151
|
Nardella F, Halby L, Hammam E, Erdmann D, Cadet-Daniel V, Peronet R, Ménard D, Witkowski B, Mecheri S, Scherf A, Arimondo PB. DNA Methylation Bisubstrate Inhibitors Are Fast-Acting Drugs Active against Artemisinin-Resistant Plasmodium falciparum Parasites. ACS CENTRAL SCIENCE 2020; 6:16-21. [PMID: 31989022 PMCID: PMC6978834 DOI: 10.1021/acscentsci.9b00874] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 05/05/2023]
Abstract
Malaria is the deadliest parasitic disease affecting over 200 million people worldwide. The increasing number of treatment failures due to multi-drug-resistant parasites in South-East Asia hinders the efforts for elimination. It is thus urgent to develop new antimalarials to contain these resistant parasites. Based on a previous report showing the presence of DNA methylation in Plasmodium, we generated new types of DNA methylation inhibitors against malaria parasites. The quinoline-quinazoline-based inhibitors kill parasites, including artemisinin-resistant field isolates adapted to culture, in the low nanomolar range. The compounds target all stages of the asexual cycle, including early rings, during a 6 h treatment period; they reduce DNA methylation in the parasite and show in vivo activity at 10 mg/kg. These potent inhibitors are a new starting point to develop fast-acting antimalarials that could be used in combination with artemisinins.
Collapse
Affiliation(s)
- Flore Nardella
- Unité
Biologie des Interactions Hôte-Parasite, Département
de Parasites et Insectes Vecteurs, Institut
Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Ludovic Halby
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| | - Elie Hammam
- Unité
Biologie des Interactions Hôte-Parasite, Département
de Parasites et Insectes Vecteurs, Institut
Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
- Ecole
Doctorale Complexité du Vivant ED515, Sorbonne Universités, Paris 6, Paris 75005, France
| | - Diane Erdmann
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
- Ecole
Doctorale MTCI ED563, Université
de Paris, Sorbonne Paris Cité, Paris 75006, France
| | - Véronique Cadet-Daniel
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| | - Roger Peronet
- Unité
Biologie des Interactions Hôte-Parasite, Département
de Parasites et Insectes Vecteurs, Institut
Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Didier Ménard
- Unité
Biologie des Interactions Hôte-Parasite, Département
de Parasites et Insectes Vecteurs, Institut
Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
- Malaria
Molecular Epidemiology Unit, Pasteur Institute
in Cambodia, Phnom Penh, Cambodia
| | - Benoit Witkowski
- Malaria
Molecular Epidemiology Unit, Pasteur Institute
in Cambodia, Phnom Penh, Cambodia
| | - Salah Mecheri
- Unité
Biologie des Interactions Hôte-Parasite, Département
de Parasites et Insectes Vecteurs, Institut
Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Artur Scherf
- Unité
Biologie des Interactions Hôte-Parasite, Département
de Parasites et Insectes Vecteurs, Institut
Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
- E-mail:
| | - Paola B. Arimondo
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
- E-mail:
| |
Collapse
|
152
|
Multigenic architecture of piperaquine resistance trait in Plasmodium falciparum. THE LANCET. INFECTIOUS DISEASES 2020; 20:26-27. [DOI: 10.1016/s1473-3099(19)30689-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/22/2019] [Indexed: 11/20/2022]
|
153
|
|
154
|
Murithi JM, Owen ES, Istvan ES, Lee MCS, Ottilie S, Chibale K, Goldberg DE, Winzeler EA, Llinás M, Fidock DA, Vanaerschot M. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol 2019; 27:158-171.e3. [PMID: 31813848 PMCID: PMC7031696 DOI: 10.1016/j.chembiol.2019.11.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/18/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
Abstract
We report detailed susceptibility profiling of asexual blood stages of the malaria parasite Plasmodium falciparum to clinical and experimental antimalarials, combined with metabolomic fingerprinting. Results revealed a variety of stage-specific and metabolic profiles that differentiated the modes of action of clinical antimalarials including chloroquine, piperaquine, lumefantrine, and mefloquine, and identified late trophozoite-specific peak activity and stage-specific biphasic dose-responses for the mitochondrial inhibitors DSM265 and atovaquone. We also identified experimental antimalarials hitting previously unexplored druggable pathways as reflected by their unique stage specificity and/or metabolic profiles. These included several ring-active compounds, ones affecting hemoglobin catabolism through distinct pathways, and mitochondrial inhibitors with lower propensities for resistance than either DSM265 or atovaquone. This approach, also applicable to other microbes that undergo multiple differentiation steps, provides an effective tool to prioritize compounds for further development within the context of combination therapies.
Collapse
Affiliation(s)
- James M Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Edward S Owen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Eva S Istvan
- Department of Medicine, Division of Infectious Diseases, and Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis MO 63130, USA
| | - Marcus C S Lee
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Sabine Ottilie
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Daniel E Goldberg
- Department of Medicine, Division of Infectious Diseases, and Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis MO 63130, USA
| | - Elizabeth A Winzeler
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
155
|
Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Nature 2019; 576:315-320. [PMID: 31776516 PMCID: PMC6911266 DOI: 10.1038/s41586-019-1795-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023]
Abstract
The emergence and spread of drug-resistant Plasmodium falciparum impedes global efforts to control and eliminate malaria. For decades, treatment of malaria has relied on chloroquine (CQ), a safe and affordable 4-aminoquinoline that was highly effective against intra-erythrocytic asexual blood-stage parasites, until resistance arose in Southeast Asia and South America and spread worldwide1. Clinical resistance to the chemically related current first-line combination drug piperaquine (PPQ) has now emerged regionally, reducing its efficacy2. Resistance to CQ and PPQ has been associated with distinct sets of point mutations in the P. falciparum CQ-resistance transporter PfCRT, a 49-kDa member of the drug/metabolite transporter superfamily that traverses the membrane of the acidic digestive vacuole of the parasite3-9. Here we present the structure, at 3.2 Å resolution, of the PfCRT isoform of CQ-resistant, PPQ-sensitive South American 7G8 parasites, using single-particle cryo-electron microscopy and antigen-binding fragment technology. Mutations that contribute to CQ and PPQ resistance localize primarily to moderately conserved sites on distinct helices that line a central negatively charged cavity, indicating that this cavity is the principal site of interaction with the positively charged CQ and PPQ. Binding and transport studies reveal that the 7G8 isoform binds both drugs with comparable affinities, and that these drugs are mutually competitive. The 7G8 isoform transports CQ in a membrane potential- and pH-dependent manner, consistent with an active efflux mechanism that drives CQ resistance5, but does not transport PPQ. Functional studies on the newly emerging PfCRT F145I and C350R mutations, associated with decreased PPQ susceptibility in Asia and South America, respectively6,9, reveal their ability to mediate PPQ transport in 7G8 variant proteins and to confer resistance in gene-edited parasites. Structural, functional and in silico analyses suggest that distinct mechanistic features mediate the resistance to CQ and PPQ in PfCRT variants. These data provide atomic-level insights into the molecular mechanism of this key mediator of antimalarial treatment failures.
Collapse
|
156
|
Abstract
Intensified treatment and control efforts since the early 2000s have dramatically reduced the burden of Plasmodium falciparum malaria. However, drug resistance threatens to derail this progress. In this review, we present four antimalarial resistance case studies that differ in timeline, technical approaches, mechanisms of action, and categories of resistance: chloroquine, sulfadoxine-pyrimethamine, artemisinin, and piperaquine. Lessons learned from prior losses of treatment efficacy, drug combinations, and control strategies will help advance mechanistic research into how P. falciparum parasites acquire resistance to current first-line artemisinin-based combination therapies. Understanding resistance in the clinic and laboratory is essential to prolong the effectiveness of current antimalarial drugs and to optimize the pipeline of future medicines.
Collapse
Affiliation(s)
- Leila S Ross
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
157
|
Capela R, Moreira R, Lopes F. An Overview of Drug Resistance in Protozoal Diseases. Int J Mol Sci 2019; 20:E5748. [PMID: 31731801 PMCID: PMC6888673 DOI: 10.3390/ijms20225748] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/14/2023] Open
Abstract
Protozoan diseases continue to be a worldwide social and economic health problem. Increased drug resistance, emerging cross resistance, and lack of new drugs with novel mechanisms of action significantly reduce the effectiveness of current antiprotozoal therapies. While drug resistance associated to anti-infective agents is a reality, society seems to remain unaware of its proportions and consequences. Parasites usually develops ingenious and innovative mechanisms to achieve drug resistance, which requires more research and investment to fight it. In this review, drug resistance developed by protozoan parasites Plasmodium, Leishmania, and Trypanosoma will be discussed.
