151
|
Riella LV, Ueno T, Batal I, De Serres SA, Bassil R, Elyaman W, Yagita H, Medina-Pestana JO, Chandraker A, Najafian N. Blockade of Notch ligand δ1 promotes allograft survival by inhibiting alloreactive Th1 cells and cytotoxic T cell generation. THE JOURNAL OF IMMUNOLOGY 2011; 187:4629-38. [PMID: 21949024 DOI: 10.4049/jimmunol.1004076] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The Notch signaling pathway has been recently shown to contribute to T cell differentiation in vitro. However, the in vivo function of Notch signaling in transplantation remains unknown. In this study, we investigated the importance of Delta1 in regulating the alloimmune response in vivo. Delta1 expression was upregulated on dendritic cells and monocytes/macrophages upon transplantation in a BALB/c into B6 vascularized cardiac transplant model. Whereas administration of anti-Delta1 mAb only slightly delayed survival of cardiac allografts in this fully MHC-mismatched model, it significantly prolonged graft survival in combination with single-dose CTLA4-Ig or in CD28 knockout recipients. The prolongation of allograft survival was associated with Th2 polarization and a decrease in Th1 and granzyme B-producing cytotoxic T cells. The survival benefit of Delta1 blockade was abrogated after IL-4 neutralization and in STAT6KO recipients, but was maintained in STAT4KO recipients, reinforcing the key role of Th2 cell development in its graft-prolonging effects. To our knowledge, these data demonstrate for the first time an important role of Delta1 in alloimmunity, identifying Delta1 ligand as a potential novel target for immunomodulation in transplantation.
Collapse
Affiliation(s)
- Leonardo V Riella
- Renal Division, Transplantation Research Center, Brigham and Women's Hospital, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Cave JW. Selective repression of Notch pathway target gene transcription. Dev Biol 2011; 360:123-31. [PMID: 21963536 DOI: 10.1016/j.ydbio.2011.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/28/2011] [Accepted: 09/14/2011] [Indexed: 12/21/2022]
Abstract
The Notch signaling pathway regulates metazoan development, in part, by directly controlling the transcription of target genes. For a given cellular context, however, only subsets of the known target genes are transcribed when the pathway is activated. Thus, there are context-dependent mechanisms that selectively maintain repression of target gene transcription when the Notch pathway is activated. This review focuses on molecular mechanisms that have been recently reported to mediate selective repression of Notch pathway target gene transcription. These mechanisms are essential for generating the complex spatial and temporal expression patterns of Notch target genes during development.
Collapse
Affiliation(s)
- John W Cave
- Dept. of. Neurology and Neuroscience, Weill Cornell Medical College, 785 Mamaroneck Ave., White Plains, NY 10605, USA.
| |
Collapse
|
153
|
Ji X, Wang Z, Geamanu A, Sarkar FH, Gupta SV. Inhibition of cell growth and induction of apoptosis in non-small cell lung cancer cells by delta-tocotrienol is associated with notch-1 down-regulation. J Cell Biochem 2011; 112:2773-83. [DOI: 10.1002/jcb.23184] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
154
|
Badiwala MV, Guha D, Tumiati L, Joseph J, Ghashghai A, Ross HJ, Delgado DH, Rao V. Epidermal Growth Factor–Like Domain 7 Is a Novel Inhibitor of Neutrophil Adhesion to Coronary Artery Endothelial Cells Injured by Calcineurin Inhibition. Circulation 2011; 124:S197-203. [DOI: 10.1161/circulationaha.110.011734] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background—
We investigated the effect of epidermal growth factor–like domain 7 (Egfl7) on nuclear factor-κB activation, intercellular adhesion molecule-1 expression, and neutrophil adhesion to human coronary artery endothelial cells after calcineurin-inhibition–induced injury.
Methods and Results—
Human coronary endothelial cells were incubated with cyclosporine (CyA) 10 μg/mL with or without Egfl7 (100 ng/mL) or the Notch receptor activator Jagged1 (200 ng/mL) for 6 to 48 hours. CyA upregulated nuclear factor-κB (p65) activity (128±2% of control,
P
<0.001) in nuclear extracts, as determined with a DNA-binding activity ELISA. This activity was inhibited by Egfl7 (86±3% of control;
P
<0.001 versus CyA alone). Jagged1 blocked Egfl7-induced nuclear factor-κB inhibition (105±4% of control;
P
<0.05 versus CyA plus Egfl7). CyA upregulated cell-surface intercellular adhesion molecule-1 expression (215±13% of control;
P
<0.001), as determined by flow cytometry. This expression was suppressed by Egfl7 (148±5%;
P
<0.001 versus CyA alone). Jagged1 attenuated the intercellular adhesion molecule-1–suppressive effect of Egfl7 when administered with CyA (193±3% versus 148±5%;
P
<0.01). CyA increased neutrophil adhesion to human coronary endothelial cells (control 20±5%, CyA 37±3%;
P
<0.001 versus control) in a nonstatic neutrophil adhesion assay. This increase was attenuated by Egfl7 (22±6%;
P
<0.001 versus CyA alone). Jagged 1 attenuated the effect of Egfl7 on neutrophil adhesion (31±3%;
P
<0.001 versus Egfl7 plus CyA).
Conclusions—
Our study reveals that Egfl7 is a potent inhibitor of neutrophil adhesion to human coronary endothelial cells subsequent to calcineurin-inhibition–induced injury. Mechanistically, Egfl7 blocked nuclear factor-κB pathway activation and intercellular adhesion molecule-1 expression, which suggests that it may have significant antiinflammatory properties. Because Jagged1 blocked the effect of Egfl7, Notch receptor antagonism may contribute to the mechanism of action of Egfl7.
Collapse
Affiliation(s)
- Mitesh V. Badiwala
- From the Division of Cardiovascular Surgery (M.V.B., D.G., L.T., J.J., A.G., V.R.), Division of Cardiology (H.J.R., D.H.D.), Peter Munk Cardiac Centre, Toronto General Hospital–University Health Network, Toronto, Ontario, Canada
| | - Daipayan Guha
- From the Division of Cardiovascular Surgery (M.V.B., D.G., L.T., J.J., A.G., V.R.), Division of Cardiology (H.J.R., D.H.D.), Peter Munk Cardiac Centre, Toronto General Hospital–University Health Network, Toronto, Ontario, Canada
| | - Laura Tumiati
- From the Division of Cardiovascular Surgery (M.V.B., D.G., L.T., J.J., A.G., V.R.), Division of Cardiology (H.J.R., D.H.D.), Peter Munk Cardiac Centre, Toronto General Hospital–University Health Network, Toronto, Ontario, Canada
| | - Jemy Joseph
- From the Division of Cardiovascular Surgery (M.V.B., D.G., L.T., J.J., A.G., V.R.), Division of Cardiology (H.J.R., D.H.D.), Peter Munk Cardiac Centre, Toronto General Hospital–University Health Network, Toronto, Ontario, Canada
| | - Arash Ghashghai
- From the Division of Cardiovascular Surgery (M.V.B., D.G., L.T., J.J., A.G., V.R.), Division of Cardiology (H.J.R., D.H.D.), Peter Munk Cardiac Centre, Toronto General Hospital–University Health Network, Toronto, Ontario, Canada
| | - Heather J. Ross
- From the Division of Cardiovascular Surgery (M.V.B., D.G., L.T., J.J., A.G., V.R.), Division of Cardiology (H.J.R., D.H.D.), Peter Munk Cardiac Centre, Toronto General Hospital–University Health Network, Toronto, Ontario, Canada
| | - Diego H. Delgado
- From the Division of Cardiovascular Surgery (M.V.B., D.G., L.T., J.J., A.G., V.R.), Division of Cardiology (H.J.R., D.H.D.), Peter Munk Cardiac Centre, Toronto General Hospital–University Health Network, Toronto, Ontario, Canada
| | - Vivek Rao
- From the Division of Cardiovascular Surgery (M.V.B., D.G., L.T., J.J., A.G., V.R.), Division of Cardiology (H.J.R., D.H.D.), Peter Munk Cardiac Centre, Toronto General Hospital–University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
155
|
Miyamoto S, Rosenberg DW. Role of Notch signaling in colon homeostasis and carcinogenesis. Cancer Sci 2011; 102:1938-42. [PMID: 21801279 DOI: 10.1111/j.1349-7006.2011.02049.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer is a leading cause of cancer-related deaths world-wide. Despite the development of new anticancer agents, there will be an estimated 150,000 new cases and 50,000 deaths associated with this disease during the next year.((1)) This is due, in part, to the limitations of chemotherapy, resulting from drug resistance and organ system toxicities. To overcome the inherent limitations associated with standard chemotherapy techniques, the development of novel drug targets is of utmost importance in combating this disease. There is accumulating evidence that a small fraction of cancer cells, referred to as cancer stem cells, may play a critical role in the pathogenesis of this disease. In fact, the identification of cancer stem cells can be accomplished based on the expression of surface markers associated with a cancer stem-like phenotype. This stem-like phenotype includes indefinite self-replication, pluripotency, and most importantly, resistance to chemotherapeutics. Therefore, understanding the properties of cancer stem cells may ultimately lead to new therapeutic approaches. Recently, several studies have shown that Notch signaling is critical in maintaining cancer stem cell properties. This review provides a summary of colonic crypt organization and colon carcinogenesis with a focus on stem cells. Moreover, we discuss novel therapeutic strategies that are under development for targeting Notch signaling in cancer stem cells.
