151
|
Shen G, Shi L, Tian X, Huang D, Chen H, Gao C, Shen X, Zhang H. Case Report: Response to Almonertinib in a Patient With Metastatic NSCLC Resistant to Osimertinib due to Acquired EGFR L718Q Mutation. Front Pharmacol 2021; 12:731895. [PMID: 34987382 PMCID: PMC8721274 DOI: 10.3389/fphar.2021.731895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Osimertinib shows strong clinical activity in first- and second-line treatment of nonsmall-cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations, especially EGFR T790M. However, when patients develop resistance, there is currently no definite postosimertinib treatment option. Herein, we report a patient with metastatic NSCLC who benefited from almonertinib after developing resistance to osimertinib.
Collapse
Affiliation(s)
- Gang Shen
- Department of Thoracic Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lei Shi
- Department of Thoracic Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Tian
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Depei Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Hao Chen
- The Bioinformatics Department, 3D Medicines Inc., Shanghai, China
| | - Chan Gao
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Xudong Shen
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Hushan Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
- *Correspondence: Hushan Zhang,
| |
Collapse
|
152
|
Emerging Molecular Dependencies of Mutant EGFR-Driven Non-Small Cell Lung Cancer. Cells 2021; 10:cells10123553. [PMID: 34944063 PMCID: PMC8699920 DOI: 10.3390/cells10123553] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations are the molecular driver of a subset of non-small cell lung cancers (NSCLC); tumors that harbor these mutations are often dependent on sustained oncogene signaling for survival, a concept known as “oncogene addiction”. Inhibiting EGFR with tyrosine kinase inhibitors has improved clinical outcomes for patients; however, successive generations of inhibitors have failed to prevent the eventual emergence of resistance to targeted agents. Although these tumors have a well-established dependency on EGFR signaling, there remain questions about the underlying genetic mechanisms necessary for EGFR-driven oncogenesis and the factors that allow tumor cells to escape EGFR dependence. In this review, we highlight the latest findings on mutant EGFR dependencies, co-operative drivers, and molecular mechanisms that underlie sensitivity to EGFR inhibitors. Additionally, we offer perspective on how these discoveries may inform novel combination therapies tailored to EGFR mutant NSCLC.
Collapse
|
153
|
Tanimura K, Yamada T, Horinaka M, Katayama Y, Fukui S, Morimoto K, Nakano T, Tokuda S, Morimoto Y, Iwasaku M, Kaneko Y, Uchino J, Yoneda K, Yano S, Sakai T, Takayama K. Inhibition of c-Jun N-terminal kinase signaling increased apoptosis and prevented the emergence of ALK-TKI-tolerant cells in ALK-rearranged non-small cell lung cancer. Cancer Lett 2021; 522:119-128. [PMID: 34534615 DOI: 10.1016/j.canlet.2021.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Anaplastic lymphoma kinase-tyrosine kinase inhibitors (ALK-TKIs) have improved clinical outcomes in non-small cell lung cancer (NSCLC) harboring ALK- rearrangements. However, a small population of tumor cells survives due to adaptive resistance under drug pressure and ultimately acquires drug resistance. Thus, it is necessary to elucidate the mechanisms underlying the prevention of drug resistance to improve the prognosis of patients with ALK-rearranged NSCLC. We identified novel adaptive resistance, generated through c-Jun N-terminal kinase (JNK)/c-Jun signaling, to initial ALK-TKIs-alectinib and brigatinib-in ALK-rearranged NSCLC. Inhibition of JNK/c-Jun axis showed suppression of growth and promotion of apoptosis induced by ALK-TKIs in drug-tolerant cells. JNK inhibition, in combination with the use of ALK-TKIs, increased cell apoptosis through repression of the Bcl-xL proteins, compared with ALK-TKI monotherapy. Importantly, combination therapy targeting JNK and ALK significantly delayed the regrowth following cessation of these treatments. Together, our results demonstrated that JNK pathway activation plays a pivotal role in the intrinsic resistance to ALK-TKIs and the emergence of ALK-TKI-tolerant cells in ALK-rearranged NSCLC, thus indicating that optimal inhibition of tolerant signals combined with ALK-TKIs may potentially improve the outcome of ALK-rearranged NSCLC.
Collapse
Affiliation(s)
- Keiko Tanimura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuki Katayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Sarina Fukui
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kenji Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takayuki Nakano
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shinsaku Tokuda
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshie Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Masahiro Iwasaku
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshiko Kaneko
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Junji Uchino
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazue Yoneda
- Second Department of Surgery, University of Occupational and Environmental Health, Kitakyushu-shi, Fukuoka, 807-8555, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
154
|
Nussinov R, Tsai CJ, Jang H. Anticancer drug resistance: An update and perspective. Drug Resist Updat 2021; 59:100796. [PMID: 34953682 PMCID: PMC8810687 DOI: 10.1016/j.drup.2021.100796] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
Driver mutations promote initiation and progression of cancer. Pharmacological treatment can inhibit the action of the mutant protein; however, drug resistance almost invariably emerges. Multiple studies revealed that cancer drug resistance is based upon a plethora of distinct mechanisms. Drug resistance mutations can occur in the same protein or in different proteins; as well as in the same pathway or in parallel pathways, bypassing the intercepted signaling. The dilemma that the clinical oncologist is facing is that not all the genomic alterations as well as alterations in the tumor microenvironment that facilitate cancer cell proliferation are known, and neither are the alterations that are likely to promote metastasis. For example, the common KRasG12C driver mutation emerges in different cancers. Most occur in NSCLC, but some occur, albeit to a lower extent, in colorectal cancer and pancreatic ductal carcinoma. The responses to KRasG12C inhibitors are variable and fall into three categories, (i) new point mutations in KRas, or multiple copies of KRAS G12C which lead to higher expression level of the mutant protein; (ii) mutations in genes other than KRAS; (iii) original cancer transitioning to other cancer(s). Resistance to adagrasib, an experimental antitumor agent exerting its cytotoxic effect as a covalent inhibitor of the G12C KRas, indicated that half of the cases present multiple KRas mutations as well as allele amplification. Redundant or parallel pathways included MET amplification; emerging driver mutations in NRAS, BRAF, MAP2K1, and RET; gene fusion events in ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function mutations in NF1 and PTEN tumor suppressors. In the current review we discuss the molecular mechanisms underlying drug resistance while focusing on those emerging to common targeted cancer drivers. We also address questions of why cancers with a common driver mutation are unlikely to evolve a common drug resistance mechanism, and whether one can predict the likely mechanisms that the tumor cell may develop. These vastly important and tantalizing questions in drug discovery, and broadly in precision medicine, are the focus of our present review. We end with our perspective, which calls for target combinations to be selected and prioritized with the help of the emerging massive compute power which enables artificial intelligence, and the increased gathering of data to overcome its insatiable needs.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA
| |
Collapse
|
155
|
Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer 2021; 1877:188645. [PMID: 34793897 DOI: 10.1016/j.bbcan.2021.188645] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer causes the highest mortality compared to other cancers in the world according to the latest WHO reports. Non-small cell lung cancer (NSCLC) contributes about 85% of total lung cancer cases. An extensive number of risk factors are attributed to the progression of lung cancer. Epidermal growth factor receptor (EGFR), one of the most frequently mutant driver genes, is closely involved in the development of lung cancer through regulation of the PI3K/AKT and MAPK pathways. As a representative of precision medicine, EGFR-tyrosine kinase inhibitors (TKIs) targeted therapy significantly relieves the development of activating mutant EGFR-driven NSCLC. However, treatment with TKIs facilitates the emergence of acquired resistance that continues to pose a significant hurdle with respect to EGFR targeted therapy. In this review, the development of current approved EGFR-TKIs as well as the related supporting clinical trials are summarized and discussed. Mechanisms of action and resistance were addressed respectively, which serve as important guides to understanding acquired resistance. We also explored the corresponding combination treatment options according to different resistance mechanisms. Future challenges include more comprehensive characterization of unclear resistance mechanisms in different populations and the development of more efficient and precision synthetic therapeutic strategies.
Collapse
|
156
|
Yan D, Earp HS, DeRyckere D, Graham DK. Targeting MERTK and AXL in EGFR Mutant Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:5639. [PMID: 34830794 PMCID: PMC8616094 DOI: 10.3390/cancers13225639] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
MERTK and AXL are members of the TAM family of receptor tyrosine kinases and are abnormally expressed in 69% and 93% of non-small cell lung cancers (NSCLCs), respectively. Expression of MERTK and/or AXL provides a survival advantage for NSCLC cells and correlates with lymph node metastasis, drug resistance, and disease progression in patients with NSCLC. The TAM receptors on host tumor infiltrating cells also play important roles in the immunosuppressive tumor microenvironment. Thus, MERTK and AXL are attractive biologic targets for NSCLC treatment. Here, we will review physiologic and oncologic roles for MERTK and AXL with an emphasis on the potential to target these kinases in NSCLCs with activating EGFR mutations.
Collapse
Affiliation(s)
- Dan Yan
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| | - H. Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, Department of Medicine, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| |
Collapse
|
157
|
Fragment-based lead discovery of indazole-based compounds as AXL kinase inhibitors. Bioorg Med Chem 2021; 49:116437. [PMID: 34600239 DOI: 10.1016/j.bmc.2021.116437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 11/22/2022]
Abstract
AXL is a member of the TAM (TYRO3, AXL, MER) subfamily of receptor tyrosine kinases. It is upregulated in a variety of cancers and its overexpression is associated with poor disease prognosis and acquired drug resistance. Utilizing a fragment-based lead discovery approach, a new indazole-based AXL inhibitor was obtained. The indazole fragment hit 11, identified through a high concentration biochemical screen, was expeditiously improved to fragment 24 by screening our in-house expanded library of fragments (ELF) collection. Subsequent fragment optimization guided by docking studies provided potent inhibitor 54 with moderate exposure levels in mice. X-ray crystal structure of analog 50 complexed with the I650M mutated kinase domain of Mer revealed the key binding interactions for the scaffold. The good potency coupled with reasonable kinase selectivity, moderate in vivo exposure levels, and availability of structural information for the series makes it a suitable starting point for further optimization efforts.
Collapse
|
158
|
Intrinsic and Extrinsic Control of Hepatocellular Carcinoma by TAM Receptors. Cancers (Basel) 2021; 13:cancers13215448. [PMID: 34771611 PMCID: PMC8582520 DOI: 10.3390/cancers13215448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tyro3, Axl, and MerTK are receptor tyrosine kinases of the TAM family, which are activated by their ligands Gas6 and Protein S. TAM receptors have large physiological implications, including the removal of dead cells, activation of immune cells, and prevention of bleeding. In the last decade, TAM receptors have been suggested to play a relevant role in liver fibrogenesis and the development of hepatocellular carcinoma. The understanding of TAM receptor functions in tumor cells and their cellular microenvironment is of utmost importance to advances in novel therapeutic strategies that conquer chronic liver disease including hepatocellular carcinoma. Abstract Hepatocellular carcinoma (HCC) is the major subtype of liver cancer, showing high mortality of patients due to limited therapeutic options at advanced stages of disease. The receptor tyrosine kinases Tyro3, Axl and MerTK—belonging to the TAM family—exert a large impact on various aspects of cancer biology. Binding of the ligands Gas6 or Protein S activates TAM receptors causing homophilic dimerization and heterophilic interactions with other receptors to modulate effector functions. In this context, TAM receptors are major regulators of anti-inflammatory responses and vessel integrity, including platelet aggregation as well as resistance to chemotherapy. In this review, we discuss the relevance of TAM receptors in the intrinsic control of HCC progression by modulating epithelial cell plasticity and by promoting metastatic traits of neoplastic hepatocytes. Depending on different etiologies of HCC, we further describe the overt role of TAM receptors in the extrinsic control of HCC progression by focusing on immune cell infiltration and fibrogenesis. Additionally, we assess TAM receptor functions in the chemoresistance against clinically used tyrosine kinase inhibitors and immune checkpoint blockade in HCC progression. We finally address the question of whether inhibition of TAM receptors can be envisaged for novel therapeutic strategies in HCC.
