151
|
Luense LJ, Wang X, Schon SB, Weller AH, Lin Shiao E, Bryant JM, Bartolomei MS, Coutifaris C, Garcia BA, Berger SL. Comprehensive analysis of histone post-translational modifications in mouse and human male germ cells. Epigenetics Chromatin 2016; 9:24. [PMID: 27330565 PMCID: PMC4915177 DOI: 10.1186/s13072-016-0072-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/26/2016] [Indexed: 01/01/2023] Open
Abstract
Background During the process of spermatogenesis, male germ cells undergo dramatic chromatin reorganization, whereby most histones are replaced by protamines, as part of the pathway to compact the genome into the small nuclear volume of the sperm head. Remarkably, approximately 90 % (human) to 95 % (mouse) of histones are evicted during the process. An intriguing hypothesis is that post-translational modifications (PTMs) decorating histones play a critical role in epigenetic regulation of spermatogenesis and embryonic development following fertilization. Although a number of specific histone PTMs have been individually studied during spermatogenesis and in mature mouse and human sperm, to date, there is a paucity of comprehensive identification of histone PTMs and their dynamics during this process. Results Here we report systematic investigation of sperm histone PTMs and their dynamics during spermatogenesis. We utilized “bottom-up” nanoliquid chromatography–tandem mass spectrometry (nano-LC–MS/MS) to identify histone PTMs and to determine their relative abundance in distinct stages of mouse spermatogenesis (meiotic, round spermatids, elongating/condensing spermatids, and mature sperm) and in human sperm. We detected peptides and histone PTMs from all four canonical histones (H2A, H2B, H3, and H4), the linker histone H1, and multiple histone isoforms of H1, H2A, H2B, and H3 in cells from all stages of mouse spermatogenesis and in mouse sperm. We found strong conservation of histone PTMs for histone H3 and H4 between mouse and human sperm; however, little conservation was observed between H1, H2A, and H2B. Importantly, across eight individual normozoospermic human semen samples, little variation was observed in the relative abundance of nearly all histone PTMs. Conclusion In summary, we report the first comprehensive and unbiased analysis of histone PTMs at multiple time points during mouse spermatogenesis and in mature mouse and human sperm. Furthermore, our results suggest a largely uniform histone PTM signature in sperm from individual humans. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0072-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lacey J Luense
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104 USA.,Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Xiaoshi Wang
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104 USA.,Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Samantha B Schon
- Department of Reproductive Endocrinology and Infertility, Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 USA.,Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Angela H Weller
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104 USA.,Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Enrique Lin Shiao
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104 USA.,Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA.,Biomedical Sciences Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Jessica M Bryant
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104 USA.,Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA.,Biomedical Sciences Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,Institute Pasteur, 75724 Paris, France
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104 USA.,Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Christos Coutifaris
- Department of Reproductive Endocrinology and Infertility, Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104 USA.,Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104 USA.,Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
152
|
Song Y, Wu F, Wu J. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. J Hematol Oncol 2016; 9:49. [PMID: 27316347 PMCID: PMC4912745 DOI: 10.1186/s13045-016-0279-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022] Open
Abstract
Post-translational methylation of histone lysine or arginine residues plays important roles in gene regulation and other physiological processes. Aberrant histone methylation caused by a gene mutation, translocation, or overexpression can often lead to initiation of a disease such as cancer. Small molecule inhibitors of such histone modifying enzymes that correct the abnormal methylation could be used as novel therapeutics for these diseases, or as chemical probes for investigation of epigenetics. Discovery and development of histone methylation modulators are in an early stage and undergo a rapid expansion in the past few years. A number of highly potent and selective compounds have been reported, together with extensive preclinical studies of their biological activity. Several compounds have been in clinical trials for safety, pharmacokinetics, and efficacy, targeting several types of cancer. This review summarizes the biochemistry, structures, and biology of cancer-relevant histone methylation modifying enzymes, small molecule inhibitors and their preclinical and clinical antitumor activities. Perspectives for targeting histone methylation for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Yongcheng Song
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Fangrui Wu
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jingyu Wu
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
153
|
Structure and function of histone methylation-binding proteins in plants. Biochem J 2016; 473:1663-80. [DOI: 10.1042/bcj20160123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/29/2016] [Indexed: 12/28/2022]
Abstract
Post-translational modifications of histones play important roles in modulating many essential biological processes in both animals and plants. These covalent modifications, including methylation, acetylation, phosphorylation, ubiquitination, SUMOylation and so on, are laid out and erased by histone-modifying enzymes and read out by effector proteins. Recent studies have revealed that a number of developmental processes in plants are under the control of histone post-translational modifications, such as floral transition, seed germination, organogenesis and morphogenesis. Therefore, it is critical to identify those protein domains, which could specifically recognize these post-translational modifications to modulate chromatin structure and regulate gene expression. In the present review, we discuss the recent progress in understanding the structure and function of the histone methylation readers in plants, by focusing on Arabidopsis thaliana proteins.
Collapse
|
154
|
Marczylo EL, Jacobs MN, Gant TW. Environmentally induced epigenetic toxicity: potential public health concerns. Crit Rev Toxicol 2016; 46:676-700. [PMID: 27278298 PMCID: PMC5030620 DOI: 10.1080/10408444.2016.1175417] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Throughout our lives, epigenetic processes shape our development and enable us to adapt to a constantly changing environment. Identifying and understanding environmentally induced epigenetic change(s) that may lead to adverse outcomes is vital for protecting public health. This review, therefore, examines the present understanding of epigenetic mechanisms involved in the mammalian life cycle, evaluates the current evidence for environmentally induced epigenetic toxicity in human cohorts and rodent models and highlights the research considerations and implications of this emerging knowledge for public health and regulatory toxicology. Many hundreds of studies have investigated such toxicity, yet relatively few have demonstrated a mechanistic association among specific environmental exposures, epigenetic changes and adverse health outcomes in human epidemiological cohorts and/or rodent models. While this small body of evidence is largely composed of exploratory in vivo high-dose range studies, it does set a precedent for the existence of environmentally induced epigenetic toxicity. Consequently, there is worldwide recognition of this phenomenon, and discussion on how to both guide further scientific research towards a greater mechanistic understanding of environmentally induced epigenetic toxicity in humans, and translate relevant research outcomes into appropriate regulatory policies for effective public health protection.
Collapse
Affiliation(s)
- Emma L Marczylo
- a Toxicology Department, CRCE, PHE, Chilton , Oxfordshire , UK
| | - Miriam N Jacobs
- a Toxicology Department, CRCE, PHE, Chilton , Oxfordshire , UK
| | - Timothy W Gant
- a Toxicology Department, CRCE, PHE, Chilton , Oxfordshire , UK
| |
Collapse
|
155
|
Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 2016; 13:127-37. [PMID: 26820547 DOI: 10.1038/nmeth.3733] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/16/2015] [Indexed: 02/08/2023]
Abstract
Gene regulation is a complex and tightly controlled process that defines cell identity, health and disease, and response to pharmacologic and environmental signals. Recently developed DNA-targeting platforms, including zinc finger proteins, transcription activator-like effectors (TALEs) and the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 system, have enabled the recruitment of transcriptional modulators and epigenome-modifying factors to any genomic site, leading to new insights into the function of epigenetic marks in gene expression. Additionally, custom transcriptional and epigenetic regulation is facilitating refined control over cell function and decision making. The unique properties of the CRISPR-Cas9 system have created new opportunities for high-throughput genetic screens and multiplexing targets to manipulate complex gene expression patterns. This Review summarizes recent technological developments in this area and their application to biomedical challenges. We also discuss remaining limitations and necessary future directions for this field.
Collapse
|
156
|
Yoo J, Kim SJ, Son D, Seo H, Baek SY, Maeng CY, Lee C, Kim IS, Jung YH, Lee SM, Park HJ. Computer-aided identification of new histone deacetylase 6 selective inhibitor with anti-sepsis activity. Eur J Med Chem 2016; 116:126-135. [DOI: 10.1016/j.ejmech.2016.03.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023]
|
157
|
|
158
|
Tang D, Lin Q, He Y, Chai R, Li H. Inhibition of H3K9me2 Reduces Hair Cell Regeneration after Hair Cell Loss in the Zebrafish Lateral Line by Down-Regulating the Wnt and Fgf Signaling Pathways. Front Mol Neurosci 2016; 9:39. [PMID: 27303264 PMCID: PMC4880589 DOI: 10.3389/fnmol.2016.00039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/12/2016] [Indexed: 11/13/2022] Open
Abstract
The activation of neuromast (NM) supporting cell (SC) proliferation leads to hair cell (HC) regeneration in the zebrafish lateral line. Epigenetic mechanisms have been reported that regulate HC regeneration in the zebrafish lateral line, but the role of H3K9me2 in HC regeneration after HC loss remains poorly understood. In this study, we focused on the role of H3K9me2 in HC regeneration following neomycin-induced HC loss. To investigate the effects of H3K9me2 in HC regeneration, we took advantage of the G9a/GLP-specific inhibitor BIX01294 that significantly reduces the dimethylation of H3K9. We found that BIX01294 significantly reduced HC regeneration after neomycin-induced HC loss in the zebrafish lateral line. BIX01294 also significantly reduced the proliferation of NM cells and led to fewer SCs in the lateral line. In situ hybridization showed that BIX01294 significantly down-regulated the Wnt and Fgf signaling pathways, which resulted in reduced SC proliferation and HC regeneration in the NMs of the lateral line. Altogether, our results suggest that down-regulation of H3K9me2 significantly decreases HC regeneration after neomycin-induced HC loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus H3K9me2 plays a critical role in HC regeneration.