Collapse
Affiliation(s)
- Shingo Miyamoto
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | |
Collapse
|
156
|
Miyamoto S, Rosenberg DW. Role of Notch signaling in colon homeostasis and carcinogenesis. Cancer Sci 2011. [PMID: 21801279 DOI: 10.1111/j.1349-7006.2011.02049.x.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Colorectal cancer is a leading cause of cancer-related deaths world-wide. Despite the development of new anticancer agents, there will be an estimated 150,000 new cases and 50,000 deaths associated with this disease during the next year.((1)) This is due, in part, to the limitations of chemotherapy, resulting from drug resistance and organ system toxicities. To overcome the inherent limitations associated with standard chemotherapy techniques, the development of novel drug targets is of utmost importance in combating this disease. There is accumulating evidence that a small fraction of cancer cells, referred to as cancer stem cells, may play a critical role in the pathogenesis of this disease. In fact, the identification of cancer stem cells can be accomplished based on the expression of surface markers associated with a cancer stem-like phenotype. This stem-like phenotype includes indefinite self-replication, pluripotency, and most importantly, resistance to chemotherapeutics. Therefore, understanding the properties of cancer stem cells may ultimately lead to new therapeutic approaches. Recently, several studies have shown that Notch signaling is critical in maintaining cancer stem cell properties. This review provides a summary of colonic crypt organization and colon carcinogenesis with a focus on stem cells. Moreover, we discuss novel therapeutic strategies that are under development for targeting Notch signaling in cancer stem cells.
Collapse
Affiliation(s)
- Shingo Miyamoto
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | |
Collapse
|
157
|
Wei Z, Chigurupati S, Arumugam TV, Jo DG, Li H, Chan SL. Notch Activation Enhances the Microglia-Mediated Inflammatory Response Associated With Focal Cerebral Ischemia. Stroke 2011; 42:2589-94. [DOI: 10.1161/strokeaha.111.614834] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background and Purpose—
Activation of Notch worsens ischemic brain damage as antisense knockdown or pharmacological inhibition of the Notch pathway reduces the infarct size and improves the functional outcome in a mouse model of stroke. We sought to determine whether Notch activation contributes to postischemic inflammation by directly modulating the microglial innate response.
Methods—
The microglial response and the attendant inflammatory reaction were evaluated in Notch1 antisense transgenic (Tg) and in nontransgenic (non-Tg) mice subjected to middle cerebral artery occlusion with or without treatment with a γ-secretase inhibitor (GSI). To investigate the impact of Notch on microglial effector functions, primary mouse microglia and murine BV-2 microglial cell line were exposed to oxygen glucose deprivation or lipopolysaccharide in the presence or absence of GSI. Immunofluorescence labeling, Western blotting, and reverse-transcription polymerase chain reaction were performed to measure microglial activation and production of inflammatory cytokines. The nuclear translocation of nuclear factor-κB in microglia was assessed by immunohistochemistry. The neurotoxic potential of microglia was determined in cocultures.
Results—
Notch1 antisense mice exhibit significantly lower numbers of activated microglia and reduced proinflammatory cytokine expression in the ipsilateral ischemic cortices compared to non-Tg mice. Microglial activation also was attenuated in Notch1 antisense cultures and in non-Tg cultures treated with GSI. GSI significantly reduced nuclear factor-κB activation and expression of proinflammatory mediators and markedly attenuated the neurotoxic activity of microglia in cocultures.
Conclusions—
These findings establish a role for Notch signaling in modulating the microglia innate response and suggest that inhibition of Notch might represent a complementary therapeutic approach to prevent reactive gliosis in stroke and neuroinflammation-related degenerative disorders.
Collapse
Affiliation(s)
- Zelan Wei
- From the Burnett School of Biomedical Sciences (Z.W., S.C., H.L., S.L.C.), College of Medicine, University of Central Florida, Orlando, FL; School of Biomedical Sciences (T.V.A.), University of Queensland, Brisbane, Australia; College of Pharmacy (D.J.), Sungkyunkwan University, Suwon, Korea; Department of Biochemistry and Molecular Biology (H.L.), Guangdong Pharmaceutical University, Guangdong, P.R., China
| | - Srinivasulu Chigurupati
- From the Burnett School of Biomedical Sciences (Z.W., S.C., H.L., S.L.C.), College of Medicine, University of Central Florida, Orlando, FL; School of Biomedical Sciences (T.V.A.), University of Queensland, Brisbane, Australia; College of Pharmacy (D.J.), Sungkyunkwan University, Suwon, Korea; Department of Biochemistry and Molecular Biology (H.L.), Guangdong Pharmaceutical University, Guangdong, P.R., China
| | - Thiruma V. Arumugam
- From the Burnett School of Biomedical Sciences (Z.W., S.C., H.L., S.L.C.), College of Medicine, University of Central Florida, Orlando, FL; School of Biomedical Sciences (T.V.A.), University of Queensland, Brisbane, Australia; College of Pharmacy (D.J.), Sungkyunkwan University, Suwon, Korea; Department of Biochemistry and Molecular Biology (H.L.), Guangdong Pharmaceutical University, Guangdong, P.R., China
| | - Dong-Gyu Jo
- From the Burnett School of Biomedical Sciences (Z.W., S.C., H.L., S.L.C.), College of Medicine, University of Central Florida, Orlando, FL; School of Biomedical Sciences (T.V.A.), University of Queensland, Brisbane, Australia; College of Pharmacy (D.J.), Sungkyunkwan University, Suwon, Korea; Department of Biochemistry and Molecular Biology (H.L.), Guangdong Pharmaceutical University, Guangdong, P.R., China
| | - He Li
- From the Burnett School of Biomedical Sciences (Z.W., S.C., H.L., S.L.C.), College of Medicine, University of Central Florida, Orlando, FL; School of Biomedical Sciences (T.V.A.), University of Queensland, Brisbane, Australia; College of Pharmacy (D.J.), Sungkyunkwan University, Suwon, Korea; Department of Biochemistry and Molecular Biology (H.L.), Guangdong Pharmaceutical University, Guangdong, P.R., China
| | - Sic L. Chan
- From the Burnett School of Biomedical Sciences (Z.W., S.C., H.L., S.L.C.), College of Medicine, University of Central Florida, Orlando, FL; School of Biomedical Sciences (T.V.A.), University of Queensland, Brisbane, Australia; College of Pharmacy (D.J.), Sungkyunkwan University, Suwon, Korea; Department of Biochemistry and Molecular Biology (H.L.), Guangdong Pharmaceutical University, Guangdong, P.R., China
| |
Collapse
|
158
|
Sirin Y, Susztak K. Notch in the kidney: development and disease. J Pathol 2011; 226:394-403. [PMID: 21952830 DOI: 10.1002/path.2967] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/27/2011] [Accepted: 07/02/2011] [Indexed: 01/04/2023]
Abstract
Notch signalling is a highly conserved cell-cell communication mechanism that regulates development, tissue homeostasis, and repair. Within the kidney, Notch has an important function in orchestrating kidney development. Recent studies indicate that Notch plays a key role in establishing proximal epithelial fate during nephron segmentation as well as the differentiation of principal cells in the renal collecting system. Notch signalling is markedly reduced in the adult kidney; however, increased Notch signalling has been noted in both acute and chronic kidney injury. Increased glomerular epithelial Notch signalling has been associated with albuminuria and glomerulosclerosis, while tubular epithelial Notch activation caused fibrosis development most likely inducing an improper epithelial repair pathway. Recent studies thereby indicate that Notch is a key regulator of kidney development, repair, and injury.
Collapse
Affiliation(s)
- Yasemin Sirin
- Department of Nephrology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
159
|
Riz I, Zweier-Renn LA, Toma I, Hawley TS, Hawley RG. Apoptotic role of IKK in T-ALL therapeutic response. Mol Cancer Res 2011; 9:979-84. [PMID: 21730014 DOI: 10.1158/1541-7786.mcr-11-0109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite considerable progress in the treatment of T cell acute lymphoblastic leukemia (T-ALL), it is still the highest risk malignancy among ALL. The outcome of relapsed patients remains dismal. The pro-survival role of NOTCH1 and NFκB in T-ALL is well documented; also, both factors were reported to be predictive of relapse. The NOTCH1 signaling pathway, commonly activated in T-ALL, was shown to enhance the transcriptional function of NFκB via several mechanisms. Thus, pharmacological inhibition of NOTCH1-NFκB signaling was suggested to be incorporated into existing T-ALL treatment protocols. However, conventional chemotherapy is based on activation of various types of stress, such as DNA damage, mitotic perturbations or endoplasmic reticulum overload. NFκB is frequently activated in response to stress and, depending on yet unknown mechanisms, it either protects cells from the drug action or mediates apoptosis. Here, we report that T-ALL cells respond to NFκB inhibition in opposite ways depending on whether they were treated with a stress-inducing chemotherapeutic agent or not. Moreover, we found that NOTCH1 enhances NFκB apoptotic function in the stressed cells. The data argue for further studies of NFκB status in T-ALL patients on different treatment protocols and the impact of activating NOTCH1 mutations on treatment response.