Collapse
|
159
|
Kim HD, Park EJ, Choi EK, Song SY, Hoe KL, Kim DU. G-749 Promotes Receptor Tyrosine Kinase TYRO3 Degradation and Induces Apoptosis in Both Colon Cancer Cell Lines and Xenograft Mouse Models. Front Pharmacol 2021; 12:730241. [PMID: 34721022 PMCID: PMC8551583 DOI: 10.3389/fphar.2021.730241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/27/2021] [Indexed: 01/15/2023] Open
Abstract
G-749 is an FLT3 kinase inhibitor that was originally developed as a treatment for acute myeloid leukemia. Some FLT3 kinase inhibitors are dual kinase inhibitors that inhibit the TAM (Tyro3, Axl, Mer) receptor tyrosine kinase family and are used to treat solid cancers such as non-small cell lung cancer (NSCLC) and triple-negative breast cancer (TNBC). AXL promotes metastasis, suppression of immune response, and drug resistance in NSCLC and TNBC. G-749, a potential TAM receptor tyrosine kinase inhibitor, and its derivative SKI-G-801, effectively inhibits the phosphorylation of AXL at nanomolar concentration (IC50 = 20 nM). This study aimed to investigate the anticancer effects of G-749 targeting the TAM receptor tyrosine kinase in colon cancer. Here, we demonstrate the potential of G-749 to effectively inhibit tumorigenesis by degrading TYRO3 via regulated intramembrane proteolysis both in vitro and in vivo. In addition, we demonstrated that G-749 inhibits the signaling pathway associated with cell proliferation in colon cancer cell lines HCT15 and SW620, as well as tumor xenograft mouse models. We propose G-749 as a new therapeutic agent for the treatment of colon cancer caused by abnormal TYRO3 expression or activity.
Collapse
Affiliation(s)
- Hae Dong Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of New Drug Development, Chungnam National University, Daejeon, South Korea
| | - Eun Jung Park
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Application Strategy and Development Division, GeneChem Inc., Daejeon, South Korea
| | - Eun Kyoung Choi
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Seuk Young Song
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Kwang-Lae Hoe
- Department of New Drug Development, Chungnam National University, Daejeon, South Korea
| | - Dong-Uk Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| |
Collapse
|
160
|
Contribution of p53 in sensitivity to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Sci Rep 2021; 11:19667. [PMID: 34608255 PMCID: PMC8490392 DOI: 10.1038/s41598-021-99267-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/13/2021] [Indexed: 11/08/2022] Open
Abstract
The emergence of resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) with activating EGFR mutations is a major hindrance to treatment. We investigated the effects of p53 in primary sensitivity and acquired resistance to EGFR-TKIs in NSCLC cells. Changes in sensitivity to EGFR-TKIs were determined using p53 overexpression or knockdown in cells with activating EGFR mutations. We investigated EMT-related molecules, morphologic changes, and AXL induction to elucidate mechanisms of acquired resistance to EGFR-TKIs according to p53 status. Changes in p53 status affected primary sensitivity as well as acquired resistance to EGFR-TKIs according to cell type. Firstly, p53 silencing did not affect primary and acquired resistance to EGFR-TKIs in PC-9 cells, but it led to primary resistance to EGFR-TKIs through AXL induction in HCC827 cells. Secondly, p53 silencing in H1975 cells enhanced the sensitivity to osimertinib through the emergence of mesenchymal-to-epithelial transition, and the emergence of acquired resistance to osimertinib in p53 knockout cells was much slower than in H1975 cells. Furthermore, two cell lines (H1975 and H1975/p53KO) demonstrated the different mechanisms of acquired resistance to osimertinib. Lastly, the introduction of mutant p53-R273H induced the epithelial-to-mesenchymal transition and exerted resistance to EGFR-TKIs in cells with activating EGFR mutations. These findings indicate that p53 mutations can be associated with primary or acquired resistance to EGFR-TKIs. Thus, the status or mutations of p53 may be considered as routes to improving the therapeutic effects of EGFR-TKIs in NSCLC.
Collapse
|
161
|
Alterations in HLA Class I-Presented Immunopeptidome and Class I-Interactome upon Osimertinib Resistance in EGFR Mutant Lung Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13194977. [PMID: 34638461 PMCID: PMC8507780 DOI: 10.3390/cancers13194977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/02/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary We sought to identify molecular mechanisms of lower efficacy of immunotherapy in epidermal growth factor receptor (EGFR) mutant lung adenocarcinoma and the differences in those mechanisms with the emergence of tyrosine kinase inhibitor (TKI)-resistance. To this end, we conducted affinity purification and quantitative mass spectrometry-based proteomic profiling of human leukocyte antigen (HLA) Class I-presented immunopeptides and Class I-interacting proteins. This large-scale dataset revealed that the Class I-presented immunopeptidome was suppressed in two third-generation EGFR TKI, osimertinib-resistant lung adenocarcinoma cell lines compared to their isogenic TKI-sensitive counterparts. The whole-cell proteomic profiling show that antigen presentation complex proteins and immunoproteasome were downregulated upon EGFR TKI resistance. Furthermore, HLA class I-interactome profiling demonstrated altered interaction with key apoptosis and autophagy pathway proteins. In summary, our comprehensive multi-proteomic characterization in antigen presentation machinery provides potentially novel evidence of poor immune response in osimertinib-resistant lung adenocarcinoma. Abstract Immune checkpoint inhibitor (ICI) therapy has been a paradigm shift in the treatment of cancer. ICI therapy results in durable responses and survival benefit for a large number of tumor types. Osimertinib, a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) has shown great efficacy treating EGFR mutant lung cancers; however, all patients eventually develop resistance. ICI therapy has not benefitted EGFR mutant lung cancer. Herein, we employed stable isotope labeling by amino acids in cell culture (SILAC) quantitative mass spectrometry-based proteomics to investigate potential immune escape molecular mechanisms in osimertinib resistant EGFR mutant lung adenocarcinoma by interrogating the alterations in the human leukocyte antigen (HLA) Class I-presented immunopeptidome, Class I-interactome, and the whole cell proteome between isogenic osimertinib-sensitive and -resistant human lung adenocarcinoma cells. Our study demonstrates an overall reduction in HLA class I-presented immunopeptidome and downregulation of antigen presentation core complex (e.g., TAP1 and ERAP1/2) and immunoproteasome in osimertinib resistant lung adenocarcinoma cells. Several key components in autophagy pathway are differentially altered. S100 proteins and SLC3A2 may play critical roles in reduced antigen presentation. Our dataset also includes ~1000 novel HLA class I interaction partners and hundreds of Class I-presented immunopeptides in EGFR mutant lung adenocarcinoma. This large-scale unbiased proteomics study provides novel insights and potential mechanisms of immune evasion of EGFR mutant lung adenocarcinoma.
Collapse
|
162
|
Kim C, Liu SV, Crawford J, Torres T, Chen V, Thompson J, Tan M, Esposito G, Subramaniam DS, Giaccone G. A Phase I Trial of Dasatinib and Osimertinib in TKI Naïve Patients With Advanced EGFR-Mutant Non-Small-Cell Lung Cancer. Front Oncol 2021; 11:728155. [PMID: 34568058 PMCID: PMC8457399 DOI: 10.3389/fonc.2021.728155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Background Osimertinib is an effective first-line therapy option for EGFR-mutant NSCLC, but virtually all patients develop resistance. CRIPTO, through Src activation, has been implicated in resistance to EGFR tyrosine kinase inhibitor (EGFR-TKI) therapy. Dasatinib, a Src inhibitor, has shown preclinical synergy with EGFR-TKI therapy. Method This is a single-arm phase I/II trial of osimertinib and dasatinib in TKI-naïve advanced EGFR-mutant NSCLC (NCT02954523). A 3 + 3 design was used in the phase I to establish the recommended phase II dose (RP2D). Osimertinib 80 mg QD was combined with dasatinib 70 mg BID (DL2), 50 mg BID (DL1), 70 mg QD (DL-1), and 50 mg QD (DL-2). Results Ten patients (DL2: 3, DL1: 6, DL -1: 1) were enrolled. 3 (50%) of 6 patients at DL1 experienced a DLT (grade 3 headaches/body pain, neutropenia, rash, one each). Common treatment-related adverse events included pleural effusion (n=10), diarrhea (n=8), rash (n=7), transaminitis (n=7), thrombocytopenia (n=7), and neutropenia (n=7). While the MTD was not determined by protocol-defined DLT criteria, DL-2 was chosen as the RP2D, considering overall tolerability. Nine (90%) patients had a PR, including 1 unconfirmed PR. Median PFS was 19.4 months and median OS 36.1 months. The trial was closed to accrual prematurely due to slow accrual after the approval of osimertinib as first-line therapy. Conclusions The combination of dasatinib and osimertinib demonstrated anticancer activity. The treatment was limited by chronic toxicities mainly attributed to dasatinib. To improve the safety and tolerability of Src and EGFR co-inhibition, Src inhibitors with a more favorable safety profile should be utilized in future studies. Clinical Trial Registration https://clinicaltrials.gov/ct2/show/NCT02954523.
Collapse
Affiliation(s)
- Chul Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Stephen V Liu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Jennifer Crawford
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Tisdrey Torres
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Vincent Chen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Jillian Thompson
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Ming Tan
- Department of Biostatistics, Bioinformatics & Biomathematics, Georgetown University, Washington, DC, United States
| | - Giuseppe Esposito
- Department of Radiology, Georgetown University Hospital, Washington, DC, United States
| | - Deepa S Subramaniam
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States.,AstraZeneca Plc., Gaithersburg, MD, United States
| | - Giuseppe Giaccone
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States.,Weill-Cornell Medicine, New York, NY, United States
| |
Collapse
|
163
|
AXL Receptor in Cancer Metastasis and Drug Resistance: When Normal Functions Go Askew. Cancers (Basel) 2021; 13:cancers13194864. [PMID: 34638349 PMCID: PMC8507788 DOI: 10.3390/cancers13194864] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary AXL is a member of the TAM (TYRO3, AXL, MER) family of receptor tyrosine kinases. In normal physiological conditions, AXL is involved in removing dead cells and their remains, and limiting the duration of immune responses. Both functions are utilized by cancers in the course of tumour progression. Cancer cells use the AXL pathway to detect toxic environments and to activate molecular mechanisms, thereby ensuring their survival or escape from the toxic zone. AXL is instrumental in controlling genetic programs of epithelial-mesenchymal and mesenchymal-epithelial transitions, enabling cancer cells to metastasize. Additionally, AXL signaling suppresses immune responses in tumour microenvironment and thereby helps cancer cells to evade immune surveillance. The broad role of AXL in tumour biology is the reason why its inhibition sensitizes tumours to a broad spectrum of anti-cancer drugs. In this review, we outline molecular mechanisms underlying AXL function in normal tissues, and discuss how these mechanisms are adopted by cancers to become metastatic and drug-resistant. Abstract The TAM proteins TYRO3, AXL, and MER are receptor tyrosine kinases implicated in the clearance of apoptotic debris and negative regulation of innate immune responses. AXL contributes to immunosuppression by terminating the Toll-like receptor signaling in dendritic cells, and suppressing natural killer cell activity. In recent years, AXL has been intensively studied in the context of cancer. Both molecules, the receptor, and its ligand GAS6, are commonly expressed in cancer cells, as well as stromal and infiltrating immune cells. In cancer cells, the activation of AXL signaling stimulates cell survival and increases migratory and invasive potential. In cells of the tumour microenvironment, AXL pathway potentiates immune evasion. AXL has been broadly implicated in the epithelial-mesenchymal plasticity of cancer cells, a key factor in drug resistance and metastasis. Several antibody-based and small molecule AXL inhibitors have been developed and used in preclinical studies. AXL inhibition in various mouse cancer models reduced metastatic spread and improved the survival of the animals. AXL inhibitors are currently being tested in several clinical trials as monotherapy or in combination with other drugs. Here, we give a brief overview of AXL structure and regulation and discuss the normal physiological functions of TAM receptors, focusing on AXL. We present a theory of how epithelial cancers exploit AXL signaling to resist cytotoxic insults, in order to disseminate and relapse.
