jenny Rinke
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Florian Perner
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Violetta Müller
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Anna Hinze
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | | | | | - Jana Ernst
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Jena, Jena, Germany
| | - Bernd Gruhn
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Jena, Jena, Germany
| | - Georg Matziolis
- Orthopädische Klinik der Waldkliniken Eisenberg, Eisenberg, Germany
| | - Florian H Heidel
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Jena, Germany
| | - Andreas Hochhaus
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Thomas Ernst
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany.
| |
Collapse
|
163
|
Lauber C, Correia N, Trumpp A, Rieger MA, Dolnik A, Bullinger L, Roeder I, Seifert M. Survival differences and associated molecular signatures of DNMT3A-mutant acute myeloid leukemia patients. Sci Rep 2020; 10:12761. [PMID: 32728112 PMCID: PMC7391693 DOI: 10.1038/s41598-020-69691-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a very heterogeneous and highly malignant blood cancer. Mutations of the DNA methyltransferase DNMT3A are among the most frequent recurrent genetic lesions in AML. The majority of DNMT3A-mutant AML patients shows fast relapse and poor survival, but also patients with long survival or long-term remission have been reported. Underlying molecular signatures and mechanisms that contribute to these survival differences are only poorly understood and have not been studied in detail so far. We applied hierarchical clustering to somatic gene mutation profiles of 51 DNMT3A-mutant patients from The Cancer Genome Atlas (TCGA) AML cohort revealing two robust patient subgroups with profound differences in survival. We further determined molecular signatures that distinguish both subgroups. Our results suggest that FLT3 and/or NPM1 mutations contribute to survival differences of DNMT3A-mutant patients. We observed an upregulation of genes of the p53, VEGF and DNA replication pathway and a downregulation of genes of the PI3K-Akt pathway in short- compared to long-lived patients. We identified that the majority of measured miRNAs was downregulated in the short-lived group and we found differentially expressed microRNAs between both subgroups that have not been reported for AML so far (miR-153-2, miR-3065, miR-95, miR-6718) suggesting that miRNAs could be important for prognosis. In addition, we learned gene regulatory networks to predict potential major regulators and found several genes and miRNAs with known roles in AML pathogenesis, but also interesting novel candidates involved in the regulation of hematopoiesis, cell cycle, cell differentiation, and immunity that may contribute to the observed survival differences of both subgroups and could therefore be important for prognosis. Moreover, the characteristic gene mutation and expression signatures that distinguished short- from long-lived patients were also predictive for independent DNMT3A-mutant AML patients from other cohorts and could also contribute to further improve the European LeukemiaNet (ELN) prognostic scoring system. Our study represents the first in-depth computational approach to identify molecular factors associated with survival differences of DNMT3A-mutant AML patients and could trigger additional studies to develop robust molecular markers for a better stratification of AML patients with DNMT3A mutations.
Collapse
Affiliation(s)
- Chris Lauber
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Nádia Correia
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Anna Dolnik
- Department of Hematology, Oncology and Tumorimmunology, Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumorimmunology, Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany. .,National Center for Tumor Diseases (NCT), Dresden, Germany.
| |
Collapse
|
164
|
Hoang NM, Rui L. DNA methyltransferases in hematological malignancies. J Genet Genomics 2020; 47:361-372. [PMID: 32994141 PMCID: PMC7704698 DOI: 10.1016/j.jgg.2020.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
DNA methyltransferases (DNMTs) are an evolutionarily conserved family of DNA methylases, transferring a methyl group onto the fifth carbon of a cytosine residue. The mammalian DNMT family includes three major members that have functional methylation activities, termed DNMT1, DNMT3A, and DNMT3B. DNMT3A and DNMT3B are responsible for methylation establishment, whereas DNMT1 maintains methylation during DNA replication. Accumulating evidence demonstrates that regulation of DNA methylation by DNMTs is critical for normal hematopoiesis. Aberrant DNA methylation due to DNMT dysregulation and mutations is known as an important molecular event of hematological malignancies, such as DNMT3A mutations in acute myeloid leukemia. In this review, we first describe the basic methylation mechanisms of DNMTs and their functions in lymphocyte maturation and differentiation. We then discuss the current understanding of DNA methylation heterogeneity in leukemia and lymphoma to highlight the importance of studying DNA methylation targets. We also discuss DNMT mutations and pathogenic roles in human leukemia and lymphoma. We summarize the recent understanding of how DNMTs interact with transcription factors or cofactors to repress the expression of tumor suppressor genes. Finally, we highlight current clinical studies using DNMT inhibitors for the treatment of these hematological malignancies.
Collapse
Affiliation(s)
- Nguyet-Minh Hoang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Lixin Rui
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA.
| |
Collapse
|
165
|
Gao L, Emperle M, Guo Y, Grimm SA, Ren W, Adam S, Uryu H, Zhang ZM, Chen D, Yin J, Dukatz M, Anteneh H, Jurkowska RZ, Lu J, Wang Y, Bashtrykov P, Wade PA, Wang GG, Jeltsch A, Song J. Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms. Nat Commun 2020; 11:3355. [PMID: 32620778 PMCID: PMC7335073 DOI: 10.1038/s41467-020-17109-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
Mammalian DNA methylation patterns are established by two de novo DNA methyltransferases, DNMT3A and DNMT3B, which exhibit both redundant and distinctive methylation activities. However, the related molecular basis remains undetermined. Through comprehensive structural, enzymology and cellular characterization of DNMT3A and DNMT3B, we here report a multi-layered substrate-recognition mechanism underpinning their divergent genomic methylation activities. A hydrogen bond in the catalytic loop of DNMT3B causes a lower CpG specificity than DNMT3A, while the interplay of target recognition domain and homodimeric interface fine-tunes the distinct target selection between the two enzymes, with Lysine 777 of DNMT3B acting as a unique sensor of the +1 flanking base. The divergent substrate preference between DNMT3A and DNMT3B provides an explanation for site-specific epigenomic alterations seen in ICF syndrome with DNMT3B mutations. Together, this study reveals distinctive substrate-readout mechanisms of the two DNMT3 enzymes, implicative of their differential roles during development and pathogenesis.
Collapse
Affiliation(s)
- Linfeng Gao
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Max Emperle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sara A Grimm
- Division of Intramural Research, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Wendan Ren
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Sabrina Adam
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Hidetaka Uryu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Zhi-Min Zhang
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Dongliang Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jiekai Yin
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Michael Dukatz
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Hiwot Anteneh
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Renata Z Jurkowska
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Pavel Bashtrykov
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Paul A Wade
- Division of Intramural Research, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| | - Jikui Song
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA.
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
166
|
Lee J, Godfrey AL, Nangalia J. Genomic heterogeneity in myeloproliferative neoplasms and applications to clinical practice. Blood Rev 2020; 42:100708. [PMID: 32571583 DOI: 10.1016/j.blre.2020.100708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/22/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022]
Abstract
The myeloproliferative neoplasms (MPN) polycythaemia vera, essential thrombocythaemia and primary myelofibrosis are chronic myeloid disorders associated most often with mutations in JAK2, MPL and CALR, and in some patients with additional acquired genomic lesions. Whilst the molecular mechanisms downstream of these mutations are now clearer, it is apparent that clinical phenotype in MPN is a product of complex interactions, acting between individual mutations, between disease subclones, and between the tumour and background host factors. In this review we first discuss MPN phenotypic driver mutations and the factors that interact with them to influence phenotype. We consider the importance of ongoing studies of clonal haematopoiesis, which may inform a better understanding of why MPN develop in specific individuals. We then consider how best to deploy genomic testing in a clinical environment and the challenges as well as opportunities that may arise from more routine, comprehensive genomic analysis of patients with MPN.