Collapse
Affiliation(s)
- Irene Riz
- Department of Anatomy and Regenerative Biology, George Washington University, 2300 I Street NW, Washington, DC 20037, USA.
| | | | | | | | | |
Collapse
|
160
|
Arumugam TV, Cheng YL, Choi Y, Choi YH, Yang S, Yun YK, Park JS, Yang DK, Thundyil J, Gelderblom M, Karamyan VT, Tang SC, Chan SL, Magnus T, Sobey CG, Jo DG. Evidence that gamma-secretase-mediated Notch signaling induces neuronal cell death via the nuclear factor-kappaB-Bcl-2-interacting mediator of cell death pathway in ischemic stroke. Mol Pharmacol 2011; 80:23-31. [PMID: 21450930 DOI: 10.1124/mol.111.071076] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Notch-1 (Notch) is a cell surface receptor that regulates cell-fate decisions in the developing nervous system, and it may also have roles in synaptic plasticity in the adult brain. Binding of its ligands results in the proteolytic cleavage of Notch by the γ-secretase enzyme complex, thereby causing the release of a Notch intracellular domain (NICD) that translocates to the nucleus, in which it regulates transcription. Here we show that activation of Notch modulates ischemic neuronal cell death in vitro and in vivo. Specifically, our findings from the use of Notch-1 siRNA or the overexpression of NICD indicate that Notch activation contributes to cell death. Using modified NICD, we demonstrate an apoptosis-inducing function of NICD in both the nucleus and the cytosol. NICD transfection-induced cell death was reduced by blockade of calcium signaling, caspase activation, and Janus kinase signaling. Inhibition of the Notch-activating enzyme, γ-secretase, protected against ischemic neuronal cell death by targeting an apoptotic protease, cleaved caspase-3, nuclear factor-κB (NF-κB), and the pro-death BH3-only protein, Bcl-2-interacting mediator of cell death (Bim). Treatment of mice with a γ-secretase inhibitor, compound E, reduced infarct size and improved functional outcome in a model of focal ischemic stroke. Furthermore, γ-secretase inhibition reduced NICD, p-p65, and Bim levels in vivo. These findings suggest that Notch signaling endangers neurons after ischemic stroke by modulating the NF-κB, pro-death protein Bim, and caspase pathways.
Collapse
Affiliation(s)
- Thiruma V Arumugam
- School of Biomedical Sciences, the University of Queensland, St Lucia, QLD 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Keerthivasan S, Suleiman R, Lawlor R, Roderick J, Bates T, Minter L, Anguita J, Juncadella I, Nickoloff BJ, Le Poole IC, Miele L, Osborne BA. Notch signaling regulates mouse and human Th17 differentiation. THE JOURNAL OF IMMUNOLOGY 2011; 187:692-701. [PMID: 21685328 DOI: 10.4049/jimmunol.1003658] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Th17 cells are known to play a critical role in adaptive immune responses to several important extracellular pathogens. Additionally, Th17 cells are implicated in the pathogenesis of several autoimmune and inflammatory disorders as well as in cancer. Therefore, it is essential to understand the mechanisms that regulate Th17 differentiation. Notch signaling is known to be important at several stages of T cell development and differentiation. In this study, we report that Notch1 is activated in both mouse and human in vitro-polarized Th17 cells and that blockade of Notch signaling significantly downregulates the production of Th17-associated cytokines, suggesting an intrinsic requirement for Notch during Th17 differentiation in both species. We also present evidence, using promoter reporter assays, knockdown studies, as well as chromatin immunoprecipitation, that IL-17 and retinoic acid-related orphan receptor γt are direct transcriptional targets of Notch signaling in Th17 cells. Finally, in vivo inhibition of Notch signaling reduced IL-17 production and Th17-mediated disease progression in experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Thus, this study highlights the importance of Notch signaling in Th17 differentiation and indicates that selective targeted therapy against Notch may be an important tool to treat autoimmune disorders, including multiple sclerosis.
Collapse
Affiliation(s)
- Shilpa Keerthivasan
- Molecular Biology Program, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Lai W, Yu M, Huang MN, Okoye F, Keegan AD, Farber DL. Transcriptional control of rapid recall by memory CD4 T cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:133-40. [PMID: 21642544 DOI: 10.4049/jimmunol.1002742] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Memory T cells are distinguished from naive T cells by their rapid production of effector cytokines, although mechanisms for this recall response remain undefined. In this study, we investigated transcriptional mechanisms for rapid IFN-γ production by Ag-specific memory CD4 T cells. In naive CD4 T cells, IFN-γ production only occurred after sustained Ag activation and was associated with high expression of the T-bet transcription factor required for Th1 differentiation and with T-bet binding to the IFN-γ promoter as assessed by chromatin immunoprecipitation analysis. By contrast, immediate IFN-γ production by Ag-stimulated memory CD4 T cells occurred in the absence of significant nuclear T-bet expression or T-bet engagement on the IFN-γ promoter. We identified rapid induction of NF-κB transcriptional activity and increased engagement of NF-κB on the IFN-γ promoter at rapid times after TCR stimulation of memory compared with naive CD4 T cells. Moreover, pharmacologic inhibition of NF-κB activity or peptide-mediated inhibition of NF-κB p50 translocation abrogated early memory T cell signaling and TCR-mediated effector function. Our results reveal a molecular mechanism for memory T cell recall through enhanced NF-κB p50 activation and promoter engagement, with important implications for memory T cell modulation in vaccines, autoimmunity, and transplantation.
Collapse
Affiliation(s)
- Wendy Lai
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
163
|
Pérez-Cabezas B, Naranjo-Gómez M, Bastos-Amador P, Requena-Fernández G, Pujol-Borrell R, Borràs FE. Ligation of Notch receptors in human conventional and plasmacytoid dendritic cells differentially regulates cytokine and chemokine secretion and modulates Th cell polarization. THE JOURNAL OF IMMUNOLOGY 2011; 186:7006-15. [PMID: 21593384 DOI: 10.4049/jimmunol.1100203] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Notch signaling is involved in multiple cellular processes. Recent data also support the prominent role of Notch signaling in the regulation of the immune response. In this study, we analyzed the expression and function of Notch receptors and ligands on both human blood conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs). The expression and modulation upon TLR activation of Notch molecules partially differed between cDCs and pDCs, but functional involvement of the Notch pathway in both cell types was clearly revealed by specific inhibition using DAPT. Beyond the induction of Notch target genes and modulation of maturation markers, Notch pathway was also involved in a differential secretion of some specific cytokines/chemokines by DC subsets. Whereas Notch ligation induced IL-10 and CCL19 secretion in cDCs, Notch inhibition resulted in a diminished production of these proteins. With regard to pDCs, Notch activation induced TNF-α whereas Notch inhibition significantly abrogated the secretion of CCL19, CXCL9, CXCL10, and TNF-α. Additionally, Notch modulation of DC subsets differentially affected Th polarization of allostimulated T cells. Our results suggest that the Notch pathway may function as an additional mechanism controlling human DC responses, with differential activity on cDCs and pDCs. This control mechanism may ultimately contribute to define the local milieu promoted by these cells under the particular conditions of the immune response.
Collapse
Affiliation(s)
- Begoña Pérez-Cabezas
- Laboratori d'Immunobiologia i Diagnòstic Molecular, Banc de Sang i Teixits, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Institut d'Investigació Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
164
|
Li H, Solomon E, Duhachek Muggy S, Sun D, Zolkiewska A. Metalloprotease-disintegrin ADAM12 expression is regulated by Notch signaling via microRNA-29. J Biol Chem 2011; 286:21500-10. [PMID: 21518768 DOI: 10.1074/jbc.m110.207951] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metalloprotease-disintegrin ADAM12 is overexpressed and frequently mutated in breast cancer. We report here that ADAM12 expression in cultured mammalian cells is up-regulated by Notch signals. Expression of a constitutively active form of Notch1 in murine fibroblasts, myoblasts, or mammary epithelial cells or activation of the endogenous Notch signaling by co-culture with ligand-expressing cells increases ADAM12 protein and mRNA levels. Up-regulation of ADAM12 expression by Notch requires new transcription, is activated in a CSL-dependent manner, and is abolished upon inhibition of IκB kinase. Expression of a constitutively active Notch1 in NIH3T3 cells increases the stability of Adam12 mRNA. We further show that the microRNA-29 family, which has a predicted conserved site in the 3'-untranslated region of mouse Adam12, plays a critical role in mediating the stimulatory effect of Notch on ADAM12 expression. In human cells, Notch up-regulates the expression of the long form, but not the short form, of ADAM12 containing a divergent 3'-untranslated mRNA region. These studies uncover a novel paradigm in Notch signaling and establish Adam12 as a Notch-related gene.