Collapse
|
164
|
He J, Huang Z, Han L, Gong Y, Xie C. Mechanisms and management of 3rd‑generation EGFR‑TKI resistance in advanced non‑small cell lung cancer (Review). Int J Oncol 2021; 59:90. [PMID: 34558640 PMCID: PMC8562388 DOI: 10.3892/ijo.2021.5270] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022] Open
Abstract
Targeted therapy with epidermal growth factor receptor (EGFR)‑tyrosine kinase inhibitors (TKIs) is a standard modality of the 1st‑line treatments for patients with advanced EGFR‑mutated non‑small cell lung cancer (NSCLC), and substantially improves their prognosis. However, EGFR T790M mutation is the primary mechanism of 1st‑ and 2nd‑generation EGFR‑TKI resistance. Osimertinib is a representative of the 3rd‑generation EGFR‑TKIs that target T790M mutation, and has satisfactory efficacy in the treatment of T790M‑positive NSCLC with disease progression following use of 1st‑ or 2nd‑generation EGFR‑TKIs. Other 3rd‑generation EGFR‑TKIs, such as abivertinib, rociletinib, nazartinib, olmutinib and alflutinib, are also at various stages of development. However, the occurrence of acquired resistance is inevitable, and the mechanisms of 3rd‑generation EGFR‑TKI resistance are complex and incompletely understood. Genomic studies in tissue and liquid biopsies of resistant patients reveal multiple candidate pathways. The present review summarizes the recent findings in mechanisms of resistance to 3rd‑generation EGFR‑TKIs in advanced NSCLC, and provides possible strategies to overcome this resistance. The mechanisms of acquired resistance mainly include an altered EGFR signaling pathway (EGFR tertiary mutations and amplification), activation of aberrant bypassing pathways (hepatocyte growth factor receptor amplification, human epidermal growth factor receptor 2 amplification and aberrant insulin‑like growth factor 1 receptor activation), downstream pathway activation (RAS/RAF/MEK/ERK and PI3K/AKT/mTOR) and histological/phenotypic transformations (SCLC transformation and epithelial‑mesenchymal transition). The combination of targeted therapies is a promising strategy to treat osimertinib‑resistant patients, and multiple clinical studies on novel combined therapies are ongoing.
Collapse
Affiliation(s)
- Jingyi He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhengrong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
165
|
Leonce C, Saintigny P, Ortiz-Cuaran S. Cell-intrinsic mechanisms of drug tolerance to systemic therapies in cancer. Mol Cancer Res 2021; 20:11-29. [PMID: 34389691 DOI: 10.1158/1541-7786.mcr-21-0038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
In cancer patients with metastatic disease, the rate of complete tumor response to systemic therapies is low, and residual lesions persist in the majority of patients due to early molecular adaptation in cancer cells. A growing body of evidence suggests that a subpopulation of drug-tolerant « persister » cells - a reversible phenotype characterized by reduced drug sensitivity and decreased cell proliferation - maintains residual disease and may serve as a reservoir for resistant phenotypes. The survival of these residual tumor cells can be caused by reactivation of specific signaling pathways, phenotypic plasticity (i.e., transdifferentiation), epigenetic or metabolic reprogramming, downregulation of apoptosis as well as transcriptional remodeling. In this review, we discuss the molecular mechanisms that enable adaptive survival in drug-tolerant cells. We describe the main characteristics and dynamic nature of this persistent state, and highlight the current therapeutic strategies that may be used to interfere with the establishment of drug-tolerant cells, as an alternative to improve objective response to systemic therapies and delay the emergence of resistance to improve long-term survival.
Collapse
Affiliation(s)
- Camille Leonce
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon
| | - Pierre Saintigny
- Department of Medical Oncology, Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon. Department of Medical Oncology, Centre Léon Bérard
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon
| |
Collapse
|
166
|
AXL Inhibition Represents a Novel Therapeutic Approach in BCR-ABL Negative Myeloproliferative Neoplasms. Hemasphere 2021; 5:e630. [PMID: 34396051 PMCID: PMC8357258 DOI: 10.1097/hs9.0000000000000630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/05/2021] [Indexed: 11/26/2022] Open
Abstract
BCR-ABL negative myeloproliferative neoplasms (MPNs) consist of essential thrombocythemia, polycythemia vera, and myelofibrosis. The majority of patients harbor the JAK2-activating mutation V617F. JAK2 inhibitors were shown to reduce symptom burden and splenomegaly in MPN patients. However, treatment options are limited after failure of JAK2 inhibitors. AXL, a member of the TAM family of receptor tyrosine kinases, mediates survival and therapy resistance of different myeloid cancers including acute myeloid leukemia and chronic myeloid leukemia. We studied the relevance of AXL as a target in MPN using primary patient cells and preclinical disease models. We found that AXL is abundantly activated in MPN cells and that its ligand growth arrest-specific gene 6 is upregulated in MPN patients. Pharmacologic and genetic blockade of AXL impaired viability, decreased proliferation and increased apoptosis of MPN cells. Interestingly, ruxolitinib treatment induced increased phosphorylation of AXL indicating that activation of AXL might mediate resistance to ruxolitinib. Consistently, the AXL inhibitor bemcentinib exerted additive effects with ruxolitinib via impaired STAT3, STAT5, and AKT signaling. Both agents had activity when employed alone and exerted an additive effect on survival and splenomegaly in vivo. Moreover, bemcentinib treatment normalized red blood cell count and hemoglobin levels in vivo. Thus, our data indicate that AXL inhibition represents a novel treatment option in MPN warranting clinical investigation.
Collapse
|
167
|
Zaman A, Bivona TG. Targeting AXL in NSCLC. LUNG CANCER (AUCKLAND, N.Z.) 2021; 12:67-79. [PMID: 34408519 PMCID: PMC8364399 DOI: 10.2147/lctt.s305484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
State-of-the-art cancer precision medicine approaches involve targeted inactivation of chemically and immunologically addressable vulnerabilities that often yield impressive initial anti-tumor responses in patients. Nonetheless, these responses are overshadowed by therapy resistance that follows. AXL, a receptor tyrosine kinase with bona fide oncogenic capacity, has been associated with the emergence of resistance in an array of cancers with varying pathophysiology and cellular origins, including in non-small-cell lung cancers (NSCLCs). Here in this review, we summarize AXL biology during normal homeostasis, oncogenic development and therapy resistance with a focus on NSCLC. In the context of NSCLC therapy resistance, we delineate AXL's role in mediating resistance to tyrosine kinase inhibitors (TKIs) deployed against epidermal growth factor receptor (EGFR) as well as other notable oncogenes and to chemotherapeutics. We also discuss the current understanding of AXL's role in mediating cell-biological variables that function as important modifiers of therapy resistance such as epithelial to mesenchymal transition (EMT), the tumor microenvironment and tumor heterogeneity. We also catalog and discuss a set of effective pharmacologic tools that are emerging to strategically perturb AXL mediated resistance programs in NSCLC. Finally, we enumerate ongoing and future exciting precision medicine approaches targeting AXL as well as challenges in this regard. We highlight that a holistic understanding of AXL biology in NSCLC may allow us to predict and improve targeted therapeutic strategies, such as through polytherapy approaches, potentially against a broad spectrum of NSCLC sub-types to forestall tumor evolution and drug resistance.
Collapse
Affiliation(s)
- Aubhishek Zaman
- Department of Medicine, University of California, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
168
|
Rosell R, Cardona AF, Arrieta O, Aguilar A, Ito M, Pedraz C, Codony-Servat J, Santarpia M. Coregulation of pathways in lung cancer patients with EGFR mutation: therapeutic opportunities. Br J Cancer 2021; 125:1602-1611. [PMID: 34373568 PMCID: PMC8351231 DOI: 10.1038/s41416-021-01519-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations in lung adenocarcinoma are a frequent class of driver mutations. Single EGFR tyrosine kinase inhibitor (TKI) provides substantial clinical benefit, but almost nil radiographic complete responses. Patients invariably progress, although survival can reach several years with post-treatment therapies, including EGFR TKIs, chemotherapy or other procedures. Endeavours have been clinically oriented to manage the acquisition of EGFR TKI-resistant mutations; however, basic principles on cancer evolution have not been considered in clinical trials. For years, evidence has displayed rapidly adaptive mechanisms of resistance to selective monotherapy, posing several dilemmas for the practitioner. Strict adherence to non-small cell lung cancer (NSCLC) guidelines is not always practical for addressing the clinical progression that EGFR-mutant lung adenocarcinoma patients suffer. The purpose of this review is to highlight regulatory mechanisms and signalling pathways that cause therapy-induced resistance to EGFR TKIs. It suggests combinatorial therapies that target EGFR, as well as potential mechanisms underlying EGFR-mutant NSCLC, alerting the reader to clinical opportunities that may lead to a deeper and more durable response. Molecular reprogramming contributes to EGFR TKI resistance, and the compiled information is relevant in understanding the development of new combined targeted strategies in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Rafael Rosell
- Catalan Institute of Oncology, Badalona, Spain. .,Oncology Institute Dr Rosell, IOR, Barcelona, Spain.
| | - Andrés Felipe Cardona
- Clinical and Translational Oncology Group, Thoracic Oncology Unit, Institute of Oncologyt, Clínica del Country, Bogotá, Colombia
| | - Oscar Arrieta
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología, México City, México.,Thoracic Oncology Unit, Instituto Nacional de Cancerología, México City, México
| | | | - Masaoki Ito
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Carlos Pedraz
- Germans Trias i Pujol Research Institute, Badalona, Spain.,Biochemistry, Molecular Biology and Biomedicine Department, Universitat Autónoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| |
Collapse
|
169
|
Mikubo M, Inoue Y, Liu G, Tsao MS. Mechanism of Drug Tolerant Persister Cancer Cells: The Landscape and Clinical Implication for Therapy. J Thorac Oncol 2021; 16:1798-1809. [PMID: 34352380 DOI: 10.1016/j.jtho.2021.07.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/30/2021] [Accepted: 07/18/2021] [Indexed: 01/06/2023]
Abstract
A minor population of cancer cells may evade cell death from chemotherapy and targeted therapy by entering a reversible slow proliferation state known as the drug tolerant persister (DTP) state. This DTP state can allow cancer cells to survive drug therapy long enough for additional mechanisms of acquired drug resistance to develop. Thus, cancer persistence is a major obstacle to curing cancers, where insight into the biology of DTP cells and therapeutic strategies targeting this mechanism can have considerable clinical implications. There is emerging evidence that DTP cells adapt to new environments through epigenomic modification, transcriptomic regulation, flexible energy metabolism, and interactions with the tumor microenvironment. Herein, we review and discuss the various proposed mechanisms of cancer persister cells and the molecular features underlying the DTP state, with insights into the potential therapeutic strategies to conquer DTP cells and prevent cancer recurrence or therapeutic failures.
Collapse
Affiliation(s)
- Masashi Mikubo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yoshiaki Inoue
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
170
|
Oren Y, Tsabar M, Cuoco MS, Amir-Zilberstein L, Cabanos HF, Hütter JC, Hu B, Thakore PI, Tabaka M, Fulco CP, Colgan W, Cuevas BM, Hurvitz SA, Slamon DJ, Deik A, Pierce KA, Clish C, Hata AN, Zaganjor E, Lahav G, Politi K, Brugge JS, Regev A. Cycling cancer persister cells arise from lineages with distinct programs. Nature 2021; 596:576-582. [PMID: 34381210 PMCID: PMC9209846 DOI: 10.1038/s41586-021-03796-6] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
Non-genetic mechanisms have recently emerged as important drivers of cancer therapy failure1, where some cancer cells can enter a reversible drug-tolerant persister state in response to treatment2. Although most cancer persisters remain arrested in the presence of the drug, a rare subset can re-enter the cell cycle under constitutive drug treatment. Little is known about the non-genetic mechanisms that enable cancer persisters to maintain proliferative capacity in the presence of drugs. To study this rare, transiently resistant, proliferative persister population, we developed Watermelon, a high-complexity expressed barcode lentiviral library for simultaneous tracing of each cell's clonal origin and proliferative and transcriptional states. Here we show that cycling and non-cycling persisters arise from different cell lineages with distinct transcriptional and metabolic programs. Upregulation of antioxidant gene programs and a metabolic shift to fatty acid oxidation are associated with persister proliferative capacity across multiple cancer types. Impeding oxidative stress or metabolic reprogramming alters the fraction of cycling persisters. In human tumours, programs associated with cycling persisters are induced in minimal residual disease in response to multiple targeted therapies. The Watermelon system enabled the identification of rare persister lineages that are preferentially poised to proliferate under drug pressure, thus exposing new vulnerabilities that can be targeted to delay or even prevent disease recurrence.