Collapse
Affiliation(s)
- Dongmei Tang
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Qin Lin
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Fujian Medical University Fuzhou, China
| | - Yingzi He
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China; Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| | - Huawei Li
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China; Institute of Stem Cell and Regeneration Medicine, Institutions of Biomedical Science, Fudan UniversityShanghai, China; Key Laboratory of Hearing Science, Ministry of Health, EENT Hospital, Fudan UniversityShanghai, China
| |
Collapse
|
159
|
Jullien D, Vignard J, Fedor Y, Béry N, Olichon A, Crozatier M, Erard M, Cassard H, Ducommun B, Salles B, Mirey G. Chromatibody, a novel non-invasive molecular tool to explore and manipulate chromatin in living cells. J Cell Sci 2016; 129:2673-83. [PMID: 27206857 PMCID: PMC4958301 DOI: 10.1242/jcs.183103] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/13/2016] [Indexed: 12/25/2022] Open
Abstract
Chromatin function is involved in many cellular processes, its visualization or modification being essential in many developmental or cellular studies. Here, we present the characterization of chromatibody, a chromatin-binding single-domain, and explore its use in living cells. This non-intercalating tool specifically binds the heterodimer of H2A–H2B histones and displays a versatile reactivity, specifically labeling chromatin from yeast to mammals. We show that this genetically encoded probe, when fused to fluorescent proteins, allows non-invasive real-time chromatin imaging. Chromatibody is a dynamic chromatin probe that can be modulated. Finally, chromatibody is an efficient tool to target an enzymatic activity to the nucleosome, such as the DNA damage-dependent H2A ubiquitylation, which can modify this epigenetic mark at the scale of the genome and result in DNA damage signaling and repair defects. Taken together, these results identify chromatibody as a universal non-invasive tool for either in vivo chromatin imaging or to manipulate the chromatin landscape. Summary: Chromatibody is a chromatin-binding single-domain antibody, derived from llama nanobodies, that can be used as a novel non-invasive molecular tool to explore and manipulate chromatin in living cells.
Collapse
Affiliation(s)
- Denis Jullien
- Toxalim, Université de Toulouse, INRA, Université de Toulouse 3 Paul Sabatier, 31027 Toulouse, France ITAV, Université de Toulouse, CNRS, UPS, 31106 Toulouse, France
| | - Julien Vignard
- Toxalim, Université de Toulouse, INRA, Université de Toulouse 3 Paul Sabatier, 31027 Toulouse, France
| | - Yoann Fedor
- Toxalim, Université de Toulouse, INRA, Université de Toulouse 3 Paul Sabatier, 31027 Toulouse, France
| | - Nicolas Béry
- CRCT-UMR1037, Université de Toulouse, INSERM, 31037 Toulouse, France
| | - Aurélien Olichon
- CRCT-UMR1037, Université de Toulouse, INSERM, 31037 Toulouse, France
| | | | - Monique Erard
- IPBS-UMR5089, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Hervé Cassard
- IHAP, Université de Toulouse, INRA, ENVT, 31076 Toulouse, France
| | - Bernard Ducommun
- ITAV, Université de Toulouse, CNRS, UPS, 31106 Toulouse, France CHU de Toulouse, 31106 Toulouse, France
| | - Bernard Salles
- Toxalim, Université de Toulouse, INRA, Université de Toulouse 3 Paul Sabatier, 31027 Toulouse, France
| | - Gladys Mirey
- Toxalim, Université de Toulouse, INRA, Université de Toulouse 3 Paul Sabatier, 31027 Toulouse, France
| |
Collapse
|
160
|
Fine-Tuning of FACT by the Ubiquitin Proteasome System in Regulation of Transcriptional Elongation. Mol Cell Biol 2016; 36:1691-703. [PMID: 27044865 DOI: 10.1128/mcb.01112-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/27/2016] [Indexed: 11/20/2022] Open
Abstract
FACT (facilitates chromatin transcription), an evolutionarily conserved histone chaperone involved in transcription and other DNA transactions, is upregulated in cancers, and its downregulation is associated with cellular death. However, it is not clearly understood how FACT is fine-tuned for normal cellular functions. Here, we show that the FACT subunit Spt16 is ubiquitylated by San1 (an E3 ubiquitin ligase) and degraded by the 26S proteasome. Enhanced abundance of Spt16 in the absence of San1 impairs transcriptional elongation. Likewise, decreased abundance of Spt16 also reduces transcription. Thus, an optimal level of Spt16 is required for efficient transcriptional elongation, which is maintained by San1 via ubiquitylation and proteasomal degradation. Consistently, San1 associates with the coding sequences of active genes to regulate Spt16's abundance. Further, we found that enhanced abundance of Spt16 in the absence of San1 impairs chromatin reassembly at the coding sequence, similarly to the results seen following inactivation of Spt16. Efficient chromatin reassembly enhances the fidelity of transcriptional elongation. Taken together, our results demonstrate for the first time a fine-tuning of FACT by a ubiquitin proteasome system in promoting chromatin reassembly in the wake of elongating RNA polymerase II and transcriptional elongation, thus revealing novel regulatory mechanisms of gene expression.
Collapse
|
161
|
Liu Y, Long Y, Xing Z, Zhang D. C-Jun recruits the NSL complex to regulate its target gene expression by modulating H4K16 acetylation and promoting the release of the repressive NuRD complex. Oncotarget 2016; 6:14497-506. [PMID: 25971333 PMCID: PMC4546482 DOI: 10.18632/oncotarget.3988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/15/2015] [Indexed: 11/25/2022] Open
Abstract
The proto-oncogene c-Jun plays essential roles in various cellular processes, including cell proliferation, cell differentiation, and cellular apoptosis. Enormous efforts have been made to understand the mechanisms regulating c-Jun activation. The males absent on the first (MOF)-containing non-specific lethal (NSL) complex has been shown to positively regulate gene expression. However, the biological function of the NSL complex is largely unknown. Here we present evidence showing that c-Jun recruits the NSL complex to c-Jun target genes upon activation. The NSL complex catalyzes H4K16 acetylation at c-Jun target genes, thereby promoting c-Jun target gene transcription. More interestingly, we also found that the NSL complex promotes the release of the repressive NuRD complex from c-Jun target genes, thus activating c-Jun. Our findings not only reveal a new mechanism regulating c-Jun activation, but also identify the NSL complex as a c-Jun co-activator in c-Jun-regulated gene expression, expanding our knowledge of the function of the NSL complex in gene expression regulation.
Collapse
Affiliation(s)
- Yan Liu
- College of Life Sciences, Hebei United University, Tangshan, China
| | - Yuehong Long
- College of Life Sciences, Hebei United University, Tangshan, China
| | - Zhaobin Xing
- College of Life Sciences, Hebei United University, Tangshan, China
| | - Daoyong Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
162
|
Histone Lysine Methylation in TGF-β1 Mediated p21 Gene Expression in Rat Mesangial Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6927234. [PMID: 27247942 PMCID: PMC4876202 DOI: 10.1155/2016/6927234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/11/2016] [Indexed: 01/11/2023]
Abstract
Transforming growth factor beta1- (TGF-β1-) induced p21-dependent mesangial cell (MC) hypertrophy plays a key role in the pathogenesis of chronic renal diseases including diabetic nephropathy (DN). Increasing evidence demonstrated the role of posttranscriptional modifications (PTMs) in the event; however, the precise regulatory mechanism of histone lysine methylation remains largely unknown. Here, we examined the roles of both histone H3 lysine 4 and lysine 9 methylations (H3K4me/H3K9me) in TGF-β1 induced p21 gene expression in rat mesangial cells (RMCs). Our results indicated that TGF-β1 upregulated the expression of p21 gene in RMCs, which was positively correlated with the increased chromatin marks associated with active genes (H3K4me1/H3K4me2/H3K4me3) and negatively correlated with the decreased levels of repressive marks (H3K9me2/H3K9me3) at p21 gene promoter. TGF-β1 also elevated the recruitment of the H3K4 methyltransferase (HMT) SET7/9 to the p21 gene promoter. SET7/9 gene silencing with small interfering RNAs (siRNAs) significantly abolished the TGF-β1 induced p21 gene expression. Taken together, these results reveal the key role of histone H3Kme in TGF-β1 mediated p21 gene expression in RMC, partly through HMT SET7/9 occupancy, suggesting H3Kme and SET7/9 may be potential renoprotective agents in managing chronic renal diseases.