Collapse
Affiliation(s)
- Rita Capela
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.M.); (F.L.)
| | | | | |
Collapse
|
158
|
Conrad MD, Rosenthal PJ. Antimalarial drug resistance in Africa: the calm before the storm? THE LANCET. INFECTIOUS DISEASES 2019; 19:e338-e351. [DOI: 10.1016/s1473-3099(19)30261-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/09/2019] [Accepted: 05/09/2019] [Indexed: 11/26/2022]
|
159
|
Cowell AN, Winzeler EA. The genomic architecture of antimalarial drug resistance. Brief Funct Genomics 2019; 18:314-328. [PMID: 31119263 PMCID: PMC6859814 DOI: 10.1093/bfgp/elz008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 11/15/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax, the two protozoan parasite species that cause the majority of cases of human malaria, have developed resistance to nearly all known antimalarials. The ability of malaria parasites to develop resistance is primarily due to the high numbers of parasites in the infected person's bloodstream during the asexual blood stage of infection in conjunction with the mutability of their genomes. Identifying the genetic mutations that mediate antimalarial resistance has deepened our understanding of how the parasites evade our treatments and reveals molecular markers that can be used to track the emergence of resistance in clinical samples. In this review, we examine known genetic mutations that lead to resistance to the major classes of antimalarial medications: the 4-aminoquinolines (chloroquine, amodiaquine and piperaquine), antifolate drugs, aryl amino-alcohols (quinine, lumefantrine and mefloquine), artemisinin compounds, antibiotics (clindamycin and doxycycline) and a napthoquinone (atovaquone). We discuss how the evolution of antimalarial resistance informs strategies to design the next generation of antimalarial therapies.
Collapse
Affiliation(s)
- Annie N Cowell
- Division of Infectious Diseases and Global Health, Department of Medicine, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| |
Collapse
|
160
|
Zhao Y, Liu Z, Soe MT, Wang L, Soe TN, Wei H, Than A, Aung PL, Li Y, Zhang X, Hu Y, Wei H, Zhang Y, Burgess J, Siddiqui FA, Menezes L, Wang Q, Kyaw MP, Cao Y, Cui L. Genetic Variations Associated with Drug Resistance Markers in Asymptomatic Plasmodium falciparum Infections in Myanmar. Genes (Basel) 2019; 10:genes10090692. [PMID: 31505774 PMCID: PMC6770986 DOI: 10.3390/genes10090692] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 12/30/2022] Open
Abstract
The emergence and spread of drug resistance is a problem hindering malaria elimination in Southeast Asia. In this study, genetic variations in drug resistance markers of Plasmodium falciparum were determined in parasites from asymptomatic populations located in three geographically dispersed townships of Myanmar by PCR and sequencing. Mutations in dihydrofolate reductase (pfdhfr), dihydropteroate synthase (pfdhps), chloroquine resistance transporter (pfcrt), multidrug resistance protein 1 (pfmdr1), multidrug resistance-associated protein 1 (pfmrp1), and Kelch protein 13 (k13) were present in 92.3%, 97.6%, 84.0%, 98.8%, and 68.3% of the parasites, respectively. The pfcrt K76T, pfmdr1 N86Y, pfmdr1 I185K, and pfmrp1 I876V mutations were present in 82.7%, 2.5%, 87.5%, and 59.8% isolates, respectively. The most prevalent haplotypes for pfdhfr, pfdhps, pfcrt and pfmdr1 were 51I/59R/108N/164L, 436A/437G/540E/581A, 74I/75E/76T/220S/271E/326N/356T/371I, and 86N/130E/184Y/185K/1225V, respectively. In addition, 57 isolates had three different point mutations (K191T, F446I, and P574L) and three types of N-terminal insertions (N, NN, NNN) in the k13 gene. In total, 43 distinct haplotypes potentially associated with multidrug resistance were identified. These findings demonstrate a high prevalence of multidrug-resistant P. falciparum in asymptomatic infections from diverse townships in Myanmar, emphasizing the importance of targeting asymptomatic infections to prevent the spread of drug-resistant P.falciparum.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Ziling Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon 11211, Myanmar.
| | - Lin Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Than Naing Soe
- Department of Public Health, Ministry of Health and Sports, Nay Pyi Taw 15011, Myanmar.
| | - Huanping Wei
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Aye Than
- Myanmar Health Network Organization, Yangon 11211, Myanmar.
| | - Pyae Linn Aung
- Myanmar Health Network Organization, Yangon 11211, Myanmar.
| | - Yuling Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Xuexing Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Yubing Hu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Haichao Wei
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Yangminghui Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Jessica Burgess
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA.
| | - Faiza A Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA.
| | - Lynette Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA.
| | - Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | | | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA.
| |
Collapse
|
161
|
Ishengoma DS, Saidi Q, Sibley CH, Roper C, Alifrangis M. Deployment and utilization of next-generation sequencing of Plasmodium falciparum to guide anti-malarial drug policy decisions in sub-Saharan Africa: opportunities and challenges. Malar J 2019; 18:267. [PMID: 31477109 PMCID: PMC6719357 DOI: 10.1186/s12936-019-2853-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/22/2019] [Indexed: 01/13/2023] Open
Abstract
Parasite resistance against anti-malarial drugs is a major threat to the ongoing malaria control and elimination strategies. This is especially true since resistance to the currently recommended artemisinins and partner drugs has been confirmed in South East Asia (SEA) and new anti-malarial compounds are not expected to be available in the near future. Spread from SEA or independent emergence of artemisinin resistance in sub-Saharan Africa (SSA) could reverse the achievements in malaria control that have been attained in the past two decades and derail the ongoing elimination strategies. The current surveillance of clinical efficacy and resistance to anti-malarial drugs is based on efficacy trials to assess the clinical performance of anti-malarials, in vivo/ex vivo assessment of parasite susceptibility to anti-malarials and prevalence of known molecular markers of drug resistance. Whereas clinical efficacy trials are restricted by cost and the complex logistics of patient follow-up, molecular detection of genetic mutations associated with resistance or reduced susceptibility to anti-malarials is by contrast a simple and powerful tool for early detection and monitoring of the prevalence of resistant parasites at population level. This provides needed information before clinical failure emerges, allowing policy makers to anticipate problems and respond. The various methods previously used in detection of molecular markers of drug resistance share some limitations: low-throughput, and high costs per sample and demanding infrastructure. However, recent technological advances including next-generation sequencing (NGS) methodologies promise greatly increased throughput and reduced costs, essentially providing unprecedented potential to address different research and operational questions of relevance for drug policy. This review assesses the potential role of NGS to provide comprehensive information that could guide drug policies in malaria endemic countries and looks at the foreseeable challenges facing the establishment of NGS approaches for routine surveillance of parasite resistance to anti-malarials in SSA.
Collapse
Affiliation(s)
- Deus S Ishengoma
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania.