Collapse
Affiliation(s)
- Yaara Oren
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, USA
| | - Michael Tsabar
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Systems Biology, Harvard Medical School, Boston, MA, USA,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael S. Cuoco
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Heidie F. Cabanos
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA,Departments of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jan-Christian Hütter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bomiao Hu
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Pratiksha I. Thakore
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Current address: Genentech, South San Francisco, CA, USA
| | - Marcin Tabaka
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles P Fulco
- Broad Institute of MIT and Harvard, Cambridge, MA, USA,Current address: Bristol Myers Squibb, Cambridge, MA, USA
| | | | - Brandon M. Cuevas
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sara A. Hurvitz
- David Geffen School of Medicine, University of California, Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Dennis J. Slamon
- David Geffen School of Medicine, University of California, Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Amy Deik
- Metabolomics Platform, Broad Institute, Cambridge, MA, USA
| | | | - Clary Clish
- Metabolomics Platform, Broad Institute, Cambridge, MA, USA
| | - Aaron N. Hata
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA,Departments of Medicine, Harvard Medical School, Boston, MA, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Katerina Politi
- Departments of Pathology (Section of Medical Oncology), Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - Joan S. Brugge
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, USA,Ludwig Center at Harvard
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Genentech, South San Francisco, CA, USA.
| |
Collapse
|
171
|
Genomic instability as a major mechanism for acquired resistance to EGFR tyrosine kinase inhibitors in cancer. Protein Cell 2021; 13:82-89. [PMID: 34319535 PMCID: PMC8783936 DOI: 10.1007/s13238-021-00855-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2021] [Indexed: 11/17/2022] Open
|
172
|
Safaric Tepes P, Pal D, Lindsted T, Ibarra I, Lujambio A, Jimenez Sabinina V, Senturk S, Miller M, Korimerla N, Huang J, Glassman L, Lee P, Zeltsman D, Hyman K, Esposito M, Hannon GJ, Sordella R. An epigenetic switch regulates the ontogeny of AXL-positive/EGFR-TKi-resistant cells by modulating miR-335 expression. eLife 2021; 10:e66109. [PMID: 34254585 PMCID: PMC8285107 DOI: 10.7554/elife.66109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/10/2021] [Indexed: 01/15/2023] Open
Abstract
Despite current advancements in research and therapeutics, lung cancer remains the leading cause of cancer-related mortality worldwide. This is mainly due to the resistance that patients develop against chemotherapeutic agents over the course of treatment. In the context of non-small cell lung cancers (NSCLC) harboring EGFR-oncogenic mutations, augmented levels of AXL and GAS6 have been found to drive resistance to EGFR tyrosine kinase inhibitors such as Erlotinib and Osimertinib in certain tumors with mesenchymal-like features. By studying the ontogeny of AXL-positive cells, we have identified a novel non-genetic mechanism of drug resistance based on cell-state transition. We demonstrate that AXL-positive cells are already present as a subpopulation of cancer cells in Erlotinib-naïve tumors and tumor-derived cell lines and that the expression of AXL is regulated through a stochastic mechanism centered on the epigenetic regulation of miR-335. The existence of a cell-intrinsic program through which AXL-positive/Erlotinib-resistant cells emerge infers the need of treating tumors harboring EGFR-oncogenic mutations upfront with combinatorial treatments targeting both AXL-negative and AXL-positive cancer cells.
Collapse
Affiliation(s)
- Polona Safaric Tepes
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Faculty of Pharmacy University of LjubljanaLjubljanaSlovenia
| | - Debjani Pal
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Graduate Program in Molecular and Cellular Biology, Stony Brook UniversityStony Brook, New YorkUnited States
| | - Trine Lindsted
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Ingrid Ibarra
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Amaia Lujambio
- Icahn School of Medicine at Mount Sinai, Hess Center for Science and MedicineNew YorkUnited States
| | | | - Serif Senturk
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Madison Miller
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Navya Korimerla
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Graduate Program in Biomedical Engineering, Stony Brook UniversityNew YorkUnited States
| | - Jiahao Huang
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Lawrence Glassman
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - Paul Lee
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - David Zeltsman
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - Kevin Hyman
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - Michael Esposito
- Northwell Health Long Island, Jewish Medical CenterNew YorkUnited States
| | - Gregory J Hannon
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Cancer Research UK – Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
| | - Raffaella Sordella
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Watson School of Biological Sciences, Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| |
Collapse
|
173
|
Kashima Y, Shibahara D, Suzuki A, Muto K, Kobayashi IS, Plotnick D, Udagawa H, Izumi H, Shibata Y, Tanaka K, Fujii M, Ohashi A, Seki M, Goto K, Tsuchihara K, Suzuki Y, Kobayashi SS. Single-cell analyses reveal diverse mechanisms of resistance to EGFR tyrosine kinase inhibitors in lung cancer. Cancer Res 2021; 81:4835-4848. [PMID: 34247147 DOI: 10.1158/0008-5472.can-20-2811] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Tumor heterogeneity underlies resistance to tyrosine kinase inhibitors (TKI) in lung cancers harboring epidermal growth factor receptor (EGFR) mutations. Previous evidence suggested that subsets of preexisting resistant cells are selected by EGFR-TKI treatment, or alternatively, that diverse acquired resistance mechanisms emerge from drug-tolerant persister (DTP) cells. Many studies have used bulk tumor specimens or subcloned resistant cell lines to identify resistance mechanism. However, intratumoral heterogeneity can result in divergent responses to therapies, requiring additional approaches to reveal the complete spectrum of resistance mechanisms. Using EGFR-TKI-resistant cell models and clinical specimens, we performed single-cell RNA-seq and single-cell ATAC-seq analyses to define the transcriptional and epigenetic landscape of parental cells, DTPs, and tumor cells in a fully resistant state. In addition to AURKA, VIM, and AXL, which are all known to induce EGFR-TKI resistance, CD74 was identified as a novel gene that plays a critical role in the drug-tolerant state. In vitro and in vivo experiments demonstrated that CD74 upregulation confers resistance to the EGFR-TKI osimertinib and blocks apoptosis, enabling tumor regrowth. Overall, this study provides new insight into the mechanisms underlying resistance to EGFR-TKIs.
Collapse
Affiliation(s)
- Yukie Kashima
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Daisuke Shibahara
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ayako Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Kyoko Muto
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Ikei S Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - David Plotnick
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Hibiki Udagawa
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroki Izumi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yuji Shibata
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kosuke Tanaka
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Masanori Fujii
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Akihiro Ohashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Masahide Seki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Katsuya Tsuchihara
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Susumu S Kobayashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
174
|
Li G, Ma Y, Yu M, Li X, Chen X, Gao Y, Cheng P, Zhang G, Wang X. Identification of Hub Genes and Small Molecule Drugs Associated with Acquired Resistance to Gefitinib in Non-Small Cell Lung Cancer. J Cancer 2021; 12:5286-5295. [PMID: 34335945 PMCID: PMC8317531 DOI: 10.7150/jca.56506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/14/2021] [Indexed: 12/23/2022] Open
Abstract
Targeting EGFR, epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs), brings lights to the treatment of non-small cell lung cancer (NSCLC). Although T790M mutation responded as one of the main reasons of acquired resistance, still 15% of the resistance patients can't be explained by the known mechanisms. The purpose of this research was to identify some new mechanisms of gefitinib acquired resistance, and to predict small molecules drugs which may reverse drug resistance by integrated bioinformatics analysis. The GSE34228 data package containing the microarray data of acquired gefitinib-resistant cell line (PC9GR) and gefitinib-sensitive cell line (PC9) from the GEO database were downloaded, and gene co-expression networks by weighted gene co-expression network analysis (WGCNA) were constructed to identified key modules and key genes related to gefitinib resistance. Furthermore, the significantly differentially expressed genes (DEGs) between the two cell types were screened out, and a protein-protein interaction (PPI) network to obtain the key genes of DEGs was accordingly constructed. Through the above two methods, 4 hub genes, PI3, S100A8, AXL and PNPLA4 were mined as the most relevant to gefitinib resistance. Among them, PI3, S100A8 were down-regulated in PC9GR cell samples, while AXL, PNPLA4 were up-regulated. The gene set enrichment analysis (GSEA) for single gene showed that the four hub genes were mainly correlated with cell proliferation and cycle. Besides, small molecule drugs with the potential to overcome resistance, such as Emetine and cephaeline, were screened by CMap database. Consistent with this, in vitro experiments results have shown that emetine and cephaeline can increase the sensitivity of drug-resistant cells to gefitinib, and the mechanism may be related to the regulation of PI3 and S100A8. In conclusion, 4 hub genes were found to be related to the occurrence of gefitinib resistance in non-small cell lung cancer, and several small molecule drugs were screened out as potential therapeutic agents to overcome gefitinib resistance, which may lead a new way for the treatment of NSCLC of acquired resistance to gefitinib.
Collapse
Affiliation(s)
- Guangda Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yunfei Ma
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Mingwei Yu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaoxiao Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xinjie Chen
- Beijing University of Chinese Medicine, Beijing, China
| | - Yu Gao
- Beijing University of Chinese Medicine, Beijing, China
| | - Peiyu Cheng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ganlin Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaomin Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
175
|
Khaddour K, Jonna S, Deneka A, Patel JD, Abazeed ME, Golemis E, Borghaei H, Boumber Y. Targeting the Epidermal Growth Factor Receptor in EGFR-Mutated Lung Cancer: Current and Emerging Therapies. Cancers (Basel) 2021; 13:3164. [PMID: 34202748 PMCID: PMC8267708 DOI: 10.3390/cancers13133164] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 02/07/2023] Open
Abstract
Epidermal growth factor receptor-targeting tyrosine kinase inhibitors (EGFR TKIs) are the standard of care for patients with EGFR-mutated metastatic lung cancer. While EGFR TKIs have initially high response rates, inherent and acquired resistance constitute a major challenge to the longitudinal treatment. Ongoing work is aimed at understanding the molecular basis of these resistance mechanisms, with exciting new studies evaluating novel agents and combination therapies to improve control of tumors with all forms of EGFR mutation. In this review, we first provide a discussion of EGFR-mutated lung cancer and the efficacy of available EGFR TKIs in the clinical setting against both common and rare EGFR mutations. Second, we discuss common resistance mechanisms that lead to therapy failure during treatment with EGFR TKIs. Third, we review novel approaches aimed at improving outcomes and overcoming resistance to EGFR TKIs. Finally, we highlight recent breakthroughs in the use of EGFR TKIs in non-metastatic EGFR-mutated lung cancer.
Collapse
Affiliation(s)
- Karam Khaddour
- Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Sushma Jonna
- Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Alexander Deneka
- Fox Chase Cancer Center, Program in Molecular Therapeutics, Philadelphia, PA 19111, USA; (A.D.); (E.G.)
| | - Jyoti D. Patel
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Mohamed E. Abazeed
- Robert H. Lurie Comprehensive Cancer Center, Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Erica Golemis
- Fox Chase Cancer Center, Program in Molecular Therapeutics, Philadelphia, PA 19111, USA; (A.D.); (E.G.)
| | - Hossein Borghaei
- Fox Chase Cancer Center, Department of Hematology and Oncology, Philadelphia, PA 19111, USA;
| | - Yanis Boumber
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
176
|
Jensen SG, Epistolio S, Madsen CL, Kyneb MH, Riva A, Paganotti A, Barizzi J, Petersen RK, Børgesen M, Molinari F, Boldorini R, Lorenzen J, Sørensen E, Christensen UB, Høgdall E, Frattini M. A new sensitive and fast assay for the detection of EGFR mutations in liquid biopsies. PLoS One 2021; 16:e0253687. [PMID: 34166445 PMCID: PMC8224962 DOI: 10.1371/journal.pone.0253687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/10/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND A major perspective for the use of circulating tumor DNA (ctDNA) in the clinical setting of non-small cell lung cancer (NSCLC) is expected as predictive factor for resistance and response to EGFR TKI therapy and, especially, as a non-invasive alternative to tissue biopsy. However, ctDNA is both highly fragmented and mostly low concentrated in plasma and serum. On this basis, it is important to use a platform characterized by high sensitivity and linear performance in the low concentration range. This motivated us to evaluate the newly developed and commercially available SensiScreen® EGFR Liquid assay platform (PentaBase) with regard to sensitivity, linearity, repeatability and accuracy and finally to compare it to our already implemented methods. The validation was made in three independent European laboratories using two cohorts on a total of 68 unique liquid biopsies. RESULTS Using artificial samples containing 1600 copies of WT DNA spiked with 50% - 0.1% of mutant copies across a seven-log dilution scale, we assessed the sensitivity, linearity, repeatability and accuracy for the p.T790M, p.L858R and exon 19 deletion assays of the SensiScreen® EGFR Liquid assay platform. The lowest value detectable ranged from 0.5% to 0.1% with R2≥0,97 indicating good linearity. High PCR efficiency was shown for all three assays. In 102 single PCRs each containing theoretical one copy of the mutant at initiating, assays showed repeatable positivity in 75.5% - 80.4% of reactions. At low ctDNA levels, as in plasma, the SensiScreen® EGFR Liquid assay platform showed better sensitivity than the Therascreen® EGFR platform (Qiagen) and equal performance to the ctEGFR Mutation Detection Kit (EntroGen) and the IOT® Oncomine cell-free nucleic acids assay (Thermo Fisher Scientific) with 100% concordance at the sequence level. CONCLUSION For profiling clinical plasma samples, characterized by low ctDNA abundance, the SensiScreen® EGFR Liquid assay is able to identify down to 1 copy of mutant alleles and with its high sensitivity, linearity and accuracy it may be a competitive platform of choice.
