151
|
Tong J, Yan X, Yu L. The late stage of autophagy: cellular events and molecular regulation. Protein Cell 2010; 1:907-15. [PMID: 21204017 PMCID: PMC4875124 DOI: 10.1007/s13238-010-0121-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 10/18/2010] [Indexed: 12/28/2022] Open
Abstract
Autophagy is an intracellular degradation system that delivers cytoplasmic contents to the lysosome for degradation. It is a "self-eating" process and plays a "house-cleaner" role in cells. The complex process consists of several sequential steps-induction, autophagosome formation, fusion of lysosome and autophagosome, degradation, efflux transportation of degradation products, and autophagic lysosome reformation. In this review, the cellular and molecular regulations of late stage of autophagy, including cellular events after fusion step, are summarized.
Collapse
Affiliation(s)
- Jingjing Tong
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Science, Tsinghua University, Beijing, 100084 China
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xianghua Yan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Li Yu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Science, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
152
|
|
153
|
Ostrowicz CW, Bröcker C, Ahnert F, Nordmann M, Lachmann J, Peplowska K, Perz A, Auffarth K, Engelbrecht-Vandré S, Ungermann C. Defined Subunit Arrangement and Rab Interactions Are Required for Functionality of the HOPS Tethering Complex. Traffic 2010; 11:1334-46. [DOI: 10.1111/j.1600-0854.2010.01097.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
154
|
HOPS prevents the disassembly of trans-SNARE complexes by Sec17p/Sec18p during membrane fusion. EMBO J 2010; 29:1948-60. [PMID: 20473271 DOI: 10.1038/emboj.2010.97] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 04/20/2010] [Indexed: 01/16/2023] Open
Abstract
SNARE-dependent membrane fusion requires the disassembly of cis-SNARE complexes (formed by SNAREs anchored to one membrane) followed by the assembly of trans-SNARE complexes (SNAREs anchored to two apposed membranes). Although SNARE complex disassembly and assembly might be thought to be opposing reactions, the proteins promoting disassembly (Sec17p/Sec18p) and assembly (the HOPS complex) work synergistically to support fusion. We now report that trans-SNARE complexes formed during vacuole fusion are largely associated with Sec17p. Using a reconstituted proteoliposome fusion system, we show that trans-SNARE complex, like cis-SNARE complex, is sensitive to Sec17p/Sec18p mediated disassembly. Strikingly, HOPS inhibits the disassembly of SNARE complexes in the trans-, but not in the cis-, configuration. This selective HOPS preservation of trans-SNARE complexes requires HOPS:SNARE recognition and is lost when the apposed bilayers are dissolved in Triton X-100; it is also observed during fusion of isolated vacuoles. HOPS thus directs the Sec17p/Sec18p chaperone system to maximize functional trans-SNARE complex for membrane fusion, a new role of tethering factors during membrane traffic.
Collapse
|
155
|
Hickey CM, Wickner W. HOPS initiates vacuole docking by tethering membranes before trans-SNARE complex assembly. Mol Biol Cell 2010; 21:2297-305. [PMID: 20462954 PMCID: PMC2893992 DOI: 10.1091/mbc.e10-01-0044] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Vacuole homotypic fusion has been reconstituted with all purified components: vacuolar lipids, four soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, Sec17p, Sec18p, the Rab Ypt7p, and the hexameric homotypic fusion and vacuole protein sorting complex (HOPS). HOPS is a Rab-effector with direct affinity for SNAREs (presumably via its Sec1-Munc18 homologous subunit Vps33p) and for certain vacuolar lipids. Each of these pure vacuolar proteins was required for optimal proteoliposome clustering, raising the question of which was most directly involved. We now present model subreactions of clustering and fusion that reveal that HOPS is the direct agent of tethering. The Rab and vacuole lipids contribute to tethering by supporting the membrane association of HOPS. HOPS indirectly facilitates trans-SNARE complex formation by tethering membranes, because the synthetic liposome tethering factor polyethylene glycol can also stimulate trans-SNARE complex formation and fusion. SNAREs further stabilize the associations of HOPS-tethered membranes. HOPS then protects newly formed trans-SNARE complexes from disassembly by Sec17p/Sec18p.
