151
|
Co-Targeting ErbB Receptors and the PI3K/AKT Axis in Androgen-Independent Taxane-Sensitive and Taxane-Resistant Human Prostate Cancer Cells. Cancers (Basel) 2022; 14:cancers14194626. [PMID: 36230550 PMCID: PMC9561990 DOI: 10.3390/cancers14194626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Advanced prostate cancer that has progressed after standard therapies such as hormone therapy and taxane-based chemotherapies is an invariably lethal disease state with limited treatment options. There remains an important need to continue to identify new treatment approaches for such patients. We used two cell culture models of prostate cancer that are resistant to hormonal therapy and chemotherapy, and which also manifest some characteristics that are often associated with advanced prostate cancer, such as neuroendocrine differentiation, to evaluate the potential anti-cancer effects of targeting the key molecules, ErbB receptors and AKT. Using several complementary approaches, we found that the concurrent targeting of ErbB receptors and AKT with specific inhibitors was more effective than targeting each of them individually, independent of the underlying molecular characteristics or relative degrees of resistance to the taxanes that defined the prostate cancer models that were studied. Enhanced anti-tumor responses occurred both in vitro and in vivo with dual targeting, with the consistent inhibition particularly of AKT occurring in both settings. These studies provide a framework to evaluate the role of signal pathway modulation as a potential therapeutic strategy in treatment-refractory prostate cancer. Abstract Using two representative models of androgen-independent prostate cancer (PCa), PC3 and DU145, and their respective paclitaxel- and docetaxel-resistant derivatives, we explored the anti-tumor activity of targeting the ErbB receptors and AKT using small-molecule kinase inhibitors. These cells manifest varying degrees of neuroendocrine differentiation characteristics and differ in their expression of functional PTEN. Although the specific downstream signaling events post the ErbB receptor and AKT co-targeting varied between the PC3- and DU145-lineage cells, synergistic anti-proliferative and enhanced pro-apoptotic responses occurred across the wild-type and the taxane-resistant cells, independent of their basal AKT activation state, their degree of paclitaxel- or docetaxel-resistance, or whether this resistance was mediated by the ATP Binding Cassette transport proteins. Dual targeting also led to enhanced anti-tumor responses in vivo, although there was pharmacodynamic discordance between the PCa cells in culture versus the tumor xenografts in terms of the relative activation and inhibition states of AKT and ERK under basal conditions and upon AKT and/or ErbB targeting. The consistent inhibition, particularly of AKT, occurred both in vitro and in vivo, independent of the underlying PTEN status. Thus, co-targeting AKT with ErbB, and possibly other partners, may be a useful strategy to explore further for potential therapeutic effect in advanced PCa.
Collapse
|
152
|
Liang Y, Chiu PKF, Zhu Y, Wong CYP, Xiong Q, Wang L, Teoh JYC, Cao Q, Wei Y, Ye DW, Tsui SKW, Ng CF. Whole-exome sequencing reveals a comprehensive germline mutation landscape and identifies twelve novel predisposition genes in Chinese prostate cancer patients. PLoS Genet 2022; 18:e1010373. [PMID: 36095024 PMCID: PMC9499300 DOI: 10.1371/journal.pgen.1010373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/22/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer is the most inheritable cancer with approximately 42% of disease risk attributed to inherited factors by studies of twins, indicating the importance of additional genetic screening to identify predisposition variants. However, only DNA damage repair (DDR) genes have been investigated thoroughly in prostate cancer. To determine the comprehensive germline mutation landscape in Chinese prostate cancer patients, we performed whole exome sequencing in 100 Han Chinese patients with prostate cancer in Hong Kong and identified deleterious germline mutations. A total of 36 deleterious germline variants in 25 genes were identified in 29% patients. Variants were found in eight pathways, including DNA methylation, DDR, and tyrosine-protein kinase. These findings were validated in an independent Chinese cohort of 167 patients with prostate cancer in Shanghai. Seven common deleterious-variant-containing genes were found in discovery cohort (7/25, 28%) and validation cohort (7/28, 25%) with three genes not described before (LDLR, MYH7 and SUGCT) and four genes previously reported (FANCI, ITGA6, PABPC1 and RAD54B). When comparing with that of a cohort of East Asian healthy individuals, 12 non-DDR novel potential predisposition genes (ADGRG1, CHD4, DNMT3A, ERBB3, GRHL1, HMBS, LDLR, MYH7, MYO6, NT5C2, NUP98 and SUGCT) were identified using the discovery and validation cohorts, which have not been previously reported in prostate cancer patients in all ethnic groups. Taken together, this study reveals a comprehensive germline mutation landscape in Chinese prostate cancer patients and discovers 12 novel non-DDR predisposition genes to lay the groundwork for the optimization of genetic screening. Prostate cancer is the most inheritable cancer with about 42% of disease risk attributed to inherited factors, indicating the importance of additional genetic screening to identify predisposition variants. However, only DNA damage repair (DDR) genes have been studied thoroughly in prostate cancer. To determine the comprehensive germline mutation landscape in Chinese prostate cancer patients, we performed whole exome sequencing in 100 Han Chinese patients with prostate cancer in Hong Kong and identified deleterious germline mutations. A total of 36 deleterious germline variants in 25 genes were identified in 29% patients. Variants were found in eight pathways, including DNA methylation, DDR, and tyrosine-protein kinase. These findings were validated in an independent Chinese cohort of 167 patients with prostate cancer in Shanghai. Seven common deleterious-variant-containing genes were found in discovery cohort and validation cohort with three genes not described before (LDLR, MYH7 and SUGCT) and four genes previously reported. When comparing with that of a cohort of East Asian healthy individuals, 12 non-DDR novel potential predisposition genes were identified using the discovery and validation cohorts, which have not been previously reported in prostate cancer patients in all ethnic groups.
Collapse
Affiliation(s)
- Yonghao Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Peter Ka-Fung Chiu
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Christine Yim-Ping Wong
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qing Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeremy Yuen-Chun Teoh
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qin Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (SK-WT); (C-FN)
| | - Chi-Fai Ng
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (SK-WT); (C-FN)
| |
Collapse
|
153
|
Mejía-Hernández JO, Keam SP, Saleh R, Muntz F, Fox SB, Byrne D, Kogan A, Pang L, Huynh J, Litchfield C, Caramia F, Lozano G, He H, You JM, Sandhu S, Williams SG, Haupt Y, Haupt S. Modelling aggressive prostate cancers of young men in immune-competent mice, driven by isogenic Trp53 alterations and Pten loss. Cell Death Dis 2022; 13:777. [PMID: 36075907 PMCID: PMC9465983 DOI: 10.1038/s41419-022-05211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 01/21/2023]
Abstract
Understanding prostate cancer onset and progression in order to rationally treat this disease has been critically limited by a dire lack of relevant pre-clinical animal models. We have generated a set of genetically engineered mice that mimic human prostate cancer, initiated from the gland epithelia. We chose driver gene mutations that are specifically relevant to cancers of young men, where aggressive disease poses accentuated survival risks. An outstanding advantage of our models are their intact repertoires of immune cells. These mice provide invaluable insight into the importance of immune responses in prostate cancer and offer scope for studying treatments, including immunotherapies. Our prostate cancer models strongly support the role of tumour suppressor p53 in functioning to critically restrain the emergence of cancer pathways that drive cell cycle progression; alter metabolism and vasculature to fuel tumour growth; and mediate epithelial to mesenchymal-transition, as vital to invasion. Importantly, we also discovered that the type of p53 alteration dictates the specific immune cell profiles most significantly disrupted, in a temporal manner, with ramifications for disease progression. These new orthotopic mouse models demonstrate that each of the isogenic hotspot p53 amino acid mutations studied (R172H and R245W, the mouse equivalents of human R175H and R248W respectively), drive unique cellular changes affecting pathways of proliferation and immunity. Our findings support the hypothesis that individual p53 mutations confer their own particular oncogenic gain of function in prostate cancer.
Collapse
Affiliation(s)
- Javier Octavio Mejía-Hernández
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,Present Address: Telix Pharmaceuticals Ltd, Melbourne, VIC 3051 Australia
| | - Simon P. Keam
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1135.60000 0001 1512 2287Present Address: CSL Innovation, CSL Ltd, Melbourne, VIC 3052 Australia
| | - Reem Saleh
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Fenella Muntz
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Stephen B. Fox
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Pathology Department, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - David Byrne
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1055.10000000403978434Pathology Department, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Arielle Kogan
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Lokman Pang
- grid.1018.80000 0001 2342 0938Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084 Australia
| | - Jennifer Huynh
- grid.1018.80000 0001 2342 0938Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084 Australia
| | - Cassandra Litchfield
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Franco Caramia
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Guillermina Lozano
- grid.240145.60000 0001 2291 4776Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.267308.80000 0000 9206 2401University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX USA
| | - Hua He
- grid.240145.60000 0001 2291 4776Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX USA
| | - James M. You
- grid.267308.80000 0000 9206 2401University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX USA
| | - Shahneen Sandhu
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000 Australia
| | - Scott G. Williams
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Division of Radiation Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Ygal Haupt
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,Present Address: Vittail Ltd, Melbourne, VIC 3146 Australia
| | - Sue Haupt
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| |
Collapse
|
154
|
Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022; 27:5730. [PMID: 36080493 PMCID: PMC9457814 DOI: 10.3390/molecules27175730] [Citation(s) in RCA: 320] [Impact Index Per Article: 106.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023] Open
Abstract
Prostate cancer is one of the malignancies that affects men and significantly contributes to increased mortality rates in men globally. Patients affected with prostate cancer present with either a localized or advanced disease. In this review, we aim to provide a holistic overview of prostate cancer, including the diagnosis of the disease, mutations leading to the onset and progression of the disease, and treatment options. Prostate cancer diagnoses include a digital rectal examination, prostate-specific antigen analysis, and prostate biopsies. Mutations in certain genes are linked to the onset, progression, and metastasis of the cancer. Treatment for localized prostate cancer encompasses active surveillance, ablative radiotherapy, and radical prostatectomy. Men who relapse or present metastatic prostate cancer receive androgen deprivation therapy (ADT), salvage radiotherapy, and chemotherapy. Currently, available treatment options are more effective when used as combination therapy; however, despite available treatment options, prostate cancer remains to be incurable. There has been ongoing research on finding and identifying other treatment approaches such as the use of traditional medicine, the application of nanotechnologies, and gene therapy to combat prostate cancer, drug resistance, as well as to reduce the adverse effects that come with current treatment options. In this article, we summarize the genes involved in prostate cancer, available treatment options, and current research on alternative treatment options.
Collapse
Affiliation(s)
- Mamello Sekhoacha
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa
| | - Keamogetswe Riet
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Paballo Motloung
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Lemohang Gumenku
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Ayodeji Adegoke
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Samson Mashele
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| |
Collapse
|
155
|
Hu J, Zhang PJ, Zhang D, Chen ZH, Cao XC, Yu Y, Ge J. An autophagy-associated lncRNAs model for predicting the survival in non-small cell lung cancer patients. Front Genet 2022; 13:919857. [PMID: 36118862 PMCID: PMC9479339 DOI: 10.3389/fgene.2022.919857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can influence the proliferation, autophagy, and apoptosis of non-small cell lung cancer (NSCLC). LncRNAs also emerge as valuable prognostic factors for NSCLC patients. Consequently, we set out to discover more autophagy-associated lncRNAs. We acquired autophagy-associated genes and information on lncRNAs from The Cancer Genome Atlas database (TCGA), and the Human Autophagy Database (HADb). Then, the prognostic prediction signature was constructed through using co-expression and Cox regression analysis. The signature was constructed including 7 autophagy-associated lncRNAs (ABALON, NKILA, LINC00941, AL161431.1, AL691432.2, AC020765.2, MMP2-AS1). After that, we used univariate and multivariate Cox regression analysis to calculate the risk score. The survival analysis and ROC curve analysis confirmed good performances of the signature. GSEA indicated that the high-risk group was principally enriched in the adherens junction pathway. In addition, biological experiments showed that ABALON promoted the proliferation, metastasis and autophagy levels of NSCLC cells. These findings demonstrate that the risk signature consisting of 7 autophagy-associated lncRNAs accurately predicts the prognosis of NSCLC patients and should be investigated for potential therapeutic targets in clinic.