Collapse
|
163
|
Dash PK, Hergenroeder GW, Jeter CB, Choi HA, Kobori N, Moore AN. Traumatic Brain Injury Alters Methionine Metabolism: Implications for Pathophysiology. Front Syst Neurosci 2016; 10:36. [PMID: 27199685 PMCID: PMC4850826 DOI: 10.3389/fnsys.2016.00036] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/13/2016] [Indexed: 11/21/2022] Open
Abstract
Methionine is an essential proteinogenic amino acid that is obtained from the diet. In addition to its requirement for protein biosynthesis, methionine is metabolized to generate metabolites that play key roles in a number of cellular functions. Metabolism of methionine via the transmethylation pathway generates S-adenosylmethionine (SAM) that serves as the principal methyl (−CH3) donor for DNA and histone methyltransferases (MTs) to regulate epigenetic changes in gene expression. SAM is also required for methylation of other cellular proteins that serve various functions and phosphatidylcholine synthesis that participate in cellular signaling. Under conditions of oxidative stress, homocysteine (which is derived from SAM) enters the transsulfuration pathway to generate glutathione, an important cytoprotective molecule against oxidative damage. As both experimental and clinical studies have shown that traumatic brain injury (TBI) alters DNA and histone methylation and causes oxidative stress, we examined if TBI alters the plasma levels of methionine and its metabolites in human patients. Blood samples were collected from healthy volunteers (HV; n = 20) and patients with mild TBI (mTBI; GCS > 12; n = 20) or severe TBI (sTBI; GCS < 8; n = 20) within the first 24 h of injury. The levels of methionine and its metabolites in the plasma samples were analyzed by either liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry (LC-MS or GC-MS). sTBI decreased the levels of methionine, SAM, betaine and 2-methylglycine as compared to HV, indicating a decrease in metabolism through the transmethylation cycle. In addition, precursors for the generation of glutathione, cysteine and glycine were also found to be decreased as were intermediate metabolites of the gamma-glutamyl cycle (gamma-glutamyl amino acids and 5-oxoproline). mTBI also decreased the levels of methionine, α-ketobutyrate, 2 hydroxybutyrate and glycine, albeit to lesser degrees than detected in the sTBI group. Taken together, these results suggest that decreased levels of methionine and its metabolic products are likely to alter cellular function in multiple organs at a systems level.
Collapse
Affiliation(s)
- Pramod K Dash
- Department of Neurobiology and Anatomy, UTHealth McGovern Medical SchoolHouston, TX, USA; The Vivian L. Smith Department of Neurosurgery, UTHealth McGovern Medical SchoolHouston, TX, USA
| | - Georgene W Hergenroeder
- The Vivian L. Smith Department of Neurosurgery, UTHealth McGovern Medical School Houston, TX, USA
| | - Cameron B Jeter
- Department of Diagnostic and Biomedical Sciences, University of Texas School of Dentistry Houston, TX, USA
| | - H Alex Choi
- The Vivian L. Smith Department of Neurosurgery, UTHealth McGovern Medical School Houston, TX, USA
| | - Nobuhide Kobori
- Department of Neurobiology and Anatomy, UTHealth McGovern Medical School Houston, TX, USA
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, UTHealth McGovern Medical School Houston, TX, USA
| |
Collapse
|
164
|
Molecular characterization and expression regulation of Smyd1a and Smyd1b in skeletal muscle of Chinese perch (Siniperca chuatsi). Comp Biochem Physiol B Biochem Mol Biol 2016; 194-195:25-31. [DOI: 10.1016/j.cbpb.2016.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 11/22/2022]
|
165
|
Abstract
The past decade has witnessed a number of societal and political changes that have raised critical questions about the long-term impact of marijuana (Cannabis sativa) that are especially important given the prevalence of its abuse and that potential long-term effects still largely lack scientific data. Disturbances of the epigenome have generally been hypothesized as the molecular machinery underlying the persistent, often tissue-specific transcriptional and behavioral effects of cannabinoids that have been observed within one's lifetime and even into the subsequent generation. Here, we provide an overview of the current published scientific literature that has examined epigenetic effects of cannabinoids. Though mechanistic insights about the epigenome remain sparse, accumulating data in humans and animal models have begun to reveal aberrant epigenetic modifications in brain and the periphery linked to cannabis exposure. Expansion of such knowledge and causal molecular relationships could help provide novel targets for future therapeutic interventions.
Collapse
|
166
|
Abstract
Histones are subject to frequent combinatorial post-translational modifications (PTMs), forming a complex chemical "language" that is interpreted by PTM-specific histone-interacting protein modules (reader domains). These specific interactions are thought to instruct gene expression and downstream biological functions. While the majority of studies have focused on individual modifications, our current understanding of the combinatorial PTM patterns on histones is starting to emerge, benefiting from the convergence of multiple technologies. Here, we review the key technical advances and progress on discovery and characterization of combinatorial histone PTM patterns. We focus on the interactions between reader domains and combinatorial PTMs, which is essential for understanding the mechanism and biological meaning of establishing and interpreting information embedded in histone PTM patterns.
Collapse
Affiliation(s)
- Zhangli Su
- Department
of Biomolecular
Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, Wisconsin 53715, United States
| | - John M. Denu
- Department
of Biomolecular
Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, Wisconsin 53715, United States
| |
Collapse
|
167
|
Garcia BA, Luka Z, Loukachevitch LV, Bhanu NV, Wagner C. Folate deficiency affects histone methylation. Med Hypotheses 2016; 88:63-7. [PMID: 26880641 PMCID: PMC4769866 DOI: 10.1016/j.mehy.2015.12.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/11/2015] [Accepted: 12/24/2015] [Indexed: 01/12/2023]
Abstract
Formaldehyde is extremely toxic reacting with proteins to crosslinks peptide chains. Formaldehyde is a metabolic product in many enzymatic reactions and the question of how these enzymes are protected from the formaldehyde that is generated has largely remained unanswered. Early experiments from our laboratory showed that two liver mitochondrial enzymes, dimethylglycine dehydrogenase (DMGDH) and sarcosine dehydrogenase (SDH) catalyze oxidative demethylation reactions (sarcosine is a common name for monomethylglycine). The enzymatic products of these enzymes were the demethylated substrates and formaldehyde, produced from the removed methyl group. Both DMGDH and SDH contain FAD and both have tightly bound tetrahydrofolate (THF), a folate coenzyme. THF binds reversibly with formaldehyde to form 5,10-methylene-THF. At that time we showed that purified DMGDH, with tightly bound THF, reacted with formaldehyde generated during the reaction to form 5,10-methylene-THF. This effectively scavenged the formaldehyde to protect the enzyme. Recently, post-translational modifications on histone tails have been shown to be responsible for epigenetic regulation of gene expression. One of these modifications is methylation of lysine residues. The first enzyme discovered to accomplish demethylation of these modified histones was histone lysine demethylase (LSD1). LSD1 specifically removes methyl groups from di- and mono-methylated lysines at position 4 of histone 3. This enzyme contained tightly bound FAD and the products of the reaction were the demethylated lysine residue and formaldehyde. The mechanism of LSD1 demethylation is analogous to the mechanism previously postulated for DMGDH, i.e. oxidation of the N-methyl bond to the methylene imine followed by hydrolysis to generate formaldehyde. This suggested that THF might also be involved in the LSD1 reaction to scavenge the formaldehyde produced. Our hypotheses are that THF is bound to native LSD1 by analogy to DMGDH and SDH and that the bound THF serves to protect the FAD class of histone demethylases from the destructive effects of formaldehyde generation by formation of 5,10-methylene-THF. We present pilot data showing that decreased folate in livers as a result of dietary folate deficiency is associated with increased levels of methylated lysine 4 of histone 3. This can be a result of decreased LSD1 activity resulting from the decreased folate available to scavenge the formaldehyde produced at the active site caused by the folate deficiency. Because LSD1 can regulate gene expression this suggests that folate may play a more important role than simply serving as a carrier of one-carbon units and be a factor in other diseases associated with low folate.
Collapse
Affiliation(s)
- Benjamin A Garcia
- Epigenetics Program, Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University School of Medicine, 21st Avenue South, Nashville, TN 37232, USA
| | - Lioudmila V Loukachevitch
- Department of Pharmacology, Vanderbilt University School of Medicine, 21st Avenue South, Nashville, TN 37232, USA
| | - Natarajan V Bhanu
- Epigenetics Program, Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Conrad Wagner
- Department of Biochemistry, Vanderbilt University School of Medicine, 21st Avenue South, Nashville, TN 37232, USA.
| |
Collapse
|
168
|
SMARCAD1 is an ATP-dependent stimulator of nucleosomal H2A acetylation via CBP, resulting in transcriptional regulation. Sci Rep 2016; 6:20179. [PMID: 26888216 PMCID: PMC4757861 DOI: 10.1038/srep20179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022] Open
Abstract
Histone acetylation plays a pivotal role in transcriptional regulation, and ATP-dependent nucleosome remodeling activity is required for optimal transcription from chromatin. While these two activities have been well characterized, how they are coordinated remains to be determined. We discovered ATP-dependent histone H2A acetylation activity in Drosophila nuclear extracts. This activity was column purified and demonstrated to be composed of the enzymatic activities of CREB-binding protein (CBP) and SMARCAD1, which belongs to the Etl1 subfamily of the Snf2 family of helicase-related proteins. SMARCAD1 enhanced acetylation by CBP of H2A K5 and K8 in nucleosomes in an ATP-dependent fashion. Expression array analysis of S2 cells having ectopically expressed SMARCAD1 revealed up-regulated genes. Using native genome templates of these up-regulated genes, we found that SMARCAD1 activates their transcription in vitro. Knockdown analysis of SMARCAD1 and CBP indicated overlapping gene control, and ChIP-seq analysis of these commonly controlled genes showed that CBP is recruited to the promoter prior to SMARCAD1. Moreover, Drosophila genetic experiments demonstrated interaction between SMARCAD1/Etl1 and CBP/nej during development. The interplay between the remodeling activity of SMARCAD1 and histone acetylation by CBP sheds light on the function of chromatin and the genome-integrity network.