Collapse
|
156
|
Xu Y, Su L, Rizo J. Binding of Munc18-1 to synaptobrevin and to the SNARE four-helix bundle. Biochemistry 2010; 49:1568-76. [PMID: 20102228 DOI: 10.1021/bi9021878] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sec1/Munc18 (SM) proteins and soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) form part of the core intracellular membrane fusion machinery, but it is unclear how they cooperate in membrane fusion. The synaptic vesicle SNARE synaptobrevin and the plasma membrane SNAREs syntaxin-1 and SNAP-25 assemble into a tight SNARE complex that includes a four-helix bundle formed by their SNARE motifs and is key for fusion. The neuronal SM protein Munc18-1 binds to syntaxin-1 and to the SNARE complex through interactions with the syntaxin-1 N-terminal region that are critical for neurotransmitter release. It has been proposed that Munc18-1 also binds to synaptobrevin and to the SNARE four-helix bundle and that such interactions might be crucial for membrane fusion, but definitive, direct evidence of these interactions has not been described. Using diverse biophysical approaches, we now demonstrate that Munc18-1 indeed binds to synaptobrevin and to the SNARE four-helix bundle. Both interactions have similar affinities (in the low micromolar range) and appear to involve the same cavity of Munc18-1 that binds to syntaxin-1. Correspondingly, the N-terminal region of syntaxin-1 competes with the SNARE four-helix bundle and synaptobrevin for Munc18-1 binding. Importantly, the Munc18-1 binding site on synaptobrevin is located at the C-terminus of its SNARE motif, suggesting that this interaction places Munc18-1 right at the site where fusion occurs. These results suggest a model in which neurotransmitter release involves a sequence of three different types of Munc18-1-SNARE interactions and in which Munc18-1 plays a direct, active role in membrane fusion in cooperation with the SNAREs.
Collapse
Affiliation(s)
- Yi Xu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
157
|
Mapping of Vps21 and HOPS binding sites in Vps8 and effect of binding site mutants on endocytic trafficking. EUKARYOTIC CELL 2010; 9:602-10. [PMID: 20173035 DOI: 10.1128/ec.00286-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vps8 is a subunit of the CORVET tethering complex, which is involved in early-to-late endosome fusion. Here, we examine the role of Vps8 in membrane fusion at late endosomes in Saccharomyces cerevisiae. We demonstrate that Vps8 associates with membranes and that this association is independent of the class C/HOPS core complex and, contrary to a previous report, also independent of the Rab GTPase Vps21. Our data indicate that Vps8 makes multiple contacts with membranes. One of these membrane binding regions could be mapped to the N-terminal part of the protein. By two-hybrid analysis, we obtained evidence for a physical interaction between Vps8 and the Rab5 homologue Vps21. In addition, the interaction with the HOPS core complex was confirmed by immunoprecipitation experiments. By deletion analysis, the Vps21 and HOPS binding sites were mapped in Vps8. Deletions that abrogated HOPS core complex binding had a strong effect on the turnover of the endocytic cargo protein Ste6 and on vacuolar sorting of carboxypeptidase Y. In contrast, deletions that abolished Vps21 binding showed only a modest effect. This suggests that the Vps21 interaction is not essential for endosomal trafficking but may be important for some other aspect of Vps8 function.
Collapse
|
158
|
Niihama M, Takemoto N, Hashiguchi Y, Tasaka M, Morita MT. ZIP genes encode proteins involved in membrane trafficking of the TGN-PVC/vacuoles. PLANT & CELL PHYSIOLOGY 2009; 50:2057-2068. [PMID: 19884248 DOI: 10.1093/pcp/pcp137] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Arabidopsis zigzgag (zig) is a loss-of-function mutant of Qb-SNARE VTI11 which is involved in vesicle trafficking between the trans-Golgi network (TGN) and vacuoles. zig-1 exhibits abnormality in both shoot gravitropism and morphology. To elucidate the molecular network of the post-Golgi membrane trafficking in plant cells, we have isolated the suppressor mutants of zig. Here we report zig suppressor 2 (zip2) and zip4 that are recessive mutants and partially suppress abnormality in both gravitropism and morphology. ZIP2 encodes AtVPS41/AtVAM2 protein that is thought to be an Arabidopsis ortholog of yeast Vps41p/Vam2p, which is involved in protein sorting to vacuoles as a subunit of the tethering complex HOPS. Yeast Vps41p is also proposed to function in budding of adaptor protein (AP)-3-coated vesicles from the Golgi. The zip2 mutation is a missense mutation in a conserved amino acid of a putative clathrin heavy chain repeat (CHCR) domain. AtVPS41 is a single-copy gene in the Arabidopsis genome and the T-DNA insertion mutant appears to be lethal, whereas the zip2 single mutant showed no obvious phenotype. On the other hand, zip4 is a loss-of-function mutant of a putative ortholog of the yeast AP-3 mu subunit. In addition, loss-of-function mutants of other subunits of AP-3, ap-3beta and ap-3delta, also exhibit a suppressive effect on the zig-1 phenotype. Although these genes are also single-copy genes in the genome, the loss-of-function mutants of AP-3 grow normally. Our results suggest that AtVPS41 and AP-3 play roles in the proper function of the post-Golgi trafficking network and support membrane trafficking to vacuoles.