Collapse
Affiliation(s)
- Jing Hu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Pei-Jin Zhang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Di Zhang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Zhao-Hui Chen
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- *Correspondence: Yue Yu, ; Jie Ge,
| | - Jie Ge
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- *Correspondence: Yue Yu, ; Jie Ge,
| |
Collapse
|
156
|
Heaphy CM, Joshu CE, Barber JR, Davis C, Lu J, Zarinshenas R, Giovannucci E, Mucci LA, Stampfer MJ, Han M, De Marzo AM, Lotan TL, Platz EA, Meeker AK. The prostate tissue‐based telomere biomarker as a prognostic tool for metastasis and death from prostate cancer after prostatectomy. J Pathol Clin Res 2022; 8:481-491. [PMID: 35836303 PMCID: PMC9353659 DOI: 10.1002/cjp2.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022]
Abstract
Current biomarkers are inadequate prognostic predictors in localized prostate cancer making treatment decision‐making challenging. Previously, we observed that the combination of more variable telomere length among prostate cancer cells and shorter telomere length in prostate cancer‐associated stromal cells – the telomere biomarker – is strongly associated with progression to metastasis and prostate cancer death after prostatectomy independent of currently used pathologic indicators. Here, we optimized our method allowing for semi‐automated telomere length determination in single cells in fixed tissue, and tested the telomere biomarker in five cohort studies of men surgically treated for clinically localized disease (N = 2,255). We estimated the relative risk (RR) of progression to metastasis (N = 311) and prostate cancer death (N = 85) using models appropriate to each study's design adjusting for age, prostatectomy stage, and tumor grade, which then we meta‐analyzed using inverse variance weights. Compared with men who had less variable telomere length among prostate cancer cells and longer telomere length in prostate cancer‐associated stromal cells, men with the combination of more variable and shorter telomere length had 3.76 times the risk of prostate cancer death (95% confidence interval [CI] 1.37–10.3, p = 0.01) and had 2.23 times the risk of progression to metastasis (95% CI 0.99–5.02, p = 0.05). The telomere biomarker was associated with prostate cancer death in men with intermediate risk disease (grade groups 2/3: RR = 9.18, 95% CI 1.14–74.0, p = 0.037) and with PTEN protein intact tumors (RR = 6.74, 95% CI 1.46–37.6, p = 0.015). In summary, the telomere biomarker is robust and associated with poor outcome independent of current pathologic indicators in surgically treated men.
Collapse
Affiliation(s)
- Christopher M Heaphy
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Baltimore MD USA
| | - Corinne E Joshu
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Baltimore MD USA
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore MD USA
| | - John R Barber
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore MD USA
| | - Christine Davis
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Jiayun Lu
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore MD USA
| | - Reza Zarinshenas
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Edward Giovannucci
- Department of Nutrition Harvard T.H. Chan School of Public Health Boston MA USA
- Department of Epidemiology Harvard T.H. Chan School of Public Health Boston MA USA
- Department of Medicine, Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA USA
| | - Lorelei A Mucci
- Department of Epidemiology Harvard T.H. Chan School of Public Health Boston MA USA
| | - Meir J Stampfer
- Department of Nutrition Harvard T.H. Chan School of Public Health Boston MA USA
- Department of Epidemiology Harvard T.H. Chan School of Public Health Boston MA USA
- Department of Medicine, Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA USA
| | - Misop Han
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Baltimore MD USA
- James Buchanan Brady Urological Institute Johns Hopkins University School of Medicine Baltimore MD USA
| | - Angelo M De Marzo
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Baltimore MD USA
- James Buchanan Brady Urological Institute Johns Hopkins University School of Medicine Baltimore MD USA
| | - Tamara L Lotan
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Baltimore MD USA
- James Buchanan Brady Urological Institute Johns Hopkins University School of Medicine Baltimore MD USA
| | - Elizabeth A Platz
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Baltimore MD USA
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore MD USA
- James Buchanan Brady Urological Institute Johns Hopkins University School of Medicine Baltimore MD USA
| | - Alan K Meeker
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Baltimore MD USA
- James Buchanan Brady Urological Institute Johns Hopkins University School of Medicine Baltimore MD USA
| |
Collapse
|
157
|
Dual contribution of the mTOR pathway and of the metabolism of amino acids in prostate cancer. Cell Oncol (Dordr) 2022; 45:831-859. [PMID: 36036882 DOI: 10.1007/s13402-022-00706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Prostate cancer is the leading cause of cancer in men, and its incidence increases with age. Among other risk factors, pre-existing metabolic diseases have been recently linked with prostate cancer, and our current knowledge recognizes prostate cancer as a condition with important metabolic anomalies as well. In malignancies, metabolic disorders are commonly associated with aberrations in mTOR, which is the master regulator of protein synthesis and energetic homeostasis. Although there are reports demonstrating the high dependency of prostate cancer cells for lipid derivatives and even for carbohydrates, the understanding regarding amino acids, and the relationship with the mTOR pathway ultimately resulting in metabolic aberrations, is still scarce. CONCLUSIONS AND PERSPECTIVES In this review, we briefly provide evidence supporting prostate cancer as a metabolic disease, and discuss what is known about mTOR signaling and prostate cancer. Next, we emphasized on the amino acids glutamine, leucine, serine, glycine, sarcosine, proline and arginine, commonly related to prostate cancer, to explore the alterations in their regulatory pathways and to link them with the associated metabolic reprogramming events seen in prostate cancer. Finally, we display potential therapeutic strategies for targeting mTOR and the referred amino acids, as experimental approaches to selectively attack prostate cancer cells.
Collapse
|
158
|
Krause W. Resistance to prostate cancer treatments. IUBMB Life 2022; 75:390-410. [PMID: 35978491 DOI: 10.1002/iub.2665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/09/2022] [Indexed: 12/14/2022]
Abstract
A review of the current treatment options for prostate cancer and the formation of resistance to these regimens has been compiled including primary, acquired, and cross-resistance. The diversification of the pathways involved and the escape routes the tumor is utilizing have been addressed. Whereas early stages of tumor can be cured, there is no treatment available after a point of no return has been reached, leaving palliative treatment as the only option. The major reasons for this outcome are the heterogeneity of tumors, both inter- and intra-individually and the nearly endless number of escape routes, which the tumor can select to overcome the effects of treatment. This means that more focus should be applied to the individualization of both diagnosis and therapy of prostate cancer. In addition to current treatment options, novel drugs and ongoing clinical trials have been addressed in this review.
Collapse
|
159
|
Prostate Cancer Secretome and Membrane Proteome from Pten Conditional Knockout Mice Identify Potential Biomarkers for Disease Progression. Int J Mol Sci 2022; 23:ijms23169224. [PMID: 36012492 PMCID: PMC9409251 DOI: 10.3390/ijms23169224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cause of mortality among men. Tumor secretome is a promising strategy for understanding the biology of tumor cells and providing markers for disease progression and patient outcomes. Here, transcriptomic-based secretome analysis was performed on the PCa tumor transcriptome of Genetically Engineered Mouse Model (GEMM) Pb-Cre4/Ptenf/f mice to identify potentially secreted and membrane proteins—PSPs and PMPs. We combined a selection of transcripts from the GSE 94574 dataset and a list of protein-coding genes of the secretome and membrane proteome datasets using the Human Protein Atlas Secretome. Notably, nine deregulated PMPs and PSPs were identified in PCa (DMPK, PLN, KCNQ5, KCNQ4, MYOC, WIF1, BMP7, F3, and MUC1). We verified the gene expression patterns of Differentially Expressed Genes (DEGs) in normal and tumoral human samples using the GEPIA tool. DMPK, KCNQ4, and WIF1 targets were downregulated in PCa samples and in the GSE dataset. A significant association between shorter survival and KCNQ4, PLN, WIF1, and F3 expression was detected in the MSKCC dataset. We further identified six validated miRNAs (mmu-miR-6962-3p, mmu-miR- 6989-3p, mmu-miR-6998-3p, mmu-miR-5627-5p, mmu-miR-15a-3p, and mmu-miR-6922-3p) interactions that target MYOC, KCNQ5, MUC1, and F3. We have characterized the PCa secretome and membrane proteome and have spotted new dysregulated target candidates in PCa.
Collapse
|
160
|
Chakraborty G, Nandakumar S, Hirani R, Nguyen B, Stopsack KH, Kreitzer C, Rajanala SH, Ghale R, Mazzu YZ, Pillarsetty NVK, Mary Lee GS, Scher HI, Morris MJ, Traina T, Razavi P, Abida W, Durack JC, Solomon SB, Vander Heiden MG, Mucci LA, Wibmer AG, Schultz N, Kantoff PW. The Impact of PIK3R1 Mutations and Insulin-PI3K-Glycolytic Pathway Regulation in Prostate Cancer. Clin Cancer Res 2022; 28:3603-3617. [PMID: 35670774 PMCID: PMC9438279 DOI: 10.1158/1078-0432.ccr-21-4272] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/07/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Oncogenic alterations of the PI3K/AKT pathway occur in >40% of patients with metastatic castration-resistant prostate cancer, predominantly via PTEN loss. The significance of other PI3K pathway components in prostate cancer is largely unknown. EXPERIMENTAL DESIGN Patients in this study underwent tumor sequencing using the MSK-IMPACT clinical assay to capture single-nucleotide variants, insertions, and deletions; copy-number alterations; and structural rearrangements, or were profiled through The Cancer Genome Atlas. The association between PIK3R1 alteration/expression and survival was evaluated using univariable and multivariable Cox proportional-hazards regression models. We used the siRNA-based knockdown of PIK3R1 for functional studies. FDG-PET/CT examinations were performed with a hybrid positron emission tomography (PET)/CT scanner for some prostate cancer patients in the MSK-IMPACT cohort. RESULTS Analyzing 1,417 human prostate cancers, we found a significant enrichment of PIK3R1 alterations in metastatic cancers compared with primary cancers. PIK3R1 alterations or reduced mRNA expression tended to be associated with worse clinical outcomes in prostate cancer, particularly in primary disease, as well as in breast, gastric, and several other cancers. In prostate cancer cell lines, PIK3R1 knockdown resulted in increased cell proliferation and AKT activity, including insulin-stimulated AKT activity. In cell lines and organoids, PIK3R1 loss/mutation was associated with increased sensitivity to AKT inhibitors. PIK3R1-altered patient prostate tumors had increased uptake of the glucose analogue 18F-fluorodeoxyglucose in PET imaging, suggesting increased glycolysis. CONCLUSIONS Our findings describe a novel genomic feature in metastatic prostate cancer and suggest that PIK3R1 alteration may be a key event for insulin-PI3K-glycolytic pathway regulation in prostate cancer.
Collapse
Affiliation(s)
- Goutam Chakraborty
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Subhiksha Nandakumar
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rahim Hirani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bastien Nguyen
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Konrad H. Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Christoph Kreitzer
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Romina Ghale
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ying Z. Mazzu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Gwo-Shu Mary Lee
- Department of Medicine, Dana-Farber Cancer Institute, Boston, MA
| | - Howard I. Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Biomarker Development Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael J. Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tiffany Traina
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jeremy C. Durack
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Stephen B. Solomon
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Matthew G. Vander Heiden
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, MA
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Andreas G. Wibmer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nikolaus Schultz
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Philip W. Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
161
|
Arenas-Gallo C, Owiredu J, Weinstein I, Lewicki P, Basourakos SP, Vince R, Al Hussein Al Awamlh B, Schumacher FR, Spratt DE, Barbieri CE, Shoag JE. Race and prostate cancer: genomic landscape. Nat Rev Urol 2022; 19:547-561. [PMID: 35945369 DOI: 10.1038/s41585-022-00622-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
In the past 20 years, new insights into the genomic pathogenesis of prostate cancer have been provided. Large-scale integrative genomics approaches enabled researchers to characterize the genetic and epigenetic landscape of prostate cancer and to define different molecular subclasses based on the combination of genetic alterations, gene expression patterns and methylation profiles. Several molecular drivers of prostate cancer have been identified, some of which are different in men of different races. However, the extent to which genomics can explain racial disparities in prostate cancer outcomes is unclear. Future collaborative genomic studies overcoming the underrepresentation of non-white patients and other minority populations are essential.
Collapse
Affiliation(s)
- Camilo Arenas-Gallo
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jude Owiredu
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Ilon Weinstein
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Patrick Lewicki
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Spyridon P Basourakos
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Randy Vince
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Bashir Al Hussein Al Awamlh
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA.,Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher E Barbieri
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan E Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
162
|
Histone lysine demethylase inhibition reprograms prostate cancer metabolism and mechanics. Mol Metab 2022; 64:101561. [PMID: 35944897 PMCID: PMC9403566 DOI: 10.1016/j.molmet.2022.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Objective Methods Results Conclusions KDMs inhibition promotes increases H3K4me2 and H3K27me3 in PCa and CRPC, which causes cancer selective pro-apoptotic pathways. KDMs regulate AR expression in PCa and CRPC, reducing ATP production, mitochondrial respiration and intermediate metabolites availability. Epigenetic controls metabolic pathways and redirects lipid metabolic cascade. KDMs inhibition alters lipid distribution and composition, impacting on physical and mechanical properties of PCa and CRPC.