Collapse
|
169
|
Ma F, Zhang CY. Histone modifying enzymes: novel disease biomarkers and assay development. Expert Rev Mol Diagn 2016; 16:297-306. [DOI: 10.1586/14737159.2016.1135057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
170
|
Ma F, Liu M, Wang ZY, Zhang CY. Multiplex detection of histone-modifying enzymes by total internal reflection fluorescence-based single-molecule detection. Chem Commun (Camb) 2016; 52:1218-21. [DOI: 10.1039/c5cc08797j] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We develop a sensitive and selective method for the multiplex detection of histone-modifying enzymes using total internal reflection fluorescence-based single-molecule detection.
Collapse
Affiliation(s)
- Fei Ma
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Meng Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Zi-yue Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
171
|
Tarantino G, Finelli C. Lipids, Low-Grade Chronic Inflammation and NAFLD. HANDBOOK OF LIPIDS IN HUMAN FUNCTION 2016:731-759. [DOI: 10.1016/b978-1-63067-036-8.00028-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
172
|
Yue L, Du J, Ye F, Chen Z, Li L, Lian F, Zhang B, Zhang Y, Jiang H, Chen K, Li Y, Zhou B, Zhang N, Yang Y, Luo C. Identification of novel small-molecule inhibitors targeting menin–MLL interaction, repurposing the antidiarrheal loperamide. Org Biomol Chem 2016; 14:8503-19. [DOI: 10.1039/c6ob01248e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Scaffold hopping combines with biochemical studies and medicinal chemistry optimizations, leading to potent inhibitors of the menin–MLL interaction.
Collapse
|
173
|
Tarantino G, Finelli C. Lipids Nutrition and Epigenetic Modification in Obesity-Related Co-Morbitities * *All authors equally contributed to draft the manuscript. All authors gave final approval of the version to be published. Disclosure statement: The authors declare that there are no conflicts of interest. HANDBOOK OF LIPIDS IN HUMAN FUNCTION 2016:85-110. [DOI: 10.1016/b978-1-63067-036-8.00004-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
174
|
Li X, Li C, Li X, Cui P, Li Q, Guo Q, Han H, Liu S, Sun G. Involvement of Histone Lysine Methylation in p21 Gene Expression in Rat Kidney In Vivo and Rat Mesangial Cells In Vitro under Diabetic Conditions. J Diabetes Res 2016; 2016:3853242. [PMID: 27652271 PMCID: PMC5019898 DOI: 10.1155/2016/3853242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/27/2016] [Indexed: 01/21/2023] Open
Abstract
Diabetic nephropathy (DN), a common complication associated with type 1 and type 2 diabetes mellitus (DM), characterized by glomerular mesangial expansion, inflammation, accumulation of extracellular matrix (ECM) protein, and hypertrophy, is the major cause of end-stage renal disease (ESRD). Increasing evidence suggested that p21-dependent glomerular and mesangial cell (MC) hypertrophy play key roles in the pathogenesis of DN. Recently, posttranscriptional modifications (PTMs) have uncovered novel molecular mechanisms involved in DN. However, precise regulatory mechanism of histone lysine methylation (HKme) mediating p21 related hypertrophy associated with DN is not clear. We evaluated the roles of HKme and histone methyltransferase (HMT) SET7/9 in p21 gene expression in glomeruli of diabetic rats and in high glucose- (HG-) treated rat mesangial cells (RMCs). p21 gene expression was upregulated in diabetic rats glomeruli; chromatin immunoprecipitation (ChIP) assays showed decreased histone H3-lysine9-dimethylation (H3K9me2) accompanied with enhanced histone H3-lysine4-methylation (H3K4me1/3) and SET7/9 occupancies at the p21 promoter. HG-treated RMCs exhibited increased p21 mRNA, H3K4me level, SET7/9 recruitment, and inverse H3K9me, which were reversed by TGF-β1 antibody. These data uncovered key roles of H3Kme and SET7/9 responsible for p21 gene expression in vivo and in vitro under diabetic conditions and confirmed preventive effect of TGF-β1 antibody on DN.
Collapse
Affiliation(s)
- Xiangjun Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, Jilin 130021, China
| | - Chaoyuan Li
- Department of Nephrology, 2nd Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Xiaoxia Li
- Department of Nephrology, 2nd Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Peihe Cui
- Department of Nephrology, 2nd Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Qifeng Li
- Department of Nephrology, 2nd Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Qiaoyan Guo
- Department of Nephrology, 2nd Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hongbo Han
- Department of Endocrinology, 208th Hospital of Chinese PLA, Changchun, Jilin 130062, China
| | - Shujun Liu
- Department of Nephrology, 2nd Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Guangdong Sun
- Department of Nephrology, 2nd Hospital of Jilin University, Changchun, Jilin 130041, China
- *Guangdong Sun:
| |
Collapse
|
175
|
Mitrousis N, Tropepe V, Hermanson O. Post-Translational Modifications of Histones in Vertebrate Neurogenesis. Front Neurosci 2015; 9:483. [PMID: 26733796 PMCID: PMC4689847 DOI: 10.3389/fnins.2015.00483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/04/2015] [Indexed: 11/13/2022] Open
Abstract
The process of neurogenesis, through which the entire nervous system of an organism is formed, has attracted immense scientific attention for decades. How can a single neural stem cell give rise to astrocytes, oligodendrocytes, and neurons? Furthermore, how is a neuron led to choose between the hundreds of different neuronal subtypes that the vertebrate CNS contains? Traditionally, niche signals and transcription factors have been on the spotlight. Recent research is increasingly demonstrating that the answer may partially lie in epigenetic regulation of gene expression. In this article, we comprehensively review the role of post-translational histone modifications in neurogenesis in both the embryonic and adult CNS.
Collapse
Affiliation(s)
- Nikolaos Mitrousis
- Institute of Biomaterials and Biomedical Engineering, University of Toronto Toronto, ON, Canada
| | - Vincent Tropepe
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto Toronto, ON, Canada
| | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
176
|
A DNMT3A2-HDAC2 Complex Is Essential for Genomic Imprinting and Genome Integrity in Mouse Oocytes. Cell Rep 2015; 13:1552-60. [PMID: 26586441 DOI: 10.1016/j.celrep.2015.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/07/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022] Open
Abstract
Maternal genomic imprints are established during oogenesis. Histone deacetylases (HDACs) 1 and 2 are required for oocyte development in mouse, but their role in genomic imprinting is unknown. We find that Hdac1:Hdac2(-/-) double-mutant growing oocytes exhibit global DNA hypomethylation and fail to establish imprinting marks for Igf2r, Peg3, and Srnpn. Global hypomethylation correlates with increased retrotransposon expression and double-strand DNA breaks. Nuclear-associated DNMT3A2 is reduced in double-mutant oocytes, and injecting these oocytes with Hdac2 partially restores DNMT3A2 nuclear staining. DNMT3A2 co-immunoprecipitates with HDAC2 in mouse embryonic stem cells. Partial loss of nuclear DNMT3A2 and HDAC2 occurs in Sin3a(-/-) oocytes, which exhibit decreased DNA methylation of imprinting control regions for Igf2r and Srnpn, but not Peg3. These results suggest seminal roles of HDAC1/2 in establishing maternal genomic imprints and maintaining genomic integrity in oocytes mediated in part through a SIN3A complex that interacts with DNMT3A2.
Collapse
|
177
|
Leung YT, Shi L, Maurer K, Song L, Zhang Z, Petri M, Sullivan KE. Interferon regulatory factor 1 and histone H4 acetylation in systemic lupus erythematosus. Epigenetics 2015; 10:191-9. [PMID: 25611806 DOI: 10.1080/15592294.2015.1009764] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Histone acetylation modulates gene expression and has been described as increased in systemic lupus erythematosus (SLE). We investigated interferon regulatory factor 1 (IRF1) interactions that influence H4 acetylation (H4ac) in SLE. Intracellular flow cytometry for H4 acetylated lysine (K) 5, K8, K12, and K16 was performed. Histone acetylation was defined in monocytes and T cells from controls and SLE patients. RNA-Seq studies were performed on monocytes to look for an imbalance in histone acetyltransferases and histone deacetylase enzyme expression. Expression levels were validated using real-time quantitative RT-PCR. IRF1 induction of H4ac was evaluated using D54MG cells overexpressing IRF1. IRF1 protein interactions were studied using co-immunoprecipitation assays. IRF1-dependent recruitment of histone acetyltransferases to target genes was examined by ChIP assays using p300 antibody. Flow cytometry data showed significantly increased H4K5, H4K8, H4K12, and H4K16 acetylation in SLE monocytes. HDAC3 and HDAC11 gene expression were decreased in SLE monocytes. PCAF showed significantly higher gene expression in SLE than controls. IRF1-overexpressing D54MG cells were associated with significantly increased H4K5, H4K8, and H4K12 acetylation compared to vector-control D54MG cells both globally and at specific target genes. Co-immunoprecipitation studies using D54MG cells revealed IRF1 protein-protein interactions with PCAF, P300, CBP, GCN5, ATF2, and HDAC3. ChIP experiments demonstrated increased p300 recruitment to known IRF1 targets in D54MG cells overexpressing IRF1. In contrast, p300 binding to IRF1 targets decreased in D54MG cells with IRF1 knockdown. SLE appears to be associated with an imbalance in histone acetyltransferases and histone deacetylase enzymes favoring pathologic H4 acetylation. Furthermore, IRF1 directly interacts with chromatin modifying enzymes, supporting a model where recruitment to specific target genes is mediated in part by IRF1.