Collapse
Affiliation(s)
- Mitsuru Niihama
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | | | | | | | | |
Collapse
|
159
|
Yagisawa F, Nishida K, Yoshida M, Ohnuma M, Shimada T, Fujiwara T, Yoshida Y, Misumi O, Kuroiwa H, Kuroiwa T. Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:882-93. [PMID: 19709388 DOI: 10.1111/j.1365-313x.2009.04008.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant vacuoles are organelles bound by a single membrane, and involved in various functions such as intracellular digestion, metabolite storage, and secretion. To understand their evolution and fundamental mechanisms, characterization of vacuoles in primitive plants would be invaluable. Algal cells often contain polyphosphate-rich compartments, which are thought to be the counterparts of seed plant vacuoles. Here, we developed a method for isolating these vacuoles from Cyanidioschyzon merolae, and identified their proteins by MALDI TOF-MS. The vacuoles were of unexpectedly high density, and were highly enriched at the boundary between 62 and 80% w/v iodixanol by density-gradient ultracentrifugation. The vacuole-containing fraction was subjected to SDS-PAGE, and a total of 46 proteins were identified, including six lytic enzymes, 13 transporters, six proteins for membrane fusion or vesicle trafficking, five non-lytic enzymes, 13 proteins of unknown function, and three miscellaneous proteins. Fourteen proteins were homologous to known vacuolar or lysosomal proteins from seed plants, yeasts or mammals, suggesting functional and evolutionary relationships between C. merolae vacuoles and these compartments. The vacuolar localization of four novel proteins, namely CMP249C (metallopeptidase), CMJ260C (prenylated Rab receptor), CMS401C (ABC transporter) and CMT369C (o-methyltransferase), was confirmed by labeling with specific antibodies or transient expression of hemagglutinin-tagged proteins. The results presented here provide insights into the proteome of C. merolae vacuoles and shed light on their functions, as well as indicating new features.
Collapse
Affiliation(s)
- Fumi Yagisawa
- Research Information Center for Extremophiles, Rikkyo (St Paul's) University, Nishi-Ikebukuro, Tokyo 171-8501, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Abstract
Proteins are endocytosed by various pathways into the cell. All these pathways converge at the level of the early endosome. The fate of the early endosome and how proteins are sorted into recycling and late endosomes/multi-vesicular body is a matter of debate and intense research. Obviously, the transition from early to late endosome poses an interesting logistic problem and would merit attention on an intellectual level. Numerous diseases are also caused by defects in turning off/over signaling molecules or mis-sorting of proteins at the level of the early endosome. This brief review aims to discuss different molecular mechanisms whereby early-to-late endosome transition could be achieved.
Collapse
Affiliation(s)
- Anne Spang
- University of Basel, Biozentrum, Growth and Development, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| |
Collapse
|
161
|
Sztul E, Lupashin V. Role of vesicle tethering factors in the ER-Golgi membrane traffic. FEBS Lett 2009; 583:3770-83. [PMID: 19887069 DOI: 10.1016/j.febslet.2009.10.083] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 12/27/2022]
Abstract
Tethers are a diverse group of loosely related proteins and protein complexes grouped into three families based on structural and functional similarities. A well-accepted role for tethering factors is the initial attachment of transport carriers to acceptor membranes prior to fusion. However, accumulating evidence indicates that tethers are more than static bridges. Tethers have been shown to interact with components of the fusion machinery and with components involved in vesicle formation. Tethers belonging to the three families act at the same stage of traffic, suggesting that they mediate distinct events during vesicle tethering. Thus, multiple tether-facilitated events are required to provide selectivity to vesicle fusion. In this review, we highlight findings that support this model.