Collapse
Affiliation(s)
- Joe Lee
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anna L Godfrey
- Haematopathology and Oncology Diagnostics Service/ Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge CB2 0QQ, UK
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Haematopathology and Oncology Diagnostics Service/ Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge CB2 0QQ, UK.
| |
Collapse
|
167
|
Zhang TJ, Zhang LC, Xu ZJ, Zhou JD. Expression and prognosis analysis of DNMT family in acute myeloid leukemia. Aging (Albany NY) 2020; 12:14677-14690. [PMID: 32597790 PMCID: PMC7425446 DOI: 10.18632/aging.103520] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/04/2020] [Indexed: 04/08/2023]
Abstract
DNA methyltransferases (DNMTs) by regulating DNA methylation play crucial roles in the progression of hematologic malignancies, especially for acute myeloid leukemia (AML). Accumulating investigations have identified the high incidence of DNMT3A mutation in AML, and it is correlated with poor prognosis. Although a few studies have shown the expression of DNMTs and their clinical significance in AML, the results remain to be discussed. Herein, we systemically analyzed the DNMTs expression and their relationship with clinic-pathological features and prognosis in AML patients. DNMTs expression especially for DNMT3A/3B was closely associated with AML among various human cancers. DNMT3A expression was increased in AML patients, whereas DNMT3B expression was decreased. Significant associations between DNMT3A/B expression and clinic-pathological features/gene mutations were observed. Kaplan-Meier analysis showed that DNMT3A expression was associated with better overall survival (OS) and leukemia-free survival (LFS) among whole-cohort AML, and independently affected OS determined by Cox repression multivariate analysis. Notably, patients that received hematopoietic stem cell transplantation (HSCT) showed significantly better OS and LFS in DNMT3A lower-expressed groups, whereas patients in DNMT3A higher-expressed groups did not. By bioinformatics analysis, DNMT3A expression was found to be positively correlated with several leukemia-associated genes/microRNAs, and DNMT3A was identified as direct targets of miR-429 and miR-29b in AML. Collectively, our study demonstrated that DNMT3A/3B showed significant expression differences in AML. DNMT3A expression acted as a potential prognostic biomarker and may guide treatment choice between chemotherapy and HSCT in AML.
Collapse
Affiliation(s)
- Ting-Juan Zhang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People’s Republic of China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang, Zhenjiang, Jiangsu, People’s Republic of China
| | - Liu-Chao Zhang
- Department of Medical Laboratory, Shanghai Deji Hospital, Qingdao University, Shanghai, People’s Republic of China
| | - Zi-Jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People’s Republic of China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang, Zhenjiang, Jiangsu, People’s Republic of China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People’s Republic of China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang, Zhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
168
|
Veninga A, De Simone I, Heemskerk JWM, Cate HT, van der Meijden PEJ. Clonal hematopoietic mutations linked to platelet traits and the risk of thrombosis or bleeding. Haematologica 2020; 105:2020-2031. [PMID: 32554558 PMCID: PMC7395290 DOI: 10.3324/haematol.2019.235994] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Platelets are key elements in thrombosis, particularly in atherosclerosis-associated arterial thrombosis (atherothrombosis), and hemostasis. Megakaryocytes in the bone marrow, differentiated from hematopoietic stem cells are generally considered as a uniform source of platelets. However, recent insights into the causes of malignancies, including essential thrombocytosis, indicate that not only inherited but also somatic mutations in hematopoietic cells are linked to quantitative or qualitative platelet abnormalities. In particular cases, these form the basis of thrombo-hemorrhagic complications regularly observed in patient groups. This has led to the concept of clonal hematopoiesis of indeterminate potential (CHIP), defined as somatic mutations caused by clonal expansion of mutant hematopoietic cells without evident disease. This concept also provides clues regarding the importance of platelet function in relation to cardiovascular disease. In this summative review, we present an overview of genes associated with clonal hematopoiesis and altered platelet production and/or functionality, like mutations in JAK2 We consider how reported CHIP genes can influence the risk of cardiovascular disease, by exploring the consequences for platelet function related to (athero)thrombosis, or the risk of bleeding. More insight into the functional consequences of the CHIP mutations may favor personalized risk assessment, not only with regard to malignancies but also in relation to thrombotic vascular disease.
Collapse
Affiliation(s)
- Alicia Veninga
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht
| | - Ilaria De Simone
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht
| | - Hugo Ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht.,Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht.,Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Paola E J van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht .,Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht
| |
Collapse
|
169
|
Lee D, Lee S, Kim S. PRISM: methylation pattern-based, reference-free inference of subclonal makeup. Bioinformatics 2020; 35:i520-i529. [PMID: 31510697 PMCID: PMC6612819 DOI: 10.1093/bioinformatics/btz327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Motivation Characterizing cancer subclones is crucial for the ultimate conquest of cancer. Thus, a number of bioinformatic tools have been developed to infer heterogeneous tumor populations based on genomic signatures such as mutations and copy number variations. Despite accumulating evidence for the significance of global DNA methylation reprogramming in certain cancer types including myeloid malignancies, none of the bioinformatic tools are designed to exploit subclonally reprogrammed methylation patterns to reveal constituent populations of a tumor. In accordance with the notion of global methylation reprogramming, our preliminary observations on acute myeloid leukemia (AML) samples implied the existence of subclonally occurring focal methylation aberrance throughout the genome. Results We present PRISM, a tool for inferring the composition of epigenetically distinct subclones of a tumor solely from methylation patterns obtained by reduced representation bisulfite sequencing. PRISM adopts DNA methyltransferase 1-like hidden Markov model-based in silico proofreading for the correction of erroneous methylation patterns. With error-corrected methylation patterns, PRISM focuses on a short individual genomic region harboring dichotomous patterns that can be split into fully methylated and unmethylated patterns. Frequencies of such two patterns form a sufficient statistic for subclonal abundance. A set of statistics collected from each genomic region is modeled with a beta-binomial mixture. Fitting the mixture with expectation-maximization algorithm finally provides inferred composition of subclones. Applying PRISM for two AML samples, we demonstrate that PRISM could infer the evolutionary history of malignant samples from an epigenetic point of view. Availability and implementation PRISM is freely available on GitHub (https://github.com/dohlee/prism). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dohoon Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
| | - Sangseon Lee
- Department of Computer Science and Engineering, Seoul National University, Seoul, Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea.,Department of Computer Science and Engineering, Seoul National University, Seoul, Korea.,Bioinformatics Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
170
|
Abstract
PURPOSE OF REVIEW The field of acute myeloid leukemia (AML) has been revolutionized in recent years by the advent of high-throughput techniques, such as next-generation sequencing. In this review, we will discuss some of the recently identified mutations that have defined a new molecular landscape in this disease, as well as their prognostic, predictive, and therapeutic implications. RECENT FINDINGS Recent studies have shown how many cases of AML evolve from a premalignant period of latency characterized by the accumulation of several mutations and the emergence of one or multiple dominant clones. The pattern of co-occurring mutations and cytogenetic abnormalities at diagnosis defines risk and can determine therapeutic approaches to induce remission. Besides the genetic landscape at diagnosis, the continued presence of particular gene mutations during or after treatment carries prognostic information that should further influence strategies to maintain remission in the long term. The recent progress made in AML research is a seminal example of how basic science can translate into improving clinical practice. Our ability to characterize the genomic landscape of individual patients has not only improved our ability to diagnose and prognosticate but is also bringing the promise of precision medicine to fruition in the field.