Collapse
Affiliation(s)
| | | | | | | | - Alice Riva
- Institute of Pathology, Locarno, Switzerland
| | - Alessia Paganotti
- Department of Pathology, ’Maggiore della Carità’ Hospital, Novara, Italy
| | | | | | | | | | - Renzo Boldorini
- Department of Pathology, ’Maggiore della Carità’ Hospital, Novara, Italy
- Department of Health Sciences, Universitá degli Studi del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Jan Lorenzen
- Life Science Division, Danish Technological Institute, Aarhus, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Estrid Høgdall
- Department of Pathology, Herlev—Gentofte University Hospital, Herlev, Denmark
| | | |
Collapse
|
177
|
Suda K, Mitsudomi T. Drug Tolerance to EGFR Tyrosine Kinase Inhibitors in Lung Cancers with EGFR Mutations. Cells 2021; 10:1590. [PMID: 34202566 PMCID: PMC8306990 DOI: 10.3390/cells10071590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) serve as the standard of care for the first-line treatment of patients with lung cancers with EGFR-activating mutations. However, the acquisition of resistance to EGFR TKIs is almost inevitable, with extremely rare exceptions, and drug-tolerant cells (DTCs) that demonstrate reversible drug insensitivity and that survive the early phase of TKI exposure are hypothesized to be an important source of cancer cells that eventually acquire irreversible resistance. Numerous studies on the molecular mechanisms of drug tolerance of EGFR-mutated lung cancers employ lung cancer cell lines as models. Here, we reviewed these studies to generally describe the features, potential origins, and candidate molecular mechanisms of DTCs. The rapid development of an optimal treatment for EGFR-mutated lung cancer will require a better understanding of the underlying molecular mechanisms of the drug insensitivity of DTCs.
Collapse
Affiliation(s)
- Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan;
| | | |
Collapse
|
178
|
New Insights into the Clinical Implications of Yes-Associated Protein in Lung Cancer: Roles in Drug Resistance, Tumor Immunity, Autophagy, and Organoid Development. Cancers (Basel) 2021; 13:cancers13123069. [PMID: 34202980 PMCID: PMC8234989 DOI: 10.3390/cancers13123069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Innovative advancements in lung cancer treatment have developed over the past decade with the advent of targeted and immune therapies. Yes-associated protein (YAP), an effector of the Hippo pathway, promotes the resistance of these targeted drugs and modulates tumor immunity in lung cancer. YAP is involved in autophagy in lung cancer and plays a prominent role in forming the tubular structure in lung organoids and alveolar differentiation. In this review, we discuss the central roles of YAP in lung cancer and present YAP as a novel target for treating resistance to targeted therapies and immunotherapies in lung cancer. Abstract Despite significant innovations in lung cancer treatment, such as targeted therapy and immunotherapy, lung cancer is still the principal cause of cancer-associated death. Novel strategies to overcome drug resistance and inhibit metastasis in cancer are urgently needed. The Hippo pathway and its effector, Yes-associated protein (YAP), play crucial roles in lung development and alveolar differentiation. YAP is known to mediate mechanotransduction, an important process in lung homeostasis and fibrosis. In lung cancer, YAP promotes metastasis and confers resistance against chemotherapeutic drugs and targeted agents. Recent studies revealed that YAP directly controls the expression of programmed death-ligand 1 (PD-L1) and modulates the tumor microenvironment (TME). YAP not only has a profound relationship with autophagy in lung cancer but also controls alveolar differentiation, and is responsible for tubular structure formation in lung organoids. In this review, we discuss the various roles and clinical implications of YAP in lung cancer and propose that targeting YAP can be a promising strategy for treating lung cancer.
Collapse
|
179
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
180
|
Wang W, Xia X, Chen K, Chen M, Meng Y, Lv D, Yang H. Reduced PHLPP Expression Leads to EGFR-TKI Resistance in Lung Cancer by Activating PI3K-AKT and MAPK-ERK Dual Signaling. Front Oncol 2021; 11:665045. [PMID: 34168988 PMCID: PMC8217757 DOI: 10.3389/fonc.2021.665045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/20/2021] [Indexed: 01/22/2023] Open
Abstract
Background Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are effective in advanced EGFR-mutation non-small cell lung cancer (NSCLC) but the magnitude of tumor regression varies, and drug resistance is unavoidable. The pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) levels are reduced or lost and acts as a tumor suppressor in many cancers. Here, we hypothesized that PHLPP is a key regulator of EGFR-TKI sensitivity and a potential treatment target for overcoming resistance to EGFR-TKI in lung cancer. Methods Cell proliferation and growth inhibition were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assay. PHLPP- knockdown stable cell lines were generated by lentivirus-mediated delivery of PHLPP shRNAs. The expression of PHLPP mRNA and protein levels was detected by real-time quantitative polymerase chain reaction (qPCR) and Western blotting. Immunohistochemical (IHC) staining was performed to detect the PHLPP expression in clinical patient tissue samples. A transcriptomic assay of genome-wide RNA expressions of PHLPP in NSCLC cell lines according to gefitinib sensitivity was obtained from Gene Expression Omnibus (GEO) database. Murine xenograft model was established to verify the function of PHLPP in gefitinib resistance in vivo. Results PHLPP highly expressed in gefitinib-sensitive NSCLC cell lines than gefitinib-resistant NSCLC cell lines. In gefitinib-acquired resistance cell line HCC827-GR, PHLPP expression even dramatically reduced. Knockdown of PHLPP in NSCLC cells decreased cell death induced by the EGFR-TKI, while overexpression PHLPP in gefitinib-resistance NSCLC cells can enhance or restore EGFR-TKIs sensitivity. Mechanism study indicated that PHLPP downregulation attenuates the effect of EGFR-TKI on the both AKT and ERK pathway, thereby decreasing the cell death sensitivity to EGFR inhibitors. In xenograft mice, knockdown of PHLPP decreased tumor response to gefitinib and advanced tumor cells re-growth after gefitinib treatment. In clinical, PHLPP expression were reduced in the post-relapse tumor compared to that of pre-treatment, and lower pre-treatment PHLPP levels were significantly correlated with shorter progression-free survival (PFS) in patients with EGFR-mutant lung adenocarcinoma whom treated with EGFR-TKI. Conclusions Our data strongly demonstrated that loss of PHLPP function was a key factor of EGFR-TKI resistance in NSCLC. Downregulated PHLPP expression activated PI3K-AKT and MAPK-ERK pathway which strengthened cell survival to EGFR-TKI. Therefore, PHLPP expression level was not only a potential biomarker to predict EGFR-TKIs sensitivity but also as a therapeutic target in EGFR-TKIs therapy, enhancing PHLPP expression may be a valuable strategy for delaying or overcoming EGFR-TKIs drug resistance.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Cellular and Molecular Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| | - Xinhang Xia
- Laboratory of Cellular and Molecular Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| | - Kuifei Chen
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Meng Chen
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Yinnan Meng
- Laboratory of Cellular and Molecular Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| | - Dongqing Lv
- Department of Pulmonary Medicine, at Enze Hospital, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| | - Haihua Yang
- Laboratory of Cellular and Molecular Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China.,School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
181
|
Zhang X, Maity TK, Ross KE, Qi Y, Cultraro CM, Bahta M, Pitts S, Keswani M, Gao S, Nguyen KDP, Cowart J, Kirkali F, Wu C, Guha U. Alterations in the Global Proteome and Phosphoproteome in Third Generation EGFR TKI Resistance Reveal Drug Targets to Circumvent Resistance. Cancer Res 2021; 81:3051-3066. [PMID: 33727228 PMCID: PMC8182571 DOI: 10.1158/0008-5472.can-20-2435] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/08/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. The treatment of patients with lung cancer harboring mutant EGFR with orally administered EGFR tyrosine kinase inhibitors (TKI) has been a paradigm shift. Osimertinib and rociletinib are third-generation irreversible EGFR TKIs targeting the EGFR T790M mutation. Osimertinib is the current standard of care for patients with EGFR mutations due to increased efficacy, lower side effects, and enhanced brain penetrance. Unfortunately, all patients develop resistance. Genomic approaches have primarily been used to interrogate resistance mechanisms. Here we characterized the proteome and phosphoproteome of a series of isogenic EGFR-mutant lung adenocarcinoma cell lines that are either sensitive or resistant to these drugs, comprising the most comprehensive proteomic dataset resource to date to investigate third generation EGFR TKI resistance in lung adenocarcinoma. Unbiased global quantitative mass spectrometry uncovered alterations in signaling pathways, revealed a proteomic signature of epithelial-mesenchymal transition, and identified kinases and phosphatases with altered expression and phosphorylation in TKI-resistant cells. Decreased tyrosine phosphorylation of key sites in the phosphatase SHP2 suggests its inhibition, resulting in subsequent inhibition of RAS/MAPK and activation of PI3K/AKT pathways. Anticorrelation analyses of this phosphoproteomic dataset with published drug-induced P100 phosphoproteomic datasets from the Library of Integrated Network-Based Cellular Signatures program predicted drugs with the potential to overcome EGFR TKI resistance. The PI3K/MTOR inhibitor dactolisib in combination with osimertinib overcame resistance both in vitro and in vivo. Taken together, this study reveals global proteomic alterations upon third generation EGFR TKI resistance and highlights potential novel approaches to overcome resistance. SIGNIFICANCE: Global quantitative proteomics reveals changes in the proteome and phosphoproteome in lung cancer cells resistant to third generation EGFR TKIs, identifying the PI3K/mTOR inhibitor dactolisib as a potential approach to overcome resistance.
Collapse
Affiliation(s)
- Xu Zhang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| | - Tapan K Maity
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Karen E Ross
- Dept. of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C
| | - Yue Qi
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Constance M Cultraro
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Meriam Bahta
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Stephanie Pitts
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Meghana Keswani
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Shaojian Gao
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Khoa Dang P Nguyen
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Julie Cowart
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware
| | - Fatos Kirkali
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Cathy Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
182
|
Cabanos HF, Hata AN. Emerging Insights into Targeted Therapy-Tolerant Persister Cells in Cancer. Cancers (Basel) 2021; 13:cancers13112666. [PMID: 34071428 PMCID: PMC8198243 DOI: 10.3390/cancers13112666] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
Drug resistance is perhaps the greatest challenge in improving outcomes for cancer patients undergoing treatment with targeted therapies. It is becoming clear that "persisters," a subpopulation of drug-tolerant cells found in cancer populations, play a critical role in the development of drug resistance. Persisters are able to maintain viability under therapy but are typically slow cycling or dormant. These cells do not harbor classic drug resistance driver alterations, and their partial resistance phenotype is transient and reversible upon removal of the drug. In the clinic, the persister state most closely corresponds to minimal residual disease from which relapse can occur if treatment is discontinued or if acquired drug resistance develops in response to continuous therapy. Thus, eliminating persister cells will be crucial to improve outcomes for cancer patients. Using lung cancer targeted therapies as a primary paradigm, this review will give an overview of the characteristics of drug-tolerant persister cells, mechanisms associated with drug tolerance, and potential therapeutic opportunities to target this persister cell population in tumors.