Collapse
Affiliation(s)
- Hui Li
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | |
Collapse
|
165
|
Cao Q, Li P, Lu J, Dheen ST, Kaur C, Ling EA. Nuclear factor-κB/p65 responds to changes in the Notch signaling pathway in murine BV-2 cells and in amoeboid microglia in postnatal rats treated with the γ-secretase complex blocker DAPT. J Neurosci Res 2011; 88:2701-14. [PMID: 20648656 DOI: 10.1002/jnr.22429] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microglial cells constitutively express Notch-1 and nuclear factor-kappaB/p65 (NF-kappaB/p65), and both pathways modulate production of inflammatory mediators. This study sought to determine whether a functional relationship exists between them and, if so, to investigate whether they synergistically regulate common microglial cell functions. By immunofluorescence labeling, real-time polymerase chain reaction (RT-PCR), flow cytometry, and Western blot, BV-2 cells exhibited Notch-1 and NF-kappaB/p65 expression, which was significantly up-regulated in cells challenged with lipopolysaccharide (LPS). This was coupled with an increase in expression of Hes-1, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta). In BV-2 cells pretreated with N-[N-(3,5-difluorophenacetyl)-1-alany1]-S-phenyglycine t-butyl ester (DAPT), a gamma-secretase inhibitor, followed by LPS stimulation, Notch-1 expression level was enhanced but that of all other markers was suppressed. Additionally, Hes-1 expression and NF-kappaB nuclear translocation decreased as shown by flow cytometry. Notch-1's modulation of NF-kappaB/p65 was also evidenced in amoeboid microglial cells (AMC) in vivo. In 5-day-old rats given intraperitoneal injections of LPS, Notch-1, NF-kappaB/p65, TNF-alpha, and IL-1beta immunofluorescence in AMC was markedly enhanced. However, in rats given an intraperitoneal injection of DAPT prior to LPS, Notch-1 labeling was augmented, but that of TNF-alpha and IL-1beta was reduced. The results suggest that blocking of Notch-1 activation with DAPT would reduce the level of its downstream end product Hes-1 along with suppression of NF-kappaB/p65 translocation, resulting in suppressed production of proinflammatory cytokines. It is concluded that Notch-1 signaling can trans-activate NF-kappaB/p65 by amplifying NF-kappaB/p65-dependent proinflammatory functions in activated microglia.
Collapse
Affiliation(s)
- Q Cao
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | | | | | | | | | | |
Collapse
|
166
|
Li Y, Wicha MS, Schwartz SJ, Sun D. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds. J Nutr Biochem 2011; 22:799-806. [PMID: 21295962 DOI: 10.1016/j.jnutbio.2010.11.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 10/09/2010] [Accepted: 11/03/2010] [Indexed: 12/11/2022]
Abstract
The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anticancer drugs targeting cancer stem cells. Naturally occurring dietary compounds have received increasing attention in cancer chemoprevention. The anticancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine and vitamin D(3), are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor-initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
167
|
Fu T, Zhang P, Feng L, Ji G, Wang XH, Zheng MH, Qin HY, Chen DL, Wang WZ, Han H. Accelerated acute allograft rejection accompanied by enhanced T-cell proliferation and attenuated Treg function in RBP-J deficient mice. Mol Immunol 2011; 48:751-9. [DOI: 10.1016/j.molimm.2010.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 11/18/2010] [Accepted: 11/21/2010] [Indexed: 11/15/2022]
|
168
|
Guo S, Liu M, Gonzalez-Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:197-213. [PMID: 21193018 DOI: 10.1016/j.bbcan.2010.12.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/15/2010] [Accepted: 12/17/2010] [Indexed: 12/21/2022]
Abstract
The Notch signaling plays a key role in cell differentiation, survival, and proliferation through diverse mechanisms. Notch signaling is also involved in vasculogenesis and angiogenesis. Moreover, Notch expression is regulated by hypoxia and inflammatory cytokines (IL-1, IL-6 and leptin). Entangled crosstalk between Notch and other developmental signaling (Hedgehog and Wnt), and signaling triggered by growth factors, estrogens and oncogenic kinases, could impact on Notch targeted genes. Thus, alterations of the Notch signaling can lead to a variety of disorders, including human malignancies. Notch signaling is activated by ligand binding, followed by ADAM/tumor necrosis factor-α-converting enzyme (TACE) metalloprotease and γ-secretase cleavages that produce the Notch intracellular domain (NICD). Translocation of NICD into the nucleus induces the transcriptional activation of Notch target genes. The relationships between Notch deregulated signaling, cancer stem cells and the carcinogenesis process reinforced by Notch crosstalk with many oncogenic signaling pathways suggest that Notch signaling may be a critical drug target for breast and other cancers. Since current status of knowledge in this field changes quickly, our insight should be continuously revised. In this review, we will focus on recent advancements in identification of aberrant Notch signaling in breast cancer and the possible underlying mechanisms, including potential role of Notch in breast cancer stem cells, tumor angiogenesis, as well as its crosstalk with other oncogenic signaling pathways in breast cancer. We will also discuss the prognostic value of Notch proteins and therapeutic potential of targeting Notch signaling for cancer treatment.
Collapse
Affiliation(s)
- Shanchun Guo
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | |
Collapse
|
169
|
Abstract
Early genetics in flies revealed that Notch is a complex pleiotropic locus. We now know that Notch is a receptor that plays prominent roles during development and functions locally in many tissues to instruct cell fate decisions. Drosophila has been an excellent model to identify genetically the elements that contribute to the canonical Notch signaling transduction machinery defined as DSL-Notch-CSL-MAML axis. This core pathway is required in many biological events in all animals. Though the canonical Notch pathway is relatively simple, and as the steps of the events are now more deeply understood, an increasing number of reports in the last decade show that many other molecules can influence Notch signaling, some by competing with a given element of the cascade. This may occur at any step bringing more diversity and plasticity to the Notch pathway. Most of these regulatory molecules act in a context-specific manner and/or are themselves key regulators in other pathways, providing increasing examples of how connections among distinct pathway modulate each other ("cross talk"). The noncanonical signals discussed in this chapter are broadly defined and correspond to the following: DSL-independent activations, interactions with non-DSL ligands, CSL-independent signaling, signal transduction without cleavage, differential posttranslational modifications, competition/protection for a cofactor, and cross talk with other signaling pathways [Wnt, bone morphogenic protein (BMP), NF-kappaB, etc.]. Though some deemed controversial, these events may impact human diseases. Understanding the molecular nature of these events will allow avoidance of adverse effects during possible clinical treatments. In this review, we will focus on some noncanonical Notch activities and their in vivo significance during developmental and pathological processes.
Collapse
Affiliation(s)
- Pascal Heitzler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| |
Collapse
|
170
|
Dos Santos NR, Ghezzo MN, da Silva RC, Fernandes MT. NF-κB in T-cell Acute Lymphoblastic Leukemia: Oncogenic Functions in Leukemic and in Microenvironmental Cells. Cancers (Basel) 2010; 2:1838-60. [PMID: 24281204 PMCID: PMC3840450 DOI: 10.3390/cancers2041838] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 11/03/2010] [Accepted: 11/04/2010] [Indexed: 01/04/2023] Open
Abstract
Two main NF-κB signaling pathways, canonical and noncanonical, performing distinct functions in organisms have been characterized. Identification of mutations in genes encoding components of these NF-κB signaling pathways in lymphoid malignancies confirmed their key role in leukemogenesis. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes that despite significant therapeutic advances can still be fatal. Although mutations in NF-κB genes have not been reported in T-ALL, NF-κB constitutive activation in human T-ALL and in acute T-cell leukemia mouse models has been observed. Although these studies revealed activation of members of both canonical and noncanonical NF-κB pathways in acute T-cell leukemia, only inhibition of canonical NF-κB signaling was shown to impair leukemic T cell growth. Besides playing an important pro-oncogenic role in leukemic T cells, NF-κB signaling also appears to modulate T-cell leukemogenesis through its action in microenvironmental stromal cells. This article reviews recent data on the role of these transcription factors in T-ALL and pinpoints further research crucial to determine the value of NF-κB inhibition as a means to treat T-ALL.
Collapse
Affiliation(s)
- Nuno R Dos Santos
- IBB-Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
171
|
Paganin M, Ferrando A. Molecular pathogenesis and targeted therapies for NOTCH1-induced T-cell acute lymphoblastic leukemia. Blood Rev 2010; 25:83-90. [PMID: 20965628 DOI: 10.1016/j.blre.2010.09.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic tumor resulting from the malignant transformation of immature T-cell progenitors. Originally associated with a dismal prognosis, the outcome of T-ALL patients has improved remarkably over the last two decades as a result of the introduction of intensified chemotherapy protocols. However, these treatments are associated with significant acute and long-term toxicities, and the treatment of patients presenting with primary resistant disease or those relapsing after a transient response remains challenging. T-ALL is a genetically heterogeneous disease in which numerous chromosomal and genetic alterations cooperate to promote the aberrant proliferation and survival of leukemic lymphoblasts. However, the identification of activating mutations in the NOTCH1 gene in over 50% of T-ALL cases has come to define aberrant NOTCH signaling as a central player in this disease. Therefore, the NOTCH pathway represents an important potential therapeutic target. In this review, we will update our current understanding of the molecular basis of T-ALL, with a particular focus on the role of the NOTCH1 oncogene and the development of anti-NOTCH1 targeted therapies for the treatment of this disease.