Collapse
Affiliation(s)
- Ludovica Marando
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Brian J P Huntly
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
171
|
Emperle M, Adam S, Kunert S, Dukatz M, Baude A, Plass C, Rathert P, Bashtrykov P, Jeltsch A. Mutations of R882 change flanking sequence preferences of the DNA methyltransferase DNMT3A and cellular methylation patterns. Nucleic Acids Res 2020; 47:11355-11367. [PMID: 31620784 PMCID: PMC6868496 DOI: 10.1093/nar/gkz911] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 02/01/2023] Open
Abstract
Somatic DNMT3A mutations at R882 are frequently observed in AML patients including the very abundant R882H, but also R882C, R882P and R882S. Using deep enzymology, we show here that DNMT3A-R882H has more than 70-fold altered flanking sequence preferences when compared with wildtype DNMT3A. The R882H flanking sequence preferences mainly differ on the 3' side of the CpG site, where they resemble DNMT3B, while 5' flanking sequence preferences resemble wildtype DNMT3A, indicating that R882H behaves like a DNMT3A/DNMT3B chimera. Investigation of the activity and flanking sequence preferences of other mutations of R882 revealed that they cause similar effects. Bioinformatic analyses of genomic methylation patterns focusing on flanking sequence effects after expression of wildtype DNMT3A and R882H in human cells revealed that genomic methylation patterns reflect the details of the altered flanking sequence preferences of R882H. Concordantly, R882H specific hypermethylation in AML patients was strongly correlated with the R882H flanking sequence preferences. R882H specific DNA hypermethylation events in AML patients were accompanied by R882H specific mis-regulation of several genes with strong cancer connection, which are potential downstream targets of R882H. In conclusion, our data provide novel and detailed mechanistic understanding of the pathogenic mechanism of the DNMT3A R882H somatic cancer mutation.
Collapse
Affiliation(s)
- Max Emperle
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Sabrina Adam
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Stefan Kunert
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Michael Dukatz
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Annika Baude
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, 28069120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, 28069120 Heidelberg, Germany
| | - Philipp Rathert
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
172
|
Structural basis for impairment of DNA methylation by the DNMT3A R882H mutation. Nat Commun 2020; 11:2294. [PMID: 32385248 PMCID: PMC7210271 DOI: 10.1038/s41467-020-16213-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
DNA methyltransferase DNMT3A is essential for establishment of mammalian DNA methylation during development. The R882H DNMT3A is a hotspot mutation in acute myeloid leukemia (AML) causing aberrant DNA methylation. However, how this mutation affects the structure and function of DNMT3A remains unclear. Here we report structural characterization of wild-type and R882H-mutated DNMT3A in complex with DNA substrates with different sequence contexts. A loop from the target recognition domain (TRD loop) recognizes the CpG dinucleotides in a +1 flanking site-dependent manner. The R882H mutation reduces the DNA binding at the homodimeric interface, as well as the molecular link between the homodimeric interface and TRD loop, leading to enhanced dynamics of TRD loop. Consistently, in vitro methylation analyses indicate that the R882H mutation compromises the enzymatic activity, CpG specificity and flanking sequence preference of DNMT3A. Together, this study uncovers multiple defects of DNMT3A caused by the R882H mutation in AML. The DNA methyltransferase DNMT3A plays an important role in establishing the DNA methylation patterns during development and deregulation of DNMT3A is associated with hematological cancers, with the R882H mutation the most frequently occurring DNMT3A missense mutation in acute myeloid leukemia. Here, the authors present the crystal structures of wild-type and R882H DNMT3A in complex with different DNA substrates and explain why the R882H mutation compromises the enzymatic activity of DNMT3A.
Collapse
|
173
|
Amsalem Z, Arif T, Shteinfer-Kuzmine A, Chalifa-Caspi V, Shoshan-Barmatz V. The Mitochondrial Protein VDAC1 at the Crossroads of Cancer Cell Metabolism: The Epigenetic Link. Cancers (Basel) 2020; 12:cancers12041031. [PMID: 32331482 PMCID: PMC7226296 DOI: 10.3390/cancers12041031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022] Open
Abstract
Carcinogenesis is a complicated process that involves the deregulation of epigenetics, resulting in cellular transformational events, such as proliferation, differentiation, and metastasis. Most chromatin-modifying enzymes utilize metabolites as co-factors or substrates and thus are directly dependent on such metabolites as acetyl-coenzyme A, S-adenosylmethionine, and NAD+. Here, we show that using specific siRNA to deplete a tumor of VDAC1 not only led to reprograming of the cancer cell metabolism but also altered several epigenetic-related enzymes and factors. VDAC1, in the outer mitochondrial membrane, controls metabolic cross-talk between the mitochondria and the rest of the cell, thus regulating the metabolic and energetic functions of mitochondria, and has been implicated in apoptotic-relevant events. We previously demonstrated that silencing VDAC1 expression in glioblastoma (GBM) U-87MG cell-derived tumors, resulted in reprogramed metabolism leading to inhibited tumor growth, angiogenesis, epithelial-mesenchymal transition and invasiveness, and elimination of cancer stem cells, while promoting the differentiation of residual tumor cells into neuronal-like cells. These VDAC1 depletion-mediated effects involved alterations in transcription factors regulating signaling pathways associated with cancer hallmarks. As the epigenome is sensitive to cellular metabolism, this study was designed to assess whether depleting VDAC1 affects the metabolism-epigenetics axis. Using DNA microarrays, q-PCR, and specific antibodies, we analyzed the effects of si-VDAC1 treatment of U-87MG-derived tumors on histone modifications and epigenetic-related enzyme expression levels, as well as the methylation and acetylation state, to uncover any alterations in epigenetic properties. Our results demonstrate that metabolic rewiring of GBM via VDAC1 depletion affects epigenetic modifications, and strongly support the presence of an interplay between metabolism and epigenetics.
Collapse
Affiliation(s)
- Zohar Amsalem
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
| | - Tasleem Arif
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Vered Chalifa-Caspi
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Correspondence: ; Fax: +972-8-647-2992
| |
Collapse
|
174
|
Lin CC, Chen YP, Yang WZ, Shen JCK, Yuan H. Structural insights into CpG-specific DNA methylation by human DNA methyltransferase 3B. Nucleic Acids Res 2020; 48:3949-3961. [PMID: 32083663 PMCID: PMC7144912 DOI: 10.1093/nar/gkaa111] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
DNA methyltransferases are primary enzymes for cytosine methylation at CpG sites of epigenetic gene regulation in mammals. De novo methyltransferases DNMT3A and DNMT3B create DNA methylation patterns during development, but how they differentially implement genomic DNA methylation patterns is poorly understood. Here, we report crystal structures of the catalytic domain of human DNMT3B-3L complex, noncovalently bound with and without DNA of different sequences. Human DNMT3B uses two flexible loops to enclose DNA and employs its catalytic loop to flip out the cytosine base. As opposed to DNMT3A, DNMT3B specifically recognizes DNA with CpGpG sites via residues Asn779 and Lys777 in its more stable and well-ordered target recognition domain loop to facilitate processive methylation of tandemly repeated CpG sites. We also identify a proton wire water channel for the final deprotonation step, revealing the complete working mechanism for cytosine methylation by DNMT3B and providing the structural basis for DNMT3B mutation-induced hypomethylation in immunodeficiency, centromere instability and facial anomalies syndrome.