Collapse
|
163
|
Choudhury AD. PTEN-PI3K pathway alterations in advanced prostate cancer and clinical implications. Prostate 2022; 82 Suppl 1:S60-S72. [PMID: 35657152 DOI: 10.1002/pros.24372] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/21/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite significant advances in molecular characterization and therapeutic targeting of advanced prostate cancer, it remains the second most common cause of cancer death in men in the United States. The PI3K (Phosphatidylinositol 3-kinase)/AKT (AKT serine/threonine kinase)/mTOR (mammalian target of rapamycin) signaling pathway is commonly altered in prostate cancer, most frequently through loss of the PTEN (Phosphatase and Tensin Homolog) tumor suppressor, and is critical for cancer cell proliferation, migration, and survival. METHODS This study summarizes signaling through the PTEN/PI3K pathway, alterations in pathway components commonly seen in advanced prostate cancer, and results of clinical trials of pathway inhibitors reported to date with a focus on more recently reported studies. It also reviews rationale for combination approaches currently under study, including with taxanes, immune checkpoint inhibitors and poly (ADP-ribose) polymerase inhibitors, and discusses future directions in biomarker testing and therapeutic targeting of this pathway. RESULTS Clinical trials studying pharmacologic inhibitors of PI3K, AKT or mTOR kinases have demonstrated modest activity of specific agents, with several trials of pathway inhibitors currently in progress. A key challenge is the importance of PI3K/AKT/mTOR signaling in noncancerous tissues, leading to predictable but often severe toxicities at therapeutic doses. RESULTS Further advances in selective pharmacologic inhibition of the PI3K/AKT/mTOR pathway in tumors, development of rational combinations, and appropriate biomarker selection to identify the appropriate tumor- and patient-specific vulnerabilities will be required to optimize clinical benefit from therapeutic targeting of this pathway.
Collapse
Affiliation(s)
- Atish D Choudhury
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
164
|
Mortazavi M, Moosavi F, Martini M, Giovannetti E, Firuzi O. Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer. Crit Rev Oncol Hematol 2022; 176:103749. [PMID: 35728737 DOI: 10.1016/j.critrevonc.2022.103749] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses among all malignancies. PI3K/AKT/mTOR signaling pathway, a main downstream effector of KRAS is involved in the regulation of key hallmarks of cancer. We here report that whole-genome analyses demonstrate the frequent involvement of aberrant activations of PI3K/AKT/mTOR pathway components in PDAC patients and critically evaluate preclinical and clinical evidence on the application of PI3K/AKT/mTOR pathway targeting agents. Combinations of these agents with chemotherapeutics or other targeted therapies, including the modulators of cyclin-dependent kinases, receptor tyrosine kinases and RAF/MEK/ERK pathway are also examined. Although human genetic studies and preclinical pharmacological investigations have provided strong evidence on the role of PI3K/AKT/mTOR pathway in PDAC, clinical studies in general have not been as promising. Patient stratification seems to be the key missing point and with the advent of biomarker-guided clinical trials, targeting PI3K/AKT/mTOR pathway could provide valuable assets for treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazine Pisana per la Scienza, Pisa, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
165
|
Kazan O, Kir G, Culpan M, Cecikoglu GE, Atis G, Yildirim A. The association between PI3K, JAK/STAT pathways with the PDL-1 expression in prostate cancer. Andrologia 2022; 54:e14541. [PMID: 35880672 DOI: 10.1111/and.14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Programmed cell death protein-1/programmed death-ligand-1 (PD-1/PDL-1) signalling pathway has gained attention in prostate cancer. The relationship between pSTAT-1, pSTAT-3 expressions and PTEN loss with PDL-1 expression was assessed and the effects of the pathways on prostate cancer prognosis were evaluated. Patients who underwent radical prostatectomy between 2011 and 2017 were included in our study. Prostatectomy materials were evaluated using immunohistochemical staining of pSTAT-1, pSTAT-3, PTEN, and PDL-1. The relationship between PDL-1 and pSTAT-1, pSTAT-3 expressions and PTEN loss was evaluated. Additionally, factors affecting biochemical recurrence-free survival and clinical progression-free survival were analysed. Within100 patients, 9 of 11 patients with PDL-1 expression also had intermediate-high pSTAT-1 staining intensity, and those with PDL-1 expression had higher pSTAT-1 staining intensity than those without (81.9% vs. 56.2%, p = 0.014). In univariate analysis, pSTAT-1, pSTAT-3 and PDL-1 expressions had significant impact on biochemical recurrence-free and clinical progression-free survival. In multivariate analysis, pSTAT-1 staining intensity with radical prostatectomy ISUP grade in terms of biochemical recurrence-free survival and the pSTAT-1 H-score with radical prostatectomy ISUP grade in terms of clinical progression-free survival were independent risk factors. Moderate-high expression of pSTAT-1 was closely associated with PDL-1 expression, and pSTAT-1 was also a predictor of biochemical recurrence and clinical progression.
Collapse
Affiliation(s)
- Ozgur Kazan
- Department of Urology, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Gozde Kir
- Department of Pathology, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Meftun Culpan
- Department of Urology, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Gozde Ecem Cecikoglu
- Department of Pathology, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Gokhan Atis
- Department of Urology, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Asif Yildirim
- Department of Urology, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
166
|
Ishwar D, Haldavnekar R, Das S, Tan B, Venkatakrishnan K. Glioblastoma Associated Natural Killer Cell EVs Generating Tumour-Specific Signatures: Noninvasive GBM Liquid Biopsy with Self-Functionalized Quantum Probes. ACS NANO 2022; 16:10859-10877. [PMID: 35816089 DOI: 10.1021/acsnano.2c03055] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diagnosis of glioblastoma (GBM) poses a recurring struggle due to many factors, including the presence of the blood-brain barrier (BBB) in addition to the significant tumor heterogeneity. Natural killer (NK) cells of the innate immune system are the primary immune surveillance mechanism for GBM and identify GBM tumors without any previous sensitization. The metabolic reprogramming of NK cells during GBM association is expected to be reflected in its extracellular vesicles. Therefore, tracking the activity of NK cell vesicles in circulation (circulating immune vesicles, CIVs) has great potential for accurate GBM diagnosis. However, identification GBM associated CIVs in circulation is immensely challenging as there is no availability of clinically validated GBM-specific circulating biomarkers. Here, we present GBM associated CIV profiling for noninvasive GBM diagnosis. We investigated the feasibility of using the signals derived from GBM associated CIVs as a de novo methodology for GBM diagnosis. An ultrasensitive sensor and a marker-free approach were essential for the detection of rare signals of GBM associated CIVs. For this purpose, we designed GBM ImmunoProfiler platform using scalable ultrafast laser multiphoton ionization mechanism and adopted surface enhanced Raman spectroscopy (SERS) ensuring simultaneous detection of multiple CIV signals to identify GBM. We experimentally demonstrated that GBM associated CIVs carry unique, tumor-specific signals. The features of GBM associated CIVs were explored through machine learning identifying its similarity with GBM patient blood (without cell isolation) using a very small amount of peripheral blood (5 μL) with 96.82% sensitivity and 100% specificity. In addition, we demonstrated that a tumor associated CIV profile can classify between multiple brain cancer types (astrocytoma, oligodendroglioma, and glioblastoma). We also experimentally demonstrated significant variation in the immune checkpoint protein expression (PDL-1 and CTLA-4) between GBM associated CIVs and uninteracted CIVs. Preclinical analysis with serum specimens of GBM patients showed the possibility of using our technology for minimally invasive GBM diagnosis. With clinical validation, our technology has potential to improve GBM diagnostics with a useful, minimally invasive GBM liquid biopsy.
Collapse
Affiliation(s)
- Deeptha Ishwar
- Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Sunit Das
- Department of Surgery, Division of Neurosurgery, University of Toronto, 30 Bond Street, Toronto, M5B1W8, Canada
| | - Bo Tan
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
167
|
Sachdeva A, Hart CA, Kim K, Tawadros T, Oliveira P, Shanks J, Brown M, Clarke N. Non-canonical EphA2 activation underpins PTEN-mediated metastatic migration and poor clinical outcome in prostate cancer. Br J Cancer 2022; 127:1254-1262. [PMID: 35869144 PMCID: PMC9519535 DOI: 10.1038/s41416-022-01914-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background The key process of mesenchymal to amoeboid transition (MAT), which enables prostate cancer (PCa) transendothelial migration and subsequent development of metastases in red bone marrow stroma, is driven by phosphorylation of EphA2S897 by pAkt, which is induced by the omega-6 polyunsaturated fatty acid arachidonic acid. Here we investigate the influence of EphA2 signalling in PCa progression and long-term survival. Methods The mechanisms underpinning metastatic biopotential of altered EphA2 signalling in relation to PTEN status were assessed in vitro using canonical (EphA2D739N) and non-canonical (EphA2S897G) PC3-M mutants, interrogation of publicly available PTEN-stratified databases and clinical validation using a PCa TMA (n = 177) with long-term follow-up data. Spatial heterogeneity of EphA2 was assessed using a radical prostatectomy cohort (n = 67). Results Non-canonical EphA2 signalling via pEphA2S897 is required for PCa transendothelial invasion of bone marrow endothelium. High expression of EphA2 or pEphA2S897 in a PTENlow background is associated with poor overall survival. Expression of EphA2, pEphA2S897 and the associated MAT marker pMLC2 are spatially regulated with the highest levels found within lesion areas within 500 µm of the prostate margin. Conclusion EphA2 MAT-related signalling confers transendothelial invasion. This is associated with a substantially worse prognosis in PTEN-deficient PCa.
Collapse
|
168
|
Shen D, Peng H, Xia C, Deng Z, Tong X, Wang G, Qian K. The Role of Long Non-Coding RNAs in Epithelial-Mesenchymal Transition-Related Signaling Pathways in Prostate Cancer. Front Mol Biosci 2022; 9:939070. [PMID: 35923466 PMCID: PMC9339612 DOI: 10.3389/fmolb.2022.939070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common male malignancies with frequent remote invasion and metastasis, leading to high mortality. Epithelial-mesenchymal transition (EMT) is a fundamental process in embryonic development and plays a key role in tumor proliferation, invasion and metastasis. Numerous long non-coding RNAs (lncRNAs) could regulate the occurrence and development of EMT through various complex molecular mechanisms involving multiple signaling pathways in PCa. Given the importance of EMT and lncRNAs in the progression of tumor metastasis, we recapitulate the research progress of EMT-related signaling pathways regulated by lncRNAs in PCa, including AR signaling, STAT3 signaling, Wnt/β-catenin signaling, PTEN/PI3K/AKT signaling, TGF-β/Smad and NF-κB signaling pathways. Furthermore, we summarize four modes of how lncRNAs participate in the EMT process of PCa via regulating relevant signaling pathways.
Collapse
Affiliation(s)
- Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Hongwei Peng
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Caixia Xia
- President’s Office, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xi Tong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Gang Wang, ; Kaiyu Qian,
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Gang Wang, ; Kaiyu Qian,
| |
Collapse
|
169
|
Emerging Biomarker-Guided Therapies in Prostate Cancer. CURRENT ONCOLOGY (TORONTO, ONT.) 2022; 29:5054-5076. [PMID: 35877260 PMCID: PMC9319825 DOI: 10.3390/curroncol29070400] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 12/25/2022]
Abstract
Prostate cancer remains one of the leading causes of cancer death in men worldwide. In the past decade, several new treatments for advanced prostate cancer have been approved. With a wide variety of available drugs, including cytotoxic agents, androgen receptor axis-targeted therapies, and alpha-emitting radiation therapy, identifying their optimal sequencing remains a challenge. Progress in the understanding of the biology of prostate cancer has provided an opportunity for a more refined and personalized treatment selection process. With the advancement of molecular sequencing techniques, genomic precision through the identification of potential treatment targets and predictive biomarkers has been rapidly evolving. In this review, we discussed biomarker-driven treatments for advanced prostate cancer. First, we presented predictive biomarkers for established, global standard treatments for advanced diseases, such as chemotherapy and androgen receptor axis-targeted agents. We also discussed targeted agents with recent approval for special populations, such as poly ADP ribose polymerase (PARP) inhibitors in patients with metastatic castrate-resistant prostate cancer with homologous recombination repair-deficient tumors, pembrolizumab in patients with high levels of microsatellite instability or high tumor mutational burden, and prostate-specific membrane antigen (PSMA) directed radioligand theragnostic treatment for PSMA expressing tumors. Additionally, we discussed evolving treatments, such as cancer vaccines, chimeric antigen receptor T-cells (CAR-T), Bispecific T-cell engagers (BiTEs), other targeted agents such as AKT inhibitors, and various combination treatments. In summary, advances in molecular genetics have begun to propel personalized medicine forward in the management of advanced prostate cancer, allowing for a more precise, biomarker-driven treatment selection with the goal of improving overall efficacy.