Collapse
|
172
|
Tao J, Chen S, Yang T, Dawson B, Munivez E, Bertin T, Lee B. Osteosclerosis owing to Notch gain of function is solely Rbpj-dependent. J Bone Miner Res 2010; 25:2175-83. [PMID: 20499347 PMCID: PMC3126919 DOI: 10.1002/jbmr.115] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osteosclerosis is a pathologic bone disease characterized by an increase in bone formation over bone resorption. Genetic factors that contribute to the pathogenesis of this disease are poorly understood. Dysregulation or mutation in many components of the Notch signaling pathway results in a wide range of human developmental disorders and cancers, including bone diseases. Our previous study found that activation of the Notch signaling in osteoblasts promotes cell proliferation and inhibits differentiation, leading to an osteosclerotic phenotype in transgenic mice. In this study we report a longer-lived mouse model that also develops osteosclerosis and a genetic manipulation that completely rescues the phenotype. Conditionally cre-activated expression of Notch1 intracellular domain (NICD) in vivo exclusively in committed osteoblasts caused massive osteosclerosis with growth retardation and abnormal vertebrae. Importantly, selective deletion of a Notch nuclear effector--Rbpj--in osteoblasts completely suppressed the osteosclerotic and growth-retardation phenotypes. Furthermore, cellular and molecular analyses of bones from the rescued mice confirmed that NICD-dependent molecular alterations in osteoblasts were completely reversed by removal of the Rbpj pathway. Together, our observations show that the osteosclerosis owing to activation of Notch signaling in osteoblasts is canonical in nature because it depends solely on Rbpj signaling. As such, it identifies Rbpj as a specific target for manipulating Notch signaling in a cell-autonomous fashion in osteoblasts in bone diseases where Notch may be dysregulated.
Collapse
Affiliation(s)
- Jianning Tao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
173
|
Espinosa L, Cathelin S, D’Altri T, Trimarchi T, Statnikov A, Guiu J, Rodilla V, Inglés-Esteve J, Nomdedeu J, Bellosillo B, Besses C, Abdel-Wahab O, Kucine N, Sun SC, Song G, Mullighan CC, Levine RL, Rajewsky K, Aifantis I, Bigas A. The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia. Cancer Cell 2010; 18:268-81. [PMID: 20832754 PMCID: PMC2963042 DOI: 10.1016/j.ccr.2010.08.006] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 06/04/2010] [Accepted: 07/26/2010] [Indexed: 11/17/2022]
Abstract
It was previously shown that the NF-κB pathway is downstream of oncogenic Notch1 in T cell acute lymphoblastic leukemia (T-ALL). Here, we visualize Notch-induced NF-κB activation using both human T-ALL cell lines and animal models. We demonstrate that Hes1, a canonical Notch target and transcriptional repressor, is responsible for sustaining IKK activation in T-ALL. Hes1 exerts its effects by repressing the deubiquitinase CYLD, a negative IKK complex regulator. CYLD expression was found to be significantly suppressed in primary T-ALL. Finally, we demonstrate that IKK inhibition is a promising option for the targeted therapy of T-ALL as specific suppression of IKK expression and function affected both the survival of human T-ALL cells and the maintenance of the disease in vivo.
Collapse
Affiliation(s)
- Lluis Espinosa
- Cancer Research Program, Institut Municipal d’Investigacions Mèdiques, Barcelona, Spain
- Program of Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA, USA
| | - Severine Cathelin
- Howard Hughes Medical Institute and Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Teresa D’Altri
- Cancer Research Program, Institut Municipal d’Investigacions Mèdiques, Barcelona, Spain
| | - Thomas Trimarchi
- Howard Hughes Medical Institute and Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Alexander Statnikov
- Center for Health Informatics and Bioinformatics and Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Jordi Guiu
- Cancer Research Program, Institut Municipal d’Investigacions Mèdiques, Barcelona, Spain
| | - Veronica Rodilla
- Cancer Research Program, Institut Municipal d’Investigacions Mèdiques, Barcelona, Spain
| | - Julia Inglés-Esteve
- Cancer Research Program, Institut Municipal d’Investigacions Mèdiques, Barcelona, Spain
| | - Josep Nomdedeu
- Hematology Department, Hospital de Sant Pau, Barcelona, Spain
| | | | - Carles Besses
- Hematology Department, Hospital del Mar. Barcelona, Spain
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Department of Medicine and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Nicole Kucine
- Human Oncology and Pathogenesis Program, Department of Medicine and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Guangchan Song
- Department of Pathology, St. Jude’s Research Hospital, Memphis, TN, USA
| | | | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Department of Medicine and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Klaus Rajewsky
- Program of Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, MA, USA
| | - Iannis Aifantis
- Howard Hughes Medical Institute and Department of Pathology, New York University School of Medicine, New York, NY, USA
- To Whom Correspondence Should Be Addressed:, Dr. Iannis Aifantis, Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine, 550 First Avenue, MSB 504, New York, NY 10016, USA, Phone: 212 263 5365, Fax: 212 263 8211, Drs. Anna Bigas and Lluis Espinosa, Stem Cells and Cancer Research Group., Institut Municipal d’Investigacions Mediques (IMIM)., Dr. Aiguader 88. PRBB., 08003- Barcelona, Spain, Phone: 34 93 3160440, Fax: 34 93 3160410, ,
| | - Anna Bigas
- Cancer Research Program, Institut Municipal d’Investigacions Mèdiques, Barcelona, Spain
- To Whom Correspondence Should Be Addressed:, Dr. Iannis Aifantis, Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine, 550 First Avenue, MSB 504, New York, NY 10016, USA, Phone: 212 263 5365, Fax: 212 263 8211, Drs. Anna Bigas and Lluis Espinosa, Stem Cells and Cancer Research Group., Institut Municipal d’Investigacions Mediques (IMIM)., Dr. Aiguader 88. PRBB., 08003- Barcelona, Spain, Phone: 34 93 3160440, Fax: 34 93 3160410, ,
| |
Collapse
|
174
|
Panepucci RA, Oliveira LHB, Zanette DL, Viu Carrara RDC, Araujo AG, Orellana MD, Bonini de Palma PV, Menezes CCBO, Covas DT, Zago MA. Increased levels of NOTCH1, NF-kappaB, and other interconnected transcription factors characterize primitive sets of hematopoietic stem cells. Stem Cells Dev 2010; 19:321-32. [PMID: 19686049 DOI: 10.1089/scd.2008.0397] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
As previously shown, higher levels of NOTCH1 and increased NF-kappaB signaling is a distinctive feature of the more primitive umbilical cord blood (UCB) CD34+ hematopoietic stem cells (HSCs), as compared to bone marrow (BM). Differences between BM and UCB cell composition also account for this finding. The CD133 marker defines a more primitive cell subset among CD34+ HSC with a proposed hemangioblast potential. To further evaluate the molecular basis related to the more primitive characteristics of UCB and CD133+ HSC, immunomagnetically purified human CD34+ and CD133+ cells from BM and UCB were used on gene expression microarrays studies. UCB CD34+ cells contained a significantly higher proportion of CD133+ cells than BM (70% and 40%, respectively). Cluster analysis showed that BM CD133+ cells grouped with the UCB cells (CD133+ and CD34+) rather than to BM CD34+ cells. Compared with CD34+ cells, CD133+ had a higher expression of many transcription factors (TFs). Promoter analysis on all these TF genes revealed a significantly higher frequency (than expected by chance) of NF-kappaB-binding sites (BS), including potentially novel NF-kappaB targets such as RUNX1, GATA3, and USF1. Selected transcripts of TF related to primitive hematopoiesis and self-renewal, such as RUNX1, GATA3, USF1, TAL1, HOXA9, HOXB4, NOTCH1, RELB, and NFKB2 were evaluated by real-time PCR and were all significantly positively correlated. Taken together, our data indicate the existence of an interconnected transcriptional network characterized by higher levels of NOTCH1, NF-kappaB, and other important TFs on more primitive HSC sets.
Collapse
Affiliation(s)
- Rodrigo Alexandre Panepucci
- Department of Clinical Medicine of the Faculty of Medicine of Ribeirao Preto-USP, Center for Cell Therapy and Regional Blood Center, Araraquara, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Abstract
IMPORTANCE OF THE FIELD With some 220,000 new cases/year in the world, pancreatic adenocarcinoma is the fourth highest cause of death by cancers. Among newly diagnosed patients about 210,000 will die within 9 months following diagnosis. Therefore, effective adjuncts to current treatment strategies are necessary. Because embryological signaling pathways are upregulated in pancreatic adenocarcinoma, they represent potential targets for future therapies. AREAS COVERED IN THIS REVIEW Our aim is to present the Notch pathway, and to describe its involvement in pancreatic pathophysiology/carcinogenesis. This pathway appeared as a prime target for pancreatic cancer therapy. In the light of the crosstalk of Notch with other survival/embryologic pathways, drugs affecting more than one pathway may have to be combined. WHAT THE READER WILL GAIN Drugs against gamma-secretases could thus serve in cancer treatment and can be combined with drugs targeting survival pathways interplaying with Notch such as Hedgehog. TAKE HOME MESSAGE Downregulation of Notch contributes to the inhibition and apoptosis of pancreatic cancer cells whereas Hedgehog inhibition will allow for enhanced delivery of drugs to the tumor. Both pathway inhibitors appear to have synergistic effects for future therapeutics for pancreatic adenocarcinoma, once safety issues of compounds are overcome.