Collapse
Affiliation(s)
- Elizabeth Sztul
- Department of Cell Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, USA
| | | |
Collapse
|
162
|
Minimal membrane docking requirements revealed by reconstitution of Rab GTPase-dependent membrane fusion from purified components. Proc Natl Acad Sci U S A 2009; 106:17626-33. [PMID: 19826089 DOI: 10.1073/pnas.0903801106] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rab GTPases and their effectors mediate docking, the initial contact of intracellular membranes preceding bilayer fusion. However, it has been unclear whether Rab proteins and effectors are sufficient for intermembrane interactions. We have recently reported reconstituted membrane fusion that requires yeast vacuolar SNAREs, lipids, and the homotypic fusion and vacuole protein sorting (HOPS)/class C Vps complex, an effector and guanine nucleotide exchange factor for the yeast vacuolar Rab GTPase Ypt7p. We now report reconstitution of lysis-free membrane fusion that requires purified GTP-bound Ypt7p, HOPS complex, vacuolar SNAREs, ATP hydrolysis, and the SNARE disassembly catalysts Sec17p and Sec18p. We use this reconstituted system to show that SNAREs and Sec17p/Sec18p, and Ypt7p and the HOPS complex, are required for stable intermembrane interactions and that the three vacuolar Q-SNAREs are sufficient for these interactions.
Collapse
|
163
|
Angers CG, Merz AJ. HOPS interacts with Apl5 at the vacuole membrane and is required for consumption of AP-3 transport vesicles. Mol Biol Cell 2009; 20:4563-74. [PMID: 19741093 DOI: 10.1091/mbc.e09-04-0272] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Adaptor protein complexes (APs) are evolutionarily conserved heterotetramers that couple cargo selection to the formation of highly curved membranes during vesicle budding. In Saccharomyces cerevisiae, AP-3 mediates vesicle traffic from the late Golgi to the vacuolar lysosome. The HOPS subunit Vps41 is one of the few proteins reported to have a specific role in AP-3 traffic, yet its function remains undefined. We now show that although the AP-3 delta subunit, Apl5, binds Vps41 directly, this interaction occurs preferentially within the context of the HOPS docking complex. Fluorescence microscopy indicates that Vps41 and other HOPS subunits do not detectably colocalize with AP-3 at the late Golgi or on post-Golgi (Sec7-negative) vesicles. Vps41 and HOPS do, however, transiently colocalize with AP-3 vesicles when these vesicles dock at the vacuole membrane. In cells with mutations in HOPS subunits or the vacuole SNARE Vam3, AP-3 shifts from the cytosol to a membrane fraction. Fluorescence microscopy suggests that this fraction consists of post-Golgi AP-3 vesicles that have failed to dock or fuse at the vacuole membrane. We propose that AP-3 remains associated with budded vesicles, interacts with Vps41 and HOPS upon vesicle docking at the vacuole, and finally dissociates during docking or fusion.
Collapse
Affiliation(s)
- Cortney G Angers
- Department of Biochemistry, University of Washington, Seattle, WA 98195-3750, USA
| | | |
Collapse
|
164
|
Phosphoinositides and SNARE chaperones synergistically assemble and remodel SNARE complexes for membrane fusion. Proc Natl Acad Sci U S A 2009; 106:16191-6. [PMID: 19805279 DOI: 10.1073/pnas.0908694106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Yeast vacuole fusion requires 4 SNAREs, 2 SNARE chaperone systems (Sec17p/Sec18p/ATP and the HOPS complex), and 2 phosphoinositides, phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)]. By reconstituting proteoliposomal fusion with purified components, we now show that phosphoinositides have 4 distinct roles: PI(3)P is recognized by the PX domain of the SNARE Vam7p; PI(3)P enhances the capacity of membrane-bound SNAREs to drive fusion in the absence of SNARE chaperones; either PI(3)P or PI(4,5)P(2) can activate SNARE chaperones for the recruitment of Vam7p into fusion-competent SNARE complexes; and either PI(3)P or PI(4,5)P(2) strikingly promotes synergistic SNARE complex remodeling by Sec17p/Sec18p/ATP and HOPS. This ternary synergy of phosphoinositides and 2 SNARE chaperone systems is required for rapid fusion.