Collapse
|
170
|
Blas L, Shiota M, Eto M. Current status and future perspective on the management of metastatic castration-sensitive prostate cancer. Cancer Treat Res Commun 2022; 32:100606. [PMID: 35835707 DOI: 10.1016/j.ctarc.2022.100606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Since 1941, the standard treatment for metastatic castration-sensitive prostate cancer (mCSPC) was androgen deprivation therapy (ADT) by surgical or medical castration with or without first-generation antiandrogen. However, the efficacy of ADT does not last in most cases. In the 2010s, de-intensification by intermittent ADT was evaluated by RCTs for mCSPC to mitigate the treatment-emerged burdens. However, intermittent ADT failed to show non-inferiority in OS for mCSPC and is an optional treatment for selected patients with mCSPC. The treatment for patients with mCSPC has improved in the last years. Currently, based on the evidence from RCTs, intensification treatment by adding docetaxel, novel androgen receptor pathway inhibitors and multimodal treatment using radiotherapy to the primary have become new standard treatments for mCSPC. Furthermore, ongoing RCTs have been investigating the clinical values of more intensified treatments by combining multiple effective treatment for mCSPC. In addition, novel treatment using immunotherapeutics such as anti-PD-1 antibody and precision medicine approach using novel imaging and genomic marker has been investigated vigorously. Thus, we review current treatment evidence obtained by RCTs that included patients with mCSPC. The future key to mCSPC treatment could be personalized medicine including translational and clinical medicine aspects, with molecular testing to assess the biological tumor behavior to optimize clinical decision-making.
Collapse
Affiliation(s)
- Leandro Blas
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
171
|
Siemińska I, Baran J. Myeloid-Derived Suppressor Cells as Key Players and Promising Therapy Targets in Prostate Cancer. Front Oncol 2022; 12:862416. [PMID: 35860573 PMCID: PMC9289201 DOI: 10.3389/fonc.2022.862416] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/06/2022] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer (PC) is the second most often diagnosed malignancy in men and one of the major causes of cancer death worldwide. Despite genetic predispositions, environmental factors, including a high-fat diet, obesity, a sedentary lifestyle, infections of the prostate, and exposure to chemicals or ionizing radiation, play a crucial role in PC development. Moreover, due to a lack of, or insufficient T-cell infiltration and its immunosuppressive microenvironment, PC is frequently classified as a “cold” tumor. This is related to the absence of tumor-associated antigens, the lack of T-cell activation and their homing into the tumor bed, and the presence of immunological cells with regulatory functions, including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Treg), and tumor-associated macrophages (TAMs). All of them, by a variety of means, hamper anti-tumor immune response in the tumor microenvironment (TME), stimulating tumor growth and the formation of metastases. Therefore, they emerge as potential anti-cancer therapy targets. This article is focused on the function and role of MDSCs in the initiation and progression of PC. Clinical trials directly targeting this cell population or affecting its biological functions, thus limiting its pro-tumorigenic activity, are also presented.
Collapse
Affiliation(s)
- Izabela Siemińska
- Department of Clinical Immunology, Jagiellonian University Medical College, Cracow, Poland
- University Centre of Veterinary Medicine, Jagiellonian University - University of Agriculture, Cracow, Poland
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, Cracow, Poland
- *Correspondence: Jarek Baran,
| |
Collapse
|
172
|
Wenta T, Schmidt A, Zhang Q, Devarajan R, Singh P, Yang X, Ahtikoski A, Vaarala M, Wei GH, Manninen A. Disassembly of α6β4-mediated hemidesmosomal adhesions promotes tumorigenesis in PTEN-negative prostate cancer by targeting plectin to focal adhesions. Oncogene 2022; 41:3804-3820. [PMID: 35773413 PMCID: PMC9307480 DOI: 10.1038/s41388-022-02389-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
Loss of α6β4-dependent hemidesmosomal adhesions has been observed during prostate cancer progression. However, the significance and underlying mechanisms by which aberrant hemidesmosome assembly may modulate tumorigenesis remain elusive. Using an extensive CRISPR/Cas9-mediated genetic engineering approaches in different prostate cancer cell lines combined with in vivo tumorigenesis studies in mice, bone marrow-on-chip assays and bioinformatics, as well as histological analysis of prostate cancer patient cohorts, we demonstrated that simultaneous loss of PTEN and hemidesmosomal adhesions induced several tumorigenic properties including proliferation, migration, resistance to anoikis, apoptosis, and drug treatment in vitro, and increased metastatic capacity in vivo. These effects were plectin-depended and plectin was associated with actin-rich adhesions upon hemidesmosome disruption in PTEN-negative prostate cancer cells leading to activation of EGFR/PI3K/Akt- and FAK/Src-pathways. These results suggest that analysis of PTEN and hemidesmosomal proteins may have diagnostic value helping to stratify prostate cancer patients with high risk for development of aggressive disease and highlight actin-associated plectin as a potential therapeutic target specifically in PTEN/hemidesmosome dual-negative prostate cancer.
Collapse
Affiliation(s)
- Tomasz Wenta
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Anette Schmidt
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Qin Zhang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Raman Devarajan
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Xiayun Yang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Anne Ahtikoski
- Departments of Urology, Pathology and Radiology, and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Markku Vaarala
- Departments of Urology, Pathology and Radiology, and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Gong-Hong Wei
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Fudan University Shanghai Cancer Center; Department of Biochemistry and Molecular Biology & Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
173
|
MARCH1 silencing suppresses growth of oral squamous cell carcinoma through regulation of PHLPP2. Clin Transl Oncol 2022; 24:1311-1321. [PMID: 35122633 DOI: 10.1007/s12094-021-02769-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/24/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Oral squamous cell carcinoma (OSCC) is the most frequent type of oral cancer and is associated with high mortality. Membrane-associated ring-CH type finger 1 (MARCH1) is an E3 ubiquitin ligase with roles in immune regulation and cancer development. Whether MARCH1 has a specific role in OSCC, and if so through what mechanism, has not been explored. METHODS Immunohistochemistry was performed to examine MARCH1 expression in OSCC clinical samples and adjacent paracancerous tissues. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blot were conducted to determine mRNA expression and protein levels, respectively. Knockdown and overexpression experiments were carried out to evaluate the effects of MARCH1 on proliferation and apoptosis. To test protein-protein interaction, co-immunoprecipitation assay was performed. Finally, tumor cell grafting was utilized to test the function of MARCH in vivo. RESULTS High MARCH1 expression in OSCC clinical samples correlated with poor patient prognosis. Functionally, MARCH1 knockdown in OSCC cells suppressed proliferation and promoted apoptosis, while MARCH1 overexpression displayed the opposite effects. We identified PH Domain And Leucine Rich Repeat Protein Phosphatase (PHLPP) 2 as an important target of MARCH1. Mechanistically, MARCH1 interacted with PHLPP2 and promoted PHLPP2 ubiquitination. Lastly, MARCH1 knockdown suppressed OSCC tumorigenicity in vivo and increased PHLPP2 protein level. CONCLUSION Our study uncovered a function of MARCH1 in OSCC and identified PHLPP2 as an important target of MARCH1 to modulate OSCC cell proliferation and apoptosis.
Collapse
|
174
|
Xing CY, Zhang YZ, Hu W, Zhao LY. LINC00313 facilitates osteosarcoma carcinogenesis and metastasis through enhancing EZH2 mRNA stability and EZH2-mediated silence of PTEN expression. Cell Mol Life Sci 2022; 79:382. [PMID: 35751755 PMCID: PMC11073393 DOI: 10.1007/s00018-022-04376-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/13/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Osteosarcoma is one of the five leading causes of cancer death among all pediatric malignancies. Recent advances in non-coding RNAs suggested that many long noncoding RNAs (lncRNAs) are dysregulated in cancer tissues and play important roles in carcinogenesis. We aimed to further explore the mechanisms of Long Intergenic Non-Protein Coding RNA 313 (LINC00313)-promoted malignant phenotypes of osteosarcoma. METHODS The mRNA expressions were determined by quantitative real-time PCR. Protein levels were detected using Western blotting or immunohistochemistry staining. Protein binding to genomic DNA and RNA were measured using chromatin and RNA immunoprecipitation assay, respectively. CCK-8 and EdU incorporation assay were adopted to detect cell proliferation. Transwell assay was employed to assess the capacity of cell migration and invasion. The roles of LINC00313 and its target genes in tumorigenesis and metastasis of osteosarcoma were evaluated using subcutaneous xenograft models and tail vein inoculation models. RESULTS LINC00313 was elevated in osteosarcoma tissues compared with adjacent normal tissues. Higher LINC00313 was associated with advanced grades of osteosarcoma. LINC00313 promoted cell proliferation, migration, invasion in vitro and tumor growth as well as metastasis in vivo through inhibiting PTEN expression to promote AKT phosphorylation. Mechanistically, LINC00313 favored the interaction between FUS and EZH2, leading to the prolonged half-life of EZH2 mRNA, thereby in turn up-regulating EZH2 proteins and increasing EZH2-mediated epigenetic silence of PTEN. CONCLUSION LINC00313 exerted oncogene-like actions through increasing EZH2 mRNA stability, leading to PTEN deficiency in osteosarcoma.
Collapse
Affiliation(s)
- Chun-Yang Xing
- Department of Orthopedics, First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.
| | - Yu-Zhu Zhang
- Department of Orthopedics, First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, 310003, Zhejiang Province, China
| | - Wei Hu
- Department of Radiotherapy, The People's Hospital of Changxing County, Huzhou, 313199, Zhejiang Province, China
| | - Li-Yuan Zhao
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, 250063, Shandong Province, China
| |
Collapse
|
175
|
He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:198. [PMID: 35750683 PMCID: PMC9232569 DOI: 10.1038/s41392-022-01042-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) affects millions of men globally. Due to advances in understanding genomic landscapes and biological functions, the treatment of PCa continues to improve. Recently, various new classes of agents, which include next-generation androgen receptor (AR) signaling inhibitors (abiraterone, enzalutamide, apalutamide, and darolutamide), bone-targeting agents (radium-223 chloride, zoledronic acid), and poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib, rucaparib, and talazoparib) have been developed to treat PCa. Agents targeting other signaling pathways, including cyclin-dependent kinase (CDK)4/6, Ak strain transforming (AKT), wingless-type protein (WNT), and epigenetic marks, have successively entered clinical trials. Furthermore, prostate-specific membrane antigen (PSMA) targeting agents such as 177Lu-PSMA-617 are promising theranostics that could improve both diagnostic accuracy and therapeutic efficacy. Advanced clinical studies with immune checkpoint inhibitors (ICIs) have shown limited benefits in PCa, whereas subgroups of PCa with mismatch repair (MMR) or CDK12 inactivation may benefit from ICIs treatment. In this review, we summarized the targeted agents of PCa in clinical trials and their underlying mechanisms, and further discussed their limitations and future directions.