Collapse
Affiliation(s)
- Elodie Ristorcelli
- INSERM UMR 911-CR02, Faculty of Medicine, 27 BL Jean Moulin, Marseille 13005, France
| | | |
Collapse
|
176
|
Abstract
Deregulation of Notch signaling has been linked to the development of T-cell leukemias and several solid malignancies. Yet, it is unknown whether Notch signaling is involved in the pathogenesis of mycosis fungoides and Sézary syndrome, the most common subtypes of cutaneous T-cell lymphoma. By immunohistochemistry of 40 biopsies taken from skin lesions of mycosis fungoides and Sézary syndrome, we demonstrated prominent expression of Notch1 on tumor cells, especially in the more advanced stages. The γ-secretase inhibitor I blocked Notch signaling and potently induced apoptosis in cell lines derived from mycosis fungoides (MyLa) and Sézary syndrome (SeAx, HuT-78) and in primary leukemic Sézary cells. Specific down-regulation of Notch1 (but not Notch2 and Notch3) by siRNA induced apoptosis in SeAx. The mechanism of apoptosis involved the inhibition of nuclear factor-κB, which is the most important prosurvival pathway in cutaneous T-cell lymphoma. Our data show that Notch is present in cutaneous T-cell lymphoma and that its inhibition may provide a new way to treat cutaneous T-cell lymphoma.
Collapse
|
177
|
Abstract
Notch signaling is an evolutionarily conserved mechanism for specifying and regulating organogenesis and tissue renewal. Human and mouse genetic studies have demonstrated mutations in many components of the Notch signaling pathway that cause skeletal patterning defects. More recently, the in vivo effects of Notch signaling on osteoblast specification, proliferation, and differentiation have been demonstrated in addition to its regulation of osteoclast activity. However, while our understanding of canonical Notch signaling in skeletal biology is rapidly evolving, the role of noncanonical Notch signaling is still poorly understood. In a pathologic context, aberration of Notch signaling is also associated with osteosarcoma. These studies raise the question of how Notch may interact with other signaling pathways, such as Wnt. Finally, manipulation of Notch signaling for bone-related diseases remains complex because of the temporal and context-dependent nature of Notch signaling during mesenchymal stem cell and osteoblast differentiation.
Collapse
Affiliation(s)
- Jianning Tao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
178
|
Abad X, Razquin N, Abad A, Fortes P. Combination of RNA interference and U1 inhibition leads to increased inhibition of gene expression. Nucleic Acids Res 2010; 38:e136. [PMID: 20427423 PMCID: PMC2910067 DOI: 10.1093/nar/gkq299] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA interference (RNAi) has been revolutionary for the specific inhibition of gene expression. However, the application of RNAi has been hampered by the fact that many siRNAs induce dose-dependent unwanted secondary effects. Therefore, new methods to increase inhibition of gene expression with low doses of inhibitors are required. We have tested the combination of RNAi and U1i (U1 small nuclear RNA—snRNA—interference). U1i is based on U1 inhibitors (U1in), U1 snRNA molecules modified to target a pre-mRNA and inhibit its gene expression by blocking nuclear polyadenylation. The combination of RNAi and U1i resulted in stronger inhibition of reporter or endogenous genes than that obtained using either of the techniques alone. The increased inhibition observed is stable over time and allows higher inhibition than the best obtained with either of the inhibitors alone even with decreased doses of the inhibitors. We believe that the combination of RNAi and U1i will be of interest when higher inhibition is required or when potent inhibitors are not available. Also, the combination of these techniques would allow functional inhibition with a decreased dose of inhibitors, avoiding toxicity due to dose-dependent unwanted effects.
Collapse
Affiliation(s)
- X Abad
- Department of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | | | | | | |
Collapse
|
179
|
Zhang W, Xu W, Xiong S. Blockade of Notch1 signaling alleviates murine lupus via blunting macrophage activation and M2b polarization. THE JOURNAL OF IMMUNOLOGY 2010; 184:6465-78. [PMID: 20427764 DOI: 10.4049/jimmunol.0904016] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) are found to be accompanied with innate immunity dysregulation including abnormally macrophage activation. But the functional polarization of the activated macrophages and its underlying molecular mechanism during the pathogenesis of SLE remains unknown. As an important local cellular interaction mechanism responsible for cell fate determination, Notch signaling is reported to exert crucial functions in the development and differentiation of various immunocytes, whereas its role in macrophage polarization is not fully understood. In this study, in the SLE murine model generated by immunization with activated lymphocyte-derived DNA (ALD-DNA), infiltrated macrophages in the nephritic tissues were found to exhibit activation and M2b functional polarization. Notch1 signaling activity was significantly upregulated in the ALD-DNA-induced M2b macrophages in vitro and in vivo. Furthermore, ALD-DNA-induced M2b polarization was found to be dependent on enhanced Notch1 signaling through accelerating NF-kappaB p50 translocation into the nucleus mediated by PI3K and MAPK pathways. Moreover, blockade of Notch1 signaling with gamma-secretase inhibitor treatment before or after the disease initiation could ameliorate murine lupus through impeding macrophage M2b polarization. Our results implied that Notch1 signaling-dependent macrophage M2b polarization might play a pivotal role in the pathogenesis of SLE, which could provide Notch1 signaling blockade as a potential therapeutic approach for SLE disease.
Collapse
Affiliation(s)
- Weijuan Zhang
- Institute for Immunobiology and Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, Republic of China
| | | | | |
Collapse
|
180
|
Yuan TM, Yu HM. Notch signaling: key role in intrauterine infection/inflammation, embryonic development, and white matter damage? J Neurosci Res 2010; 88:461-8. [PMID: 19768798 DOI: 10.1002/jnr.22229] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mechanisms or pathophysiologies that lead to cerebral white matter damage during development are complex and not fully understood. It is postulated that exposure of the preterm brain to inflammatory cytokines during intrauterine infection/inflammation contributes to brain white matter damage, and this damage may affect the function and differentiation of progenitor oligodendrocyte cells under physiological conditions. The Notch pathway, an important signaling pathway controlling various cells' differentiation, functions in the timing of oligodendrocyte differentiation, and Notch signaling may contribute to white matter damage and may mediate neurogenesis in a pathophysiological phase. Recent studies have led to recognition of the role of the Notch pathway in neurogenesis in cerebral ischemic damage and in myelination and axonal damage of neurodegenerative diseases. Moreover, Notch plays a critical role in steering an immune response toward inflammation by regulating expression of various cytokines and proinflammatory cytokines resulting in the activation of Notch signaling. Thus, the Notch signaling pathway likely plays a key role in intrauterine infection/inflammation, brain development, and white matter damage, and future research directed toward understanding its role will be important. Insofar as Notch signaling could have an important effect on neurogenesis, mobilization of progenitor cells is one strategy for compensating for the neuronal losses seen in white matter damage after intrauterine infection/inflammation.
Collapse
Affiliation(s)
- Tian-Ming Yuan
- Department of Neonatology, Children's Hospital, Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| | | |
Collapse
|
181
|
NADPH oxidase 1 modulates WNT and NOTCH1 signaling to control the fate of proliferative progenitor cells in the colon. Mol Cell Biol 2010; 30:2636-50. [PMID: 20351171 DOI: 10.1128/mcb.01194-09] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The homeostatic self-renewal of the colonic epithelium requires coordinated regulation of the canonical Wnt/beta-catenin and Notch signaling pathways to control proliferation and lineage commitment of multipotent stem cells. However, the molecular mechanisms by which the Wnt/beta-catenin and Notch1 pathways interplay in controlling cell proliferation and fate in the colon are poorly understood. Here we show that NADPH oxidase 1 (NOX1), a reactive oxygen species (ROS)-producing oxidase that is highly expressed in colonic epithelial cells, is a pivotal determinant of cell proliferation and fate that integrates Wnt/beta-catenin and Notch1 signals. NOX1-deficient mice reveal a massive conversion of progenitor cells into postmitotic goblet cells at the cost of colonocytes due to the concerted repression of phosphatidylinositol 3-kinase (PI3K)/AKT/Wnt/beta-catenin and Notch1 signaling. This conversion correlates with the following: (i) the redox-dependent activation of the dual phosphatase PTEN, causing the inactivation of the Wnt pathway effector beta-catenin, and (ii) the downregulation of Notch1 signaling that provokes derepression of mouse atonal homolog 1 (Math1) expression. We conclude that NOX1 controls the balance between goblet and absorptive cell types in the colon by coordinately modulating PI3K/AKT/Wnt/beta-catenin and Notch1 signaling. This finding provides the molecular basis for the role of NOX1 in cell proliferation and postmitotic differentiation.