Collapse
Affiliation(s)
- Chien-Chu Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ping Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Zen Yang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - James C K Shen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei 10048, Taiwan
| |
Collapse
|
175
|
Chen J, Han G, Xu A, Cai H. Identification of Multidimensional Regulatory Modules Through Multi-Graph Matching With Network Constraints. IEEE Trans Biomed Eng 2020; 67:987-998. [DOI: 10.1109/tbme.2019.2927157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
176
|
Regulative Loop between β-catenin and Protein Tyrosine Receptor Type γ in Chronic Myeloid Leukemia. Int J Mol Sci 2020; 21:ijms21072298. [PMID: 32225105 PMCID: PMC7177637 DOI: 10.3390/ijms21072298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022] Open
Abstract
Protein tyrosine phosphatase receptor type γ (PTPRG) is a tumor suppressor gene, down-regulated in Chronic Myeloid Leukemia (CML) cells by the hypermethylation of its promoter region. β-catenin (CTNNB1) is a critical regulator of Leukemic Stem Cells (LSC) maintenance and CML proliferation. This study aims to demonstrate the antagonistic regulation between β-catenin and PTPRG in CML cells. The specific inhibition of PTPRG increases the activation state of BCR-ABL1 and modulates the expression of the BCR-ABL1- downstream gene β-Catenin. PTPRG was found to be capable of dephosphorylating β-catenin, eventually causing its cytosolic destabilization and degradation in cells expressing PTPRG. Furthermore, we demonstrated that the increased expression of β-catenin in PTPRG-negative CML cell lines correlates with DNA (cytosine-5)-methyl transferase 1 (DNMT1) over-expression, which is responsible for PTPRG promoter hypermethylation, while its inhibition or down-regulation correlates with PTPRG re-expression. We finally confirmed the role of PTPRG in regulating BCR-ABL1 and β-catenin phosphorylation in primary human CML samples. We describe here, for the first time, the existence of a regulative loop occurring between PTPRG and β-catenin, whose reciprocal imbalance affects the proliferation kinetics of CML cells.
Collapse
|
177
|
Li T, Garcia-Gomez A, Morante-Palacios O, Ciudad L, Özkaramehmet S, Van Dijck E, Rodríguez-Ubreva J, Vaquero A, Ballestar E. SIRT1/2 orchestrate acquisition of DNA methylation and loss of histone H3 activating marks to prevent premature activation of inflammatory genes in macrophages. Nucleic Acids Res 2020; 48:665-681. [PMID: 31799621 PMCID: PMC6954413 DOI: 10.1093/nar/gkz1127] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
Sirtuins 1 and 2 (SIRT1/2) are two NAD-dependent deacetylases with major roles in inflammation. In addition to deacetylating histones and other proteins, SIRT1/2-mediated regulation is coupled with other epigenetic enzymes. Here, we investigate the links between SIRT1/2 activity and DNA methylation in macrophage differentiation due to their relevance in myeloid cells. SIRT1/2 display drastic upregulation during macrophage differentiation and their inhibition impacts the expression of many inflammation-related genes. In this context, SIRT1/2 inhibition abrogates DNA methylation gains, but does not affect demethylation. Inhibition of hypermethylation occurs at many inflammatory loci, which results in more drastic upregulation of their expression upon macrophage polarization following bacterial lipopolysaccharide (LPS) challenge. SIRT1/2-mediated gains of methylation concur with decreases in activating histone marks, and their inhibition revert these histone marks to resemble an open chromatin. Remarkably, specific inhibition of DNA methyltransferases is sufficient to upregulate inflammatory genes that are maintained in a silent state by SIRT1/2. Both SIRT1 and SIRT2 directly interact with DNMT3B, and their binding to proinflammatory genes is lost upon exposure to LPS or through pharmacological inhibition of their activity. In all, we describe a novel role for SIRT1/2 to restrict premature activation of proinflammatory genes.
Collapse
Affiliation(s)
- Tianlu Li
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Antonio Garcia-Gomez
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Octavio Morante-Palacios
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sevgi Özkaramehmet
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Evelien Van Dijck
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alejandro Vaquero
- Chromatin Biology Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
178
|
Panuzzo C, Signorino E, Calabrese C, Ali MS, Petiti J, Bracco E, Cilloni D. Landscape of Tumor Suppressor Mutations in Acute Myeloid Leukemia. J Clin Med 2020; 9:jcm9030802. [PMID: 32188030 PMCID: PMC7141302 DOI: 10.3390/jcm9030802] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia is mainly characterized by a complex and dynamic genomic instability. Next-generation sequencing has significantly improved the ability of diagnostic research to molecularly characterize and stratify patients. This detailed outcome allowed the discovery of new therapeutic targets and predictive biomarkers, which led to develop novel compounds (e.g., IDH 1 and 2 inhibitors), nowadays commonly used for the treatment of adult relapsed or refractory AML. In this review we summarize the most relevant mutations affecting tumor suppressor genes that contribute to the onset and progression of AML pathology. Epigenetic modifications (TET2, IDH1 and IDH2, DNMT3A, ASXL1, WT1, EZH2), DNA repair dysregulation (TP53, NPM1), cell cycle inhibition and deficiency in differentiation (NPM1, CEBPA, TP53 and GATA2) as a consequence of somatic mutations come out as key elements in acute myeloid leukemia and may contribute to relapse and resistance to therapies. Moreover, spliceosomal machinery mutations identified in the last years, even if in a small cohort of acute myeloid leukemia patients, suggested a new opportunity to exploit therapeutically. Targeting these cellular markers will be the main challenge in the near future in an attempt to eradicate leukemia stem cells.
Collapse
Affiliation(s)
- Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Elisabetta Signorino
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Chiara Calabrese
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Muhammad Shahzad Ali
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Jessica Petiti
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Enrico Bracco
- Department of Oncology, University of Turin, 10124 Turin, Italy;
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
- Correspondence: ; Tel.: +39-011-9026610; Fax: +39-011-9038636
| |
Collapse
|
179
|
Zhang X, Wang X, Wang XQD, Su J, Putluri N, Zhou T, Qu Y, Jeong M, Guzman A, Rosas C, Huang Y, Sreekumar A, Li W, Goodell MA. Dnmt3a loss and Idh2 neomorphic mutations mutually potentiate malignant hematopoiesis. Blood 2020; 135:845-856. [PMID: 31932841 PMCID: PMC7068035 DOI: 10.1182/blood.2019003330] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations in the epigenetic regulators DNMT3A and IDH1/2 co-occur in patients with acute myeloid leukemia and lymphoma. In this study, these 2 epigenetic mutations cooperated to induce leukemia. Leukemia-initiating cells from Dnmt3a-/- mice that express an IDH2 neomorphic mutant have a megakaryocyte-erythroid progenitor-like immunophenotype, activate a stem-cell-like gene signature, and repress differentiated progenitor genes. We observed an epigenomic dysregulation with the gain of repressive H3K9 trimethylation and loss of H3K9 acetylation in diseased mouse bone marrow hematopoietic stem and progenitor cells (HSPCs). HDAC inhibitors rapidly reversed the H3K9 methylation/acetylation imbalance in diseased mouse HSPCs while reducing the leukemia burden. In addition, using targeted metabolomic profiling for the first time in mouse leukemia models, we also showed that prostaglandin E2 is overproduced in double-mutant HSPCs, rendering them sensitive to prostaglandin synthesis inhibition. These data revealed that Dnmt3a and Idh2 mutations are synergistic events in leukemogenesis and that HSPCs carrying both mutations are sensitive to induced differentiation by the inhibition of both prostaglandin synthesis and HDAC, which may reveal new therapeutic opportunities for patients carrying IDH1/2 mutations.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI
- Department of Molecular and Human Genetics and
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Xinyu Wang
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | | | - Jianzhong Su
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
- Division of Biostatistics, Dan L. Duncan Cancer Center
- Department of Molecular and Cellular Biology, and
| | | | - Ting Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Ying Qu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; and
| | - Mira Jeong
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Anna Guzman
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Carina Rosas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Yun Huang
- Health Science Center, Texas A&M University, Houston, TX
| | - Arun Sreekumar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; and
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center
- Department of Molecular and Cellular Biology, and
| | - Margaret A Goodell
- Department of Molecular and Human Genetics and
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
180
|
Lavery LA, Ure K, Wan YW, Luo C, Trostle AJ, Wang W, Jin H, Lopez J, Lucero J, Durham MA, Castanon R, Nery JR, Liu Z, Goodell M, Ecker JR, Behrens MM, Zoghbi HY. Losing Dnmt3a dependent methylation in inhibitory neurons impairs neural function by a mechanism impacting Rett syndrome. eLife 2020; 9:e52981. [PMID: 32159514 PMCID: PMC7065908 DOI: 10.7554/elife.52981] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Methylated cytosine is an effector of epigenetic gene regulation. In the brain, Dnmt3a is the sole 'writer' of atypical non-CpG methylation (mCH), and MeCP2 is the only known 'reader' for mCH. We asked if MeCP2 is the sole reader for Dnmt3a dependent methylation by comparing mice lacking either protein in GABAergic inhibitory neurons. Loss of either protein causes overlapping and distinct features from the behavioral to molecular level. Loss of Dnmt3a causes global loss of mCH and a subset of mCG sites resulting in more widespread transcriptional alterations and severe neurological dysfunction than MeCP2 loss. These data suggest that MeCP2 is responsible for reading only part of the Dnmt3a dependent methylation in the brain. Importantly, the impact of MeCP2 on genes differentially expressed in both models shows a strong dependence on mCH, but not Dnmt3a dependent mCG, consistent with mCH playing a central role in the pathogenesis of Rett Syndrome.