Collapse
Affiliation(s)
- Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.,Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Haojie Huang
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| |
Collapse
|
176
|
Stücheli S, Araya S, Ercan C, Moser SO, Gallon J, Jenö P, Piscuoglio S, Terracciano L, Odermatt A. The Potential Tumor-Suppressor DHRS7 Inversely Correlates with EGFR Expression in Prostate Cancer Cells and Tumor Samples. Cancers (Basel) 2022; 14:cancers14133074. [PMID: 35804847 PMCID: PMC9264982 DOI: 10.3390/cancers14133074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Prostate cancer is one of the most common malignancies in men. Current therapies are initially effective but resistance often develops, leading to tumor recurrence and death. Further research on new players, mechanisms involved in prostate cancer, and therapy resistance is needed. We studied the role of DHRS7, a potential tumor suppressor with currently unknown physiological function, in prostate cancer cells using proteome and gene expression analyses. Despite the fact that DHRS7 can inactivate 5α-dihydrotestosterone, its effect on prostate cancer cells seems to be unrelated to androgen metabolism. When comparing three widely studied prostate cancer cell lines, we observed a negative correlation between DHRS7 and EGFR expression. DHRS7 knockdown enhanced EGFR expression, while knockdown of EGFR tended to increase DHRS7 expression. Importantly, DHRS7 expression negatively correlates with EGFR expression and positively with survival rates in prostate cancer patients. This study suggests a tumor-suppressor role for DHRS7 by modulating EGFR expression in prostate cancer. Abstract Prostate cancer (PCa), one of the most common malignancies in men, typically responds to initial treatment, but resistance to therapy often leads to metastases and death. The dehydrogenase/reductase 7 (DHRS7, SDR34C1) is an “orphan” enzyme without known physiological function. DHRS7 was previously found to be decreased in higher-stage PCa, and siRNA-mediated knockdown increased the aggressiveness of LNCaP cells. To further explore the role of DHRS7 in PCa, we analyzed the proteome of LNCaP cells following DHRS7 knockdown to assess potentially altered pathways. Although DHRS7 is able to inactivate 5α-dihydrotestosterone, DHRS7 knockdown did not affect androgen receptor (AR) target gene expression, and its effect on PCa cells seems to be androgen-independent. Importantly, proteome analyses revealed increased expression of epidermal growth factor receptor (EGFR), which was confirmed by RT-qPCR and Western blotting. Comparison of AR-positive LNCaP with AR-negative PC-3 and DU145 PCa cell lines revealed a negative correlation between DHRS7 and EGFR expression. Conversely, EGFR knockdown enhanced DHRS7 expression in these cells. Importantly, analysis of patient samples revealed a negative correlation between DHRS7 and EGFR expression, both at the mRNA and protein levels, and DHRS7 expression correlated positively with patient survival rates. These results suggest a protective role for DHRS7 in PCa.
Collapse
Affiliation(s)
- Simon Stücheli
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (S.S.); (S.A.); (S.O.M.)
| | - Selene Araya
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (S.S.); (S.A.); (S.O.M.)
| | - Caner Ercan
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland; (C.E.); (S.P.); (L.T.)
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland;
| | - Seraina O. Moser
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (S.S.); (S.A.); (S.O.M.)
| | - John Gallon
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland;
| | - Paul Jenö
- Proteomics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland;
| | - Salvatore Piscuoglio
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland; (C.E.); (S.P.); (L.T.)
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland;
| | - Luigi Terracciano
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland; (C.E.); (S.P.); (L.T.)
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (S.S.); (S.A.); (S.O.M.)
- Correspondence: ; Tel.: +41-61-207-15-30
| |
Collapse
|
177
|
Sentana-Lledo D, Sartor O, Balk SP, Einstein DJ. Immune mechanisms behind prostate cancer in men of African ancestry: A review. Prostate 2022; 82:883-893. [PMID: 35254710 PMCID: PMC9875381 DOI: 10.1002/pros.24333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Men of African ancestry (AA) with prostate cancer suffer from worse outcomes. However, a recent analysis of patients treated with the dendritic cell vaccine sipuleucel-T for prostate cancer suggested that AA patients could have improved outcomes relative to whites. METHODS We conducted a focused literature review of Medline-indexed articles and clinical trials listed on clinicaltrials.gov. RESULTS We identify several studies pointing to enrichment of inflammatory cellular infiltrates and cytokine signaling among AA patients with prostate cancer. We outline potential genomic and transcriptomic alterations that may contribute to immunogenicity. Last, we investigate differences in host immunity and vaccine responsiveness that may be enhanced in AA patients. CONCLUSIONS AA patients with prostate cancer may be enriched for an immunogenic phenotype. Dedicated studies are needed to better understand the immune mechanisms that contribute to existing cancer disparities and test immune-based therapies in this population.
Collapse
Affiliation(s)
- Daniel Sentana-Lledo
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Oliver Sartor
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Steven P. Balk
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - David J. Einstein
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
178
|
Resurreccion EP, Fong KW. The Integration of Metabolomics with Other Omics: Insights into Understanding Prostate Cancer. Metabolites 2022; 12:metabo12060488. [PMID: 35736421 PMCID: PMC9230859 DOI: 10.3390/metabo12060488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Our understanding of prostate cancer (PCa) has shifted from solely caused by a few genetic aberrations to a combination of complex biochemical dysregulations with the prostate metabolome at its core. The role of metabolomics in analyzing the pathophysiology of PCa is indispensable. However, to fully elucidate real-time complex dysregulation in prostate cells, an integrated approach based on metabolomics and other omics is warranted. Individually, genomics, transcriptomics, and proteomics are robust, but they are not enough to achieve a holistic view of PCa tumorigenesis. This review is the first of its kind to focus solely on the integration of metabolomics with multi-omic platforms in PCa research, including a detailed emphasis on the metabolomic profile of PCa. The authors intend to provide researchers in the field with a comprehensive knowledge base in PCa metabolomics and offer perspectives on overcoming limitations of the tool to guide future point-of-care applications.
Collapse
Affiliation(s)
- Eleazer P. Resurreccion
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
| | - Ka-wing Fong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
- Correspondence: ; Tel.: +1-859-562-3455
| |
Collapse
|
179
|
Mulvey A, Muggeo-Bertin E, Berthold DR, Herrera FG. Overcoming Immune Resistance With Radiation Therapy in Prostate Cancer. Front Immunol 2022; 13:859785. [PMID: 35603186 PMCID: PMC9115849 DOI: 10.3389/fimmu.2022.859785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/31/2022] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer is the second most common cancer in men and represents a significant healthcare burden worldwide. Therapeutic options in the metastatic castration-resistant setting remain limited, despite advances in androgen deprivation therapy, precision medicine and targeted therapies. In this review, we summarize the role of immunotherapy in prostate cancer and offer perspectives on opportunities for future development, based on current knowledge of the immunosuppressive tumor microenvironment. Furthermore, we discuss the potential for synergistic therapeutic strategies with modern radiotherapy, through modulation of the tumor microenvironment. Emerging clinical and pre-clinical data suggest that radiation can convert immune desert tumors into an inflamed immunological hub, potentially sensitive to immunotherapy.
Collapse
Affiliation(s)
- Arthur Mulvey
- Department of Oncology, Medical Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Department of Oncology, Immuno-Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Emilien Muggeo-Bertin
- Department of Oncology, Radiation Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Dominik R Berthold
- Department of Oncology, Medical Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Fernanda G Herrera
- Department of Oncology, Immuno-Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Department of Oncology, Radiation Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Ludwig Institute for Cancer Research - Lausanne Branch, Lausanne, Switzerland
| |
Collapse
|
180
|
Ma S, Wang F, Wang N, Jin J, Ba Y, Ji H, Du J, Hu S. Multiomics Data Analysis and Identification of Immune-Related Prognostic Signatures With Potential Implications in Prognosis and Immune Checkpoint Blockade Therapy of Glioblastoma. Front Neurol 2022; 13:886913. [PMID: 35669882 PMCID: PMC9165649 DOI: 10.3389/fneur.2022.886913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background In recent years, glioblastoma multiforme (GBM) has been a concern of many researchers, as it is one of the main drivers of cancer-related deaths worldwide. GBM in general usually does not responding well to immunotherapy due to its unique microenvironment. Methods To uncover any further informative immune-related prognostic signatures, we explored the immune-related distinction in the genetic or epigenetic features of the three types (expression profile, somatic mutation, and DNA methylation). Twenty eight immune-related hub genes were identified by Weighted Gene Co-Expression Network Analysis (WGCNA). The findings showed that three genes (IL1R1, TNFSF12, and VDR) were identified to construct an immune-related prognostic model (IRPM) by lasso regression. Then, we used three hub genes to construct an IRPM for GBM and clarify the immunity, mutation, and methylation characteristics. Results Survival analysis of patients undergoing anti-program cell death protein 1 (anti-PD-1) therapy showed that overall survival was superior in the low-risk group than in the high-risk group. The high-risk group had an association with epithelial-mesenchymal transition (EMT), high immune cell infiltration, immune activation, a low mutation number, and high methylation, while the low-risk group was adverse status. Conclusions In conclusion, IRPM is a promising tool to distinguish the prognosis of patients and molecular and immune characteristics in GBM, and the IRPM risk score can be used to predict patient sensitivity to checkpoint inhibitor blockade therapy. Thus, three immune-related signatures will guide us in improving treatment strategies and developing objective diagnostic tools.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Fang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Wang
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Jiaqi Jin
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Yixu Ba
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Hang Ji
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
| | - Jianyang Du
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jianyang Du
| | - Shaoshan Hu
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
- *Correspondence: Shaoshan Hu ;
| |
Collapse
|
181
|
Wong NKY, Dong X, Lin YY, Xue H, Wu R, Lin D, Collins C, Wang Y. Framework of Intrinsic Immune Landscape of Dormant Prostate Cancer. Cells 2022; 11:cells11091550. [PMID: 35563856 PMCID: PMC9105276 DOI: 10.3390/cells11091550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Androgen deprivation therapy (ADT) is the standard therapy for men with advanced prostate cancer (PCa). PCa often responds to ADT and enters a dormancy period, which can be recognized clinically as a minimal residual disease. However, the majority of these patients will eventually experience a relapse in the form of castration-resistant PCa with poor survival. Therefore, ADT-induced dormancy is a unique time window for treatment that can provide a cure. The study of this well-recognized phase of prostate cancer progression is largely hindered by the scarcity of appropriate clinical tissue and clinically relevant preclinical models. Here, we report the utility of unique and clinically relevant patient-derived xenograft models in the study of the intrinsic immune landscape of dormant PCa. Using data from RNA sequencing, we have reconstructed the immune evasion mechanisms that can be utilized by dormant PCa cells. Since dormant PCa cells need to evade the host immune surveillance for survival, our results provide a framework for further study and for devising immunomodulatory mechanisms that can eliminate dormant PCa cells.
Collapse
Affiliation(s)
- Nelson K. Y. Wong
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Xin Dong
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Yen-Yi Lin
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (Y.-Y.L.); (C.C.)
| | - Hui Xue
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Dong Lin
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Colin Collins
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (Y.-Y.L.); (C.C.)
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (Y.-Y.L.); (C.C.)
- Correspondence: ; Tel.: +1-604-675-8013
| |
Collapse
|
182
|
Ozbek B, Ertunc O, Erickson A, Vidal ID, Gomes-Alexandre C, Guner G, Hicks JL, Jones T, Taube JM, Sfanos KS, Yegnasubramanian S, De Marzo AM. Multiplex immunohistochemical phenotyping of T cells in primary prostate cancer. Prostate 2022; 82:706-722. [PMID: 35188986 DOI: 10.1002/pros.24315] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Most prostate cancers are "immune cold" and poorly responsive to immune checkpoint inhibitors. However, the mechanisms responsible for the lack of a robust antitumor adaptive immune response in the prostate are poorly understood, which hinders the development of novel immunotherapeutic approaches. AIMS Most inflammatory infiltrates in the prostate are centered around benign glands and stroma, which can confound the molecular characterization of the antitumor immune response. We sought to analytically validate a chromogenic-based multiplex immunohistochemistry (IHC) approach applicable to whole slide digital image analysis to quantify T cell subsets from the tumor microenvironment of primary prostatic adenocarcinomas. As an initial application, we tested the hypothesis that PTEN loss leads to an altered antitumor immune response by comparing matched regions of tumors within the same individual with and without PTEN loss. MATERIALS & METHODS Using the HALO Image Analysis Platform (Indica Labs), we trained a classifier to quantify the densities of eight T cell phenotypes separately in the tumor epithelial and stromal subcompartments. RESULTS The iterative chromogenic approach using 7 different antibodies on the same slide provides highly similar findings to results using individually stained slides with single antibodies. Our main findings in carcinomas (benign removed) include the following: i) CD4+ T cells are present at higher density than CD8+ T cells; ii) all T cell subsets are present at higher densities in the stromal compartment compared to the epithelial tumor compartment; iii) most CD4+ and CD8+ T cells are PD1+; iv) cancer foci with PTEN loss harbored increased numbers of T cells compared to regions without PTEN loss, in both stromal and epithelial compartments; and v) the increases in T cells in PTEN loss regions were associated with ERG gene fusion status. DISCUSSION This modular approach can apply to any IHC-validated antibody combination and sets the groundwork for more detailed spatial analyses. CONCLUSION Iterative chromogenic IHC can be used for whole slide analysis of prostate tissue samples and can complement transcriptomic results including those using single cell and spatial genomic approaches.