| | - Queen Saidi
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Carol H Sibley
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Cally Roper
- London School of Hygiene & Tropical Medicine, London, UK
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
162
|
Hamilton WL, Amato R, van der Pluijm RW, Jacob CG, Quang HH, Thuy-Nhien NT, Hien TT, Hongvanthong B, Chindavongsa K, Mayxay M, Huy R, Leang R, Huch C, Dysoley L, Amaratunga C, Suon S, Fairhurst RM, Tripura R, Peto TJ, Sovann Y, Jittamala P, Hanboonkunupakarn B, Pukrittayakamee S, Chau NH, Imwong M, Dhorda M, Vongpromek R, Chan XHS, Maude RJ, Pearson RD, Nguyen T, Rockett K, Drury E, Gonçalves S, White NJ, Day NP, Kwiatkowski DP, Dondorp AM, Miotto O. Evolution and expansion of multidrug-resistant malaria in southeast Asia: a genomic epidemiology study. THE LANCET. INFECTIOUS DISEASES 2019; 19:943-951. [PMID: 31345709 PMCID: PMC6715858 DOI: 10.1016/s1473-3099(19)30392-5] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/15/2019] [Accepted: 06/20/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND A multidrug-resistant co-lineage of Plasmodium falciparum malaria, named KEL1/PLA1, spread across Cambodia in 2008-13, causing high rates of treatment failure with the frontline combination therapy dihydroartemisinin-piperaquine. Here, we report on the evolution and spread of KEL1/PLA1 in subsequent years. METHODS For this genomic epidemiology study, we analysed whole genome sequencing data from P falciparum clinical samples collected from patients with malaria between 2007 and 2018 from Cambodia, Laos, northeastern Thailand, and Vietnam, through the MalariaGEN P falciparum Community Project. Previously unpublished samples were provided by two large-scale multisite projects: the Tracking Artemisinin Resistance Collaboration II (TRAC2) and the Genetic Reconnaissance in the Greater Mekong Subregion (GenRe-Mekong) project. By investigating genome-wide relatedness between parasites, we inferred patterns of shared ancestry in the KEL1/PLA1 population. FINDINGS We analysed 1673 whole genome sequences that passed quality filters, and determined KEL1/PLA1 status in 1615. Before 2009, KEL1/PLA1 was only found in western Cambodia; by 2016-17 its prevalence had risen to higher than 50% in all of the surveyed countries except for Laos. In northeastern Thailand and Vietnam, KEL1/PLA1 exceeded 80% of the most recent P falciparum parasites. KEL1/PLA1 parasites maintained high genetic relatedness and low diversity, reflecting a recent common origin. Several subgroups of highly related parasites have recently emerged within this co-lineage, with diverse geographical distributions. The three largest of these subgroups (n=84, n=79, and n=47) mostly emerged since 2016 and were all present in Cambodia, Laos, and Vietnam. These expanding subgroups carried new mutations in the crt gene, which arose on a specific genetic background comprising multiple genomic regions. Four newly emerging crt mutations were rare in the early period and became more prevalent by 2016-17 (Thr93Ser, rising to 19·8%; His97Tyr to 11·2%; Phe145Ile to 5·5%; and Ile218Phe to 11·1%). INTERPRETATION After emerging and circulating for several years within Cambodia, the P falciparum KEL1/PLA1 co-lineage diversified into multiple subgroups and acquired new genetic features, including novel crt mutations. These subgroups have rapidly spread into neighbouring countries, suggesting enhanced fitness. These findings highlight the urgent need for elimination of this increasingly drug-resistant parasite co-lineage, and the importance of genetic surveillance in accelerating malaria elimination efforts. FUNDING Wellcome Trust, Bill & Melinda Gates Foundation, UK Medical Research Council, and UK Department for International Development.
Collapse
Affiliation(s)
- William L Hamilton
- Wellcome Sanger Institute, Hinxton, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, UK; MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Rob W van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Huynh Hong Quang
- Institute of Malariology, Parasitology and Entomology, Quy Nhon, Vietnam
| | | | - Tran Tinh Hien
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | - Mayfong Mayxay
- Institute of Research and Education Development, University of Health Sciences, Vientiane, Laos; Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit (LOMWRU), Vientiane, Laos
| | - Rekol Huy
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Rithea Leang
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Cheah Huch
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Lek Dysoley
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Seila Suon
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas J Peto
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yok Sovann
- Provincial Health Department, Pailin, Cambodia
| | | | | | - Sasithon Pukrittayakamee
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; The Royal Society of Thailand, Bangkok, Thailand
| | | | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Worldwide Antimalarial Resistance Network (WWARN), Asia Regional Centre, Bangkok, Thailand
| | - Ranitha Vongpromek
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Worldwide Antimalarial Resistance Network (WWARN), Asia Regional Centre, Bangkok, Thailand
| | - Xin Hui S Chan
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Richard J Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Richard D Pearson
- Wellcome Sanger Institute, Hinxton, UK; MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - T Nguyen
- Wellcome Sanger Institute, Hinxton, UK
| | - Kirk Rockett
- Wellcome Sanger Institute, Hinxton, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas P Day
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dominic P Kwiatkowski
- Wellcome Sanger Institute, Hinxton, UK; MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK.
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton, UK; MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
163
|
van der Pluijm RW, Imwong M, Chau NH, Hoa NT, Thuy-Nhien NT, Thanh NV, Jittamala P, Hanboonkunupakarn B, Chutasmit K, Saelow C, Runjarern R, Kaewmok W, Tripura R, Peto TJ, Yok S, Suon S, Sreng S, Mao S, Oun S, Yen S, Amaratunga C, Lek D, Huy R, Dhorda M, Chotivanich K, Ashley EA, Mukaka M, Waithira N, Cheah PY, Maude RJ, Amato R, Pearson RD, Gonçalves S, Jacob CG, Hamilton WL, Fairhurst RM, Tarning J, Winterberg M, Kwiatkowski DP, Pukrittayakamee S, Hien TT, Day NP, Miotto O, White NJ, Dondorp AM. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. THE LANCET. INFECTIOUS DISEASES 2019; 19:952-961. [PMID: 31345710 PMCID: PMC6715822 DOI: 10.1016/s1473-3099(19)30391-3] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The emergence and spread of resistance in Plasmodium falciparum malaria to artemisinin combination therapies in the Greater Mekong subregion poses a major threat to malaria control and elimination. The current study is part of a multi-country, open-label, randomised clinical trial (TRACII, 2015-18) evaluating the efficacy, safety, and tolerability of triple artemisinin combination therapies. A very high rate of treatment failure after treatment with dihydroartemisinin-piperaquine was observed in Thailand, Cambodia, and Vietnam. The immediate public health importance of our findings prompted us to report the efficacy data on dihydroartemisinin-piperaquine and its determinants ahead of the results of the overall trial, which will be published later this year. METHODS Patients aged between 2 and 65 years presenting with uncomplicated P falciparum or mixed species malaria at seven sites in Thailand, Cambodia, and Vietnam were randomly assigned to receive dihydroartemisinin-piperaquine with or without mefloquine, as part of the TRACII trial. The primary outcome was the PCR-corrected efficacy at day 42. Next-generation sequencing was used to assess the prevalence of molecular markers associated with artemisinin resistance (kelch13 mutations, in particular Cys580Tyr) and piperaquine resistance (plasmepsin-2 and plasmepsin-3 amplifications and crt mutations). This study is registered with ClinicalTrials.gov, number NCT02453308. FINDINGS Between Sept 28, 2015, and Jan 18, 2018, 539 patients with acute P falciparum malaria were screened for eligibility, 292 were enrolled, and 140 received dihydroartemisinin-piperaquine. The overall Kaplan-Meier estimate of PCR-corrected efficacy of dihydroartemisinin-piperaquine at day 42 was 50·0% (95% CI 41·1-58·3). PCR-corrected efficacies for individual sites were 12·7% (2·2-33·0) in northeastern Thailand, 38·2% (15·9-60·5) in western Cambodia, 73·4% (57·0-84·3) in Ratanakiri (northeastern Cambodia), and 47·1% (33·5-59·6) in Binh Phuoc (southwestern Vietnam). Treatment failure was associated independently with plasmepsin2/3 amplification status and four mutations in the crt gene (Thr93Ser, His97Tyr, Phe145Ile, and Ile218Phe). Compared with the results of our previous TRACI trial in 2011-13, the prevalence of molecular markers of artemisinin resistance (kelch13 Cys580Tyr mutations) and piperaquine resistance (plasmepsin2/3 amplifications and crt mutations) has increased substantially in the Greater Mekong subregion in the past decade. INTERPRETATION Dihydroartemisinin-piperaquine is not treating malaria effectively across the eastern Greater Mekong subregion. A highly drug-resistant P falciparum co-lineage is evolving, acquiring new resistance mechanisms, and spreading. Accelerated elimination of P falciparum malaria in this region is needed urgently, to prevent further spread and avoid a potential global health emergency. FUNDING UK Department for International Development, Wellcome Trust, Bill & Melinda Gates Foundation, Medical Research Council, and National Institutes of Health.