Collapse
|
165
|
Mima J, Wickner W. Complex lipid requirements for SNARE- and SNARE chaperone-dependent membrane fusion. J Biol Chem 2009; 284:27114-22. [PMID: 19654322 DOI: 10.1074/jbc.m109.010223] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Membrane fusion without lysis has been reconstituted with purified yeast vacuolar SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), the SNARE chaperones Sec17p/Sec18p and the multifunctional HOPS complex, which includes a subunit of the SNARE-interactive Sec1-Munc18 family, and vacuolar lipids: phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidic acid (PA), cardiolipin (CL), ergosterol (ERG), diacylglycerol (DAG), and phosphatidylinositol 3-phosphate (PI3P). We now report that many of these lipids are required for rapid and efficient fusion of the reconstituted SNARE proteoliposomes in the presence of SNARE chaperones. Omission of either PE, PA, or PI3P from the complete set of lipids strongly reduces fusion, and PC, PE, PA, and PI3P constitute a minimal set of lipids for fusion. PA could neither be replaced by other lipids with small headgroups such as DAG or ERG nor by the acidic lipids PS or PI. PA is needed for full association of HOPS and Sec18p with proteoliposomes having a minimal set of lipids. Strikingly, PA and PE are as essential for SNARE complex assembly as for fusion, suggesting that these lipids facilitate functional interactions among SNAREs and SNARE chaperones.
Collapse
Affiliation(s)
- Joji Mima
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755-3844, USA
| | | |
Collapse
|
166
|
Nickerson DP, Brett CL, Merz AJ. Vps-C complexes: gatekeepers of endolysosomal traffic. Curr Opin Cell Biol 2009; 21:543-51. [PMID: 19577915 PMCID: PMC2807627 DOI: 10.1016/j.ceb.2009.05.007] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 05/28/2009] [Indexed: 12/30/2022]
Abstract
Genetic studies in yeast, plants, insects, and mammals have identified four universally conserved proteins, together called Vps Class C, that are essential for late endosome and lysosome assembly and for numerous endolysosomal trafficking pathways, including the terminal stages of autophagy. Two Vps-C complexes, HOPS and CORVET, incorporate diverse biochemical functions: they tether membranes, stimulate Rab nucleotide exchange, guide SNARE assembly to drive membrane fusion, and possibly act as ubiquitin ligases. Recent studies offer new insight into the complex relationships between Vps-C complexes and their cognate Rab small GTP-binding (G-)proteins at endosomes and lysosomes. Accumulating evidence supports the view that Vps-C complexes implement a regulatory logic that governs endomembrane identity and dynamics.
Collapse
Affiliation(s)
- Daniel P. Nickerson
- Department of Biochemistry University of Washington Seattle, WA 98195-7350, USA
| | | | - Alexey J. Merz
- Department of Biochemistry University of Washington Seattle, WA 98195-7350, USA
| |
Collapse
|
167
|
He B, Guo W. The exocyst complex in polarized exocytosis. Curr Opin Cell Biol 2009; 21:537-42. [PMID: 19473826 PMCID: PMC2725219 DOI: 10.1016/j.ceb.2009.04.007] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 04/09/2009] [Accepted: 04/10/2009] [Indexed: 12/31/2022]
Abstract
The exocyst is an octameric protein complex, which mediates the tethering of post-Golgi secretory vesicles to the plasma membrane before exocytic fusion. The exocyst assembles by side-by-side packing of rod-shaped subunits composed of helical bundles. The targeting of secretory vesicles to the plasma membrane involves direct interactions of the exocyst with PI(4,5)P(2). In addition, a number of small GTP-binding proteins interact with components of the exocyst and regulate the assembly, localization, and function of this complex. Here we review the recent advances in the field, focusing on the function of the exocyst in polarized exocytosis.