Collapse
Affiliation(s)
- Busra Ozbek
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Onur Ertunc
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Erickson
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Igor D Vidal
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carolina Gomes-Alexandre
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gunes Guner
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica L Hicks
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tracy Jones
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Janis M Taube
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, Maryland, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen S Sfanos
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Brady Urological Research Institute, Johns Hopkins, Baltimore, Maryland, USA
| | - Srinivasan Yegnasubramanian
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Brady Urological Research Institute, Johns Hopkins, Baltimore, Maryland, USA
| | - Angelo M De Marzo
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Brady Urological Research Institute, Johns Hopkins, Baltimore, Maryland, USA
| |
Collapse
|
183
|
Goetze S, Schüffler P, Athanasiou A, Koetemann A, Poyet C, Fankhauser CD, Wild PJ, Schiess R, Wollscheid B. Use of MS-GUIDE for identification of protein biomarkers for risk stratification of patients with prostate cancer. Clin Proteomics 2022; 19:9. [PMID: 35477343 PMCID: PMC9044739 DOI: 10.1186/s12014-022-09349-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background Non-invasive liquid biopsies could complement current pathological nomograms for risk stratification of prostate cancer patients. Development and testing of potential liquid biopsy markers is time, resource, and cost-intensive. For most protein targets, no antibodies or ELISAs for efficient clinical cohort pre-evaluation are currently available. We reasoned that mass spectrometry-based prescreening would enable the cost-effective and rational preselection of candidates for subsequent clinical-grade ELISA development. Methods Using Mass Spectrometry-GUided Immunoassay DEvelopment (MS-GUIDE), we screened 48 literature-derived biomarker candidates for their potential utility in risk stratification scoring of prostate cancer patients. Parallel reaction monitoring was used to evaluate these 48 potential protein markers in a highly multiplexed fashion in a medium-sized patient cohort of 78 patients with ground-truth prostatectomy and clinical follow-up information. Clinical-grade ELISAs were then developed for two of these candidate proteins and used for significance testing in a larger, independent patient cohort of 263 patients. Results Machine learning-based analysis of the parallel reaction monitoring data of the liquid biopsies prequalified fibronectin and vitronectin as candidate biomarkers. We evaluated their predictive value for prostate cancer biochemical recurrence scoring in an independent validation cohort of 263 prostate cancer patients using clinical-grade ELISAs. The results of our prostate cancer risk stratification test were statistically significantly 10% better than results of the current gold standards PSA alone, PSA plus prostatectomy biopsy Gleason score, or the National Comprehensive Cancer Network score in prediction of recurrence. Conclusion Using MS-GUIDE we identified fibronectin and vitronectin as candidate biomarkers for prostate cancer risk stratification. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09349-x.
Collapse
Affiliation(s)
- Sandra Goetze
- Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland.,ETH PHRT Swiss Multi-Omics Center (SMOC), 8093, Zurich, Switzerland
| | - Peter Schüffler
- Institute of General and Surgical Pathology, Technical University of Munich, 81675, Munich, Germany
| | | | - Anika Koetemann
- Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland
| | - Cedric Poyet
- Clinic of Urology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | | | - Peter J Wild
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland. .,Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590, Frankfurt, Germany. .,Frankfurt Institute for Advanced Studies (FIAS), 60438, Frankfurt, Germany. .,WILDLAB, University Hospital Frankfurt MVZ GmbH, 60590, Frankfurt, Germany.
| | | | - Bernd Wollscheid
- Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland. .,Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland. .,ETH PHRT Swiss Multi-Omics Center (SMOC), 8093, Zurich, Switzerland.
| |
Collapse
|
184
|
The promising role of new molecular biomarkers in prostate cancer: from coding and non-coding genes to artificial intelligence approaches. Prostate Cancer Prostatic Dis 2022; 25:431-443. [PMID: 35422101 PMCID: PMC9385485 DOI: 10.1038/s41391-022-00537-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022]
Abstract
Background Risk stratification or progression in prostate cancer is performed with the support of clinical-pathological data such as the sum of the Gleason score and serum levels PSA. For several decades, methods aimed at the early detection of prostate cancer have included the determination of PSA serum levels. The aim of this systematic review is to provide an overview about recent advances in the discovery of new molecular biomarkers through transcriptomics, genomics and artificial intelligence that are expected to improve clinical management of the prostate cancer patient. Methods An exhaustive search was conducted by Pubmed, Google Scholar and Connected Papers using keywords relating to the genetics, genomics and artificial intelligence in prostate cancer, it includes “biomarkers”, “non-coding RNAs”, “lncRNAs”, “microRNAs”, “repetitive sequence”, “prognosis”, “prediction”, “whole-genome sequencing”, “RNA-Seq”, “transcriptome”, “machine learning”, and “deep learning”. Results New advances, including the search for changes in novel biomarkers such as mRNAs, microRNAs, lncRNAs, and repetitive sequences, are expected to contribute to an earlier and accurate diagnosis for each patient in the context of precision medicine, thus improving the prognosis and quality of life of patients. We analyze several aspects that are relevant for prostate cancer including its new molecular markers associated with diagnosis, prognosis, and prediction to therapy and how bioinformatic approaches such as machine learning and deep learning can contribute to clinic. Furthermore, we also include current techniques that will allow an earlier diagnosis, such as Spatial Transcriptomics, Exome Sequencing, and Whole-Genome Sequencing. Conclusion Transcriptomic and genomic analysis have contributed to generate knowledge in the field of prostate carcinogenesis, new information about coding and non-coding genes as biomarkers has emerged. Synergies created by the implementation of artificial intelligence to analyze and understand sequencing data have allowed the development of clinical strategies that facilitate decision-making and improve personalized management in prostate cancer.
Collapse
|
185
|
Gómez V, Galazi M, Weitsman G, Monypenny J, Al-Salemee F, Barber PR, Ng K, Beatson R, Szokol B, Orfi L, Mullen G, Vanhaesebroeck B, Chowdhury S, Leung HY, Ng T. HER2 Mediates PSMA/mGluR1-Driven Resistance to the DS-7423 Dual PI3K/mTOR Inhibitor in PTEN Wild-type Prostate Cancer Models. Mol Cancer Ther 2022; 21:667-676. [PMID: 35086953 PMCID: PMC7612588 DOI: 10.1158/1535-7163.mct-21-0320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/15/2021] [Accepted: 01/19/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer remains a major cause of male mortality. Genetic alteration of the PI3K/AKT/mTOR pathway is one of the key events in tumor development and progression in prostate cancer, with inactivation of the PTEN tumor suppressor being very common in this cancer type. Extensive evaluation has been performed on the therapeutic potential of PI3K/AKT/mTOR inhibitors and the resistance mechanisms arising in patients with PTEN-mutant background. However, in patients with a PTEN wild-type phenotype, PI3K/AKT/mTOR inhibitors have not demonstrated efficacy, and this remains an area of clinical unmet need. In this study, we have investigated the response of PTEN wild-type prostate cancer cell lines to the dual PI3K/mTOR inhibitor DS-7423 alone or in combination with HER2 inhibitors or mGluR1 inhibitors. Upon treatment with the dual PI3K/mTOR inhibitor DS-7423, PTEN wild-type prostate cancer CWR22/22RV1 cells upregulate expression of the proteins PSMA, mGluR1, and the tyrosine kinase receptor HER2, while PTEN-mutant LNCaP cells upregulate androgen receptor and HER3. PSMA, mGluR1, and HER2 exert control over one another in a positive feedback loop that allows cells to overcome treatment with DS-7423. Concomitant targeting of PI3K/mTOR with either HER2 or mGluR1 inhibitors results in decreased cell survival and tumor growth in xenograft studies. Our results suggest a novel therapeutic possibility for patients with PTEN wild-type PI3K/AKT-mutant prostate cancer based in the combination of PI3K/mTOR blockade with HER2 or mGluR1 inhibitors.
Collapse
Affiliation(s)
- Valentí Gómez
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Myria Galazi
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Gregory Weitsman
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - James Monypenny
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Fahad Al-Salemee
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Paul R. Barber
- UCL Cancer Institute, University College London, London, United Kingdom
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Kenrick Ng
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Richard Beatson
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | | | - László Orfi
- Vichem Chemie Ltd., Veszprém, Hungary
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - Greg Mullen
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | | | - Simon Chowdhury
- Guy's, King's, and St. Thomas' Hospitals, and Sarah Cannon Research Institute, London, United Kingdom
| | - Hing Y. Leung
- Cancer Research United Kingdom Beatson Institute, Bearsden, Glasgow, United Kingdom
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
| | - Tony Ng
- UCL Cancer Institute, University College London, London, United Kingdom
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
186
|
Ouellet V, Erickson A, Wiley K, Morrissey C, Berge V, Moreno CS, Tasken KA, Trudel D, True LD, Lewis MS, Svindland A, Ertunc O, Vidal ID, Osunkoya AO, Jones T, Bova GS, Lamminen T, Achtman AH, Buzza M, Kouspou MM, Bigler SA, Zhou X, Freedland SJ, Mes-Masson AM, Garraway IP, Trock BJ, Taimen P, Saad F, Mirtti T, Knudsen BS, De Marzo AM. The Movember Global Action Plan 1 (GAP1): Unique Prostate Cancer Tissue Microarray Resource. Cancer Epidemiol Biomarkers Prev 2022; 31:715-727. [PMID: 35131885 PMCID: PMC9381093 DOI: 10.1158/1055-9965.epi-21-0600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The need to better understand the molecular underpinnings of the heterogeneous outcomes of patients with prostate cancer is a pressing global problem and a key research priority for Movember. To address this, the Movember Global Action Plan 1 Unique tissue microarray (GAP1-UTMA) project constructed a set of unique and richly annotated tissue microarrays (TMA) from prostate cancer samples obtained from multiple institutions across several global locations. METHODS Three separate TMA sets were built that differ by purpose and disease state. RESULTS The intended use of TMA1 (Primary Matched LN) is to validate biomarkers that help determine which clinically localized prostate cancers with associated lymph node metastasis have a high risk of progression to lethal castration-resistant metastatic disease, and to compare molecular properties of high-risk index lesions within the prostate to regional lymph node metastases resected at the time of prostatectomy. TMA2 (Pre vs. Post ADT) was designed to address questions regarding risk of castration-resistant prostate cancer (CRPC) and response to suppression of the androgen receptor/androgen axis, and characterization of the castration-resistant phenotype. TMA3 (CRPC Met Heterogeneity)'s intended use is to assess the heterogeneity of molecular markers across different anatomic sites in lethal prostate cancer metastases. CONCLUSIONS The GAP1-UTMA project has succeeded in combining a large set of tissue specimens from 501 patients with prostate cancer with rich clinical annotation. IMPACT This resource is now available to the prostate cancer community as a tool for biomarker validation to address important unanswered clinical questions around disease progression and response to treatment.
Collapse
Affiliation(s)
- Véronique Ouellet
- Centre de recherche du Centre hospitalier de l'Université de Montréal et Institut du cancer de Montréal, Montreal, Canada
| | - Andrew Erickson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Department of Pathology, Helsinki and Uusimaa Hospital District and Medicum, University of Helsinki, Helsinki, Finland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Kathy Wiley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Viktor Berge
- Department of Urology, Oslo University Hospital, Oslo, Norway
| | - Carlos S. Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Kristin Austlid Tasken
- Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dominique Trudel
- Centre de recherche du Centre hospitalier de l'Université de Montréal et Institut du cancer de Montréal, Montreal, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, Montreal, Canada
| | - Lawrence D. True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Michael S. Lewis
- West Los Angeles Veterans Affairs Medical Center and Departments of Pathology and Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Aud Svindland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Onur Ertunc
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Suleyman Demirel University, Department of Pathology, Training and Research Hospital East Campus, Isparta, Turkey
| | - Igor Damasceno Vidal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adeboye O. Osunkoya
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Tracy Jones
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - G. Steven Bova
- Faculty of Medicine and Health Technology, Prostate Cancer Research Center, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Tarja Lamminen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | | | | | - Steven A. Bigler
- Department of Pathology, Mississippi Baptist Medical Center, Jackson, Mississippi
| | - Xinchun Zhou
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Stephen J. Freedland
- Center for Integrated Research on Cancer and Lifestyle, Cedars-Sinai Medical Center, Los Angeles, California
- Section of Urology, Durham VA Medical Center, Durham, North Carolina
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université de Montréal et Institut du cancer de Montréal, Montreal, Canada
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Isla P. Garraway
- Department of Urology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles, California
- Division of Urology, Greater Los Angeles VA Healthcare System, Los Angeles, California
| | - Bruce J. Trock
- Department of Urology and Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pekka Taimen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pathology, Turku University Hospital, Turku, Finland
| | - Fred Saad
- Centre de recherche du Centre hospitalier de l'Université de Montréal et Institut du cancer de Montréal, Montreal, Canada
- Department of Surgery, Université de Montréal, Montreal, Canada
| | - Tuomas Mirtti
- HUS Diagnostic Center, Department of Pathology, HUS Helsinki University Hospital, Helsinki, Finland
- Medicum and Research Program In Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Beatrice S. Knudsen
- Digital and Computational Pathology, University of Utah, Salt Lake City, Utah
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology and Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| |
Collapse
|
187
|
Statins and prostate cancer-hype or hope? The biological perspective. Prostate Cancer Prostatic Dis 2022; 25:650-656. [PMID: 35768578 DOI: 10.1038/s41391-022-00557-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/14/2022] [Accepted: 05/27/2022] [Indexed: 01/14/2023]
Abstract
Growing evidence suggests that men prescribed a statin for cholesterol control have a lower risk of advanced prostate cancer (PCa) and improved treatment outcomes; however, the mechanism by which statins elicit their anti-neoplastic effects is not well understood and is likely multifaceted. Statins are potent and specific inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting enzyme of the mevalonate (MVA) metabolic pathway. This two-part series is a review of the observational and experimental data on statins as anti-cancer agents in PCa. In this article, we describe the functional role that deregulated MVA metabolism plays in PCa progression and summarize the biological evidence and rationale for targeting the MVA pathway, with statins and other agents, for the treatment of PCa.