Collapse
|
182
|
Ma D, Zhu Y, Ji C, Hou M. Targeting the Notch signaling pathway in autoimmune diseases. Expert Opin Ther Targets 2010; 14:553-65. [DOI: 10.1517/14728221003752750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
183
|
Abstract
The Notch signaling pathway regulates many aspects of embryonic development, as well as differentiation processes and tissue homeostasis in multiple adult organ systems. Disregulation of Notch signaling is associated with several human disorders, including cancer. In the last decade, it became evident that Notch signaling plays important roles within the hematopoietic and immune systems. Notch plays an essential role in the development of embryonic hematopoietic stem cells and influences multiple lineage decisions of developing lymphoid and myeloid cells. Moreover, recent evidence suggests that Notch is an important modulator of T cell-mediated immune responses. In this review, we discuss Notch signaling in hematopoiesis, lymphocyte development, and function as well as in T cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute for Experimental Cancer Research (ISREC), Station 19, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
184
|
Jin B, Shen H, Lin S, Li JL, Chen Z, Griffin JD, Wu L. The mastermind-like 1 (MAML1) co-activator regulates constitutive NF-kappaB signaling and cell survival. J Biol Chem 2010; 285:14356-65. [PMID: 20231278 DOI: 10.1074/jbc.m109.078865] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear factor-kappaB (NF-kappaB)-based signaling regulates diverse biological processes, and its deregulation is associated with various disorders including autoimmune diseases and cancer. Identification of novel factors that modulate NF-kappaB function is therefore of significant importance. The Mastermind-like 1 (MAML1) transcriptional co-activator regulates transcriptional activity in the Notch pathway and is emerging as a co-activator of other pathways. In this study, we found that MAML1 regulates NF-kappaB signaling via two mechanisms. First, MAML1 co-activates the NF-kappaB subunit RelA (p65) in NF-kappaB-dependent transcription. Second, MAML1 causes degradation of the inhibitor of NF-kappaB (IkappaBalpha). Maml1-deficient mouse embryonic fibroblasts showed impaired tumor necrosis factor-alpha (TNFalpha)-induced NF-kappaB responses. Moreover, MAML1 expression level directly influences cellular sensitivity to TNFalpha-induced cytotoxicity. In vivo, mice deficient in the Maml1 gene exhibited spontaneous cell death in the liver, with a large increase in the number of apoptotic hepatic cells. These findings indicate that MAML1 is a novel modulator for NF-kappaB signaling and regulates cellular survival.
Collapse
Affiliation(s)
- Baofeng Jin
- Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | |
Collapse
|
185
|
Palomero T, Ferrando A. Therapeutic targeting of NOTCH1 signaling in T-cell acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2010; 9 Suppl 3:S205-10. [PMID: 19778842 DOI: 10.3816/clm.2009.s.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The recent identification of activating mutations in NOTCH1 in the majority of T-cell acute lymphoblastic leukemias (T-ALLs) has brought major interest toward targeting the NOTCH signaling pathway in this disease. Small-molecule gamma-secretase inhibitors (GSIs), which block a critical proteolytic step required for NOTCH1 activation, can effectively block the activity of NOTCH1 mutant alleles. However, the clinical development of GSIs has been hampered by their low cytotoxicity against human T-ALL and the development of significant gastrointestinal toxicity derived from the inhibition of NOTCH signaling in the gut. Improved understanding of the oncogenic mechanisms of NOTCH1 and the effects of NOTCH inhibition in leukemic cells and the intestinal epithelium are required for the design of effective anti-NOTCH1 therapies in T-ALL.
Collapse
Affiliation(s)
- Teresa Palomero
- Department of Pathology, Institute for Cancer Genetics, Columbia University, New York, USA
| | | |
Collapse
|
186
|
Abstract
Notch signaling is an important molecular pathway involved in the determination of cell fate. In recent years, this signaling has been frequently reported to play a critical role in maintaining progenitor/stem cell population as well as a balance between cell proliferation, differentiation and apoptosis. Thus, Notch signaling may be mechanistically involved carcinogenesis. Indeed, many studies have showed that Notch signaling is overexpressed or constitutively activated in many cancers including colorectal cancer (CRC). Consequently, inactivation of Notch signaling may constitute a novel molecular therapy for cancer. CRC is one of the most common malignancies but the current therapeutic approaches for advanced CRC are less efficient. Thus, novel therapeutic approaches are badly needed. In this review article, the authors reviewed the current understanding and research findings of the role of Notch signaling in CRC and discussed the possible Notch-targeting approaches in CRC.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Medicine and Centre for Cancer Research, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | | |
Collapse
|
187
|
Morga E, Mouad-Amazzal L, Felten P, Heurtaux T, Moro M, Michelucci A, Gabel S, Grandbarbe L, Heuschling P. Jagged1 regulates the activation of astrocytes via modulation of NFkappaB and JAK/STAT/SOCS pathways. Glia 2010; 57:1741-53. [PMID: 19455581 DOI: 10.1002/glia.20887] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Notch pathway is implicated in many aspects of the central nervous system (CNS) development and functions. Recently, we and others identified the Notch pathway to be involved in inflammatory events of the CNS. To understand the implication of this pathway on astrocytes, we have studied the Jagged-Notch-Hes pathway under inflammatory conditions. LPS exposure induced an upregulation of Jagged1 expression on cultured astrocytes. To address the role of Jagged1 in the modulation of inflammation, we used a siRNA mediated silencing of Jagged1 (siRNA J1). Jagged1 inhibition induced important variations on the Notch pathway components like Hes1, Hes5, Notch3, and RBP-Jkappa. siRNA J1 repressed the mRNA expression of genes known as hallmarks of the gliosis like GFAP and endothelin(B) receptor. On activated astrocytes, the inhibition of Jagged1 had antiinflammatory effects and resulted in a decrease of LPS-induced proinflammatory cytokines (IL1beta, IL1alpha, and TNFalpha) as well as the iNOS expression. The inhibition of Jagged1 induced a modulation of the JAK/STAT/SOCS signaling pathway. Most interestingly, the siRNA J1 decreased the LPS-induced translocation of NFkappaB p65 and this could be correlated to the phosphorylation of IkappaBalpha. These results suggest that during inflammatory and gliotic events of the CNS, Jagged1/Notch signaling sustains the inflammation mainly through NFkappaB and in part through JAK/STAT/SOCS signaling pathways.
Collapse
Affiliation(s)
- Eleonora Morga
- Laboratoire de Neurobiologie, Life Sciences, Université du Luxembourg, Luxembourg, 1511 Luxembourg.
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Abstract
CD4 T cells play critical roles in mediating adaptive immunity to a variety of pathogens. They are also involved in autoimmunity, asthma, and allergic responses as well as in tumor immunity. During TCR activation in a particular cytokine milieu, naive CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, Th17, and iTreg, as defined by their pattern of cytokine production and function. In this review, we summarize the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation.
Collapse
Affiliation(s)
- Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892
| | - Hidehiro Yamane
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892
| | - William E. Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892
| |
Collapse
|
189
|
Abstract
Because of its multiple effects in tissue homeostasis and cancer, Notch signaling is gaining increasing attention as a potential therapeutic target. Notch proteins belong to a family of highly conserved cell surface receptors. Ligand binding leads to proteolytic cleavage of Notch receptors by the gamma-secretase complex, followed by translocation of the active intracellular Notch domain into the nucleus and transcriptional activation. Multiple genetic and pharmacological methods are available to inhibit or activate the Notch pathway, some of which are entering human clinical trials. In this review, we discuss our current understanding of Notch signaling in the hematopoietic system. Canonical Notch signaling is essential for the generation of definitive embryonic hematopoietic stem cells, but dispensable for their maintenance during adult life. Notch controls several early steps of T cell development, as well as specific cell fate and differentiation decisions in other hematopoietic lineages. In addition, emerging evidence indicates that Notch is a potent, context-specific regulator of T cell immune responses, including in several disease models relevant to patients. This knowledge will constitute a framework to explore Notch modulation as a therapeutic strategy and to understand potential hematopoietic side effects of systemic Notch inhibition.
Collapse
Affiliation(s)
- Ashley R Sandy
- University of Michigan, Center for Stem Cell Biology, Life Sciences Institute, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
190
|
Yang X, Chen C, Hu Q, Yan J, Zhou C. Gamma-secretase inhibitor (GSI1) attenuates morphological cerebral vasospasm in 24h after experimental subarachnoid hemorrhage in rats. Neurosci Lett 2009; 469:385-90. [PMID: 20026381 DOI: 10.1016/j.neulet.2009.12.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/26/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
Notch signaling plays an important role in the arteriogenesis. We hypothesized that the Notch inhibitor--gamma-secretase inhibitor (GSI1) exerted its effects on the vasospasm via regulation of NF-kappaB and MMP-9. In this study, 160 male Sprague-Dawley (SD) rats were randomly assigned into four groups: Sham, subarachnoid hemorrhage (SAH), SAH treated with dimethyl sulfoxide (DMSO) and SAH treated with GSI1. After 24h SAH, the mortality, neurological scores, blood-brain barrier permeability and brain water content were examined. The mRNA and protein level of Notch1, the expression and activity of NF-kappaB and MMP-9 were evaluated. Severe morphological vasospasm in the basilar artery was observed in SAH and DMSO treated rats. GSI1 significantly effected on neurological deficits, but not on mortality; significantly reduced morphological vasospasm, blood-brain barrier permeability, brain water content; significantly decreased the protein level of Notch1, NF-kappaB p50 and MMP-9, as well as the DNA-binding activity of NF-kappaB (EMSA) and the activity of MMP-9 (Zymography). These findings suggest that GSI1 plays a critical role in the attenuation of acute cerebral vasospasm, which may provide a novel therapeutic target for cerebral vasospasm after SAH insult.