Collapse
Affiliation(s)
- Bing He
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018
| |
Collapse
|
168
|
Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network. Mol Cell Biol 2009; 29:5251-63. [PMID: 19620288 DOI: 10.1128/mcb.00495-09] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tethering factors and SNAREs control the last two steps of vesicular trafficking: the initial interaction and the fusion, respectively, of transport vesicles with target membranes. The Golgi-associated retrograde protein (GARP) complex regulates retrograde transport from endosomes to the trans-Golgi network (TGN). Although GARP has been proposed to function as a tethering factor at the TGN, direct evidence for such a role is still lacking. Herein we report novel and specific interactions of the mammalian GARP complex with SNAREs that participate in endosome-to-TGN transport, namely, syntaxin 6, syntaxin 16, and Vamp4. These interactions depend on the N-terminal regions of Vps53 and Vps54 and the SNARE motif of the SNAREs. We show that GARP functions upstream of the SNAREs, regulating their localization and assembly into SNARE complexes. However, interactions of GARP with SNAREs are insufficient to promote retrograde transport, because deletion of the C-terminal region of Vps53 precludes GARP function without affecting GARP-SNARE interactions. Finally, we present in vitro data consistent with a tethering role for GARP, which is disrupted by deletion of the Vps53 C-terminal region. These findings indicate that GARP orchestrates retrograde transport from endosomes to the TGN by promoting vesicle tethering and assembly of SNARE complexes in consecutive, independent steps.
Collapse
|
169
|
Hickey CM, Stroupe C, Wickner W. The major role of the Rab Ypt7p in vacuole fusion is supporting HOPS membrane association. J Biol Chem 2009; 284:16118-16125. [PMID: 19386605 PMCID: PMC2713515 DOI: 10.1074/jbc.m109.000737] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Indexed: 11/06/2022] Open
Abstract
Yeast vacuole fusion requires soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), the Rab GTPase Ypt7p, vacuolar lipids, Sec17p and Sec18p, and the homotypic fusion and vacuole protein sorting complex (HOPS). HOPS is a multisubunit protein with direct affinities for SNAREs, vacuolar lipids, and the GTP-bound form of Ypt7p; each of these affinities contributes to HOPS association with the organelle. Using all-purified components, we have reconstituted fusion, but the Rab Ypt7p was not required. We now report that phosphorylation of HOPS by the vacuolar kinase Yck3p blocks HOPS binding to vacuolar lipids, making HOPS membrane association and the ensuing fusion depend on the presence of Ypt7p. In accord with this finding in the reconstituted fusion reaction, the inactivation of Ypt7p by the GTPase-activating protein Gyp1-46p only blocks the fusion of purified vacuoles when Yck3p is present and active. Thus, although Ypt7p may contribute to other fusion functions, its central role is to bind HOPS to the membrane.
Collapse
Affiliation(s)
- Christopher M Hickey
- From the Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Christopher Stroupe
- From the Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - William Wickner
- From the Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755.
| |
Collapse
|
170
|
Pryor PR, Luzio JP. Delivery of endocytosed membrane proteins to the lysosome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:615-24. [DOI: 10.1016/j.bbamcr.2008.12.022] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/01/2008] [Accepted: 12/12/2008] [Indexed: 01/21/2023]
|
171
|
Deák F, Xu Y, Chang WP, Dulubova I, Khvotchev M, Liu X, Südhof TC, Rizo J. Munc18-1 binding to the neuronal SNARE complex controls synaptic vesicle priming. ACTA ACUST UNITED AC 2009; 184:751-64. [PMID: 19255244 PMCID: PMC2686405 DOI: 10.1083/jcb.200812026] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Munc18-1 and soluble NSF attachment protein receptors (SNAREs) are critical for synaptic vesicle fusion. Munc18-1 binds to the SNARE syntaxin-1 folded into a closed conformation and to SNARE complexes containing open syntaxin-1. Understanding which steps in fusion depend on the latter interaction and whether Munc18-1 competes with other factors such as complexins for SNARE complex binding is critical to elucidate the mechanisms involved. In this study, we show that lentiviral expression of Munc18-1 rescues abrogation of release in Munc18-1 knockout mice. We describe point mutations in Munc18-1 that preserve tight binding to closed syntaxin-1 but markedly disrupt Munc18-1 binding to SNARE complexes containing open syntaxin-1. Lentiviral rescue experiments reveal that such disruption selectively impairs synaptic vesicle priming but not Ca2+-triggered fusion of primed vesicles. We also find that Munc18-1 and complexin-1 bind simultaneously to SNARE complexes. These results suggest that Munc18-1 binding to SNARE complexes mediates synaptic vesicle priming and that the resulting primed state involves a Munc18-1–SNARE–complexin macromolecular assembly that is poised for Ca2+ triggering of fusion.