Collapse
|
188
|
Limberger T, Schlederer M, Trachtová K, Garces de Los Fayos Alonso I, Yang J, Högler S, Sternberg C, Bystry V, Oppelt J, Tichý B, Schmeidl M, Kodajova P, Jäger A, Neubauer HA, Oberhuber M, Schmalzbauer BS, Pospisilova S, Dolznig H, Wadsak W, Culig Z, Turner SD, Egger G, Lagger S, Kenner L. KMT2C methyltransferase domain regulated INK4A expression suppresses prostate cancer metastasis. Mol Cancer 2022; 21:89. [PMID: 35354467 PMCID: PMC8966196 DOI: 10.1186/s12943-022-01542-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Frequent truncation mutations of the histone lysine N-methyltransferase KMT2C have been detected by whole exome sequencing studies in various cancers, including malignancies of the prostate. However, the biological consequences of these alterations in prostate cancer have not yet been elucidated. METHODS To investigate the functional effects of these mutations, we deleted the C-terminal catalytic core motif of Kmt2c specifically in mouse prostate epithelium. We analysed the effect of Kmt2c SET domain deletion in a Pten-deficient PCa mouse model in vivo and of truncation mutations of KMT2C in a large number of prostate cancer patients. RESULTS We show here for the first time that impaired KMT2C methyltransferase activity drives proliferation and PIN formation and, when combined with loss of the tumour suppressor PTEN, triggers loss of senescence, metastatic dissemination and dramatically reduces life expectancy. In Kmt2c-mutated tumours we show enrichment of proliferative MYC gene signatures and loss of expression of the cell cycle repressor p16INK4A. In addition, we observe a striking reduction in disease-free survival of patients with KMT2C-mutated prostate cancer. CONCLUSIONS We identified truncating events of KMT2C as drivers of proliferation and PIN formation. Loss of PTEN and KMT2C in prostate cancer results in loss of senescence, metastatic dissemination and reduced life expectancy. Our data demonstrate the prognostic significance of KMT2C mutation status in prostate cancer patients. Inhibition of the MYC signalling axis may be a viable treatment option for patients with KMT2C truncations and therefore poor prognosis.
Collapse
Affiliation(s)
- Tanja Limberger
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- CBmed-Center for Biomarker Research in Medicine GmbH, 8010, Graz, Austria
| | - Michaela Schlederer
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Karolina Trachtová
- Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
- Christian Doppler Laboratory for Applied Metabolomics, 1090, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Ines Garces de Los Fayos Alonso
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Jiaye Yang
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Sandra Högler
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Christina Sternberg
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118, Kiel, Germany
| | - Vojtech Bystry
- Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Jan Oppelt
- Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Boris Tichý
- Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Margit Schmeidl
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Petra Kodajova
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Anton Jäger
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Monika Oberhuber
- CBmed-Center for Biomarker Research in Medicine GmbH, 8010, Graz, Austria
| | - Belinda S Schmalzbauer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, 1090, Vienna, Austria
| | - Wolfgang Wadsak
- CBmed-Center for Biomarker Research in Medicine GmbH, 8010, Graz, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Zoran Culig
- Department of Urology, Innsbruck Medical University, 6020, Innsbruck, Austria
| | - Suzanne D Turner
- Department of Pathology, University Cambridge, Cambridge, UK
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Gerda Egger
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, 1090, Vienna, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Lukas Kenner
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria.
- CBmed-Center for Biomarker Research in Medicine GmbH, 8010, Graz, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090, Vienna, Austria.
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
| |
Collapse
|
189
|
Miller KJ, Asim M. Unravelling the Role of Kinases That Underpin Androgen Signalling in Prostate Cancer. Cells 2022; 11:cells11060952. [PMID: 35326402 PMCID: PMC8946764 DOI: 10.3390/cells11060952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The androgen receptor (AR) signalling pathway is the key driver in most prostate cancers (PCa), and is underpinned by several kinases both upstream and downstream of the AR. Many popular therapies for PCa that target the AR directly, however, have been circumvented by AR mutation, such as androgen receptor variants. Some upstream kinases promote AR signalling, including those which phosphorylate the AR and others that are AR-regulated, and androgen regulated kinase that can also form feed-forward activation circuits to promotes AR function. All of these kinases represent potentially druggable targets for PCa. There has generally been a divide in reviews reporting on pathways upstream of the AR and those reporting on AR-regulated genes despite the overlap that constitutes the promotion of AR signalling and PCa progression. In this review, we aim to elucidate which kinases—both upstream and AR-regulated—may be therapeutic targets and require future investigation and ongoing trials in developing kinase inhibitors for PCa.
Collapse
|
190
|
Fontana F, Anselmi M, Limonta P. Molecular mechanisms and genetic alterations in prostate cancer: From diagnosis to targeted therapy. Cancer Lett 2022; 534:215619. [PMID: 35276289 DOI: 10.1016/j.canlet.2022.215619] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/20/2022]
Abstract
Prostate cancer remains one of the most lethal malignancies among men worldwide. Although the primary tumor can be successfully managed by surgery and radiotherapy, advanced metastatic carcinoma requires better therapeutic approaches. In this context, a deeper understanding of the molecular mechanisms that underlie the initiation and progression of this disease is urgently needed, leading to the identification of new diagnostic/prognostic markers and the development of more effective treatments. Herein, the current state of knowledge of prostate cancer genetic alterations is discussed, with a focus on their potential in tumor detection and staging as well as in the screening of novel therapeutics.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Martina Anselmi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
191
|
Immune Checkpoint Inhibitors in Advanced Prostate Cancer: Current Data and Future Perspectives. Cancers (Basel) 2022; 14:cancers14051245. [PMID: 35267553 PMCID: PMC8909751 DOI: 10.3390/cancers14051245] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The treatment landscape of advanced prostate cancer (PCa) is constantly improving with the approval of many new therapeutic options. Immunotherapy in PCa has been investigated with disappointing results. This review aims to evaluate the potential role of immunotherapy in both castration-sensitive and castration-resistant PCa, discussing the immunobiology of PCa, the results of the current literature, and the ongoing clinical trials. Potential prognostic and/or predictive factors and future perspectives are also discussed. Abstract In the last 10 years, many new therapeutic options have been approved in advanced prostate cancer (PCa) patients, granting a more prolonged survival in patients with metastatic disease, which, nevertheless, remains incurable. The emphasis on immune checkpoint inhibitors (ICIs) has led to many trials in this setting, with disappointing results until now. Therefore, we discuss the immunobiology of PCa, presenting ongoing trials and the available clinical data, to understand if immunotherapy could represent a valid option in this disease, and which subset of patients may be more likely to benefit. Current evidence suggests that the tumor microenvironment needs a qualitative rather than quantitative evaluation, along with the genomic determinants of prostate tumor cells. The prognostic or predictive value of immunotherapy biomarkers, such as PD-L1, TMB, or dMMR/MSI-high, needs further evaluation in PCa. Monotherapy with immune checkpoint inhibitors (ICIs) has been modestly effective. In contrast, combined strategies with other standard treatments (hormonal agents, chemotherapy, PARP inhibitors, radium-223, and TKIs) have shown some results. Immunotherapy should be better investigated in biomarker-selected patients, particularly with specific pathway aberrations (e.g., AR-V7 variant, HRD, CDK12 inactivated tumors, MSI-high tumors). Lastly, we present new possible targets in PCa that could potentially modulate the tumor microenvironment and improve antitumor activity with ICIs.
Collapse
|
192
|
Cyrta J, Prandi D, Arora A, Hovelson DH, Sboner A, Rodriguez A, Fedrizzi T, Beltran H, Robinson DR, Gopalan A, True L, Nelson PS, Robinson BD, Mosquera JM, Tomlins SA, Shen R, Demichelis F, Rubin MA. Comparative genomics of primary prostate cancer and paired metastases: insights from 12 molecular case studies. J Pathol 2022; 257:274-284. [PMID: 35220606 PMCID: PMC9311708 DOI: 10.1002/path.5887] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022]
Abstract
Primary prostate cancer (PCa) can show marked molecular heterogeneity. However, systematic analyses comparing primary PCa and matched metastases in individual patients are lacking. We aimed to address the molecular aspects of metastatic progression while accounting for the heterogeneity of primary PCa. In this pilot study, we collected 12 radical prostatectomy (RP) specimens from men who subsequently developed metastatic castration‐resistant prostate cancer (mCRPC). We used histomorphology (Gleason grade, focus size, stage) and immunohistochemistry (IHC) (ERG and p53) to identify independent tumors and/or distinct subclones of primary PCa. We then compared molecular profiles of these primary PCa areas to matched metastatic samples using whole‐exome sequencing (WES) and amplicon‐based DNA and RNA sequencing. Based on combined pathology and molecular analysis, seven (58%) RP specimens harbored monoclonal and topographically continuous disease, albeit with some degree of intratumor heterogeneity; four (33%) specimens showed true multifocal disease; and one displayed monoclonal disease with discontinuous topography. Early (truncal) events in primary PCa included SPOP p.F133V (one patient), BRAF p.K601E (one patient), and TMPRSS2:ETS rearrangements (eight patients). Activating AR alterations were seen in nine (75%) mCRPC patients, but not in matched primary PCa. Hotspot TP53 mutations, found in metastases from three patients, were readily present in matched primary disease. Alterations in genes encoding epigenetic modifiers were observed in several patients (either shared between primary foci and metastases or in metastatic samples only). WES‐based phylogenetic reconstruction and/or clonality scores were consistent with the index focus designated by pathology review in six out of nine (67%) cases. The three instances of discordance pertained to monoclonal, topographically continuous tumors, which would have been considered as unique disease in routine practice. Overall, our results emphasize pathologic and molecular heterogeneity of primary PCa, and suggest that comprehensive IHC‐assisted pathology review and genomic analysis are highly concordant in nominating the ‘index’ primary PCa area. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Joanna Cyrta
- Department of Pathology and Laboratory Medicine Weill Cornell Medicine New York NY USA
- Englander Institute for Precision Medicine Weill Cornell Medicine New York NY USA
- Department for BioMedical Research University of Bern Bern Switzerland
| | - Davide Prandi
- Department of Cellular Computational and Integrative Biology, University of Trento Trento Italy
| | - Arshi Arora
- Department of Epidemiology and Biostatistics Memorial Sloan‐Kettering Cancer Center New York NY USA
| | - Daniel H. Hovelson
- Center for Computational Medicine and Bioinformatics Univ. Michigan Ann Arbor MA USA
| | - Andrea Sboner
- Englander Institute for Precision Medicine Weill Cornell Medicine New York NY USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine Weill Cornell Medicine New York NY USA
| | - Antonio Rodriguez
- Department for BioMedical Research University of Bern Bern Switzerland
- Institute of Pathology University of Bern Bern Switzerland
| | - Tarcisio Fedrizzi
- Department of Epidemiology and Biostatistics Memorial Sloan‐Kettering Cancer Center New York NY USA
| | - Himisha Beltran
- Department of Medicine Division of Medical Oncology, Weill Cornell Medicine New York NY USA
- Department of Medical Oncology Dana Farber Cancer Institute Boston MA USA
| | - Dan R. Robinson
- Department of Pathology University of Michigan Ann Arbor MI USA
| | - Anurandha Gopalan
- Department of Pathology Memorial Sloan Kettering Cancer Center New York NY USA
| | - Lawrence True
- Department of Pathology Univ. of Washington Seattle WA USA
| | | | - Brian D. Robinson
- Department of Pathology and Laboratory Medicine Weill Cornell Medicine New York NY USA
- Englander Institute for Precision Medicine Weill Cornell Medicine New York NY USA
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine Weill Cornell Medicine New York NY USA
- Englander Institute for Precision Medicine Weill Cornell Medicine New York NY USA
| | | | - Ronglai Shen
- Department of Epidemiology and Biostatistics Memorial Sloan‐Kettering Cancer Center New York NY USA
| | - Francesca Demichelis
- Englander Institute for Precision Medicine Weill Cornell Medicine New York NY USA
- Department of Cellular Computational and Integrative Biology, University of Trento Trento Italy
| | - Mark A. Rubin
- Department of Pathology and Laboratory Medicine Weill Cornell Medicine New York NY USA
- Englander Institute for Precision Medicine Weill Cornell Medicine New York NY USA
- Department for BioMedical Research University of Bern Bern Switzerland
| |
Collapse
|
193
|
[Molecular diagnostics and molecular tumor board in uro-oncology : Precision medicine using the example of metastatic castration-resistant prostate cancer]. Urologe A 2022; 61:311-322. [PMID: 35157098 DOI: 10.1007/s00120-022-01784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
Abstract
Novel approaches to molecular tumor profiling evaluate DNA, RNA and protein alterations to create a detailed molecular map that enables precise and personalized treatment decisions. As the field of molecular profiling is constantly evolving, the training and networking of doctors is of decisive importance. Through the establishment of precision medicine with precision oncological consultations supported by interdisciplinary molecular tumor boards, many patients with difficult to treat tumor diseases can be advised and treated. Many pathophysiological relationships in progressive tumors can be elucidated resulting in new therapeutic options for the profiled patients; however, understanding the complex mutational profiles remains a very demanding task that requires a suitably trained and committed team that should be in close contact with the scientific advancements in precision oncology.