Collapse
Affiliation(s)
- Yiu Tak Leung
- a Division of Rheumatology ; University of Pennsylvania Perelman School of Medicine ; Philadelphia , PA USA
| | | | | | | | | | | | | |
Collapse
|
178
|
Zhao N, Tsuda H, Murofushi T, Imai K, Ochiai K, Yang P, Suzuki N. Chaetocin inhibits RANKL-induced osteoclast differentiation through reduction of Blimp1 in Raw264.7 cells. Life Sci 2015; 143:1-7. [PMID: 26514304 DOI: 10.1016/j.lfs.2015.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 10/22/2022]
Abstract
AIMS Periodontitis is one of the most common bone-destructive diseases. Osteoclast is differentiated from hematopoietic macrophage-like cells through receptor activator of NFκB ligand (RANKL)-RANK signaling system, and the reduction in osteoclast formation may result in prevention of bone-resorptive diseases. Chaetocin is a compound isolated from fungal cultures and has been reported as a potent and selective inhibitor of suppressor of variegation 3-9 homolog 1 (Suv39h1), which catalyzes histone methylation on histone H3 lysine 9 (H3K9) residues. However, the effect of chaetocin on osteoclast differentiation is uncertain. In this study, we examine the effect of chaetocin on RANKL-induced osteoclast differentiation and cell growth. MAIN METHODS Mouse macrophage-like Raw264.7 cells were treated with RANKL in the presence or absence of chaetocin, and tartrate-resistant acid phosphatase (TRAP) staining was performed. Cell growth was measured as the amount of DNA stained with SYTOX Green dye. Expression and production of osteoclast differentiation markers, anti-osteoclastogenic genes, B lymphocyte-induced maturation protein-1 (Blimp1), and cell growth suppressors were examined by qRT-PCR or/and Western blot analysis. KEY FINDINGS Here we show that chaetocin dose-dependently reduced RANKL-induced osteoclast differentiation and cell growth via Blimp1 downregulation which results in the upregulation of osteoclast differentiation inhibitors and cell growth suppressors. These effects were not derived from the chaetocin's inhibitory effect of Suv39h1. SIGNIFICANCE These results suggest that chaetocin suppresses RANKL-induced osteoclastogenesis and cell growth through blimp1 downregulation, followed by induction of anti-osteoclastogenic genes and cell growth suppressors, without inhibition of Suv39h1. Thus, chaetocin might be a drug candidate for the prevention of bone resorption in bone-destructive diseases.
Collapse
Affiliation(s)
- Ning Zhao
- Department of Biochemistry, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Endodontics, School of Dentistry, Shandong University, 44-1 West Wen Hua Road, Jinan, Shandong Province 250012, China
| | - Hiromasa Tsuda
- Department of Biochemistry, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Takahisa Murofushi
- Department of Biochemistry, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kenichi Imai
- Department of Oral Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kuniyasu Ochiai
- Department of Oral Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Pishan Yang
- Department of Periodontics, School of Dentistry, Shandong University, 44-1 West Wen Hua Road, Jinan, Shandong Province 250012, China
| | - Naoto Suzuki
- Department of Biochemistry, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| |
Collapse
|
179
|
Tachibana K, Gotoh E, Kawamata N, Ishimoto K, Uchihara Y, Iwanari H, Sugiyama A, Kawamura T, Mochizuki Y, Tanaka T, Sakai J, Hamakubo T, Kodama T, Doi T. Analysis of the subcellular localization of the human histone methyltransferase SETDB1. Biochem Biophys Res Commun 2015; 465:725-31. [PMID: 26296461 DOI: 10.1016/j.bbrc.2015.08.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 01/03/2023]
Abstract
SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that methylates lysine 9 on histone H3. Although it is important to know the localization of proteins to elucidate their physiological function, little is known of the subcellular localization of human SETDB1. In the present study, to investigate the subcellular localization of hSETDB1, we established a human cell line constitutively expressing enhanced green fluorescent protein fused to hSETDB1. We then generated a monoclonal antibody against the hSETDB1 protein. Expression of both exogenous and endogenous hSETDB1 was observed mainly in the cytoplasm of various human cell lines. Combined treatment with the nuclear export inhibitor leptomycin B and the proteasome inhibitor MG132 led to the accumulation of hSETDB1 in the nucleus. These findings suggest that hSETDB1, localized in the nucleus, might undergo degradation by the proteasome and be exported to the cytosol, resulting in its detection mainly in the cytosol.
Collapse
Affiliation(s)
- Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Eiko Gotoh
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Natsuko Kawamata
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenji Ishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Yoshie Uchihara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Akira Sugiyama
- Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Takeshi Kawamura
- Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Yasuhiro Mochizuki
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Toshiya Tanaka
- Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Tatsuhiko Kodama
- Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
180
|
|
181
|
Abstract
Histone modifications and DNA methylation represent central dynamic and reversible processes that regulate gene expression and contribute to cellular phenotypes. These epigenetic marks have been shown to play fundamental roles in a diverse set of signaling and behavioral outcomes. Psychiatric disorders such as schizophrenia and depression are complex and heterogeneous diseases with multiple and independent factors that may contribute to their pathophysiology, making challenging to find a link between specific elements and the underlying mechanisms responsible for the disorder and its treatment. Growing evidences suggest that epigenetic modifications in certain brain regions and neural circuits represent a key mechanism through which environmental factors interact with individual's genetic constitution to affect risk of psychiatric conditions throughout life. This review focuses on recent advances that directly implicate epigenetic modifications in schizophrenia and antipsychotic drug action.
Collapse
Affiliation(s)
- Daisuke Ibi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Javier González-Maeso
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Physiology and Biophysics, Virginia Commonwealth University Medical School, Richmond, VA 23298, USA.
| |
Collapse
|
182
|
Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 2015; 16:593-610. [PMID: 26373265 DOI: 10.1038/nrm4048] [Citation(s) in RCA: 407] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ageing is affected by both genetic and non-genetic factors. Here, we review the chromatin-based epigenetic changes that occur during ageing, the role of chromatin modifiers in modulating lifespan and the importance of epigenetic signatures as biomarkers of ageing. We also discuss how epigenome remodelling by environmental stimuli affects several aspects of transcription and genomic stability, with important consequences for longevity, and outline epigenetic differences between the 'mortal soma' and the 'immortal germ line'. Finally, we discuss the inheritance of characteristics of ageing and potential chromatin-based strategies to delay or reverse hallmarks of ageing or age-related diseases.
Collapse
|
183
|
Nguyen HC, Wang M, Salsburg A, Knuckley B. Development of a Plate-Based Screening Assay to Investigate the Substrate Specificity of the PRMT Family of Enzymes. ACS COMBINATORIAL SCIENCE 2015; 17:500-5. [PMID: 26252756 DOI: 10.1021/acscombsci.5b00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There are nine protein arginine methyltransferases (PRMTs 1-9) expressed in humans that vary in both subcellular localization and substrate specificity. The variation in substrate specificity between isozymes leads to competing effects that result in either activation or repression of tumor suppressor genes. Current methods used to study substrate specificity for these enzymes utilize radioisotopic labeling of substrates, mass spectrometry analysis of complex samples, or coupled assays that monitor cofactor degradation. Herein, we report the development of a rapid, nonradioactive, and sensitive method for screening multiple peptides in parallel to gain insight into the substrate specificity of PRMT enzymes. Our assay provides a major advantage over other high-throughput screening assays (e.g., ELISA, AlphaScreen chemiluminescence) by eliminating the need for purification of individual peptides and provides a timesaving, cost-effective alternative to the traditional PRMT assays. A one-bead one-compound (OBOC) peptide library was synthesized and subsequently screened against PRMT1 in a 96-well plate. This screen resulted in identification of a novel PRMT1 substrate with kinetic parameters similar to histone H4-21 (e.g., the best-known PRMT1 peptide substrate).