Collapse
Affiliation(s)
- Laura A Lavery
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Kerstin Ure
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Chongyuan Luo
- Genomic Analysis Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
- Howard Hughes Medical Institute, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Alexander J Trostle
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Wei Wang
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Haijing Jin
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of MedicineHoustonUnited States
| | - Joanna Lopez
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Jacinta Lucero
- Computational Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Mark A Durham
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
| | - Rosa Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of MedicineHoustonUnited States
| | - Margaret Goodell
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene Therapy, Baylor College of MedicineHoustonUnited States
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
- Howard Hughes Medical Institute, The Salk Institute for Biological StudiesLa JollaUnited States
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
- Department of Psychiatry, University of California San DiegoLa JollaUnited States
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
181
|
Dadmehr M, Karimi MA, Korouzhdehi B. A signal-on fluorescence based biosensing platform for highly sensitive detection of DNA methyltransferase enzyme activity and inhibition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117731. [PMID: 31753656 DOI: 10.1016/j.saa.2019.117731] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
DNA methylation mediated by DNA methyltransferase (MTase) enzyme is internal cell mechanism which regulate the expression or suppression of crucial genes involve in cancer early diagnosis. Herein, highly sensitive fluorescence biosensing platform was developed for monitoring of DNA Dam MTase enzyme activity and inhibition based on fluorescence signal on mechanism. The specific Au NP functionalized oligonucleotide probe with overhang end as a template for the synthesis of fluorescent silver nanoclusters (Ag NCs) was designed to provide the FRET occurrence. Following, methylation and cleavage processes by Dam MTAse and DpnI enzymes respectively at specific probe recognition site could resulted to release of AgNCs synthesizer DNA fragment and returned the platform to fluorescence signal-on state through interrupting in FRET. Subsequently, amplified fluorescence emission signals of Ag NCs showed increasing linear relationship with amount of Dam MTase enzyme at the range of 0.1-20 U/mL and the detection limit was estimated at 0.05 U/mL. Superior selectivity of experiment was illustrated among other tested MTase and restriction enzymes due to the specific recognition of MTase toward its substrate. Furthermore, the inhibition effect of applied Dam MTase drug inhibitors screened and evaluated with satisfactory results which would be helpful for discovery of antimicrobial drugs. The real sample assay also showed the applicability of proposed method in human serum condition. This novel strategy presented an efficient and cost effective platform for sensitive monitoring of DNA MTase activity and inhibition which illustrated its great potential for further application in medical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran.
| | | | | |
Collapse
|
182
|
Stöhr D, Jeltsch A, Rehm M. TRAIL receptor signaling: From the basics of canonical signal transduction toward its entanglement with ER stress and the unfolded protein response. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:57-99. [PMID: 32247582 DOI: 10.1016/bs.ircmb.2020.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cytokine tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the large TNF superfamily that can trigger apoptosis in transformed or infected cells by binding and activating two receptors, TRAIL receptor 1 (TRAILR1) and TRAIL receptor 2 (TRAILR2). Compared to other death ligands of the same family, TRAIL induces apoptosis preferentially in malignant cells while sparing normal tissue and has therefore been extensively investigated for its suitability as an anti-cancer agent. Recently, it was noticed that TRAIL receptor signaling is also linked to endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). The role of TRAIL receptors in regulating cellular apoptosis susceptibility therefore is broader than previously thought. Here, we provide an overview of TRAIL-induced signaling, covering the core signal transduction during extrinsic apoptosis as well as its link to alternative outcomes, such as necroptosis or NF-κB activation. We discuss how environmental factors, transcriptional regulators, and genetic or epigenetic alterations regulate TRAIL receptors and thus alter cellular TRAIL susceptibility. Finally, we provide insight into the role of TRAIL receptors in signaling scenarios that engage the unfolded protein response and discuss how these findings might be translated into new combination therapies for cancer treatment.
Collapse
Affiliation(s)
- Daniela Stöhr
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany.
| | - Albert Jeltsch
- Department of Biochemistry, University of Stuttgart, Institute of Biochemistry and Technical Biochemistry, Stuttgart, Germany
| | - Markus Rehm
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany; University of Stuttgart, Stuttgart Centre for Simulation Science, Stuttgart, Germany
| |
Collapse
|
183
|
Patel SP, Harkins RA, Lee MJ, Flowers CR, Koff JL. Using Informatics Tools to Identify Opportunities for Precision Medicine in Diffuse Large B-cell Lymphoma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:234-243.e10. [PMID: 32063526 DOI: 10.1016/j.clml.2019.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Diffuse large B-cell lymphoma (DLBCL) is genetically and clinically heterogeneous. Despite advances in genomic subtyping, standard frontline chemoimmunotherapy has remained unchanged for years. As high-throughput analysis becomes more accessible, characterizing drug-gene interactions in DLBCL could support patient-specific treatment strategies. MATERIALS AND METHODS From our systematic literature review, we compiled a comprehensive list of somatic mutations implicated in DLBCL. We extracted reported and primary sequencing data for these mutations and assessed their association with signaling pathways, cell-of-origin subtypes, and clinical outcomes. RESULTS Twenty-two targetable mutations present in ≥ 5% of patients with DLBCL were associated with unfavorable outcomes, yielding a predicted population of 31.7% of DLBCL cases with poor-risk disease and candidacy for targeted therapy. A second review identified 256 studies that had characterized the drug-gene interactions for these mutations via in vitro studies, mouse models, and/or clinical trials. CONCLUSIONS Our novel approach linking the data from our systematic reviews with informatics tools identified high-risk DLBCL subgroups, DLBCL-specific drug-gene interactions, and potential populations for precision medicine trials.
Collapse
Affiliation(s)
| | | | | | | | - Jean L Koff
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA.
| |
Collapse
|
184
|
Amorós-Pérez M, Fuster JJ. Clonal hematopoiesis driven by somatic mutations: A new player in atherosclerotic cardiovascular disease. Atherosclerosis 2020; 297:120-126. [PMID: 32109665 DOI: 10.1016/j.atherosclerosis.2020.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
The accumulation of acquired mutations is an inevitable consequence of the aging process, but its pathophysiological relevance has remained largely unexplored beyond cancer. Most of these mutations have little or no functional consequences, but in a few rare instances, a mutation may arise that confers a competitive advantage to a stem cell, leading to its clonal expansion. When such a mutation occurs in hematopoietic stem cells, it leads to a situation of clonal hematopoiesis, which has the potential to affect multiple tissues beyond the bone marrow, as the clonal expansion of the mutant stem cell is extended to circulating blood cells and tissue-infiltrating immune cells. Recent genomics and experimental studies have provided support to the notion that this somatic mutation-driven clonal hematopoiesis contributes to vascular inflammation and the development of atherosclerosis and related cardiovascular and cerebrovascular ischemic events. Here, we review our current understanding of this emerging cardiovascular risk modifier and the mechanisms underlying its connection to atherosclerosis development.