Collapse
Affiliation(s)
- Rob W van der Pluijm
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mallika Imwong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nguyen Hoang Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nhu Thi Hoa
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nguyen Thanh Thuy-Nhien
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Ngo Viet Thanh
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Podjanee Jittamala
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Borimas Hanboonkunupakarn
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | | | | | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas J Peto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sovann Yok
- Pailin Provincial Health Department, Pailin, Cambodia
| | - Seila Suon
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Sokunthea Sreng
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Sivanna Mao
- Sampov Meas Referral Hospital, Pursat, Cambodia
| | - Savuth Oun
- Ratanakiri Referral Hospital, Ratanakiri, Cambodia
| | | | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia; School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | - Rekol Huy
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; WorldWide Antimalarial Resistance Network Asia Regional Centre, Bangkok, Thailand
| | - Kesinee Chotivanich
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Elizabeth A Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Laos
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Naomi Waithira
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Phaik Yeong Cheah
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard J Maude
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | - Richard D Pearson
- Wellcome Sanger Institute, Hinxton, United Kingdom; MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | | | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Markus Winterberg
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Dominic P Kwiatkowski
- Wellcome Sanger Institute, Hinxton, United Kingdom; MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Sasithon Pukrittayakamee
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - Tran Tinh Hien
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nicholas Pj Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Olivo Miotto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Wellcome Sanger Institute, Hinxton, United Kingdom; MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
164
|
Foguim FT, Robert MG, Gueye MW, Gendrot M, Diawara S, Mosnier J, Amalvict R, Benoit N, Bercion R, Fall B, Madamet M, Pradines B. Low polymorphisms in pfact, pfugt and pfcarl genes in African Plasmodium falciparum isolates and absence of association with susceptibility to common anti-malarial drugs. Malar J 2019; 18:293. [PMID: 31455301 PMCID: PMC6712813 DOI: 10.1186/s12936-019-2919-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/17/2019] [Indexed: 11/10/2022] Open
Abstract
Background Resistance to all available anti-malarial drugs has emerged and spread including artemisinin derivatives and their partner drugs. Several genes involved in artemisinin and partner drugs resistance, such as pfcrt, pfmdr1, pfK13 or pfpm2, have been identified. However, these genes do not properly explain anti-malarial drug resistance, and more particularly clinical failures observed in Africa. Mutations in genes encoding for Plasmodium falciparum proteins, such as P. falciparum Acetyl-CoA transporter (PfACT), P. falciparum UDP-galactose transporter (PfUGT) and P. falciparum cyclic amine resistance locus (PfCARL) have recently been associated to resistance to imidazolopiperazines and other unrelated drugs. Methods Mutations on pfugt, pfact and pfcarl were characterized on 86 isolates collected in Dakar, Senegal and 173 samples collected from patients hospitalized in France after a travel in African countries from 2015 and 2016 to assess their potential association with ex vivo susceptibility to chloroquine, quinine, lumefantrine, monodesethylamodiaquine, mefloquine, dihydroartemisinin, artesunate, doxycycline, pyronaridine and piperaquine. Results No mutations were found on the genes pfugt and pfact. None of the pfcarl described mutations were identified in these samples from Africa. The K784N mutation was found in one sample and the K734M mutation was identified on 7.9% of all samples for pfcarl. The only significant differences in ex vivo susceptibility according to the K734M mutation were observed for pyronaridine for African isolates from imported malaria and for doxycycline for Senegalese parasites. Conclusion No evidence was found of involvement of these genes in reduced susceptibility to standard anti-malarial drugs in African P. falciparum isolates.
Collapse
Affiliation(s)
- Francis Tsombeng Foguim
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Marie Gladys Robert
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | | | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Silman Diawara
- Fédération des laboratoires, Hôpital Principal de Dakar, Dakar, Senegal
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre national de référence du Paludisme, Marseille, France
| | - Rémy Amalvict
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre national de référence du Paludisme, Marseille, France
| | - Nicolas Benoit
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre national de référence du Paludisme, Marseille, France
| | - Raymond Bercion
- Laboratoire d'analyses médicales, Institut Pasteur de Dakar, Dakar, Senegal
| | - Bécaye Fall
- Fédération des laboratoires, Hôpital Principal de Dakar, Dakar, Senegal
| | - Marylin Madamet
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre national de référence du Paludisme, Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France. .,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France. .,IHU Méditerranée Infection, Marseille, France. .,Fédération des laboratoires, Hôpital Principal de Dakar, Dakar, Senegal. .,Centre national de référence du Paludisme, Marseille, France.
| | | |
Collapse
|
165
|
Foguim Tsombeng F, Gendrot M, Robert MG, Madamet M, Pradines B. Are k13 and plasmepsin II genes, involved in Plasmodium falciparum resistance to artemisinin derivatives and piperaquine in Southeast Asia, reliable to monitor resistance surveillance in Africa? Malar J 2019; 18:285. [PMID: 31443646 PMCID: PMC6708145 DOI: 10.1186/s12936-019-2916-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/17/2019] [Indexed: 11/17/2022] Open
Abstract
Mutations in the propeller domain of Plasmodium falciparum kelch 13 (Pfk13) gene are associated with artemisinin resistance in Southeast Asia. Artemisinin resistance is defined by increased ring survival rate and delayed parasite clearance half-life in patients. Additionally, an amplification of the Plasmodium falciparum plasmepsin II gene (pfpm2), encoding a protease involved in hemoglobin degradation, has been found to be associated with reduced in vitro susceptibility to piperaquine in Cambodian P. falciparum parasites and with dihydroartemisinin–piperaquine failures in Cambodia. The World Health Organization (WHO) has recommended the use of these two genes to track the emergence and the spread of the resistance to dihydroartemisinin–piperaquine in malaria endemic areas. Although the resistance to dihydroartemisinin–piperaquine has not yet emerged in Africa, few reports on clinical failures suggest that k13 and pfpm2 would not be the only genes involved in artemisinin and piperaquine resistance. It is imperative to identify molecular markers or drug resistance genes that associate with artemisinin and piperaquine in Africa. K13 polymorphisms and Pfpm2 copy number variation analysis may not be sufficient for monitoring the emergence of dihydroartemisinin–piperaquine resistance in Africa. But, these markers should not be ruled out for tracking the emergence of resistance.
Collapse
Affiliation(s)
- Francis Foguim Tsombeng
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Marie Gladys Robert
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Marylin Madamet
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France. .,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France. .,IHU Méditerranée Infection, Marseille, France. .,Centre National de Référence du Paludisme, Institut de Recherche Biomédicale des Armées, Marseille, France.
| |
Collapse
|
166
|
de-Dios T, van Dorp L, Gelabert P, Carøe C, Sandoval-Velasco M, Fregel R, Escosa R, Aranda C, Huijben S, Balloux F, Gilbert MTP, Lalueza-Fox C. Genetic affinities of an eradicated European Plasmodium falciparum strain. Microb Genom 2019; 5. [PMID: 31454309 PMCID: PMC6807384 DOI: 10.1099/mgen.0.000289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Malaria was present in most of Europe until the second half of the 20th century, when it was eradicated through a combination of increased surveillance and mosquito control strategies, together with cross-border and political collaboration. Despite the severe burden of malaria on human populations, it remains contentious how the disease arrived and spread in Europe. Here, we report a partial Plasmodium falciparum nuclear genome derived from a set of antique medical slides stained with the blood of malaria-infected patients from Spain’s Ebro Delta, dating to the 1940s. Our analyses of the genome of this now eradicated European P. falciparum strain confirms stronger phylogeographical affinity to present-day strains in circulation in central south Asia, rather than to those in Africa. This points to a longitudinal, rather than a latitudinal, spread of malaria into Europe. In addition, this genome displays two derived alleles in the pfmrp1 gene that have been associated with drug resistance. Whilst this could represent standing variation in the ancestral P. falciparum population, these mutations may also have arisen due to the selective pressure of quinine treatment, which was an anti-malarial drug already in use by the time the sample we sequenced was mounted on a slide.