Collapse
Affiliation(s)
- Hao C. Nguyen
- Department
of Chemistry, University of North Florida, Jacksonville, Florida 32224-7699, United States
| | - Min Wang
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts, Worcester, Massachusetts 01655, United States
| | - Andrew Salsburg
- Department
of Chemistry, University of North Florida, Jacksonville, Florida 32224-7699, United States
| | - Bryan Knuckley
- Department
of Chemistry, University of North Florida, Jacksonville, Florida 32224-7699, United States
| |
Collapse
|
184
|
Zhang L, Deng L, Chen F, Yao Y, Wu B, Wei L, Mo Q, Song Y. Inhibition of histone H3K79 methylation selectively inhibits proliferation, self-renewal and metastatic potential of breast cancer. Oncotarget 2015; 5:10665-77. [PMID: 25359765 PMCID: PMC4279401 DOI: 10.18632/oncotarget.2496] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/16/2014] [Indexed: 01/05/2023] Open
Abstract
Histone lysine methylation regulates gene expression and cancer initiation. Bioinformatics analysis suggested that DOT1L, a histone H3-lysine79 (H3K79) methyltransferase, plays a potentially important role in breast cancer. DOT1L inhibition selectively inhibited proliferation, self-renewal, metastatic potential of breast cancer cells and induced cell differentiation. In addition, inhibitors of S-adenosylhomocysteine hydrolase (SAHH), such as neplanocin and 3-deazaneplanocin, also inhibited both H3K79 methylation and proliferation of breast cancer cells in vitro and in vivo. The activity of SAHH inhibitors was previously attributed to inhibition of H3K27 methyltransferase EZH2. However, inhibition of EZH2 by a specific inhibitor did not contribute to cell death. SAHH inhibitors had only weak activity against H3K27 methylation and their activity is therefore mainly due to DOT1L/H3K79 methylation inhibition. Overall, we showed that DOT1L is a potential drug target for breast cancer.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lisheng Deng
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fengju Chen
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuan Yao
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bulan Wu
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liping Wei
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qianxing Mo
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA. Department of Medicine, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongcheng Song
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA. Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
185
|
Ray PD, Huang BW, Tsuji Y. Coordinated regulation of Nrf2 and histone H3 serine 10 phosphorylation in arsenite-activated transcription of the human heme oxygenase-1 gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1277-88. [PMID: 26291278 DOI: 10.1016/j.bbagrm.2015.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/22/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
Expression of the antioxidant gene heme oxygenase-1 (HO-1) is primarily induced through NF-E2-related factor 2 (Nrf2)-mediated activation of the antioxidant response element (ARE). Gene transcription is coordinately regulated by transcription factor activity at enhancer elements and epigenetic alterations such as the posttranslational modification of histone proteins. However, the role of histone modifications in the Nrf2-ARE axis remains largely uncharacterized. The environmental contaminant arsenite is a potent inducer of both HO-1 expression and phosphorylation of histone H3 serine 10 (H3S10); therefore, we investigated the relationships between Nrf2 and H3S10 phosphorylation in arsenite-induced, ARE-dependent, transcriptional activation of the human HO-1 gene. Arsenite increased phosphorylation of H3S10 both globally and at the HO-1 promoter concomitantly with HO-1 transcription in human HaCaT keratinocytes. Conversely, arsenite-induced H3S10 phosphorylation and HO-1 expression were blocked by N-acetylcysteine (NAC), the c-Jun N-terminal kinase (JNK) inhibitor SP600125, and JNK knockdown (siJNK). Interestingly, ablation of arsenite-induced H3S10 phosphorylation by SP600125 or siJNK did not inhibit Nrf2 nuclear accumulation nor ARE binding, despite inhibiting HO-1 expression. In response to arsenite, binding of Nrf2 to the HO-1 ARE preceded phosphorylation of H3S10 at the HO-1 ARE. Furthermore, arsenite-mediated occupancy of phosphorylated H3S10 at the HO-1 ARE was decreased in Nrf2-deficient mouse embryonic fibroblasts. These results suggest the involvement of H3S10 phosphorylation in the Nrf2-ARE axis by proposing that Nrf2 may influence H3S10 phosphorylation at the HO-1 ARE and additional promoter regions. Our data highlights the complex interplay between Nrf2 and H3S10 phosphorylation in arsenite-activated HO-1 transcription.
Collapse
Affiliation(s)
- Paul D Ray
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695-7633, United States
| | - Bo-Wen Huang
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695-7633, United States
| | - Yoshiaki Tsuji
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695-7633, United States.
| |
Collapse
|
186
|
Stefanowicz D, Lee JY, Lee K, Shaheen F, Koo HK, Booth S, Knight DA, Hackett TL. Elevated H3K18 acetylation in airway epithelial cells of asthmatic subjects. Respir Res 2015; 16:95. [PMID: 26243279 PMCID: PMC4531814 DOI: 10.1186/s12931-015-0254-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/21/2015] [Indexed: 12/23/2022] Open
Abstract
Background Epigenetic adjustments of the chromatin architecture through histone modifications are reactive to the environment and can establish chromatin states which are permissive or repressive to gene expression. Epigenetic regulation of gene expression is cell specific and therefore, it is important to understand its contribution to individual cellular responses in tissues like the airway epithelium which forms the mucosal barrier to the inhaled environment within the lung. The airway epithelium of asthmatics is abnormal with dysregulation of genes such as epidermal growth factor receptor (EGFR), the ΔN isoform of the transcription factor p63 (ΔNp63), and signal transducer and activator of transcription 6 (STAT6), integral to differentiation, proliferation, and inflammation. It is important to establish in diseases like asthma how histone modifications affect tissue responses such as proliferation and differentiation. Objectives To characterize the global histone acetylation and methylation status in the epithelium of asthmatic compared to healthy subjects and to identify the impact of these variations on genes involved in epithelial functions. Methods Whole lungs were obtained from healthy and asthmatic subjects (n = 6) from which airway epithelial cells (AECs) were isolated and airway sections were taken for analysis of histone lysine acetylation and methylation by immunohistochemistry. AECs were subjected to chromatin immunoprecipitation (ChIP) using anti-H3K18ac and anti-H3K4me2 antibodies followed by RT-PCR targeting ΔNp63, EGFR, and STAT6. AECs were also treated with TSA and changes in ΔNp63, EGFR, and STAT6 expression were determined. Results We identified an increase in the acetylation of lysine 18 on histone 3 (H3K18ac) and trimethylation of lysine 9 on histone 3 (H3K9me3) in the airway epithelium of asthmatic compared to healthy subjects. We found increased association of H3K18ac around the transcription start site of ΔNp63, EGFR, and STAT6 in AECs of asthmatics. However, we were unable to modify the expression of these genes with the use of the HDAC inhibitor TSA in healthy subjects. Discussion The airway epithelium from asthmatic subjects displays increased acetylation of H3K18 and association of this mark around the transcription start site of ΔNp63, EGFR, and STAT6. These findings suggest a complex interaction between histone modifications and gene regulation in asthma. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0254-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dorota Stefanowicz
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, V6Z 1Y6, BC, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Ja Young Lee
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, V6Z 1Y6, BC, Canada
| | - Kevin Lee
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, V6Z 1Y6, BC, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Furquan Shaheen
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, V6Z 1Y6, BC, Canada
| | - Hyun-Kyoung Koo
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, V6Z 1Y6, BC, Canada
| | - Steven Booth
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, V6Z 1Y6, BC, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Tillie-Louise Hackett
- UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, V6Z 1Y6, BC, Canada. .,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
187
|
Kim JD, Lee A, Choi J, Park Y, Kang H, Chang W, Lee MS, Kim J. Epigenetic modulation as a therapeutic approach for pulmonary arterial hypertension. Exp Mol Med 2015; 47:e175. [PMID: 26228095 PMCID: PMC4525299 DOI: 10.1038/emm.2015.45] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but progressive and currently incurable disease, which is characterized by vascular remodeling in association with muscularization of the arterioles, medial thickening and plexiform lesion formation. Despite our advanced understanding of the pathogenesis of PAH and the recent therapeutic advances, PAH still remains a fatal disease. In addition, the susceptibility to PAH has not yet been adequately explained. Much evidence points to the involvement of epigenetic changes in the pathogenesis of a number of human diseases including cancer, peripheral hypertension and asthma. The knowledge gained from the epigenetic study of various human diseases can also be applied to PAH. Thus, the pursuit of novel therapeutic targets via understanding the epigenetic alterations involved in the pathogenesis of PAH, such as DNA methylation, histone modification and microRNA, might be an attractive therapeutic avenue for the development of a novel and more effective treatment. This review provides a general overview of the current advances in epigenetics associated with PAH, and discusses the potential for improved treatment through understanding the role of epigenetics in the development of PAH.
Collapse
Affiliation(s)
- Jun-Dae Kim
- Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Aram Lee
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Jihea Choi
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Youngsook Park
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Hyesoo Kang
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, Korea
| | - Myeong-Sok Lee
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
188
|
Abstract
Histone modifications and DNA methylation represent central dynamic and reversible processes that regulate gene expression and contribute to cellular phenotypes. These epigenetic marks have been shown to play fundamental roles in a diverse set of signaling and behavioral outcomes. Serotonin is a monoamine that regulates numerous physiological responses including those in the central nervous system. The cardinal signal transduction mechanisms via serotonin and its receptors are well established, but fundamental questions regarding complex interactions between the serotonin system and heritable epigenetic modifications that exert control on gene function remain a topic of intense research and debate. This review focuses on recent advances and contributions to our understanding of epigenetic mechanisms of serotonin receptor-dependent signaling, with focus on psychiatric disorders such as schizophrenia and depression.
Collapse
Affiliation(s)
- Terrell Holloway
- Department of Psychiatry, ‡Department of Neurology, and §Friedman Brain Institute, Icahn School of Medicine at Mount Sinai New York, New York 10029, United States
| | - Javier González-Maeso
- Department of Psychiatry, ‡Department of Neurology, and §Friedman Brain Institute, Icahn School of Medicine at Mount Sinai New York, New York 10029, United States
| |
Collapse
|
189
|
Zhou P, Wu E, Alam HB, Li Y. Histone cleavage as a mechanism for epigenetic regulation: current insights and perspectives. Curr Mol Med 2015; 14:1164-72. [PMID: 25323999 DOI: 10.2174/1566524014666141015155630] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 11/22/2022]
Abstract
Discovered over a century ago, histones constitute one of the oldest families of proteins and have been remarkably conserved throughout eukaryotic evolution. However, only for the past 30 years have histones demonstrated that their influence extends far beyond packaging DNA. To create the various chromatin structures that are necessary for DNA function in higher eukaryotes, histones undergo posttranslational modifications. While many such modifications are well documented, others, such as histone tail cleavage are less understood. Recent studies have discovered several proteases that cleave histones and have suggested roles for clipped histones in stem cell differentiation and aging in addition to infection and inflammation; the underlying mechanisms, however, are uncertain. One histone class in particular, histone H3, has received outstanding interest due to its numerous N-terminal modification sites and prevalence in regulating homeostatic processes. Here, with special consideration of H3, we will discuss the novel findings regarding histone proteolytic cleavage as well as their significance in the studies of immunology and epigenetics.