Collapse
Affiliation(s)
- Heidie Frisco Cabanos
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron N. Hata
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-724-3442
| |
Collapse
|
183
|
Du X, Yang B, An Q, Assaraf YG, Cao X, Xia J. Acquired resistance to third-generation EGFR-TKIs and emerging next-generation EGFR inhibitors. Innovation (N Y) 2021; 2:100103. [PMID: 34557754 PMCID: PMC8454558 DOI: 10.1016/j.xinn.2021.100103] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
The discovery that mutations in the EGFR gene are detected in up to 50% of lung adenocarcinoma patients, along with the development of highly efficacious epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), has revolutionized the treatment of this frequently occurring lung malignancy. Indeed, the clinical success of these TKIs constitutes a critical milestone in targeted cancer therapy. Three generations of EGFR-TKIs are currently approved for the treatment of EGFR mutation-positive non-small cell lung cancer (NSCLC). The first-generation TKIs include erlotinib, gefitinib, lapatinib, and icotinib; the second-generation ErbB family blockers include afatinib, neratinib, and dacomitinib; whereas osimertinib, approved by the FDA on 2015, is a third-generation TKI targeting EGFR harboring specific mutations. Compared with the first- and second-generation TKIs, third-generation EGFR inhibitors display a significant advantage in terms of patient survival. For example, the median overall survival in NSCLC patients receiving osimertinib reached 38.6 months. Unfortunately, however, like other targeted therapies, new EGFR mutations, as well as additional drug-resistance mechanisms emerge rapidly after treatment, posing formidable obstacles to cancer therapeutics aimed at surmounting this chemoresistance. In this review, we summarize the molecular mechanisms underlying resistance to third-generation EGFR inhibitors and the ongoing efforts to address and overcome this chemoresistance. We also discuss the current status of fourth-generation EGFR inhibitors, which are of great value in overcoming resistance to EGFR inhibitors that appear to have greater therapeutic benefits in the clinic. EGFR gene mutations are detected in about 50% of non-small cell lung cancer (NSCLC) patients worldwide The three generations of EGFR tyrosine kinase inhibitors (TKIs) are critical milestones for NSCLC patients Like other targeted therapies, new EGFR mutations and coupled drug resistances emerge rapidly after TKI treatment, posing formidable obstacles to cancer management The investigational fourth-generation EGFR inhibitors are of great promise, through a number of novel mechanisms, in overcoming these resistances after third-generation TKI treatment, and will bring more benefits to NSCLC patients
Collapse
Affiliation(s)
- Xiaojing Du
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Biwei Yang
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Quanlin An
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jinglin Xia
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
184
|
Shen S, Vagner S, Robert C. Persistent Cancer Cells: The Deadly Survivors. Cell 2021; 183:860-874. [PMID: 33186528 DOI: 10.1016/j.cell.2020.10.027] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 10/15/2020] [Indexed: 02/09/2023]
Abstract
Persistent cancer cells are the discrete and usually undetected cells that survive cancer drug treatment and constitute a major cause of treatment failure. These cells are characterized by their slow proliferation, highly flexible energy consumption, adaptation to their microenvironment, and phenotypic plasticity. Mechanisms that underlie their persistence offer highly coveted and sought-after therapeutic targets, and include diverse epigenetic, transcriptional, and translational regulatory processes, as well as complex cell-cell interactions. Although the successful clinical targeting of persistent cancer cells remains to be realized, immense progress has been made in understanding their persistence, yielding promising preclinical results.
Collapse
Affiliation(s)
- Shensi Shen
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France; Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France.
| | - Caroline Robert
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France; Université Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France; Dermato-Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
185
|
Lai L, Shen Q, Wang Y, Chen L, Lai J, Wu Z, Jiang H. Polyphyllin I reverses the resistance of osimertinib in non-small cell lung cancer cell through regulation of PI3K/Akt signaling. Toxicol Appl Pharmacol 2021; 419:115518. [PMID: 33812963 DOI: 10.1016/j.taap.2021.115518] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/14/2023]
Abstract
Lung cancer is considered the main cause of cancer mortality worldwide. Osimertinib, a third-generation EGFR-TKI, has been approved and administrated for treating patients with either EGFR T790M mutation or EGFR sensitive mutation. However, resistance to osimertinib emerges and has been considered to be the main obstacle in lung cancer treatment. Polyphyllin I is isolated from the natural herb Paris polyphylla and exhibits anti-cancer activities. In the present study, we identify Polyphyllin I to reverse the resistance of osimertinib in vitro and in vivo. The results showed that Polyphyllin I reversed the resistance of osimertinib through promoting apoptosis, modulating the PI3K/Akt signaling, and regulating the expression of apoptosis-related proteins in osimertinib-resistant cell lines. In vivo study confirmed the results, showing that the tumor growth was significantly suppressed in the Polyphyllin I/osimertinib group compared to the osimertinib group. It has been clarified that Polyphyllin I could reverse the resistance of osimertinib in osimertinib-resistant non-small cell of lung cancer in vitro and in vivo. The underlying mechanism might be related to the downregulation of the PI3K/Akt signaling and increase of the expression of apoptosis-related proteins, suggesting that Polyphyllin I was a promising therapeutic agent for reversing the resistance of osimertinib.
Collapse
Affiliation(s)
- Lei Lai
- Department of Medical Oncology, Tongxiang First People's Hospital, Tongxiang, Zhejiang 314500, PR China
| | - Qiuping Shen
- Department of Medical Oncology, Tongxiang First People's Hospital, Tongxiang, Zhejiang 314500, PR China
| | - Yingjie Wang
- Department of Medical Oncology, Tongxiang First People's Hospital, Tongxiang, Zhejiang 314500, PR China
| | - Liting Chen
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China
| | - Jianjun Lai
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China
| | - Zhibing Wu
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China.
| | - Hao Jiang
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China.
| |
Collapse
|
186
|
Haga Y, Marrocco I, Noronha A, Uribe ML, Nataraj NB, Sekar A, Drago-Garcia D, Borgoni S, Lindzen M, Giri S, Wiemann S, Tsutsumi Y, Yarden Y. Host-Dependent Phenotypic Resistance to EGFR Tyrosine Kinase Inhibitors. Cancer Res 2021; 81:3862-3875. [PMID: 33941614 DOI: 10.1158/0008-5472.can-20-3555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
Lung cancers driven by mutant forms of EGFR invariably develop resistance to kinase inhibitors, often due to secondary mutations. Here we describe an unconventional mechanism of resistance to dacomitinib, a newly approved covalent EGFR kinase inhibitor, and uncover a previously unknown step of resistance acquisition. Dacomitinib-resistant (DR) derivatives of lung cancer cells were established by means of gradually increasing dacomitinib concentrations. These DR cells acquired no secondary mutations in the kinase or other domains of EGFR. Along with resistance to other EGFR inhibitors, DR cells acquired features characteristic to epithelial-mesenchymal transition, including an expanded population of aldehyde dehydrogenase-positive cells and upregulation of AXL, a receptor previously implicated in drug resistance. Unexpectedly, when implanted in animals, DR cells reverted to a dacomitinib-sensitive state. Nevertheless, cell lines derived from regressing tumors displayed renewed resistance when cultured in vitro. Three-dimensional and cocultures along with additional analyses indicated lack of involvement of hypoxia, fibroblasts, and immune cells in phenotype reversal, implying that other host-dependent mechanisms might nullify nonmutational modes of resistance. Thus, similar to the phenotypic resistance of bacteria treated with antibiotics, the reversible resisters described here likely evolve from drug-tolerant persisters and give rise to the irreversible, secondary mutation-driven nonreversible resister state. SIGNIFICANCE: This study reports that stepwise acquisition of kinase inhibitor resistance in lung cancers driven by mutant EGFR comprises a nonmutational, reversible resister state. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/14/3862/F1.large.jpg.
Collapse
Affiliation(s)
- Yuya Haga
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Ilaria Marrocco
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ashish Noronha
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Mary Luz Uribe
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Arunachalam Sekar
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Diana Drago-Garcia
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Simone Borgoni
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Suvendu Giri
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
187
|
Park M, Kim JW, Kim KM, Kang S, Kim W, Kim JK, Cho Y, Lee H, Baek MC, Bae JH, Lee SH, Jeong SB, Lim SC, Jun DW, Cho SY, Kim Y, Choi YJ, Kang KW. Circulating Small Extracellular Vesicles Activate TYRO3 to Drive Cancer Metastasis and Chemoresistance. Cancer Res 2021; 81:3539-3553. [PMID: 33910929 DOI: 10.1158/0008-5472.can-20-3320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
Extracellular vesicles (EV) in the tumor microenvironment have emerged as crucial mediators that promote proliferation, metastasis, and chemoresistance. However, the role of circulating small EVs (csEV) in cancer progression remains poorly understood. In this study, we report that csEV facilitate cancer progression and determine its molecular mechanism. csEVs strongly promoted the migration of cancer cells via interaction with phosphatidylserine of csEVs. Among the three TAM receptors, TYRO3, AXL, and MerTK, TYRO3 mainly interacted with csEVs. csEV-mediated TYRO3 activation promoted migration and metastasis via the epithelial-mesenchymal transition and stimulation of RhoA in invasive cancer cells. Additionally, csEV-TYRO3 interaction induced YAP activation, which led to increased cell proliferation and chemoresistance. Combination treatment with gefitinib and KRCT-6j, a selective TYRO3 inhibitor, significantly reduced tumor volume in xenografts implanted with gefitinib-resistant non-small cell lung cancer cells. The results of this study show that TYRO3 activation by csEVs facilitates cancer cell migration and chemoresistance by activation of RhoA or YAP, indicating that the csEV/TYRO3 interaction may serve as a potential therapeutic target for aggressive cancers in the clinic. SIGNIFICANCE: These findings demonstrate that circulating extracellular vesicles are a novel driver in migration and survival of aggressive cancer cells via TYRO3 activation. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/13/3539/F1.large.jpg.
Collapse
Affiliation(s)
- Miso Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
- Division of Hematology and Medical Oncology, University of California, San Francisco, San Francisco, California
| | - Kyu Min Kim
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, Republic of Korea
| | - Seungmin Kang
- Department of Life Science, Division of Molecular and Life Sciences, Ewha Womans University, Seoul, Republic of Korea
- KaiPharm, Seoul, Republic of Korea
| | - Wankyu Kim
- Department of Life Science, Division of Molecular and Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jin-Ki Kim
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Youngnam Cho
- Biomarker Branch, National Cancer Center, Gyeonggi, Republic of Korea
| | - Hyungjae Lee
- Biomarker Branch, National Cancer Center, Gyeonggi, Republic of Korea
| | - Moon Chang Baek
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ju-Hyun Bae
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Hyun Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung Baek Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Sung Chul Lim
- Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Dae Won Jun
- Department of Internal Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Sung Yun Cho
- Department of Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yeonji Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yong June Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
188
|
Yoshizawa T, Uchibori K, Araki M, Matsumoto S, Ma B, Kanada R, Seto Y, Oh-Hara T, Koike S, Ariyasu R, Kitazono S, Ninomiya H, Takeuchi K, Yanagitani N, Takagi S, Kishi K, Fujita N, Okuno Y, Nishio M, Katayama R. Microsecond-timescale MD simulation of EGFR minor mutation predicts the structural flexibility of EGFR kinase core that reflects EGFR inhibitor sensitivity. NPJ Precis Oncol 2021; 5:32. [PMID: 33863983 PMCID: PMC8052404 DOI: 10.1038/s41698-021-00170-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
Approximately 15–30% of patients with lung cancer harbor mutations in the EGFR gene. Major EGFR mutations (>90% of EGFR-mutated lung cancer) are highly sensitive to EGFR tyrosine kinase inhibitors (TKIs). Many uncommon EGFR mutations have been identified, but little is known regarding their characteristics, activation, and sensitivity to various EGFR-TKIs, including allosteric inhibitors. We encountered a case harboring an EGFR-L747P mutation, originally misdiagnosed with EGFR-del19 mutation using a routine diagnostic EGFR mutation test, which was resistant to EGFR-TKI gefitinib. Using this minor mutation and common EGFR-activating mutations, we performed the binding free energy calculations and microsecond-timescale molecular dynamic (MD) simulations, revealing that the L747P mutation considerably stabilizes the active conformation through a salt-bridge formation between K745 and E762. We further revealed why several EGFR inhibitors, including the allosteric inhibitor, were ineffective. Our computational structural analysis strategy would be beneficial for future drug development targeting the EGFR minor mutations.