Collapse
|
194
|
Pantazopoulos H, Diop MK, Grosset AA, Rouleau-Gagné F, Al-Saleh A, Boblea T, Trudel D. Intraductal Carcinoma of the Prostate as a Cause of Prostate Cancer Metastasis: A Molecular Portrait. Cancers (Basel) 2022; 14:820. [PMID: 35159086 PMCID: PMC8834356 DOI: 10.3390/cancers14030820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is one of the most aggressive types of prostate cancer (PCa). IDC-P is identified in approximately 20% of PCa patients and is associated with recurrence, metastasis, and PCa-specific death. The main feature of this histological variant is the colonization of benign glands by PCa cells. Although IDC-P is a well-recognized independent parameter for metastasis, mechanisms by which IDC-P cells can spread and colonize other tissues are not fully known. In this review, we discuss the molecular portraits of IDC-P determined by immunohistochemistry and genomic approaches and highlight the areas in which more research is needed.
Collapse
Affiliation(s)
- Helen Pantazopoulos
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Mame-Kany Diop
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Andrée-Anne Grosset
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Frédérique Rouleau-Gagné
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Afnan Al-Saleh
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Teodora Boblea
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
| | - Dominique Trudel
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
- Department of Pathology, Centre Hospitalier de l’Université de Montréal (CHUM), 1051 Sanguinet, Montreal, QC H2X 0C1, Canada
| |
Collapse
|
195
|
Nelson WG, Brawley OW, Isaacs WB, Platz EA, Yegnasubramanian S, Sfanos KS, Lotan TL, De Marzo AM. Health inequity drives disease biology to create disparities in prostate cancer outcomes. J Clin Invest 2022; 132:e155031. [PMID: 35104804 PMCID: PMC8803327 DOI: 10.1172/jci155031] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer exerts a greater toll on African American men than on White men of European descent (hereafter referred to as European American men): the disparity in incidence and mortality is greater than that of any other common cancer. The disproportionate impact of prostate cancer on Black men has been attributed to the genetics of African ancestry, to diet and lifestyle risk factors, and to unequal access to quality health care. In this Review, all of these influences are considered in the context of the evolving understanding that chronic or recurrent inflammatory processes drive prostatic carcinogenesis. Studies of inherited susceptibility highlight the contributions of genes involved in prostate cell and tissue repair (BRCA1/2, ATM) and regeneration (HOXB13 and MYC). Social determinants of health appear to accentuate these genetic influences by fueling prostate inflammation and associated cell and genome damage. Molecular characterization of the prostate cancers that arise in Black versus White men further implicates this inflammatory microenvironment in disease behavior. Yet, when Black and White men with similar grade and stage of prostate cancer are treated equally, they exhibit equivalent outcomes. The central role of prostate inflammation in prostate cancer development and progression augments the impact of the social determinants of health on disease pathogenesis. And, when coupled with poorer access to high-quality treatment, these inequities result in a disparate burden of prostate cancer on African American men.
Collapse
|
196
|
Marhold M, Kramer G, Krainer M, Le Magnen C. The prostate cancer landscape in Europe: Current challenges, future opportunities. Cancer Lett 2022; 526:304-310. [PMID: 34863887 DOI: 10.1016/j.canlet.2021.11.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
Prostate cancer (PCa) is the most common non-cutaneous cancer in men in Europe and is predicted to exhibit declining mortality in the European Union (EU) due to various recent improvements in treatment. The goal of this short review is to give insight into the European treatment landscape of PCa, while focusing on improvements in care.
Collapse
Affiliation(s)
- Maximilian Marhold
- Division of Oncology, Department for Medicine I, Medical University of Vienna, Vienna, Austria.
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Michael Krainer
- Division of Oncology, Department for Medicine I, Medical University of Vienna, Vienna, Austria
| | - Clémentine Le Magnen
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Switzerland; Department of Urology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
197
|
Xu L, Zhao B, Butler W, Xu H, Song N, Chen X, Spencer Hauck J, Gao X, Zhang H, Groth J, Yang Q, Zhao Y, Moon D, George D, Zhou Y, He Y, Huang J. Targeting glutamine metabolism network for the treatment of therapy-resistant prostate cancer. Oncogene 2022; 41:1140-1154. [PMID: 35046532 PMCID: PMC9985769 DOI: 10.1038/s41388-021-02155-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 01/26/2023]
Abstract
Advanced and aggressive prostate cancer (PCa) depends on glutamine for survival and proliferation. We have previously shown that inhibition of glutaminase 1, which catalyzes the rate-limiting step of glutamine catabolism, achieves significant therapeutic effect; however, therapy resistance is inevitable. Here we report that while the glutamine carbon is critical to PCa survival, a parallel pathway of glutamine nitrogen catabolism that actively contributes to pyrimidine assembly is equally important for PCa cells. Importantly, we demonstrate a reciprocal feedback mechanism between glutamine carbon and nitrogen pathways which leads to therapy resistance when one of the two pathways is inhibited. Combination treatment to inhibit both pathways simultaneously yields better clinical outcome for advanced PCa patients.
Collapse
Affiliation(s)
- Lingfan Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Bing Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - William Butler
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Huan Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai, China
| | - Nan Song
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xufeng Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - J Spencer Hauck
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xia Gao
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Hong Zhang
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeff Groth
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Qing Yang
- Duke School of Nursing, Duke University, Durham, NC, USA
| | - Yue Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - David Moon
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Daniel George
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Yinglu Zhou
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yiping He
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
198
|
Use of RNA-Seq and a Transgenic Mouse Model to Identify Genes Which May Contribute to Mutant p53-Driven Prostate Cancer Initiation. BIOLOGY 2022; 11:biology11020218. [PMID: 35205085 PMCID: PMC8869245 DOI: 10.3390/biology11020218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary We use RNA-seq analysis to identify genes that may contribute to mutant p53-mediated prostate cancer initiation in a genetically engineered mouse model (B6.129S4-Trp53tm3.1Tyj/J). A total of 1378 differentially expressed genes, including wildtype p53 target genes (e.g. Cdkn1a, Bax, Bcl2, Kras, Mdm2), p53 gain-of-function-related genes (Mgmt, Id4), and prostate cancer-related genes (Cav-1, Raf1, Kras), were identified. Mice that were homozygous or heterozygous for the Trp53 R270H mutation developed grade one PIN lesions at 3 months and 5 months, respectively, whereas wildtype mice did not develop PIN. Immunohistochemical analysis revealed decreased levels of irradiation-mediated apoptosis in homozygous and heterozygous mice when compared to wildtype counterparts, and this aligned with observed differences in apoptosis-related gene expression. Abstract We previously demonstrated that the Trp53-R270H mutation can drive prostate cancer (CaP) initiation using the FVB.129S4 (Trp53tm3Tyj/wt); FVB.129S (Nkx3-1tm3(cre)Mmswt) genetically engineered mouse model (GEM). We now validate this finding in a different model (B6.129S4-Trp53tm3.1Tyj/J mice) and use RNA-sequencing (RNA-Seq) to identify genes which may contribute to Trp53 R270H-mediated prostate carcinogenesis. Wildtype (Trp53WT/WT), heterozygous (Trp53R270H/WT), and homozygous mice (Trp53R270H/R270H) were exposed to 5 Gy irradiation to activate and stabilize p53, and thereby enhance our ability to identify differences in transcriptional activity between the three groups of mice. Mouse prostates were harvested 6 h post-irradiation and processed for histological/immunohistochemistry (IHC) analysis or were snap-frozen for RNA extraction and transcriptome profiling. IHC analyses determined that presence of the Trp53-R270H mutation impacts apoptosis (lower caspase 3 activity) but not cell proliferation (Ki67). RNA-Seq analysis identified 1378 differentially expressed genes, including wildtype p53 target genes (E.g., Cdkn1a, Bax, Bcl2, Kras, Mdm2), p53 gain-of-function (GOF)-related genes (Mgmt, Id4), and CaP-related genes (Cav-1, Raf1, Kras). Further understanding the mechanisms which contribute to prostate carcinogenesis could allow for the development of improved preventive methods, diagnostics, and treatments for CaP.
Collapse
|
199
|
Macrophages as a Therapeutic Target in Metastatic Prostate Cancer: A Way to Overcome Immunotherapy Resistance? Cancers (Basel) 2022; 14:cancers14020440. [PMID: 35053602 PMCID: PMC8773572 DOI: 10.3390/cancers14020440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PC) is the most common malignancy and the fifth cause of cancer death in men. The treatment for localized or locally advanced stages offers a high probability of cure. Even though the therapeutic landscape has significantly improved over the last decade, metastatic PC (mPC) still has a poor prognosis mainly due to the development of therapy resistance. In this context, the use of immunotherapy alone or in combination with other drugs has been explored in recent years. However, T-cell directed immune checkpoint inhibitors (ICIs) have shown limited activity with inconclusive results in mPC patients, most likely due to the highly immunosuppressive PC tumor microenvironment (TME). In this scenario, targeting macrophages, a highly abundant immunosuppressive cell type in the TME, could offer a new therapeutic strategy to improve immunotherapy efficacy. In this review, we summarize the growing field of macrophage-directed immunotherapies and discuss how these could be applied in the treatment of mPC, focusing on their combination with ICIs.
Collapse
|
200
|
Mucinous metaplasia in Pten conditional knockout mice and mucin family genes as prognostic markers for prostate cancer. Life Sci 2022; 293:120264. [PMID: 35031262 DOI: 10.1016/j.lfs.2021.120264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 12/24/2022]
Abstract
AIMS This study evaluated the association of mucinous metaplasia (MM) with tumor cell proliferation, androgen receptor (AR) expression and invasiveness in Pten conditional knockout mice and the prognostic value of MM markers for patients with PCa. MAIN METHODS Prostatic lobes samples from genetic engineered mouse model Ptenf/f and Pb-Cre4/Ptenf/f were submitted for histopathological analysis and tissue expression of AR, the proliferation marker Ki67, alpha-smooth muscle actin, and laminin. RNAseq data of prostatic lobes samples were analyzed searching for MM gene expression patterns. We also investigated gene and protein expression related to MM in human PCa public databases. KEY FINDINGS All knockout animals analyzed showed at least one area of stroma-invading MM, which was absent in the control animals. The tumoral regions of MM showed a proliferative index 5 times higher than other tumoral areas and low expression of the AR (less than 20% of the cells were AR-positive). Disrupted basement membrane areas were observed in MM. The mouse and human PCa transcriptomes exhibited increased expression of the MM markers such as MUC1, MUC19, MUC4, MUC5AC, MUC5B, and TFF3. Gene expression profile was associated with castration-resistant prostate cancer (CRPC) and with a lower probability of freedom from biochemical recurrence. SIGNIFICANCE The expression of goblet cell genes, such as MUC1, MUC5AC, MUC5B, and TFF3 have significant prognostic value for PCa patients and represent another class of potential therapeutic targets.
Collapse
|