Collapse
Affiliation(s)
- Ferenc Deák
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Akbar MA, Ray S, Krämer H. The SM protein Car/Vps33A regulates SNARE-mediated trafficking to lysosomes and lysosome-related organelles. Mol Biol Cell 2009; 20:1705-14. [PMID: 19158398 PMCID: PMC2655250 DOI: 10.1091/mbc.e08-03-0282] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 11/25/2008] [Accepted: 01/09/2009] [Indexed: 01/18/2023] Open
Abstract
The SM proteins Vps33A and Vps33B are believed to act in membrane fusions in endosomal pathways, but their specific roles are controversial. In Drosophila, Vps33A is the product of the carnation (car) gene. We generated a null allele of car to test its requirement for trafficking to different organelles. Complete loss of car function is lethal during larval development. Eye-specific loss of Car causes late, light-independent degeneration of photoreceptor cells. Earlier in these cells, two distinct phenotypes were detected. In young adults, autophagosomes amassed indicating that their fusion with lysosomes requires Car. In eye discs, endocytosed receptors and ligands accumulate in Rab7-positive prelysosomal compartments. The requirement of Car for late endosome-to-lysosome fusion in imaginal discs is specific as early endosomes are unaffected. Furthermore, lysosomal delivery is not restored by expression of dVps33B. This specificity reflects the distinct pattern of binding to different Syntaxins in vitro: dVps33B predominantly binds the early endosomal Avl and Car to dSyntaxin16. Consistent with a role in Car-mediated fusion, dSyntaxin16 is not restricted to Golgi membranes but also present on lysosomes.
Collapse
Affiliation(s)
| | - Sanchali Ray
- Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Helmut Krämer
- Departments of *Neuroscience and
- Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| |
Collapse
|
173
|
Abstract
Membrane fusion underlies many cellular events, including secretion, exocytosis, endocytosis, organelle reconstitution, transport from endoplasmic reticulum to Golgi and nuclear envelope formation. A large number of investigations into membrane fusion indicate various roles for individual members of the phosphoinositide class of membrane lipids. We first review the phosphoinositides as membrane recognition sites and their regulatory functions in membrane fusion. We then consider how modulation of phosphoinositides and their products may affect the structure and dynamics of natural membranes facilitating fusion. These diverse roles underscore the importance of these phospholipids in the fusion of biological membranes.
Collapse
|
174
|
Cabrera M, Ostrowicz CW, Mari M, LaGrassa TJ, Reggiori F, Ungermann C. Vps41 phosphorylation and the Rab Ypt7 control the targeting of the HOPS complex to endosome-vacuole fusion sites. Mol Biol Cell 2009; 20:1937-48. [PMID: 19193765 DOI: 10.1091/mbc.e08-09-0943] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Membrane fusion depends on multisubunit tethering factors such as the vacuolar HOPS complex. We previously showed that the vacuolar casein kinase Yck3 regulates vacuole biogenesis via phosphorylation of the HOPS subunit Vps41. Here, we link the identified Vps41 phosphorylation site to HOPS function at the endosome-vacuole fusion site. The nonphosphorylated Vps41 mutant (Vps41 S-A) accumulates together with other HOPS subunits on punctate structures proximal to the vacuole that expand in a class E mutant background and that correspond to in vivo fusion sites. Ultrastructural analysis of this mutant confirmed the presence of tubular endosomal structures close to the vacuole. In contrast, Vps41 with a phosphomimetic mutation (Vps41 S-D) is mislocalized and leads to multilobed vacuoles, indicative of a fusion defect. These two phenotypes can be rescued by overproduction of the vacuolar Rab Ypt7, revealing that both Ypt7 and Yck3-mediated phosphorylation modulate the Vps41 localization to the endosome-vacuole junction. Our data suggest that Vps41 phosphorylation fine-tunes the organization of vacuole fusion sites and provide evidence for a fusion "hot spot" on the vacuole limiting membrane.
Collapse
Affiliation(s)
- Margarita Cabrera
- Biochemistry Section, Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | | | | | | | | | | |
Collapse
|
175
|
Abstract
Large, mutisubunit complexes have been implicated in tethering transport vesicles to organelle membranes prior to membrane fusion. New structures add to the growing list of tethering complexes that contain conserved helical bundle structures, and provide a first glimpse of how these complexes are assembled.