Collapse
Affiliation(s)
- Takahiro Yoshizawa
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan.,Department of Thoracic Medical Oncology, the Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan.,Division of Respiratory Medicine, Toho University School of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan.,Department of Clinical Oncology, Toho University School of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Ken Uchibori
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan.,Department of Thoracic Medical Oncology, the Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Mitsugu Araki
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, Japan
| | - Shigeyuki Matsumoto
- Medical Sciences Innovation Hub Program, RIKEN Cluster for Science, Technology and Innovation Hub, Kanagawa, Japan
| | - Biao Ma
- Research and Development Group for In Silico Drug Discovery, Center for Cluster Development and Coordination (CCD), Foundation for Biomedical Research and Innovation at Kobe (FBRI), Hyogo, Japan
| | - Ryo Kanada
- Medical Sciences Innovation Hub Program, RIKEN Cluster for Science, Technology and Innovation Hub, Kanagawa, Japan
| | - Yosuke Seto
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Tomoko Oh-Hara
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Sumie Koike
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Ryo Ariyasu
- Department of Thoracic Medical Oncology, the Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Satoru Kitazono
- Department of Thoracic Medical Oncology, the Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Hironori Ninomiya
- Division of Pathology, Cancer Institute, , Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, , Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Noriko Yanagitani
- Department of Thoracic Medical Oncology, the Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Satoshi Takagi
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Kazuma Kishi
- Division of Respiratory Medicine, Toho University School of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan.,Department of Clinical Oncology, Toho University School of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Naoya Fujita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Yasushi Okuno
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, the Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan.
| | - Ryohei Katayama
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan.
| |
Collapse
|
189
|
Aldonza MBD, Reyes RDD, Kim YS, Ku J, Barsallo AM, Hong JY, Lee SK, Ryu HS, Park Y, Cho JY, Kim Y. Chemotherapy confers a conserved secondary tolerance to EGFR inhibition via AXL-mediated signaling bypass. Sci Rep 2021; 11:8016. [PMID: 33850249 PMCID: PMC8044124 DOI: 10.1038/s41598-021-87599-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/31/2021] [Indexed: 02/01/2023] Open
Abstract
Drug resistance remains the major culprit of therapy failure in disseminated cancers. Simultaneous resistance to multiple, chemically different drugs feeds this failure resulting in cancer relapse. Here, we investigate co-resistance signatures shared between antimitotic drugs (AMDs) and inhibitors of receptor tyrosine kinases (RTKs) to probe mechanisms of secondary resistance. We map co-resistance ranks in multiple drug pairs and identified a more widespread occurrence of co-resistance to the EGFR-tyrosine kinase inhibitor (TKI) gefitinib in hundreds of cancer cell lines resistant to at least 11 AMDs. By surveying different parameters of genomic alterations, we find that the two RTKs EGFR and AXL displayed similar alteration and expression signatures. Using acquired paclitaxel and epothilone B resistance as first-line AMD failure models, we show that a stable collateral resistance to gefitinib can be relayed by entering a dynamic, drug-tolerant persister state where AXL acts as bypass signal. Delayed AXL degradation rendered this persistence to become stably resistant. We probed this degradation process using a new EGFR-TKI candidate YD and demonstrated that AXL bypass-driven collateral resistance can be suppressed pharmacologically. The findings emphasize that AXL bypass track is employed by chemoresistant cancer cells upon EGFR inhibition to enter a persister state and evolve resistance to EGFR-TKIs.
Collapse
Affiliation(s)
- Mark Borris D Aldonza
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
- KI for Health Science and Technology (KIHST), KAIST, Daejeon, 34141, Korea
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, Korea
| | | | - Young Seo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Tomocube Inc, Daejeon, 34051, Korea
| | - Jayoung Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- KI for Health Science and Technology (KIHST), KAIST, Daejeon, 34141, Korea
| | - Ana Melisa Barsallo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| | - Ji-Young Hong
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - YongKeun Park
- KI for Health Science and Technology (KIHST), KAIST, Daejeon, 34141, Korea
- Tomocube Inc, Daejeon, 34051, Korea
- Department of Physics, KAIST, Daejeon, 34141, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, Korea.
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, Korea.
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
- KI for Health Science and Technology (KIHST), KAIST, Daejeon, 34141, Korea.
| |
Collapse
|
190
|
Wium M, Ajayi-Smith AF, Paccez JD, Zerbini LF. The Role of the Receptor Tyrosine Kinase Axl in Carcinogenesis and Development of Therapeutic Resistance: An Overview of Molecular Mechanisms and Future Applications. Cancers (Basel) 2021; 13:1521. [PMID: 33806258 PMCID: PMC8037968 DOI: 10.3390/cancers13071521] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/22/2023] Open
Abstract
Resistance to chemotherapeutic agents by cancer cells has remained a major obstacle in the successful treatment of various cancers. Numerous factors such as DNA damage repair, cell death inhibition, epithelial-mesenchymal transition, and evasion of apoptosis have all been implicated in the promotion of chemoresistance. The receptor tyrosine kinase Axl, a member of the TAM family (which includes TYRO3 and MER), plays an important role in the regulation of cellular processes such as proliferation, motility, survival, and immunologic response. The overexpression of Axl is reported in several solid and hematological malignancies, including non-small cell lung, prostate, breast, liver and gastric cancers, and acute myeloid leukaemia. The overexpression of Axl is associated with poor prognosis and the development of resistance to therapy. Reports show that Axl overexpression confers drug resistance in lung cancer and advances the emergence of tolerant cells. Axl is, therefore, an important candidate as a prognostic biomarker and target for anticancer therapies. In this review, we discuss the consequence of Axl upregulation in cancers, provide evidence for its role in cancer progression and the development of drug resistance. We will also discuss the therapeutic potential of Axl in the treatment of cancer.
Collapse
Affiliation(s)
- Martha Wium
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (M.W.); (A.F.A.-S.)
| | - Aderonke F. Ajayi-Smith
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (M.W.); (A.F.A.-S.)
| | - Juliano D. Paccez
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | - Luiz F. Zerbini
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (M.W.); (A.F.A.-S.)
| |
Collapse
|
191
|
Aehnlich P, Powell RM, Peeters MJW, Rahbech A, thor Straten P. TAM Receptor Inhibition-Implications for Cancer and the Immune System. Cancers (Basel) 2021; 13:cancers13061195. [PMID: 33801886 PMCID: PMC7998716 DOI: 10.3390/cancers13061195] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary TAM receptors are a family of receptor tyrosine kinases, comprising Tyro3, Axl and MerTK. Their primary role is in digestion of dying cells by macrophages without alarming the immune system. TAM receptors are also expressed by cancer cells in which signaling is oncogenic, and for this reason there is growing interest and research into TAM inhibition. This approach to cancer treatment may, however, come into conflict with beneficial and costimulatory TAM receptor signaling in T cells and natural killer (NK) cells. The aim of this review is to explore in detail the effects of TAM receptor inhibition on cancer cells and immune cells, and how the ramifications of this inhibition may affect cancer treatment in humans. Abstract Tyro3, Axl and MerTK (TAM) receptors are receptor tyrosine kinases which play important roles in efferocytosis and in the balancing of immune responses and inflammation. TAM receptor activation is induced upon binding of the ligands protein S (Pros1) or growth arrest-specific protein 6 (Gas6) which act as bridging molecules for binding of phosphatidyl serine (PtdSer) exposed on apoptotic cell membranes. Upon clearance of apoptotic cell material, TAM receptor activation on innate cells suppresses proinflammatory functions, thereby ensuring the immunologically silent removal of apoptotic material in the absence of deleterious immune responses. However, in T cells, MerTK signaling is costimulatory and promotes activation and functional output of the cell. MerTK and Axl are also aberrantly expressed in a range of both hematological and solid tumor malignancies, including breast, lung, melanoma and acute myeloid leukemia, where they have a role in oncogenic signaling. Consequently, TAM receptors are being investigated as therapeutic targets using small molecule inhibitors and have already demonstrated efficacy in mouse tumor models. Thus, inhibition of TAM signaling in cancer cells could have therapeutic value but given the opposing roles of TAM signaling in innate cells and T cells, TAM inhibition could also jeopardize anticancer immune responses. This conflict is discussed in this review, describing the effects of TAM inhibition on cancer cells as well as immune cells, while also examining the intricate interplay of cancer and immune cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Pia Aehnlich
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, 2730 Herlev, Denmark; (M.J.W.P.); (A.R.)
- Correspondence: (P.A.); (R.M.P.); (P.t.S.)
| | - Richard Morgan Powell
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, 2730 Herlev, Denmark; (M.J.W.P.); (A.R.)
- Correspondence: (P.A.); (R.M.P.); (P.t.S.)
| | - Marlies J. W. Peeters
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, 2730 Herlev, Denmark; (M.J.W.P.); (A.R.)
| | - Anne Rahbech
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, 2730 Herlev, Denmark; (M.J.W.P.); (A.R.)
| | - Per thor Straten
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, 2730 Herlev, Denmark; (M.J.W.P.); (A.R.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: (P.A.); (R.M.P.); (P.t.S.)
| |
Collapse
|
192
|
Ramkumar K, Stewart CA, Cargill KR, Corte CMD, Wang Q, Shen L, Diao L, Cardnell RJ, Peng DH, Rodriguez BL, Fan YH, Heymach JV, Wang J, Gay CM, Gibbons DL, Byers LA. AXL Inhibition Induces DNA Damage and Replication Stress in Non-Small Cell Lung Cancer Cells and Promotes Sensitivity to ATR Inhibitors. Mol Cancer Res 2021; 19:485-497. [PMID: 33172976 PMCID: PMC7925356 DOI: 10.1158/1541-7786.mcr-20-0414] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/21/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
AXL, a TAM (TYRO3, AXL, and MERTK) family receptor tyrosine kinase, is increasingly being recognized as a key determinant of resistance to targeted therapies, as well as chemotherapy and radiation in non-small cell lung cancer (NSCLC) and other cancers. We further show here that high levels of AXL and epithelial-to-mesenchymal transition were frequently expressed in subsets of both treatment-naïve and treatment-relapsed NSCLC. Previously, we and others have demonstrated a role for AXL in mediating DNA damage response (DDR), as well as resistance to inhibition of WEE1, a replication stress response kinase. Here, we show that BGB324 (bemcentinib), a selective small-molecule AXL inhibitor, caused DNA damage and induced replication stress, indicated by ATR/CHK1 phosphorylation, more significantly in TP53-deficient NSCLC cell lines. Similar effects were also observed in large-cell neuroendocrine carcinoma (LCNEC) cell lines. High AXL protein levels were also associated with resistance to ATR inhibition. Combined inhibition of AXL and ATR significantly decreased cell proliferation of NSCLC and LCNEC cell lines. Mechanistically, combined inhibition of AXL and ATR significantly increased RPA32 hyperphosphorylation and DNA double-strand breaks and induced markers of mitotic catastrophe. Notably, NSCLC cell lines with low levels of SLFN11, a known predictive biomarker for platinum and PARP inhibitor sensitivity, were more sensitive to AXL/ATR cotargeting. These findings demonstrate a novel and unexpected role for AXL in replication stress tolerance, with potential therapeutic implications. IMPLICATIONS: These findings demonstrate that the combination of AXL and ATR inhibitors could be a promising therapeutic combination for NSCLC, LCNEC, and other cancers.
Collapse
Affiliation(s)
- Kavya Ramkumar
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - C. Allison Stewart
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kasey R. Cargill
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carminia M. Della Corte
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Current affiliation: University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Qi Wang
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Shen
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lixia Diao
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert J. Cardnell
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David H. Peng
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Current affiliation: Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - B. Leticia Rodriguez
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - You-Hong Fan
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John V. Heymach
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carl M. Gay
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Don L. Gibbons
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren A. Byers
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Corresponding author: Lauren A. Byers, 1515 Holcombe Blvd., Unit 432, Houston, Texas, 77030. Phone: (713) 745-2982; Fax: (713) 792-1220;
| |
Collapse
|
193
|
Lai-Kwon J, Tiu C, Pal A, Khurana S, Minchom A. Moving beyond epidermal growth factor receptor resistance in metastatic non-small cell lung cancer - a drug development perspective. Crit Rev Oncol Hematol 2021; 159:103225. [DOI: 10.1016/j.critrevonc.2021.103225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 01/08/2023] Open
|
194
|
Gilteritinib overcomes lorlatinib resistance in ALK-rearranged cancer. Nat Commun 2021; 12:1261. [PMID: 33627640 PMCID: PMC7904790 DOI: 10.1038/s41467-021-21396-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/26/2021] [Indexed: 12/25/2022] Open
Abstract
ALK gene rearrangement was observed in 3%-5% of non-small cell lung cancer patients, and multiple ALK-tyrosine kinase inhibitors (TKIs) have been sequentially used. Multiple ALK-TKI resistance mutations have been identified from the patients, and several compound mutations, such as I1171N + F1174I or I1171N + L1198H are resistant to all the approved ALK-TKIs. In this study, we found that gilteritinib has an inhibitory effect on ALK-TKI-resistant single mutants and I1171N compound mutants in vitro and in vivo. Surprisingly, EML4-ALK I1171N + F1174I compound mutant-expressing tumors were not completely shrunk but regrew within a short period of time after alectinib or lorlatinib treatment. However, the relapsed tumor was markedly shrunk after switching to the gilteritinib in vivo model. In addition, gilteritinib was effective against NTRK-rearranged cancers including entrectinib-resistant NTRK1 G667C-mutant and ROS1 fusion-positive cancer.