Collapse
Affiliation(s)
- Marta Amorós-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - José J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
185
|
Zhang H, Ying H, Wang X. Methyltransferase DNMT3B in leukemia. Leuk Lymphoma 2020; 61:263-273. [PMID: 31547729 DOI: 10.1080/10428194.2019.1666377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 01/23/2023]
Abstract
DNA methyltransferases (DNMTs) are highly conserved DNA-modifying enzymes that play important roles in epigenetic regulation and they are involved in cell proliferation, differentiation, and apoptosis. In mammalian cells, three active DNMTs have been identified: DNMT1 acts as a maintenance methyltransferase to replicate preexisting methylation patterns, whereas DNMT3A and DNMT3B primarily act as de novo methyltransferases that are responsible for establishing DNA methylation patterns by adding a methyl group to cytosine bases. The expression of DNMT3B is widespread in a variety of hematological cells and it is altered in each type of leukemia, which is associated with its pathogenesis, progression, treatment, and prognosis. Here, we review current information on DNMT3B in leukemia, including its expression, single-nucleotide polymorphisms, mutations, regulation, function, and clinical value for anti-leukemic therapy and prognosis.
Collapse
Affiliation(s)
- Haibin Zhang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Houqun Ying
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
186
|
Age-Associated TET2 Mutations: Common Drivers of Myeloid Dysfunction, Cancer and Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21020626. [PMID: 31963585 PMCID: PMC7014315 DOI: 10.3390/ijms21020626] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Acquired, inactivating mutations in Tet methylcytosine dioxygenase 2 (TET2) are detected in peripheral blood cells of a remarkable 5%–10% of adults greater than 65 years of age. They impart a hematopoietic stem cell advantage and resultant clonal hematopoiesis of indeterminate potential (CHIP) with skewed myelomonocytic differentiation. CHIP is associated with an overall increased risk of transformation to a hematological malignancy, especially myeloproliferative and myelodysplastic neoplasms (MPN, MDS) and acute myeloid leukemia (AML), of approximately 0.5% to 1% per year. However, it is becoming increasingly possible to identify individuals at greatest risk, based on CHIP mutational characteristics. CHIP, and particularly TET2-mutant CHIP, is also a novel, significant risk factor for cardiovascular diseases, related in part to hyper-inflammatory, progeny macrophages carrying TET2 mutations. Therefore, somatic TET2 mutations contribute to myeloid expansion and innate immune dysregulation with age and contribute to prevalent diseases in the developed world—cancer and cardiovascular disease. Herein, we describe the impact of detecting TET2 mutations in the clinical setting. We also present the rationale and promise for targeting TET2-mutant and other CHIP clones, and their inflammatory environment, as potential means of lessening risk of myeloid cancer development and dampening CHIP-comorbid inflammatory diseases.
Collapse
|
187
|
Patnaik MM, Tefferi A. Chronic Myelomonocytic leukemia: 2020 update on diagnosis, risk stratification and management. Am J Hematol 2020; 95:97-115. [PMID: 31736132 DOI: 10.1002/ajh.25684] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
DISEASE OVERVIEW Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms, with an inherent risk for leukemic transformation (~15% over 3-5 years). DIAGNOSIS Diagnosis is based on the presence of sustained (>3 months) peripheral blood monocytosis (≥1 × 109 /L; monocytes ≥10%), along with bone marrow dysplasia. Clonal cytogenetic abnormalities occur in ~ 30% of patients, while >90% have gene mutations. Mutations involving TET2 (~60%), SRSF2 (~50%), ASXL1 (~40%) and the oncogenic RAS pathway (~30%) are frequent; while the presence of ASXL1 and DNMT3A mutations and the absence of TET2 mutations negatively impact over-all survival. RISK STRATIFICATION Molecularly integrated prognostic models include; the Groupe Français des Myélodysplasies (GFM), Mayo Molecular Model (MMM) and the CMML specific prognostic model (CPSS-Mol). Risk factors incorporated into the MMM include presence of nonsense or frameshift ASXL1 mutations, absolute monocyte count>10 × 109 /L, hemoglobin <10 g/dL, platelet count <100 × 109 /L and the presence of circulating immature myeloid cells. The MMM stratifies CMML patients into four groups; high (≥3 risk factors), intermediate-2 (2 risk factors), intermediate-1 (1 risk factor) and low (no risk factors), with median survivals of 16, 31, 59 and 97 months, respectively. RISK-ADAPTED THERAPY Hypomethylating agents such as 5-azacitidine and decitabine are commonly used, with overall response rates of ~40%-50% and complete remission rates of ~7%-17%; with no impact on mutational allele burdens. Allogeneic stem cell transplant is the only potentially curative option, but is associated with significant morbidity and mortality.
Collapse
Affiliation(s)
- Mrinal M. Patnaik
- Division of Hematology, Department of MedicineMayo Clinic Rochester Minnesota
| | - Ayalew Tefferi
- Division of Hematology, Department of MedicineMayo Clinic Rochester Minnesota
| |
Collapse
|
188
|
Functional Analysis of DNMT3A DNA Methyltransferase Mutations Reported in Patients with Acute Myeloid Leukemia. Biomolecules 2019; 10:biom10010008. [PMID: 31861499 PMCID: PMC7022712 DOI: 10.3390/biom10010008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/30/2022] Open
Abstract
In mammals, DNA methylation is necessary for the maintenance of genomic stability, gene expression regulation, and other processes. During malignant diseases progression, changes in both DNA methylation patterns and DNA methyltransferase (MTase) genes are observed. Human de novo MTase DNMT3A is most frequently mutated in acute myeloid leukemia (AML) with a striking prevalence of R882H mutation, which has been extensively studied. Here, we investigate the functional role of the missense mutations (S714C, R635W, R736H, R771L, P777R, and F752V) found in the catalytic domain of DNMT3A in AML patients. These were accordingly mutated in the murine Dnmt3a catalytic domain (S124C, R45W, R146H, R181L, P187R, and F162V) and in addition, one-site CpG-containing DNA substrates were used as a model system. The 3–15-fold decrease (S124C and P187R) or complete loss (F162V, R45W, and R146H) of Dnmt3a-CD methylation activity was observed. Remarkably, Pro 187 and Arg 146 are not located at or near the Dnmt3a functional motives. Regulatory protein Dnmt3L did not enhance the methylation activity of R45W, R146H, P187R, and F162V mutants. The key steps of the Dnmt3a-mediated methylation mechanism, including DNA binding and transient covalent intermediate formation, were examined. There was a complete loss of DNA-binding affinity for R45W located in the AdoMet binding region and for R146H. Dnmt3a mutants studied in vitro suggest functional impairment of DNMT3A during pathogenesis.
Collapse
|
189
|
Ganesan A, Arimondo PB, Rots MG, Jeronimo C, Berdasco M. The timeline of epigenetic drug discovery: from reality to dreams. Clin Epigenetics 2019; 11:174. [PMID: 31791394 PMCID: PMC6888921 DOI: 10.1186/s13148-019-0776-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
The flexibility of the epigenome has generated an enticing argument to explore its reversion through pharmacological treatments as a strategy to ameliorate disease phenotypes. All three families of epigenetic proteins—readers, writers, and erasers—are druggable targets that can be addressed through small-molecule inhibitors. At present, a few drugs targeting epigenetic enzymes as well as analogues of epigenetic modifications have been introduced into the clinic use (e.g. to treat haematological malignancies), and a wide range of epigenetic-based drugs are undergoing clinical trials. Here, we describe the timeline of epigenetic drug discovery and development beginning with the early design based solely on phenotypic observations to the state-of-the-art rational epigenetic drug discovery using validated targets. Finally, we will highlight some of the major aspects that need further research and discuss the challenges that need to be overcome to implement epigenetic drug discovery into clinical management of human disorders. To turn into reality, researchers from various disciplines (chemists, biologists, clinicians) need to work together to optimise the drug engineering, read-out assays, and clinical trial design.