Collapse
Affiliation(s)
- Toni de-Dios
- Institute of Evolutionary Biology (CSIC-UPF), 08003 Barcelona, Spain
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Pere Gelabert
- Institute of Evolutionary Biology (CSIC-UPF), 08003 Barcelona, Spain
| | - Christian Carøe
- Section for Evolutionary Genomics, Department of Biology, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Marcela Sandoval-Velasco
- Section for Evolutionary Genomics, Department of Biology, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Rosa Fregel
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad of La Laguna, 38206 La Laguna, Spain.,Department of Genetics, Stanford University, Stanford, CA, USA
| | - Raül Escosa
- Consorci de Polítiques Ambientals de les Terres de l'Ebre (COPATE), 43580 Deltebre, Spain
| | - Carles Aranda
- Servei de Control de Mosquits, Consell Comarcal del Baix Llobregat, 08980 Sant Feliu de Llobregat, Spain
| | - Silvie Huijben
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - François Balloux
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - M Thomas P Gilbert
- Norwegian University of Science and Technology (NTNU) University Museum, N-7491 Trondheim, Norway.,Section for Evolutionary Genomics, Department of Biology, University of Copenhagen, 1353 Copenhagen, Denmark
| | | |
Collapse
|
167
|
Gendrot M, Wague Gueye M, Tsombeng Foguim F, Madamet M, Wade KA, Bou Kounta M, Fall M, Diawara S, Benoit N, Lo G, Bercion R, Amalvict R, Mosnier J, Fall B, Briolant S, Diatta B, Pradines B. Modulation of in vitro antimalarial responses by polymorphisms in Plasmodium falciparum ABC transporters (pfmdr1 and pfmdr5). Acta Trop 2019; 196:126-134. [PMID: 31108084 DOI: 10.1016/j.actatropica.2019.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022]
Abstract
The emergence of resistance to artemisinin-based combination therapies (ACT) was described in Southeast Asia. In this context, the identification of molecular markers of ACT resistance partner drugs is urgently needed for monitoring the emergence and spread of resistance. Polymorphisms in transporter genes, especially of the ATP-binding cassette (ABC) superfamily, have been involved in anti-malarial drug resistance. In this study, the association between the mutations in the P. falciparum multidrug resistance 1 gene (pfmdr1, N86Y, Y184 F, S1034C, N1042D and D1246Y) or repetitive amino acid motifs in pfmdr5 and the ex vivo susceptibility to anti-malarial drugs was evaluated. Susceptibility to chloroquine, quinine, monodesethylamodiaquine, lumefantrine, piperaquine, pyronaridine, mefloquine and dihydroartemisinin was assessed in 67 Senegalese isolates. The shorter DNNN motif ranged from to 2 to 11 copy repeats, and the longer DHHNDHNNDNNN motif ranged from 0 to 2 in pfmdr5. The present study showed the association between repetitive amino acid motifs (DNNN-DHHNDDHNNDNNN) in pfmdr5 and in vitro susceptibility to 4-aminoquinoline-based antimalarial drugs. The parasites with 8 and more copy repeats of DNNN in pfmdr5 were significantly more susceptible to piperaquine. There was a significant association between parasites whose DHHNDHNNDNNN motif was absent and replaced by DHHNDNNN, DHHNDHNNDHNNDNNN or DHHNDHNNDHNNDHNNDNNN and increased susceptibility to chloroquine, monodesethylamodiaquine and pyronaridine. A significant association between both the wild-type allele N86 in pfmdr1 and the N86-184 F haplotype and reduced susceptibility to lumefantrine was confirmed. Further studies with a large number of samples are required to validate the association between these pfmdr5 alleles and the modulation of 4-aminoquinoline-based antimalarial drug susceptibility.
Collapse
|
168
|
Plasmodium Genomics and Genetics: New Insights into Malaria Pathogenesis, Drug Resistance, Epidemiology, and Evolution. Clin Microbiol Rev 2019; 32:32/4/e00019-19. [PMID: 31366610 DOI: 10.1128/cmr.00019-19] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protozoan Plasmodium parasites are the causative agents of malaria, a deadly disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild or severe symptoms, or fatal, depending on many factors such as parasite virulence and host immune status. Malaria can be treated with various drugs, with artemisinin-based combination therapies (ACTs) being the first-line choice. Recent advances in genetics and genomics of malaria parasites have contributed greatly to our understanding of parasite population dynamics, transmission, drug responses, and pathogenesis. However, knowledge gaps in parasite biology and host-parasite interactions still remain. Parasites resistant to multiple antimalarial drugs have emerged, while advanced clinical trials have shown partial efficacy for one available vaccine. Here we discuss genetic and genomic studies of Plasmodium biology, host-parasite interactions, population structures, mosquito infectivity, antigenic variation, and targets for treatment and immunization. Knowledge from these studies will advance our understanding of malaria pathogenesis, epidemiology, and evolution and will support work to discover and develop new medicines and vaccines.
Collapse
|
169
|
Accelerated evolution and spread of multidrug-resistant Plasmodium falciparum takes down the latest first-line antimalarial drug in southeast Asia. THE LANCET. INFECTIOUS DISEASES 2019; 19:916-917. [PMID: 31345711 PMCID: PMC6754981 DOI: 10.1016/s1473-3099(19)30394-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/01/2023]
|
170
|
Quang Bui P, Hong Huynh Q, Thanh Tran D, Thanh Le D, Quang Nguyen T, Van Truong H, Khim N, Witkowski B, Cong Tran D, Bustos MD, Ringwald P, Thi Ta T. Pyronaridine-artesunate Efficacy and Safety in Uncomplicated Plasmodium falciparum Malaria in Areas of Artemisinin-resistant Falciparum in Viet Nam (2017–2018). Clin Infect Dis 2019; 70:2187-2195. [DOI: 10.1093/cid/ciz580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/26/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Multidrug-resistant Plasmodium falciparum undermines the efficacy of currently deployed antimalarial therapies in southern Viet Nam.
Methods
Between May 2017 and December 2018, this prospective, open-label, single-arm, observational clinical trial, conducted in Binh Phuoc, Dak Nong, Gia Lai, Khanh Hoa, and Ninh Thuan provinces, evaluated the safety and efficacy of oral pyronaridine-artesunate once daily for 3 consecutive days in adults and children with microscopically confirmed P. falciparum malaria. Patients were treated as inpatients for Days 0–3, with follow-up visits on Days 7, 14, 21, 28, 35, and 42. The primary outcome was the proportion of polymerase chain reaction (PCR)-adjusted adequate clinical and parasitological response (ACPR) at Day 42.
Results
The cumulative incidence of PCR-adjusted ACPR at Day 42 was 96.1% (95% confidence interval [CI] 91.4–98.2; Kaplan–Meier). In the per-protocol analysis, the proportion of patients with Day 42 PCR-adjusted ACPR was 96.1% (147/153; 95% CI 91.7–98.5). The proportion of patients with parasitemia at Day 3 was 24.0% (40/167; 95% CI 17.7–31.2). The prevalences of the Kelch13 (C580Y) mutation were: in Binh Phuoc, 97.7% (43/44); in Dak Nong, 96.2% (25/26); in Gia Lai, 57.8% (37/64); in Khanh Hoa, 66.6% (6/9); and in Ninh Thuan, 3.6% (1/28). The majority of artemisinin-resistant isolates also had increased plasmepsin2 copy number (75.9%; 85/112). There was 1 isolate (Binh Phuoc) that had Kelch13 (C580Y) plus increased plasmepsin2 and Pfmdr1 copy numbers. Asymptomatic transient increases in alanine transaminase and aspartate transaminase were observed at Day 7, resolving by Day 28.
Conclusions
Pyronaridine-artesunate can be used to diversify antimalarial therapy in areas of artemisinin-resistant P. falciparum in Viet Nam.
Clinical Trials Registration
ACTRN12618001274268.
Collapse
Affiliation(s)
- Phuc Quang Bui
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Quang Hong Huynh
- Institute of Malariology, Parasitology & Entomology, Quy Nhon, Vietnam
| | - Duong Thanh Tran
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Dong Thanh Le
- Institute of Malariology, Parasitology & Entomology in Ho Chi Minh City, Vietnam
| | - Thieu Quang Nguyen
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Hanh Van Truong
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Nimol Khim
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh
| | | | | | | | - Tinh Thi Ta
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| |
Collapse
|
171
|
Apinjoh TO, Ouattara A, Titanji VPK, Djimde A, Amambua-Ngwa A. Genetic diversity and drug resistance surveillance of Plasmodium falciparum for malaria elimination: is there an ideal tool for resource-limited sub-Saharan Africa? Malar J 2019; 18:217. [PMID: 31242921 PMCID: PMC6595576 DOI: 10.1186/s12936-019-2844-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
The intensification of malaria control interventions has resulted in its global decline, but it remains a significant public health burden especially in sub-Saharan Africa (sSA). Knowledge on the parasite diversity, its transmission dynamics, mechanisms of adaptation to environmental and interventional pressures could help refine or develop new control and elimination strategies. Critical to this is the accurate assessment of the parasite’s genetic diversity and monitoring of genetic markers of anti-malarial resistance across all susceptible populations. Such wide molecular surveillance will require selected tools and approaches from a variety of ever evolving advancements in technology and the changing epidemiology of malaria. The choice of an effective approach for specific endemic settings remains challenging, particularly for countries in sSA with limited access to advanced technologies. This article examines the current strategies and tools for Plasmodium falciparum genetic diversity typing and resistance monitoring and proposes how the different tools could be employed in resource-poor settings. Advanced approaches enabling targeted deep sequencing is valued as a sensitive method for assessing drug resistance and parasite diversity but remains out of the reach of most laboratories in sSA due to the high cost of development and maintenance. It is, however, feasible to equip a limited number of laboratories as Centres of Excellence in Africa (CEA), which will receive and process samples from a network of peripheral laboratories in the continent. Cheaper, sensitive and portable real-time PCR methods can be used in peripheral laboratories to pre-screen and select samples for targeted deep sequence or genome wide analyses at these CEAs.