Collapse
Affiliation(s)
| | | | | | - Y Li
- University of Michigan Medical School, Section of General Surgery, University of Michigan Hospital, Ann Arbor, MI 48109, USA.
| |
Collapse
|
190
|
Lee YJ, Han ME, Baek SJ, Kim SY, Oh SO. Roles of DPY30 in the Proliferation and Motility of Gastric Cancer Cells. PLoS One 2015; 10:e0131863. [PMID: 26147337 PMCID: PMC4493084 DOI: 10.1371/journal.pone.0131863] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/08/2015] [Indexed: 12/11/2022] Open
Abstract
Various types of histone methylation have been associated with cancer progression. Depending on the methylation site in histone proteins, its effects on transcription are different. DPY30 is a common member of SET1/MLL histone H3K4 methyltransferase complexes. However, its expression and roles in gastric cancer have been poorly characterized. To determine whether DPY30 has pathophysiological roles in gastric cancer, its expression and roles were examined. Immunohistochemistry and real time PCR showed up-regulation of DPY30 expression in some gastric cancer cell lines and patients’ tissues. Its knockdown by siRNA decreased the proliferation, migration, and invasion of gastric cancer cells, whereas its overexpression showed the opposite effects. These results indicate that DPY30 has critical roles in the proliferation, migration, and invasion of gastric cancer cells, and suggest DPY30 might be a therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Yong Joo Lee
- Departments of Anatomy, School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Myoung-Eun Han
- Departments of Anatomy, School of Medicine, Pusan National University, Busan, Republic of Korea
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Busan, Republic of Korea
| | - Su-Jin Baek
- Medical Genomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Seon-Young Kim
- Medical Genomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Sae-Ock Oh
- Departments of Anatomy, School of Medicine, Pusan National University, Busan, Republic of Korea
- * E-mail:
| |
Collapse
|
191
|
Wang J, Meng X, Yuan C, Harrison AP, Chen M. The roles of cross-talk epigenetic patterns in Arabidopsis thaliana. Brief Funct Genomics 2015; 15:278-87. [PMID: 26141715 DOI: 10.1093/bfgp/elv025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epigenetic mechanisms, including histone modifications, DNA cytosine methylation, histone variants and noncoding RNAs (ncRNAs), play a key role in determining transcriptional outcomes. Recently, many studies have demonstrated that the different epigenetic mechanisms interplay with each other rather than work independently. In this article, we outline a framework for how different epigenetic mechanisms work with each other in Arabidopsis thalianaWe build a network of cross-talk between chromatin marks based on six classes of cross-talk interactions. The first pattern details coordinated modifications that act together to enhance or repress gene expression. The second pattern details bivalent modifications that act antagonistically toward gene expression. The third pattern is for unilateral promotion of one modification by the existence of another modification. The fourth pattern is for unilateral inhibition of one modification by another modification. The fifth pattern is for mutual inhibitory patterns. The sixth pattern is for epigenetic modifications that appear independent.We also explore the mutual regulation between chromatin marks and ncRNAs in various ways. These regulations can be divided into six parts: how ncRNA affects the binding of chromatin mark, such as miR2Epi, siR2Epi and lncR2Epi; how chromatin mark regulates ncRNA, such as Epi2miR, Epi2siR and Epi2lncR.A comprehensive network of cross-talk between different epigenetic mechanisms will help in fully understanding the functional roles and biological impacts of epigenetic regulation.
Collapse
|
192
|
Xiao Y, Su X, Huang W, Zhang J, Peng C, Huang H, Wu X, Huang H, Xia M, Ling W. Role of S-adenosylhomocysteine in cardiovascular disease and its potential epigenetic mechanism. Int J Biochem Cell Biol 2015; 67:158-66. [PMID: 26117455 DOI: 10.1016/j.biocel.2015.06.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/08/2015] [Accepted: 06/16/2015] [Indexed: 12/28/2022]
Abstract
Transmethylation reactions utilize S-adenosylmethionine (SAM) as a methyl donor and are central to the regulation of many biological processes: more than fifty SAM-dependent methyltransferases methylate a broad spectrum of cellular compounds including DNA, histones, phospholipids and other small molecules. Common to all SAM-dependent transmethylation reactions is the release of the potent inhibitor S-adenosylhomocysteine (SAH) as a by-product. SAH is reversibly hydrolyzed to adenosine and homocysteine by SAH hydrolase. Hyperhomocysteinemia is an independent risk factor for cardiovascular disease. However, a major unanswered question is if homocysteine is causally involved in disease pathogenesis or simply a passive and indirect indicator of a more complex mechanism. A chronic elevation in homocysteine levels results in a parallel increase in intracellular or plasma SAH, which is a more sensitive biomarker of cardiovascular disease than homocysteine and suggests that SAH is a critical pathological factor in homocysteine-associated disorders. Previous reports indicate that supplementation with folate and B vitamins efficiently lowers homocysteine levels but not plasma SAH levels, which possibly explains the failure of homocysteine-lowering vitamins to reduce vascular events in several recent clinical intervention studies. Furthermore, more studies are focusing on the role and mechanisms of SAH in different chronic diseases related to hyperhomocysteinemia, such as cardiovascular disease, kidney disease, diabetes, and obesity. This review summarizes the current role of SAH in cardiovascular disease and its effect on several related risk factors. It also explores possible the mechanisms, such as epigenetics and oxidative stress, of SAH. This article is part of a Directed Issue entitled: Epigenetic dynamics in development and disease.
Collapse
Affiliation(s)
- Yunjun Xiao
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Xuefen Su
- The Jockey Club School of Public Health and Primary Care, School of Public Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Huang
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jinzhou Zhang
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Chaoqiong Peng
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haixiong Huang
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaomin Wu
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haiyan Huang
- Department of Nutrition and Food Hygiene, Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
193
|
Ngollo M, Dagdemir A, Karsli-Ceppioglu S, Judes G, Pajon A, Penault-Llorca F, Boiteux JP, Bignon YJ, Guy L, Bernard-Gallon DJ. Epigenetic modifications in prostate cancer. Epigenomics 2015; 6:415-26. [PMID: 25333850 DOI: 10.2217/epi.14.34] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is the most common cancer in men and the second leading cause of cancer deaths in men in France. Apart from the genetic alterations in prostate cancer, epigenetics modifications are involved in the development and progression of this disease. Epigenetic events are the main cause in gene regulation and the three most epigenetic mechanisms studied include DNA methylation, histone modifications and microRNA expression. In this review, we summarized epigenetic mechanisms in prostate cancer. Epigenetic drugs that inhibit DNA methylation, histone methylation and histone acetylation might be able to reactivate silenced gene expression in prostate cancer. However, further understanding of interactions of these enzymes and their effects on transcription regulation in prostate cancer is needed and has become a priority in biomedical research. In this study, we summed up epigenetic changes with emphasis on pharmacologic epigenetic target agents.
Collapse
Affiliation(s)
- Marjolaine Ngollo
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Eaf1p Is Required for Recruitment of NuA4 in Targeting TFIID to the Promoters of the Ribosomal Protein Genes for Transcriptional Initiation In Vivo. Mol Cell Biol 2015; 35:2947-64. [PMID: 26100014 DOI: 10.1128/mcb.01524-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/24/2015] [Indexed: 01/13/2023] Open
Abstract
NuA4 (nucleosome acetyltransferase of H4) promotes transcriptional initiation of TFIID (a complex of TBP and TBP-associated factors [TAFs])-dependent ribosomal protein genes involved in ribosome biogenesis. However, it is not clearly understood how NuA4 regulates the transcription of ribosomal protein genes. Here, we show that NuA4 is recruited to the promoters of ribosomal protein genes, such as RPS5, RPL2B, and RPS11B, for TFIID recruitment to initiate transcription, and the recruitment of NuA4 to these promoters is impaired in the absence of its Eaf1p component. Intriguingly, impaired NuA4 recruitment in a Δeaf1 strain depletes recruitment of TFIID (a TAF-dependent form of TBP) but not the TAF-independent form of TBP to the promoters of ribosomal protein genes. However, in the absence of NuA4, SAGA (Spt-Ada-Gcn5-acetyltransferase) is involved in targeting the TAF-independent form of TBP to the promoters of ribosomal protein genes for transcriptional initiation. Thus, NuA4 plays an important role in targeting TFIID to the promoters of ribosomal protein genes for transcriptional initiation in vivo. Such a function is mediated via its targeted histone acetyltransferase activity. In the absence of NuA4, ribosomal protein genes lose TFIID dependency and become SAGA dependent for transcriptional initiation. Collectively, these results provide significant insights into the regulation of ribosomal protein gene expression and, hence, ribosome biogenesis and functions.