Collapse
Affiliation(s)
- A Ganesan
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR3523, 28 rue du Docteur Roux, 75724, Paris, France
| | - Marianne G Rots
- Epigenetic Editing, Dept. Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - Carmen Jeronimo
- Cancer Biology & Epigenetics Group, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - María Berdasco
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain. .,Epigenetic Therapies, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Campus ICO-Germans Trias i Pujol, Ctra de Can Ruti, Camí de les Escoles s/n 08916 Badalona, Barcelona, Catalonia, Spain.
| |
Collapse
|
190
|
Lee CG, Jang JH, Seo JY. First identified Korean family with Tatton-Brown-Rahman Syndrome caused by the novel DNMT3A variant c.118G>C p.(Glu40Gln). Ann Pediatr Endocrinol Metab 2019; 24:253-256. [PMID: 31905446 PMCID: PMC6944862 DOI: 10.6065/apem.2019.24.4.253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/11/2019] [Indexed: 12/27/2022] Open
Abstract
Tatton-Brown-Rahman Syndrome (TBRS), an overgrowth syndrome caused by heterozygous mutation of DNMT3A, first was described in 2014. Approximately 60 DNMT3A variants, including 32 missense variants, have been reported, with most missense mutations located on the DNMT3A functional domains. Autosomal dominant inheritance by germ-line mutation of DNMT3A has been reported, but vertical transmission within a family is extremely rare. Herein, we report the first Korean family with maternally inherited TBRS due to the novel heterozygous DNMT3A variant c.118G>C p.(Glu40Gln), located outside the main functional domain and identified by multigene panel sequencing. The patient and her mother had typical clinical features, including tall stature during childhood, macrocephaly, intellectual disability, and characteristic facial appearance. TBRS shows milder dysmorphic features than other overgrowth syndromes, potentially leading to underdiagnosis and underestimated prevalence; thus, targeted multigene panel sequencing including DNMT3A will be a useful tool in cases of overgrowth and unexplained mild intellectual disability for early diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Cha Gon Lee
- Department of Pediatrics, Nowon Eulji Medical Center, Eulji University, Seoul, Korea
| | | | - Ji-Young Seo
- Department of Pediatrics, Nowon Eulji Medical Center, Eulji University, Seoul, Korea
| |
Collapse
|
191
|
Sandoval JE, Reich NO. The R882H substitution in the human de novo DNA methyltransferase DNMT3A disrupts allosteric regulation by the tumor supressor p53. J Biol Chem 2019; 294:18207-18219. [PMID: 31640986 DOI: 10.1074/jbc.ra119.010827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
A myriad of protein partners modulate the activity of the human DNA methyltransferase 3A (DNMT3A), whose interactions with these other proteins are frequently altered during oncogenesis. We show here that the tumor suppressor p53 decreases DNMT3A activity by forming a heterotetramer complex with DNMT3A. Mutational and modeling experiments suggested that p53 interacts with the same region in DNMT3A as does the structurally characterized DNMT3L. We observed that the p53-mediated repression of DNMT3A activity is blocked by amino acid substitutions within this interface, but surprisingly, also by a distal DNMT3A residue, R882H. DNMT3A R882H occurs frequently in various cancers, including acute myeloid leukemia, and our results suggest that the effects of R882H and other DNMT3A mutations may go beyond changes in DNMT3A methylation activity. To further understand the dynamics of how protein-protein interactions modulate DNMT3A activity, we determined that p53 has a greater affinity for DNMT3A than for DNMT3L and that p53 readily displaces DNMT3L from the DNMT3A:DNMT3L heterotetramer. Interestingly, this occurred even when the preformed DNMT3A:DNMT3L complex was actively methylating DNA. The frequently identified p53 substitutions (R248W and R273H), whereas able to regulate DNMT3A function when forming the DNMT3A:p53 heterotetramer, no longer displaced DNMT3L from the DNMT3A:DNMT3L heterotetramer. The results of our work highlight the complex interplay between DNMT3A, p53, and DNMT3L and how these interactions are further modulated by clinically derived mutations in each of the interacting partners.
Collapse
Affiliation(s)
- Jonathan E Sandoval
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-9510
| | - Norbert O Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510.
| |
Collapse
|
192
|
Natarajan P, Jaiswal S, Kathiresan S. Clonal Hematopoiesis: Somatic Mutations in Blood Cells and Atherosclerosis. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e001926. [PMID: 29987111 DOI: 10.1161/circgen.118.001926] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The most important prognostic factor for atherosclerotic cardiovascular disease is age, independent of all other recognized risk factors. Recently, exome sequence analyses showed that somatic mutations in blood cells, a process termed clonal hematopoiesis, are common and increase in prevalence with age, with at least 1 in 10 adults older than 70 years affected. Carriers of clonal hematopoiesis have been shown to be not only at heightened risk for hematologic malignancy but also at increased risk for atherosclerotic cardiovascular disease. Here, we review the prior literature of clonal selection and expansion of hematopoietic stem cells and the evidence supporting its causal association with atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Pradeep Natarajan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston (P.N., S.K.). .,Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA (P.N., S.K.).,Department of Medicine, Harvard Medical School, Boston, MA (P.N., S.K.)
| | - Siddhartha Jaiswal
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston (P.N., S.K.).,Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA (P.N., S.K.).,Department of Medicine, Harvard Medical School, Boston, MA (P.N., S.K.)
| | | |
Collapse
|
193
|
Aberrant DNA Methylation in Acute Myeloid Leukemia and Its Clinical Implications. Int J Mol Sci 2019; 20:ijms20184576. [PMID: 31527484 PMCID: PMC6770227 DOI: 10.3390/ijms20184576] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/31/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease that is characterized by distinct cytogenetic or genetic abnormalities. Recent discoveries in cancer epigenetics demonstrated a critical role of epigenetic dysregulation in AML pathogenesis. Unlike genetic alterations, the reversible nature of epigenetic modifications is therapeutically attractive in cancer therapy. DNA methylation is an epigenetic modification that regulates gene expression and plays a pivotal role in mammalian development including hematopoiesis. DNA methyltransferases (DNMTs) and Ten-eleven-translocation (TET) dioxygenases are responsible for the dynamics of DNA methylation. Genetic alterations of DNMTs or TETs disrupt normal hematopoiesis and subsequently result in hematological malignancies. Emerging evidence reveals that the dysregulation of DNA methylation is a key event for AML initiation and progression. Importantly, aberrant DNA methylation is regarded as a hallmark of AML, which is heralded as a powerful epigenetic marker in early diagnosis, prognostic prediction, and therapeutic decision-making. In this review, we summarize the current knowledge of DNA methylation in normal hematopoiesis and AML pathogenesis. We also discuss the clinical implications of DNA methylation and the current therapeutic strategies of targeting DNA methylation in AML therapy.
Collapse
|
194
|
Yu J, Xie T, Wang Z, Wang X, Zeng S, Kang Y, Hou T. DNA methyltransferases: emerging targets for the discovery of inhibitors as potent anticancer drugs. Drug Discov Today 2019; 24:2323-2331. [PMID: 31494187 DOI: 10.1016/j.drudis.2019.08.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/18/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022]
Abstract
DNA methyltransferases (DNMTs) are a conserved family of cytosine methylases with crucial roles in epigenetic regulation. They have been considered as promising therapeutic targets for the epigenetic treatment of cancer. Therefore, DNMT inhibitors (DNMTis) have attracted considerable interest in recent years for the modulation of the aberrant DNA methylation pattern in a reversible way. In this review, we provide a structure-based overview of the therapeutic importance of DNMTs against different cancer types, and then summarize recently investigated DNMTis as well as their inhibitory mechanisms, focusing on recent advances in the development of DNMTis with specificity and/or selectivity using computational approaches.