Collapse
Affiliation(s)
- Tobias O Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Amed Ouattara
- School of Medicine, University of Maryland, College Park, Baltimore, USA
| | - Vincent P K Titanji
- Faculty of Science, Engineering and Technology, Cameroon Christian University, Bali, Cameroon
| | - Abdoulaye Djimde
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | |
Collapse
|
172
|
Dhingra SK, Gabryszewski SJ, Small-Saunders JL, Yeo T, Henrich PP, Mok S, Fidock DA. Global Spread of Mutant PfCRT and Its Pleiotropic Impact on Plasmodium falciparum Multidrug Resistance and Fitness. mBio 2019; 10:e02731-18. [PMID: 31040246 PMCID: PMC6495381 DOI: 10.1128/mbio.02731-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
The global spread of Plasmodium falciparum chloroquine resistance transporter (PfCRT) variant haplotypes earlier caused the widespread loss of chloroquine (CQ) efficacy. In Asia, novel PfCRT mutations that emerged on the Dd2 allelic background have recently been implicated in high-level resistance to piperaquine, and N326S and I356T have been associated with genetic backgrounds in which resistance emerged to artemisinin derivatives. By analyzing large-scale genome sequencing data, we report that the predominant Asian CQ-resistant Dd2 haplotype is undetectable in Africa. Instead, the GB4 and previously unexplored Cam783 haplotypes predominate, along with wild-type, drug-sensitive PfCRT that has reemerged as the major haplotype. To interrogate how these alleles impact drug susceptibility, we generated pfcrt-modified isogenic parasite lines spanning the mutational interval between GB4 and Dd2, which includes Cam783 and involves amino acid substitutions at residues 326 and 356. Relative to Dd2, the GB4 and Cam783 alleles were observed to mediate lower degrees of resistance to CQ and the first-line drug amodiaquine, while resulting in higher growth rates. These findings suggest that differences in growth rates, a surrogate of parasite fitness, influence selection in the context of African infections that are frequently characterized by high transmission rates, mixed infections, increased immunity, and less recourse to treatment. We also observe that the Asian Dd2 allele affords partial protection against piperaquine yet does not directly impact artemisinin efficacy. Our results can help inform the regional recommendations of antimalarials, whose activity is influenced by and, in certain cases, enhanced against select PfCRT variant haplotypes.IMPORTANCE Our study defines the allelic distribution of pfcrt, an important mediator of multidrug resistance in Plasmodium falciparum, in Africa and Asia. We leveraged whole-genome sequence analysis and gene editing to demonstrate how current drug combinations can select different allelic variants of this gene and shape region-specific parasite population structures. We document the ability of PfCRT mutations to modulate parasite susceptibility to current antimalarials in dissimilar, pfcrt allele-specific ways. This study underscores the importance of actively monitoring pfcrt genotypes to identify emerging patterns of multidrug resistance and help guide region-specific treatment options.
Collapse
Affiliation(s)
- Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Stanislaw J Gabryszewski
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer L Small-Saunders
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Philipp P Henrich
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
173
|
Baseline Ex Vivo and Molecular Responses of Plasmodium falciparum Isolates to Piperaquine before Implementation of Dihydroartemisinin-Piperaquine in Senegal. Antimicrob Agents Chemother 2019; 63:AAC.02445-18. [PMID: 30782997 DOI: 10.1128/aac.02445-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/10/2019] [Indexed: 02/07/2023] Open
Abstract
Dihydroartemisinin-piperaquine, which was registered in 2017 in Senegal, is not currently used as the first-line treatment against uncomplicated malaria. A total of 6.6% to 17.1% of P. falciparum isolates collected in Dakar in 2013 to 2015 showed ex vivo-reduced susceptibility to piperaquine. Neither the exonuclease E415G mutation nor the copy number variation of the plasmepsin II gene (Pfpm2), associated with piperaquine resistance in Cambodia, was detected in Senegalese parasites.
Collapse
|
174
|
Leroy D, Macintyre F, Adoke Y, Ouoba S, Barry A, Mombo-Ngoma G, Ndong Ngomo JM, Varo R, Dossou Y, Tshefu AK, Duong TT, Phuc BQ, Laurijssens B, Klopper R, Khim N, Legrand E, Ménard D. African isolates show a high proportion of multiple copies of the Plasmodium falciparum plasmepsin-2 gene, a piperaquine resistance marker. Malar J 2019; 18:126. [PMID: 30967148 PMCID: PMC6457011 DOI: 10.1186/s12936-019-2756-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Today, the development of new and well-tolerated anti-malarial drugs is strongly justified by the emergence of Plasmodium falciparum resistance. In 2014-2015, a phase 2b clinical study was conducted to evaluate the efficacy of a single oral dose of Artefenomel (OZ439)-piperaquine (PPQ) in Asian and African patients presenting with uncomplicated falciparum malaria. METHODS Blood samples collected before treatment offered the opportunity to investigate the proportion of multidrug resistant parasite genotypes, including P. falciparum kelch13 mutations and copy number variation of both P. falciparum plasmepsin 2 (Pfpm2) and P. falciparum multidrug resistance 1 (Pfmdr1) genes. RESULTS Validated kelch13 resistance mutations including C580Y, I543T, P553L and V568G were only detected in parasites from Vietnamese patients. In Africa, isolates with multiple copies of the Pfmdr1 gene were shown to be more frequent than previously reported (21.1%, range from 12.4% in Burkina Faso to 27.4% in Uganda). More strikingly, high proportions of isolates with multiple copies of the Pfpm2 gene, associated with piperaquine (PPQ) resistance, were frequently observed in the African sites, especially in Burkina Faso and Uganda (> 30%). CONCLUSIONS These findings were considered to sharply contrast with the recent description of increased sensitivity to PPQ of Ugandan parasite isolates. This emphasizes the necessity to investigate in vitro susceptibility profiles to PPQ of African isolates with multiple copies of the Pfpm2 gene and estimate the risk of development of PPQ resistance in Africa. Trial registration Clinicaltrials.gov reference: NCT02083380. Study title: Phase II efficacy study of artefenomel and piperaquine in adults and children with P. falciparum malaria. https://clinicaltrials.gov/ct2/results?cond=&term=NCT02083380&cntry=&state=&city=&dist= . FSFV: 23-Jul-2014; LSLV: 09-Oct-2015.
Collapse
Affiliation(s)
- Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland.
| | | | - Yeka Adoke
- Infectious Diseases Research Collaboration, Tororo Hospital, Tororo, Uganda
| | - Serge Ouoba
- Institut de Recherche en Sciences de la Santé - Unité de Recherche Clinique de Nanoro, Ouagadougou, Burkina Faso
| | - Aissata Barry
- Institut de Recherche en Sciences de la Santé - Unité de Recherche Clinique de Nanoro, Ouagadougou, Burkina Faso
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | | | - Rosauro Varo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Yannelle Dossou
- Centre de Recherche sur le Paludisme Associé à la Grossesse et l'Enfance, Faculté Des Sciences De La Santé, Cotonou, Benin
| | - Antoinette Kitoto Tshefu
- Centre de Recherche du Centre Hospitalier de Mont Amba, Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Tran Thanh Duong
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Bui Quang Phuc
- Clinical Pharmaceutical Research Department, National Institute of Malariology, Parasitology and Entomology, 35 Trung Van Street, Nam Tu Liem District, Hanoi, Vietnam
| | | | | | - Nimol Khim
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Eric Legrand
- Malaria Genetics and Resistance Group, INSERM U1201-CNRS ERL919, Institut Pasteur, Paris, France
| | - Didier Ménard
- Malaria Genetics and Resistance Group, INSERM U1201-CNRS ERL919, Institut Pasteur, Paris, France.