Collapse
Affiliation(s)
- Xiaomei Yang
- Department of Anatomy and Embryology, Peking University Health Science Center, 38 Xueyuan Rd, Hai Dian Qu, Beijing, 100191, China
| | | | | | | | | |
Collapse
|
191
|
Interconnecting molecular pathways in the pathogenesis and drug sensitivity of T-cell acute lymphoblastic leukemia. Blood 2009; 115:1735-45. [PMID: 20007543 DOI: 10.1182/blood-2009-07-235143] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify dysregulated pathways in distinct phases of NOTCH1-mediated T-cell leukemogenesis, as well as small-molecule inhibitors that could synergize with or substitute for gamma-secretase inhibitors (GSIs) in T-cell acute lymphoblastic leukemia (T-ALL) therapy, we compared gene expression profiles in a Notch1-induced mouse model of T-ALL with those in human T-ALL. The overall patterns of NOTCH1-mediated gene expression in human and mouse T-ALLs were remarkably similar, as defined early in transformation in the mouse by the regulation of MYC and its target genes and activation of nuclear factor-kappaB and PI3K/AKT pathways. Later events in murine Notch1-mediated leukemogenesis included down-regulation of genes encoding tumor suppressors and negative cell cycle regulators. Gene set enrichment analysis and connectivity map algorithm predicted that small-molecule inhibitors, including heat-shock protein 90, histone deacetylase, PI3K/AKT, and proteasome inhibitors, could reverse the gene expression changes induced by NOTCH1. When tested in vitro, histone deacetylase, PI3K and proteasome inhibitors synergized with GSI in suppressing T-ALL cell growth in GSI-sensitive cells. Interestingly, alvespimycin, a potent inhibitor of the heat-shock protein 90 molecular chaperone, markedly inhibited the growth of both GSI-sensitive and -resistant T-ALL cells, suggesting that its loss disrupts signal transduction pathways crucial for the growth and survival of T-ALL cells.
Collapse
|
192
|
Palmieri G, Capone M, Ascierto ML, Gentilcore G, Stroncek DF, Casula M, Sini MC, Palla M, Mozzillo N, Ascierto PA. Main roads to melanoma. J Transl Med 2009; 7:86. [PMID: 19828018 PMCID: PMC2770476 DOI: 10.1186/1479-5876-7-86] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/14/2009] [Indexed: 12/12/2022] Open
Abstract
The characterization of the molecular mechanisms involved in development and progression of melanoma could be helpful to identify the molecular profiles underlying aggressiveness, clinical behavior, and response to therapy as well as to better classify the subsets of melanoma patients with different prognosis and/or clinical outcome. Actually, some aspects regarding the main molecular changes responsible for the onset as well as the progression of melanoma toward a more aggressive phenotype have been described. Genes and molecules which control either cell proliferation, apoptosis, or cell senescence have been implicated. Here we provided an overview of the main molecular changes underlying the pathogenesis of melanoma. All evidence clearly indicates the existence of a complex molecular machinery that provides checks and balances in normal melanocytes. Progression from normal melanocytes to malignant metastatic cells in melanoma patients is the result of a combination of down- or up-regulation of various effectors acting on different molecular pathways.
Collapse
Affiliation(s)
- Giuseppe Palmieri
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche (CNR), Sassari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Cruickshank MN, Ulgiati D. The role of notch signaling in the development of a normal B‐cell repertoire. Immunol Cell Biol 2009; 88:117-24. [DOI: 10.1038/icb.2009.73] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mark N Cruickshank
- Department of Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia Crawley Western Australia Australia
| | - Daniela Ulgiati
- Department of Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia Crawley Western Australia Australia
| |
Collapse
|
194
|
Chen J, Liu XS. Development and function of IL-10 IFN-gamma-secreting CD4(+) T cells. J Leukoc Biol 2009; 86:1305-10. [PMID: 19741156 DOI: 10.1189/jlb.0609406] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
IL-10 IFN-gamma-secreting CD4(+) T cells were first found in the early 1990s. They are suppressive T cells able to inhibit cytotoxic T lymphocytes. These cells (Foxp3-T bet(+)) have a similar function but are distinct from conventional Tregs. The production of IL-10 in these cells requires IL-27 and TGF-beta and was regulated by several signal pathways including Notch, STAT, and NF-kappaB. The crosstalk among these pathways is critical for the generation and function of these cells. IL-10 IFN-gamma-secreting CD4(+) T cells are activated in chronic infection and are responsible for prolonged infection. Thus, their modulation has therapeutic implications for the treatment of infectious diseases. However, it is complicated, and fine-tuning of IFN-gamma and IL-10 secretion by these cells is needed for disease management, as inhibition of these cells will also lead to overimmune responses. On the other hand, increasing their numbers in autoimmune diseases may have beneficial effects.
Collapse
Affiliation(s)
- Jiezhong Chen
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia.
| | | |
Collapse
|
195
|
Monsalve E, Ruiz-García A, Baladrón V, Ruiz-Hidalgo MJ, Sánchez-Solana B, Rivero S, García-Ramírez JJ, Rubio A, Laborda J, Díaz-Guerra MJM. Notch1 upregulates LPS-induced macrophage activation by increasing NF-κB activity. Eur J Immunol 2009; 39:2556-70. [DOI: 10.1002/eji.200838722] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
196
|
Chadwick N, Zeef L, Portillo V, Fennessy C, Warrander F, Hoyle S, Buckle AM. Identification of novel Notch target genes in T cell leukaemia. Mol Cancer 2009; 8:35. [PMID: 19508709 PMCID: PMC2698846 DOI: 10.1186/1476-4598-8-35] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 06/09/2009] [Indexed: 11/30/2022] Open
Abstract
Background Dysregulated Notch signalling is believed to play an important role in the development and maintenance of T cell leukaemia. At a cellular level, Notch signalling promotes proliferation and inhibits apoptosis of T cell acute lymphoblastic leukaemia (T-ALL) cells. In this study we aimed to identify novel transcriptional targets of Notch signalling in the T-ALL cell line, Jurkat. Results RNA was prepared from Jurkat cells retrovirally transduced with an empty vector (GFP-alone) or vectors containing constitutively active forms of Notch (N1ΔE or N3ΔE), and used for Affymetrix microarray analysis. A subset of genes found to be regulated by Notch was chosen for real-time PCR validation and in some cases, validation at the protein level, using several Notch-transduced T-ALL and non-T-ALL leukaemic cell lines. As expected, several known transcriptional target of Notch, such as HES1 and Deltex, were found to be overexpressed in Notch-transduced cells, however, many novel transcriptional targets of Notch signalling were identified using this approach. These included the T cell costimulatory molecule CD28, the anti-apoptotic protein GIMAP5, and inhibitor of DNA binding 1 (1D1). Conclusion The identification of such downstream Notch target genes provides insights into the mechanisms of Notch function in T cell leukaemia, and may help identify novel therapeutic targets in this disease.
Collapse
Affiliation(s)
- Nicholas Chadwick
- Faculty of Life Sciences, Manchester Interdisciplinary Biocenter, University of Manchester, Manchester, UK.
| | | | | | | | | | | | | |
Collapse
|
197
|
Biochemical signaling pathways for memory T cell recall. Semin Immunol 2009; 21:84-91. [PMID: 19298946 DOI: 10.1016/j.smim.2009.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
Abstract
Memory T cells exhibit low activation thresholds and rapid effector responses following antigen stimulation, contrasting naive T cells with high activation thresholds and no effector responses. Signaling mechanisms for the distinct properties of naive and memory T cells remain poorly understood. Here, I will discuss new results on signal transduction in naive and memory T cells that suggest proximal control of activation threshold and a distinct biochemical pathway to rapid recall. The signaling and transcriptional pathways controlling immediate effector function in memory T cells closely resemble pathways for rapid effector cytokine production in innate immune cells, suggesting memory T cells use innate pathways for efficacious responses.
Collapse
|
198
|
Mirandola L, Basile A, Comi P, Chiaramonte R. Burkitt lymphoma translocation turns Notch over to the dark side. Leuk Res 2009; 33:750-1. [DOI: 10.1016/j.leukres.2008.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 11/26/2022]
|
199
|
Cho OH, Shin HM, Miele L, Golde TE, Fauq A, Minter LM, Osborne BA. Notch regulates cytolytic effector function in CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:3380-9. [PMID: 19265115 DOI: 10.4049/jimmunol.0802598] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The maturation of naive CD8(+) T cells into effector CTLs is a critical feature of a functional adaptive immune system. Development of CTLs depends, in part, upon the expression of the transcriptional regulator eomesodermin (EOMES), which is thought to regulate expression of two key effector molecules, perforin and granzyme B. Although EOMES is important for effector CTL development, the precise mechanisms regulating CD8(+) effector cell maturation remains poorly understood. In this study, we show that Notch1 regulates the expression of EOMES, perforin, and granzyme B through direct binding to the promoters of these crucial effector molecules. By abrogating Notch signaling, both biochemically as well as genetically, we conclude that Notch activity mediates CTL activity through direct regulation of EOMES, perforin, and granzyme B.
Collapse
Affiliation(s)
- Ok Hyun Cho
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | | | |
Collapse
|
200
|
Abstract
Interleukin-12 (IL-12) and IL-4 induce T helper 1 (T(H)1)- and T(H)2-cell differentiation, respectively, in vitro. However, not all T(H)1-cell responses require IL-12 in vivo, and T(H)2-cell responses are remarkably independent of IL-4-receptor signalling, suggesting that other polarizing signals must exist. Accumulating evidence indicates that Notch is a candidate receptor that might mediate these signals. However, contrasting roles for Notch have been proposed: some evidence shows that Notch promotes T(H)1-cell differentiation, whereas other evidence supports a prominent role for Notch in T(H)2-cell differentiation. In this Review, we discuss recent findings that help to reconcile this discrepancy and highlight the accumulating evidence for the role of Notch in T-cell-mediated diseases.
Collapse
|