Collapse
|
195
|
Blocking Aerobic Glycolysis by Targeting Pyruvate Dehydrogenase Kinase in Combination with EGFR TKI and Ionizing Radiation Increases Therapeutic Effect in Non-Small Cell Lung Cancer Cells. Cancers (Basel) 2021; 13:cancers13050941. [PMID: 33668151 PMCID: PMC7956357 DOI: 10.3390/cancers13050941] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Non-small cell lung cancer (NSCLC) patients harboring oncogenic mutations in the epidermal growth factor receptor (EGFR) inevitably develop resistance to targeted EGFR tyrosine kinase inhibitors (TKI) therapy. To support malignant features associated with cancer development and therapy resistance, the cancer cells adapt their metabolic rate and pathways. As an example, aerobic glycolysis, where the cells use glycolysis in the presence of oxygen, is frequently seen. Here we show that targeting aerobic glycolysis represents a promising strategy in cancer therapeutics. Abstract Increased glycolytic activity is a hallmark of cancer initiation and progression and is often observed in non-small cell lung cancer (NSCLC). Pyruvate dehydrogenase (PDH) complex acts as a gatekeeper between glycolysis and oxidative phosphorylation, and activation of PDH is known to inhibit glycolytic activity. As part of a standard therapeutic regimen, patients with NSCLC harboring oncogenic mutations in the epidermal growth factor receptor (EGFR) are treated with EGFR tyrosine kinase inhibitors (EGFR TKIs). Independent of good initial response, development of resistance to this therapy is inevitable. In the presented work, we propose that inhibition of glycolysis will add to the therapeutic effects and possibly prevent development of resistance against both EGFR TKIs and ionizing radiation in NSCLC. Analysis of transcriptome data from two independent NSCLC patient cohorts identified increased expression of pyruvate dehydrogenase kinase 1 (PDHK1) as well as upregulated expression of genes involved in glucose metabolism in tumors compared to normal tissue. We established in vitro models of development of resistance to EGFR TKIs to study metabolism and determine if targeting PDHK would prevent development of resistance to EGFR TKIs in NSCLC cells. The PDHK1 inhibitor dichloroacetate (DCA) in combination with EGFR TKIs and/or ionizing radiation was shown to increase the therapeutic effect in our NSCLC cell models. This mechanism was associated with redirected metabolism towards pyruvate oxidation and reduced lactate production, both in EGFR TKI sensitive and resistant NSCLC cells. Using DCA, the intracellular pool of pyruvate available for lactic fermentation becomes limited. Consequently, pyruvate is redirected to the mitochondria, and reinforces mitochondrial activity. Addition of DCA to cell culture deacidifies the extracellular microenvironment as less lactate is produced and excreted. In our study, we find that this redirection of metabolism adds to the therapeutic effect of EGFR TKI and ionizing radiation in NSCLC.
Collapse
|
196
|
Ohara S, Suda K, Fujino T, Hamada A, Koga T, Nishino M, Chiba M, Shimoji M, Takemoto T, Soh J, Mitsudomi T. Dose-dependence in acquisition of drug tolerant phenotype and high RYK expression as a mechanism of osimertinib tolerance in lung cancer. Lung Cancer 2021; 154:84-91. [PMID: 33631449 DOI: 10.1016/j.lungcan.2021.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/14/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Emergence of acquired resistance is almost inevitable during EGFR-tyrosine kinase inhibitor therapy for non-small-cell lung cancer (NSCLC) harboring EGFR mutations. Drug tolerance, a reversible state of drug insensitivity in the early phases of tyrosine kinase inhibitor therapy, is considered to serve as the basis of recurrent disease. Therefore, it is important to elucidate the molecular mechanisms of drug tolerance. MATERIALS AND METHODS Five EGFR-mutated NSCLC cell lines were used in this study. We established drug-tolerant cells (DTCs) via 72 h treatment with osimertinib (600 nM) or afatinib (60 nM). Acquisition of drug tolerance was evaluated by growth inhibitory assay, and the molecular mechanisms of drug tolerance were analyzed by phospho-RTK array. RESULTS DTCs were successfully induced in PC9, HCC4006, and H1975 cells against osimertinib and in PC9 cells against afatinib. We observed that a high drug concentration was required to induce DTCs, and HCC4006 cells become tolerant when a higher dose of afatinib (>180 nM) was used. In the analysis of HCC4006 DTCs against osimertinib, we observed increased receptor-like tyrosine kinase (RYK) expression, and siRNA-mediated RYK knockdown inhibited the proliferation of DTCs. CONCLUSIONS These results suggest that induction of DTCs is dose-dependent, and increased RYK expression was the mechanism of drug tolerance in HCC4006 cells against osimertinib.
Collapse
Affiliation(s)
- Shuta Ohara
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Toshio Fujino
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Akira Hamada
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Takamasa Koga
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Masaya Nishino
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Masato Chiba
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Masaki Shimoji
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Toshiki Takemoto
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Junichi Soh
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| | - Tetsuya Mitsudomi
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan.
| |
Collapse
|
197
|
Ohara S, Suda K, Mitsudomi T. Cell Line Models for Acquired Resistance to First-Line Osimertinib in Lung Cancers-Applications and Limitations. Cells 2021; 10:cells10020354. [PMID: 33572269 PMCID: PMC7915563 DOI: 10.3390/cells10020354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are first-line drugs for lung cancers with activating EGFR mutations. Although first- and second-generation EGFR-TKIs were standard first-line treatments, acquired resistance (AR) to these drugs is almost inevitable. Cell line models have been widely used to explore the molecular mechanisms of AR to first- and second-generation EGFR-TKIs. Many research groups, including ours, have established AR cell lines that harbor the EGFR T790M secondary mutation, MET gene amplification, or epithelial–mesenchymal transition (EMT) features, which are all found in clinical specimens obtained from TKI-refractory lesions. Currently, many oncologists prescribe osimertinib, a third-generation EGFR-TKI that can overcome T790M-mediated resistance, as a first-line TKI. Although few clinical data are available about AR mechanisms that arise when osimertinib is used as a first-line therapy, many research groups have established cell lines with AR to osimertinib and have reported on their AR mechanisms. In this review, we summarize the findings on AR mechanisms against first-line osimertinib obtained from analyses of cell line models.
Collapse
|
198
|
Choi J, Lee H, Kwon E, Kong H, Kwon O, Cha H. TGFβ promotes YAP-dependent AXL induction in mesenchymal-type lung cancer cells. Mol Oncol 2021; 15:679-696. [PMID: 33207077 PMCID: PMC7858114 DOI: 10.1002/1878-0261.12857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/26/2020] [Accepted: 11/16/2020] [Indexed: 01/17/2023] Open
Abstract
The acquisition of chemoresistance remains a major cause of cancer mortality due to the limited accessibility of targeted or immune therapies. However, given that severe alterations of molecular features during epithelial-to-mesenchymal transition (EMT) lead to acquired chemoresistance, emerging studies have focused on identifying targetable drivers associated with acquired chemoresistance. Particularly, AXL, a key receptor tyrosine kinase that confers resistance against targets and chemotherapeutics, is highly expressed in mesenchymal cancer cells. However, the underlying mechanism of AXL induction in mesenchymal cancer cells is poorly understood. Our study revealed that the YAP signature, which was highly enriched in mesenchymal-type lung cancer, was closely correlated to AXL expression in 181 lung cancer cell lines. Moreover, using isogenic lung cancer cell pairs, we also found that doxorubicin treatment induced YAP nuclear translocation in mesenchymal-type lung cancer cells to induce AXL expression. Additionally, the concurrent activation of TGFβ signaling coordinated YAP-dependent AXL expression through SMAD4. These data suggest that crosstalk between YAP and the TGFβ/SMAD axis upon treatment with chemotherapeutics might be a promising target to improve chemosensitivity in mesenchymal-type lung cancer.
Collapse
Affiliation(s)
| | - Haeseung Lee
- Intellectual Information TeamFuture Medicine DivisionKorea Institute of Oriental MedicineDaejeonKorea
| | - Eun‐Ji Kwon
- College of PharmacySeoul National UniversityKorea
| | | | - Ok‐Seon Kwon
- Stem Cell Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
| | - Hyuk‐Jin Cha
- College of PharmacySeoul National UniversityKorea
- Research Institute of Pharmaceutical SciencesSeoul National UniversityKorea
| |
Collapse
|
199
|
Ntzifa A, Strati A, Kallergi G, Kotsakis A, Georgoulias V, Lianidou E. Gene expression in circulating tumor cells reveals a dynamic role of EMT and PD-L1 during osimertinib treatment in NSCLC patients. Sci Rep 2021; 11:2313. [PMID: 33504904 PMCID: PMC7840727 DOI: 10.1038/s41598-021-82068-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Liquid biopsy is a tool to unveil resistance mechanisms in NSCLC. We studied changes in gene expression in CTC-enriched fractions of EGFR-mutant NSCLC patients under osimertinib. Peripheral blood from 30 NSCLC patients before, after 1 cycle of osimertinib and at progression of disease (PD) was analyzed by size-based CTC enrichment combined with RT-qPCR for gene expression of epithelial (CK-8, CK-18, CK-19), mesenchymal/EMT (VIM, TWIST-1, AXL), stem cell (ALDH-1) markers, PD-L1 and PIM-1. CTCs were also analyzed by triple immunofluorescence for 45 identical blood samples. Epithelial and stem cell profile (p = 0.043) and mesenchymal/EMT and stem cell profile (p = 0.014) at PD were correlated. There was a strong positive correlation of VIM expression with PIM-1 expression at baseline and increased PD-L1 expression levels at PD. AXL overexpression varied among patients and high levels of PIM-1 transcripts were detected. PD-L1 expression was significantly increased at PD compared to baseline (p = 0.016). The high prevalence of VIM positive CTCs suggest a dynamic role of EMT during osimertinib treatment, while increased expression of PD-L1 at PD suggests a theoretical background for immunotherapy in EGFR-mutant NSCLC patients that develop resistance to osimertinib. This observation merits to be further evaluated in a prospective immunotherapy trial.
Collapse
Affiliation(s)
- Aliki Ntzifa
- grid.5216.00000 0001 2155 0800Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Areti Strati
- grid.5216.00000 0001 2155 0800Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Galatea Kallergi
- grid.11047.330000 0004 0576 5395Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Athanasios Kotsakis
- grid.411299.6Department of Medical Oncology, General University Hospital of Larissa, Larissa, Greece
| | | | - Evi Lianidou
- grid.5216.00000 0001 2155 0800Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
200
|
Chen R, Qian Z, Xu X, Zhang C, Niu Y, Wang Z, Sun J, Zhang X, Yu Y. Exosomes-transmitted miR-7 reverses gefitinib resistance by targeting YAP in non-small-cell lung cancer. Pharmacol Res 2021; 165:105442. [PMID: 33497805 DOI: 10.1016/j.phrs.2021.105442] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/19/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Epidermal growth factor receptor (EGFR) T790M mutation act as the dominant resistance mechanism to first and second generations tyrosine kinase inhibitors (TKIs), the roles of miR-7 in the development of T790M mutation are largely unknown. Here, we confirmed that the level of miR-7 was significantly higher in the gefitinib sensitivity PC9 cells compared to gefitinib resistance H1975 cells, and miR-7 overexpression promoted the apoptosis of H1975 cells by gefitinib treatment. Furthermore, we found that exosomes could transfer miR-7 mimics from PC9 cells to H1975 cells, which reversed gefitinib resistance through binding to YAP, and altered H1975 cells resistance phenotype in vitro. In addition, we suppressed exosomal miR-7 by GW4869, increasing PC9 cells chemoresistance to gefitinib treatment in vivo. Of note, we detected that miR-7 was significantly higher in serum exosomes from healthy controls than from patients with lung carcinoma, and high miR-7 expression was associated with strong response to lung carcinoma patients receiving gefitinib treatment, as well as a longer survival. Therefore, exosomal miR-7 can act as a potential biomarker and therapeutic target for EGFR T79M resistance mutations.
Collapse
Affiliation(s)
- Rui Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zijun Qian
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xin Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Congcong Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yongjie Niu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zhixian Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jianli Sun
- Department of Oncology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiao Zhang
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai, 200030, China.
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China; Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai, 200030, China.
| |
Collapse
|