| |
Collapse
|
175
|
He Y, Campino S, Diez Benavente E, Warhurst DC, Beshir KB, Lubis I, Gomes AR, Feng J, Jiazhi W, Sun X, Huang F, Tang LH, Sutherland CJ, Clark TG. Artemisinin resistance-associated markers in Plasmodium falciparum parasites from the China-Myanmar border: predicted structural stability of K13 propeller variants detected in a low-prevalence area. PLoS One 2019; 14:e0213686. [PMID: 30883571 PMCID: PMC6422288 DOI: 10.1371/journal.pone.0213686] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/26/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Malaria reduction and future elimination in China is made more difficult by the importation of cases from neighboring endemic countries, particularly Myanmar, Laos, and Vietnam, and increased travel to Africa by Chinese nationals. The increasing prevalence of artemisinin resistant parasites across Southeast Asia highlights the importance of monitoring the parasite importation into China. Artemisinin resistance in the Mekong region is associated with variants of genes encoding the K13 kelch domain protein (pf13k), found in specific genetic backgrounds, including certain alleles of genes encoding the chloroquine resistance transporter (pfcrt) and multidrug resistance transporter PgH1 (pfmdr1). METHODS In this study we investigated the prevalence of drug resistance markers in 72 P. falciparum samples from uncomplicated malaria infections in Tengchong and Yingjiang, counties on the Yunnan-Myanmar border. Variants of pf13k, pfcrt and pfmdr1 are described. RESULTS Almost all parasites harboured chloroquine-resistant alleles of pfcrt, whereas pfmdr1 was more diverse. Major mutations in the K13 propeller domain associated with artemisinin resistance in the Mekong region (C580Y, R539T and Y493H) were absent, but F446I and two previously undescribed mutations (V603E and V454I) were identified. Protein structural modelling was carried out in silico on each of these K13 variants, based on recently published crystal structures for the K13 propeller domain. Whereas F446I was predicted to elicit a moderate destabilisation of the propeller structure, the V603E substitution is likely to lead to relatively high protein instability. We plotted these stability estimates, and those for all previously described variants, against published values for in vivo parasitaemia half-life, and found that quadratic regression generates a useful predictive algorithm. CONCLUSION This study provides a baseline of P. falciparum resistance-associated mutations prevalent at the China-Myanmar border. We also show that protein modelling can be used to generate testable predictions as to the impact of pfk13 mutations on in vivo (and potentially in vitro) artemisinin susceptibility.
Collapse
Affiliation(s)
- Yan He
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People’s Republic of China
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David C. Warhurst
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Khalid B. Beshir
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Inke Lubis
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ana Rita Gomes
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jun Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People’s Republic of China
| | - Wang Jiazhi
- Yunnan Institute of Parasitic Diseases, Provincial Centre of Malaria Research, Provincial Collaborative Innovation Centre for Public Health and Disease Prevention and Control, Provincial Key Laboratory of Vector-borne Diseases Control and Research, Puer, China
| | - Xiaodong Sun
- Tengchong County Centers for Disease Control and Prevention, Guanghua village, Tiancheng district, Tengchong, Yunnan Province, China
| | - Fang Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People’s Republic of China
| | - Lin-hua Tang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People’s Republic of China
| | - Colin J. Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
176
|
Resistance to Artemisinin Combination Therapies (ACTs): Do Not Forget the Partner Drug! Trop Med Infect Dis 2019; 4:tropicalmed4010026. [PMID: 30717149 PMCID: PMC6473515 DOI: 10.3390/tropicalmed4010026] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/30/2023] Open
Abstract
Artemisinin-based combination therapies (ACTs) have become the mainstay for malaria treatment in almost all malaria endemic settings. Artemisinin derivatives are highly potent and fast acting antimalarials; but they have a short half-life and need to be combined with partner drugs with a longer half-life to clear the remaining parasites after a standard 3-day ACT regimen. When introduced, ACTs were highly efficacious and contributed to the steep decrease of malaria over the last decades. However, parasites with decreased susceptibility to artemisinins have emerged in the Greater Mekong Subregion (GMS), followed by ACTs’ failure, due to both decreased susceptibility to artemisinin and partner drug resistance. Therefore, there is an urgent need to strengthen and expand current resistance surveillance systems beyond the GMS to track the emergence or spread of artemisinin resistance. Great attention has been paid to the spread of artemisinin resistance over the last five years, since molecular markers of decreased susceptibility to artemisinin in the GMS have been discovered. However, resistance to partner drugs is critical, as ACTs can still be effective against parasites with decreased susceptibility to artemisinins, when the latter are combined with a highly efficacious partner drug. This review outlines the different mechanisms of resistance and molecular markers associated with resistance to partner drugs for the currently used ACTs. Strategies to improve surveillance and potential solutions to extend the useful therapeutic lifespan of the currently available malaria medicines are proposed.
Collapse
|
177
|
Pasupureddy R, Atul, Seshadri S, Pande V, Dixit R, Pandey KC. Current scenario and future strategies to fight artemisinin resistance. Parasitol Res 2019; 118:29-42. [PMID: 30478733 DOI: 10.1007/s00436-018-6126-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/19/2018] [Indexed: 02/05/2023]
Abstract
Despite several setbacks in the fight against malaria such as insecticide and drug resistance as well as low efficacy of available vaccines, considerable success in reducing malaria burden has been achieved in the past decade. Artemisinins (ARTs and their combination therapies, ACTs), the current frontline drugs against uncomplicated malaria, rapidly kill plasmodial parasites and are non-toxic at short exposures. Though the exact mode of action remains unclear, the endoperoxide bridge, indispensable for ART activity, is thought to react with heme released from hemoglobin hydrolysis and generate free radicals that alkylate multiple protein targets, thereby disrupting proteostasis pathways. However, rapid development of ART resistance in recent years with no potential alternatives on the horizon threaten the elimination efforts. The Greater Mekong Subregion in South-East Asia continues to churn out mutants resistant to multiple ACTs and detected in increasingly expanding geographies. Extensive research on ART-resistant strains have identified a potential candidate Kelch13, crucial for mediating ART resistance. Parasites with mutations in the propeller domains of Plasmodium falciparum Kelch13 protein were shown to have enhanced phosphatidylinositol 3-kinase levels that were concomitant with delayed parasite clearance. Current research focused on understanding the mechanism of Kelch13-mediated ART resistance could provide better insights into Plasmodium resistome. This review covers the current proposed mechanisms of ART activity, resistance strategies adopted by the parasite in response to ACTs and possible future approaches to mitigate the spread of resistance from South-East Asia.
Collapse
Affiliation(s)
- Rahul Pasupureddy
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India
- Institute of Science, Nirma University, SG Highway, Ahmedabad, Gujarat, 382481, India
| | - Atul
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001, India
| | - Sriram Seshadri
- Institute of Science, Nirma University, SG Highway, Ahmedabad, Gujarat, 382481, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001, India
| | - Rajnikant Dixit
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India
| | - Kailash C Pandey
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India.
- Department of Biochemistry, Indian Council of Medical Research, National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462001, India.
| |
Collapse
|
178
|
Rosenthal PJ. Artemisinin Resistance in Eastern India. Clin Infect Dis 2018; 69:1153-1155. [DOI: 10.1093/cid/ciy1043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 11/14/2022] Open
|
179
|
Loesbanluechai D, Kotanan N, de Cozar C, Kochakarn T, Ansbro MR, Chotivanich K, White NJ, Wilairat P, Lee MCS, Gamo FJ, Sanz LM, Chookajorn T, Kümpornsin K. Overexpression of plasmepsin II and plasmepsin III does not directly cause reduction in Plasmodium falciparum sensitivity to artesunate, chloroquine and piperaquine. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 9:16-22. [PMID: 30580023 PMCID: PMC6304341 DOI: 10.1016/j.ijpddr.2018.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 01/31/2023]
Abstract
Artemisinin derivatives and their partner drugs in artemisinin combination therapies (ACTs) have played a pivotal role in global malaria mortality reduction during the last two decades. The loss of artemisinin efficacy due to evolving drug-resistant parasites could become a serious global health threat. Dihydroartemisinin-piperaquine is a well tolerated and generally highly effective ACT. The implementation of a partner drug in ACTs is critical in the control of emerging artemisinin resistance. Even though artemisinin is highly effective in parasite clearance, it is labile in the human body. A partner drug is necessary for killing the remaining parasites when the pulses of artemisinin have ceased. A population of Plasmodium falciparum parasites in Cambodia and adjacent countries has become resistant to piperaquine. Increased copy number of the genes encoding the haemoglobinases Plasmepsin II and Plasmepsin III has been linked with piperaquine resistance by genome-wide association studies and in clinical trials, leading to the use of increased plasmepsin II/plasmepsin III copy number as a molecular marker for piperaquine resistance. Here we demonstrate that overexpression of plasmepsin II and plasmepsin III in the 3D7 genetic background failed to change the susceptibility of P. falciparum to artemisinin, chloroquine and piperaquine by both a standard dose-response analysis and a piperaquine survival assay. Whilst plasmepsin copy number polymorphism is currently implemented as a molecular surveillance resistance marker, further studies to discover the molecular basis of piperaquine resistance and potential epistatic interactions are needed.