Collapse
Affiliation(s)
- Jie Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tianli Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhe Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuwen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
195
|
Jeong M, Park HJ, Celik H, Ostrander EL, Reyes JM, Guzman A, Rodriguez B, Lei Y, Lee Y, Ding L, Guryanova OA, Li W, Goodell MA, Challen GA. Loss of Dnmt3a Immortalizes Hematopoietic Stem Cells In Vivo. Cell Rep 2019; 23:1-10. [PMID: 29617651 PMCID: PMC5908249 DOI: 10.1016/j.celrep.2018.03.025] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 01/19/2018] [Accepted: 03/07/2018] [Indexed: 12/22/2022] Open
Abstract
Somatic mutations in DNMT3A are recurrent events across a range of blood cancers. Dnmt3a loss of function in hematopoietic stem cells (HSCs) skews divisions toward self-renewal at the expense of differentiation. Moreover, DNMT3A mutations can be detected in the blood of aging individuals, indicating that mutant cells outcompete normal HSCs over time. It is important to understand how these mutations provide a competitive advantage to HSCs. Here we show that Dnmt3a-null HSCs can regenerate over at least 12 transplant generations in mice, far exceeding the lifespan of normal HSCs. Molecular characterization reveals that this in vivo immortalization is associated with gradual and focal losses of DNA methylation at key regulatory regions associated with self-renewal genes, producing a highly stereotypical HSC phenotype in which epigenetic features are further buttressed. These findings lend insight into the preponderance of DNMT3A mutations in clonal hematopoiesis and the persistence of mutant clones after chemotherapy.
Collapse
Affiliation(s)
- Mira Jeong
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyun Jung Park
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hamza Celik
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elizabeth L Ostrander
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jaime M Reyes
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anna Guzman
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin Rodriguez
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Lei
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yeojin Lee
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Lei Ding
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Olga A Guryanova
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, and UF Health Cancer Center, Gainesville, FL 32610, USA
| | - Wei Li
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Developmental, Regenerative and Stem Cell Biology Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
196
|
Bewersdorf JP, Ardasheva A, Podoltsev NA, Singh A, Biancon G, Halene S, Zeidan AM. From clonal hematopoiesis to myeloid leukemia and what happens in between: Will improved understanding lead to new therapeutic and preventive opportunities? Blood Rev 2019; 37:100587. [DOI: 10.1016/j.blre.2019.100587] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/22/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023]
|
197
|
Ermolaeva M, Neri F, Ori A, Rudolph KL. Cellular and epigenetic drivers of stem cell ageing. Nat Rev Mol Cell Biol 2019; 19:594-610. [PMID: 29858605 DOI: 10.1038/s41580-018-0020-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult tissue stem cells have a pivotal role in tissue maintenance and regeneration throughout the lifespan of multicellular organisms. Loss of tissue homeostasis during post-reproductive lifespan is caused, at least in part, by a decline in stem cell function and is associated with an increased incidence of diseases. Hallmarks of ageing include the accumulation of molecular damage, failure of quality control systems, metabolic changes and alterations in epigenome stability. In this Review, we discuss recent evidence in support of a novel concept whereby cell-intrinsic damage that accumulates during ageing and cell-extrinsic changes in ageing stem cell niches and the blood result in modifications of the stem cell epigenome. These cumulative epigenetic alterations in stem cells might be the cause of the deregulation of developmental pathways seen during ageing. In turn, they could confer a selective advantage to mutant and epigenetically drifted stem cells with altered self-renewal and functions, which contribute to the development of ageing-associated organ dysfunction and disease.
Collapse
Affiliation(s)
- Maria Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - K Lenhard Rudolph
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany. .,Medical Faculty Jena, University Hospital Jena (UKJ), Jena, Germany.
| |
Collapse
|
198
|
Cell-lineage level-targeted sequencing to identify acute myeloid leukemia with myelodysplasia-related changes. Blood Adv 2019; 2:2513-2521. [PMID: 30282643 DOI: 10.1182/bloodadvances.2017010744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clonal myeloid neoplasm that typically arises de novo; however, some cases evolve from a preleukemic state, such as myelodysplastic syndrome (MDS). Such secondary AMLs and those with typical MDS-related clinical features are known as AMLs with myelodysplasia-related changes (AML-MRC). Because patients with AML-MRC have poor prognosis, more accurate diagnostic approaches are required. In this study, we performed targeted sequencing of 54 genes in 3 cell populations (granulocyte, blast, and T-cell fractions) using samples from 13 patients with MDS, 16 patients with clinically diagnosed AML-MRC, 4 patients with suspected AML-MRC but clinically diagnosed as AML not otherwise specified (AML-NOS), and 11 patients with de novo AML. We found that overlapping mutations, defined as those shared at least by the blast and granulocyte fractions, were significantly enriched in patients with MDS and AML-MRC, including those with suspected AML-MRC, indicating a substantial history of clonal hematopoiesis. In contrast, blast-specific nonoverlapping mutations were significantly enriched in patients with de novo AML. Furthermore, the presence of overlapping mutations, excluding DNMT3A, TET2, and ASXL1, effectively segregated patients with MDS and AML-MRC or suspected AML-MRC from patients with de novo AML. Additionally, the presence of ≥3 mutations in the blast fraction was useful for distinguishing patients with AML-MRC from those with MDS. In conclusion, our approach is useful for classifying clinically diagnosable AML-MRC and identifying clinically diagnosed AML-NOS as latent AML-MRC. Additional prospective studies are needed to confirm the utility of this approach.
Collapse
|
199
|
Association between Clonal Hematopoiesis and Late Nonrelapse Mortality after Autologous Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2019; 25:2517-2521. [PMID: 31445185 PMCID: PMC7192097 DOI: 10.1016/j.bbmt.2019.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022]
Abstract
Clonal hematopoiesis (CH), characterized by the accumulation of acquired somatic mutations in the blood, is associated with an elevated risk of aging-related diseases and premature mortality in non-cancer populations. Patients who undergo autologous hematopoietic cell transplantation (HCT) are also at high risk of premature onset of aging-related conditions. Therefore, we examined the association between pretreatment CH and late-occurring (≥1 year) nonrelapse mortality (NRM) after HCT. We evaluated pathogenic and likely pathogenic CH variants (PVs) in 10 patients who developed NRM after HCT and in 29 HCT recipient controls matched by age at HCT ± 2 years (median, 64.6 years; range, 38.5 to 74.7 years), sex (79.5% male), diagnosis (61.5% with non-Hodgkin lymphoma, 18.0% with Hodgkin lymphoma, and 20.5% with multiple myeloma), and duration of follow-up. We analyzed mobilized hematopoietic stem cell DNA in samples collected before HCT using a custom panel of amplicons covering the coding exons of 79 myeloid-related genes associated with CH. PVs with allele fractions >2% were used for analyses. Cases were significantly more likely than controls to have CH (70% versus 24.1%; P = .002), to have ≥2 unique PVs (60% versus 6.9%; P < .001), and to have PVs with allelic fractions ≥10% (40% versus 3.4%; P = .003). Here we provide preliminary evidence of an association between pre-HCT CH and NRM after HCT independent of chronologic age. Integration of CH analyses may improve the accuracy of existing pre-HCT risk prediction models, setting the stage for personalized risk assessment strategies and targeted treatments to optimally prevent or manage late complications associated with HCT.
Collapse
|
200
|
Ng DB, Schiller G, Ha E. Autoimmune hemolytic anemia in refractory hairy cell leukemia on dabrafenib and trametinib. Ann Hematol 2019; 98:2443-2445. [PMID: 31410508 DOI: 10.1007/s00277-019-03780-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/05/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Damond Barrick Ng
- David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA.
| | - Gary Schiller
- David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA.,Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Edward Ha
- David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|