Collapse
|
195
|
Renauer P, Coit P, Sawalha AH. Epigenetics and Vasculitis: a Comprehensive Review. Clin Rev Allergy Immunol 2015; 50:357-66. [DOI: 10.1007/s12016-015-8495-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
196
|
Guo Y, Fu X, Jin Y, Sun J, Liu Y, Huo B, Li X, Hu X. Histone demethylase LSD1-mediated repression of GATA-2 is critical for erythroid differentiation. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3153-62. [PMID: 26124638 PMCID: PMC4482369 DOI: 10.2147/dddt.s81911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background The transcription factor GATA-2 is predominantly expressed in hematopoietic stem and progenitor cells and counteracts the erythroid-specific transcription factor GATA-1, to modulate the proliferation and differentiation of hematopoietic cells. During hematopoietic cell differentiation, GATA-2 exhibits dynamic expression patterns, which are regulated by multiple transcription factors. Methods Stable LSD1-knockdown cell lines were established by growing murine erythroleukemia (MEL) or mouse embryonic stem cells together with virus particles, in the presence of Polybrene® at 4 μg/mL, for 24–48 hours followed by puromycin selection (1 μg/mL) for 2 weeks. Real-time polymerase chain reaction (PCR)-based quantitative chromatin immunoprecipitation (ChIP) analysis was used to test whether the TAL1 transcription factor is bound to 1S promoter in the GATA-2 locus or whether LSD1 colocalizes with TAL1 at the 1S promoter. The sequential ChIP assay was utilized to confirm the role of LSD1 in the regulation of H3K4me2 at the GATA-2 locus during erythroid differentiation. Western blot analysis was employed to detect the protein expression. The alamarBlue® assay was used to examine the proliferation of the cells, and the absorbance was monitored at optical density (OD) 570 nm and OD 600 nm. Results In this study, we showed that LSD1 regulates the expression of GATA-2 during erythroid differentiation. Knockdown of LSD1 results in increased GATA-2 expression and inhibits the differentiation of MEL and embryonic stem cells. Furthermore, we demonstrated that LSD1 binds to the 1S promoter of the GATA-2 locus and suppresses GATA-2 expression, via histone demethylation. Conclusion Our data revealed that LSD1 mediates erythroid differentiation, via epigenetic modification of the GATA-2 locus.
Collapse
Affiliation(s)
- Yidi Guo
- School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Xueqi Fu
- School of Life Sciences, Jilin University, Changchun, People's Republic of China ; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, People's Republic of China
| | - Yue Jin
- School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Jing Sun
- School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Ye Liu
- School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Bo Huo
- School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Xiang Li
- School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Xin Hu
- School of Life Sciences, Jilin University, Changchun, People's Republic of China ; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, People's Republic of China ; National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
197
|
Kim JD, Kim E, Koun S, Ham HJ, Rhee M, Kim MJ, Huh TL. Proper Activity of Histone H3 Lysine 4 (H3K4) Methyltransferase Is Required for Morphogenesis during Zebrafish Cardiogenesis. Mol Cells 2015; 38:580-6. [PMID: 25997738 PMCID: PMC4469916 DOI: 10.14348/molcells.2015.0053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/16/2015] [Indexed: 11/27/2022] Open
Abstract
While increasing evidence indicates the important function of histone methylation during development, how this process influences cardiac development in vertebrates has not been explored. Here, we elucidate the functions of two histone H3 lysine 4 (H3K4) methylation enzymes, SMYD3 and SETD7, during zebrafish heart morphogenesis using gene expression profiling by whole mount in situ hybridization and antisense morpholino oligonucleotide (MO)-based gene knockdown. We find both smyd3 and setd7 are highly expressed within developing zebrafish heart and knock-down of these genes led to severe defects in cardiac morphogenesis without altering the expressions pattern of heart markers, including cmlc2, vmhc, and amhc. Furthermore, double knock-down by coinjection of smyd3 and setd7 MOs caused the synergistic defects in heart development. As similar to knock-down effect, overexpression of these genes also caused the heart morphogenesis defect in zebrafish. These results indicate that histone modifying enzymes, SMYD3 and SETD7, appear to function synergistically during heart development and their proper functioning is essential for normal heart morphogenesis during development.
Collapse
Affiliation(s)
- Jun-Dae Kim
- School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University, Daegu 702-701,
Korea
| | - Eunmi Kim
- School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University, Daegu 702-701,
Korea
| | - Soonil Koun
- School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University, Daegu 702-701,
Korea
| | - Hyung-Jin Ham
- School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University, Daegu 702-701,
Korea
| | - Myungchull Rhee
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Myoung-Jin Kim
- School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University, Daegu 702-701,
Korea
| | - Tae-Lin Huh
- School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University, Daegu 702-701,
Korea
- Korea Basic Science Institute Daegu Center, Daegu 702-701,
Korea
| |
Collapse
|
198
|
Schiza S, Mermigkis C, Margaritopoulos GA, Daniil Z, Harari S, Poletti V, Renzoni EA, Torre O, Visca D, Bouloukaki I, Sourvinos G, Antoniou KM. Idiopathic pulmonary fibrosis and sleep disorders: no longer strangers in the night. Eur Respir Rev 2015; 24:327-39. [PMID: 26028644 PMCID: PMC9487812 DOI: 10.1183/16000617.00009114] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The prevalence of obstructive sleep apnoea (OSA) is continuously increasing in patients with idiopathic pulmonary fibrosis (IPF) and, for the first time, the recent IPF guidelines recognise OSA as an important associated comorbidity that can affect patient's survival. Thus, it becomes conceivable that clinicians should refer patients with newly diagnosed IPF to sleep centres for the diagnosis and treatment of OSA as well as for addressing issues regarding the reduced compliance of patients with continuous positive airway pressure therapy. The discovery of biomarkers common to both disorders may help early diagnosis, institution of the most appropriate treatment and follow-up of patients. Better understanding of epigenetic changes may provide useful information about pathogenesis and, possibly, development of new drugs for a dismal disease like IPF. It is now believed that IPF and sleep disorders can coexist in the same patienthttp://ow.ly/LXPSL
Collapse
|
199
|
Gatti L, Sevko A, De Cesare M, Arrighetti N, Manenti G, Ciusani E, Verderio P, Ciniselli CM, Cominetti D, Carenini N, Corna E, Zaffaroni N, Rodolfo M, Rivoltini L, Umansky V, Perego P. Histone deacetylase inhibitor-temozolomide co-treatment inhibits melanoma growth through suppression of Chemokine (C-C motif) ligand 2-driven signals. Oncotarget 2015; 5:4516-28. [PMID: 24980831 PMCID: PMC4147342 DOI: 10.18632/oncotarget.2065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Target-specific agents used in melanoma are not curative, and chemokines are being implicated in drug-resistance to target-specific agents. Thus, the use of conventional agents in rationale combinations may result in optimization of therapy. Because histone deacetylases participate in tumor development and progression, the combination of the pan-inhibitor SAHA and temozolomide might provide a therapeutic advantage. Here, we show synergism between the two drugs in mutant BRAF cell lines, in association with decreased phosphorylation of cell survival proteins (e.g., C-Jun-N-terminal-kinase, JNK). In the spontaneous ret transgenic mouse melanoma model, combination therapy produced a significant disease onset delay and down-regulation of Chemokine (C-C motif) ligand 2 (CCL2), JNK, and of Myeloid-derived suppressor cell recruitment. Co-incubation with a CCL2-blocking-antibody enhanced in vitro cell sensitivity to temozolomide. Conversely, recombinant CCL2 activated JNK in human tumor melanoma cells. In keeping with these results, the combination of a JNK-inhibitor with temozolomide was synergistic. By showing that down-regulation of CCL2-driven signals by SAHA and temozolomide via JNK contributes to reduce melanoma growth, we provide a rationale for the therapeutic advantage of the drug combination. This combination strategy may be effective because of interference both with tumor cell and tumor microenvironment.
Collapse
Affiliation(s)
- Laura Gatti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. These authors contributed equally to this work
| | - Alexandra Sevko
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Heidelberg, Germany. These authors contributed equally to this work
| | - Michelandrea De Cesare
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giacomo Manenti
- Genetic Epidemiology and Pharmacogenomics Unit,Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Medical Genetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Paolo Verderio
- Medical Statistics, Biometry and Bioinformatics Unit,Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara M Ciniselli
- Medical Statistics, Biometry and Bioinformatics Unit,Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Denis Cominetti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nives Carenini
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Corna
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Rodolfo
- Immunotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Immunotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Heidelberg, Germany. These authors contributed equally to this work
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. These authors contributed equally to this work
| |
Collapse
|
200
|
Abstract
Skeletal dysplasias result from disruptions in normal skeletal growth and development and are a major contributor to severe short stature. They occur in approximately 1/5,000 births, and some are lethal. Since the most recent publication of the Nosology and Classification of Genetic Skeletal Disorders, genetic causes of 56 skeletal disorders have been uncovered. This remarkable rate of discovery is largely due to the expanded use of high-throughput genomic technologies. In this review, we discuss these recent discoveries and our understanding of the molecular mechanisms behind these skeletal dysplasia phenotypes. We also cover potential therapies, unusual genetic mechanisms, and novel skeletal syndromes both with and without known genetic causes. The acceleration of skeletal dysplasia genetics is truly spectacular, and these advances hold great promise for diagnostics, risk prediction, and therapeutic design.
Collapse
|