Collapse
Affiliation(s)
- Duangkamon Loesbanluechai
- Genomics and Evolutionary Medicine Unit (GEM), Centre of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand; Molecular Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Namfon Kotanan
- Genomics and Evolutionary Medicine Unit (GEM), Centre of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Cristina de Cozar
- Tres Cantos Medicine Development Campus, GlaxoSmithKline, Parque Tecnológico de Madrid, Tres Cantos, 28760, Spain
| | - Theerarat Kochakarn
- Genomics and Evolutionary Medicine Unit (GEM), Centre of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Megan R Ansbro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA; Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - Prapon Wilairat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Marcus C S Lee
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
| | - Francisco Javier Gamo
- Tres Cantos Medicine Development Campus, GlaxoSmithKline, Parque Tecnológico de Madrid, Tres Cantos, 28760, Spain
| | - Laura Maria Sanz
- Tres Cantos Medicine Development Campus, GlaxoSmithKline, Parque Tecnológico de Madrid, Tres Cantos, 28760, Spain
| | - Thanat Chookajorn
- Genomics and Evolutionary Medicine Unit (GEM), Centre of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Krittikorn Kümpornsin
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom.
| |
Collapse
|
180
|
Artemisinin resistance phenotypes and K13 inheritance in a Plasmodium falciparum cross and Aotus model. Proc Natl Acad Sci U S A 2018; 115:12513-12518. [PMID: 30455312 DOI: 10.1073/pnas.1813386115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Concerns about malaria parasite resistance to treatment with artemisinin drugs (ARTs) have grown with findings of prolonged parasite clearance t 1/2s (>5 h) and their association with mutations in Plasmodium falciparum Kelch-propeller protein K13. Here, we describe a P. falciparum laboratory cross of K13 C580Y mutant with C580 wild-type parasites to investigate ART response phenotypes in vitro and in vivo. After genotyping >400 isolated progeny, we evaluated 20 recombinants in vitro: IC50 measurements of dihydroartemisinin were at similar low nanomolar levels for C580Y- and C580-type progeny (mean ratio, 1.00; 95% CI, 0.62-1.61), whereas, in a ring-stage survival assay, the C580Y-type progeny had 19.6-fold (95% CI, 9.76-39.2) higher average counts. In splenectomized Aotus monkeys treated with three daily doses of i.v. artesunate, t 1/2 calculations by three different methods yielded mean differences of 0.01 h (95% CI, -3.66 to 3.67), 0.80 h (95% CI, -0.92 to 2.53), and 2.07 h (95% CI, 0.77-3.36) between C580Y and C580 infections. Incidences of recrudescence were 57% in C580Y (4 of 7) versus 70% in C580 (7 of 10) infections (-13% difference; 95% CI, -58% to 35%). Allelic substitution of C580 in a C580Y-containing progeny clone (76H10) yielded a transformant (76H10C580Rev) that, in an infected monkey, recrudesced regularly 13 times over 500 d. Frequent recrudescences of ART-treated P. falciparum infections occur with or without K13 mutations and emphasize the need for improved partner drugs to effectively eliminate the parasites that persist through the ART component of combination therapy.
Collapse
|
181
|
Le Manach C, Paquet T, Wicht K, Nchinda AT, Brunschwig C, Njoroge M, Gibhard L, Taylor D, Lawrence N, Wittlin S, Eyermann CJ, Basarab GS, Duffy J, Fish PV, Street LJ, Chibale K. Antimalarial Lead-Optimization Studies on a 2,6-Imidazopyridine Series within a Constrained Chemical Space To Circumvent Atypical Dose–Response Curves against Multidrug Resistant Parasite Strains. J Med Chem 2018; 61:9371-9385. [DOI: 10.1021/acs.jmedchem.8b01333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claire Le Manach
- Drug Discovery and Development Center (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Tanya Paquet
- Drug Discovery and Development Center (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kathryn Wicht
- Drug Discovery and Development Center (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Aloysius T. Nchinda
- Drug Discovery and Development Center (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Christel Brunschwig
- H3D, Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Mathew Njoroge
- H3D, Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Liezl Gibhard
- H3D, Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Dale Taylor
- H3D, Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Nina Lawrence
- H3D, Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| | - Charles J. Eyermann
- Drug Discovery and Development Center (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Gregory S. Basarab
- Drug Discovery and Development Center (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - James Duffy
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, PO Box 1826, 1215 Geneva, Switzerland
| | - Paul V. Fish
- Alzheimer’s Research UK, UCL Drug Discovery Institute, The Cruciform Building, University College London, Gower Street, London WC1E 6BT, U.K
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Leslie J. Street
- Drug Discovery and Development Center (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Center (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council, Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
182
|
Koller R, Mombo-Ngoma G, Grobusch MP. The early preclinical and clinical development of ganaplacide (KAF156), a novel antimalarial compound. Expert Opin Investig Drugs 2018; 27:803-810. [PMID: 30223692 DOI: 10.1080/13543784.2018.1524871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Ganaplacide (previously known as KAF156) is a novel antimalarial compound part of the imidazolopiperazine family. AREAS COVERED At the time of writing, a total of eight studies addressing its preclinical and clinical development have been published on this compound, which is currently in phase 2 of clinical development, alongside lumefantrine in a novel soluble formulation as combination partner. This review provides an overview and interpretation of the published pre-clinical and clinical data of this possible next-generation antimalarial drug. EXPERT OPINION In the search for a 'magic bullet' in malaria therapy and prophylaxis facilitating single encounter radical cure and prophylaxis, ganaplacide demonstrates some promising properties toward this ultimate goal. The available data suggest that ganaplacide exerts multi-stage antimalarial activity, and that its pharmacokinetic profile potentially allows for a simplified dosing regimen compared to that of existing antimalarial drug combinations. The first in-patient results demonstrate promising single-dose antimalarial activity, and no serious in-human safety and tolerability concerns have been reported to date.
Collapse
Affiliation(s)
- Robin Koller
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases , Amsterdam University Medical Centers, University of Amsterdam , Amsterdam , The Netherlands.,b Centre de Recherches Médicales en Lambaréné (CERMEL) , Lambaréné , Gabon
| | - Ghyslain Mombo-Ngoma
- b Centre de Recherches Médicales en Lambaréné (CERMEL) , Lambaréné , Gabon.,c Institute of Tropical Medicine , University of Tübingen , Tübingen , Germany.,d Department of Tropical Medicine , Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine University Medical Center Hamburg-Eppendorf , Hamburg , Germany.,e Department of Parasitology , Université des Sciences de la Santé , Libreville , Gabon
| | - Martin P Grobusch
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases , Amsterdam University Medical Centers, University of Amsterdam , Amsterdam , The Netherlands.,b Centre de Recherches Médicales en Lambaréné (CERMEL) , Lambaréné , Gabon.,c Institute of Tropical Medicine , University of Tübingen , Tübingen , Germany.,f Institute of Infectious Diseases and Molecular Medicine , University of Cape Town , Cape Town , South Africa.,g Masanga Medical Research Unit , Masanga , Sierra Leone
| |
Collapse
|
183
|
Evidence for Regulation of Hemoglobin Metabolism and Intracellular Ionic Flux by the Plasmodium falciparum Chloroquine Resistance Transporter. Sci Rep 2018; 8:13578. [PMID: 30206341 PMCID: PMC6134138 DOI: 10.1038/s41598-018-31715-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/22/2018] [Indexed: 11/30/2022] Open
Abstract
Plasmodium falciparum multidrug resistance constitutes a major obstacle to the global malaria elimination campaign. Specific mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) mediate resistance to the 4-aminoquinoline drug chloroquine and impact parasite susceptibility to several partner agents used in current artemisinin-based combination therapies, including amodiaquine. By examining gene-edited parasites, we report that the ability of the wide-spread Dd2 PfCRT isoform to mediate chloroquine and amodiaquine resistance is substantially reduced by the addition of the PfCRT L272F mutation, which arose under blasticidin selection. We also provide evidence that L272F confers a significant fitness cost to asexual blood stage parasites. Studies with amino acid-restricted media identify this mutant as a methionine auxotroph. Metabolomic analysis also reveals an accumulation of short, hemoglobin-derived peptides in the Dd2 + L272F and Dd2 isoforms, compared with parasites expressing wild-type PfCRT. Physiologic studies with the ionophores monensin and nigericin support an impact of PfCRT isoforms on Ca2+ release, with substantially reduced Ca2+ levels observed in Dd2 + L272F parasites. Our data reveal a central role for PfCRT in regulating hemoglobin catabolism, amino acid availability, and ionic balance in P. falciparum, in addition to its role in determining parasite susceptibility to heme-binding 4-aminoquinoline drugs.
Collapse
|