Collapse
|
176
|
Abstract
The two universally required components of the intracellular membrane fusion machinery, SNARE and SM (Sec1/Munc18-like) proteins, play complementary roles in fusion. Vesicular and target membrane-localized SNARE proteins zipper up into an alpha-helical bundle that pulls the two membranes tightly together to exert the force required for fusion. SM proteins, shaped like clasps, bind to trans-SNARE complexes to direct their fusogenic action. Individual fusion reactions are executed by distinct combinations of SNARE and SM proteins to ensure specificity, and are controlled by regulators that embed the SM-SNARE fusion machinery into a physiological context. This regulation is spectacularly apparent in the exquisite speed and precision of synaptic exocytosis, where synaptotagmin (the calcium-ion sensor for fusion) cooperates with complexin (the clamp activator) to control the precisely timed release of neurotransmitters that initiates synaptic transmission and underlies brain function.
Collapse
Affiliation(s)
- Thomas C. Südhof
- Department of Cellular and Molecular Physiology, Stanford University, Palo Alto, CA 94304-5543 USADepartment of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520 USA
| | - James E. Rothman
- Department of Cellular and Molecular Physiology, Stanford University, Palo Alto, CA 94304-5543 USADepartment of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520 USA
| |
Collapse
|
177
|
Chapter 4 Functions of RAB and SNARE Proteins in Plant Life. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 274:183-233. [DOI: 10.1016/s1937-6448(08)02004-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
178
|
Abstract
Vesicle‐mediated transport is a process carried out by virtually every cell and is required for the proper targeting and secretion of proteins. As such, there are numerous players involved to ensure that the proteins are properly localized. Overall, transport requires vesicle budding, recognition of the vesicle by the target membrane and fusion of the vesicle with the target membrane resulting in delivery of its contents. The initial interaction between the vesicle and the target membrane has been referred to as tethering. Because this is the first contact between the two membranes, tethering is critical to ensuring that specificity is achieved. It is therefore not surprising that there are numerous ‘tethering factors’ involved ranging from multisubunit complexes, coiled‐coil proteins and Rab guanosine triphosphatases. Of the multisubunit tethering complexes, one of the best studied at the molecular level is the evolutionarily conserved TRAPP complex. There are two forms of this complex: TRAPP I and TRAPP II. In yeast, these complexes function in a number of processes including endoplasmic reticulum‐to‐Golgi transport (TRAPP I) and an ill‐defined step at the trans Golgi (TRAPP II). Because the complex was first reported in 1998 (1), there has been a decade of studies that have clarified some aspects of its function but have also raised further questions. In this review, we will discuss recent advances in our understanding of yeast and mammalian TRAPP at the structural and functional levels and its role in disease while trying to resolve some apparent discrepancies and highlighting areas for future study.
Collapse
Affiliation(s)
- Michael Sacher
- Department of Biology, Concordia University, Montreal, QC, Canada.
| | | | | | | | | |
Collapse
|
179
|
Engel A, Walter P. Membrane lysis during biological membrane fusion: collateral damage by misregulated fusion machines. ACTA ACUST UNITED AC 2008; 183:181-6. [PMID: 18852300 PMCID: PMC2568015 DOI: 10.1083/jcb.200805182] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the canonical model of membrane fusion, the integrity of the fusing membranes is never compromised, preserving the identity of fusing compartments. However, recent molecular simulations provided evidence for a pathway to fusion in which holes in the membrane evolve into a fusion pore. Additionally, two biological membrane fusion models-yeast cell mating and in vitro vacuole fusion-have shown that modifying the composition or altering the relative expression levels of membrane fusion complexes can result in membrane lysis. The convergence of these findings showing membrane integrity loss during biological membrane fusion suggests new mechanistic models for membrane fusion and the role of membrane fusion complexes.
Collapse
Affiliation(s)
- Alex Engel
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
180
|
Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. EMBO J 2008; 27:2031-42. [PMID: 18650938 DOI: 10.1038/emboj.2008.139] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 06/27/2008] [Indexed: 12/22/2022] Open
Abstract
The homotypic fusion of yeast vacuoles, each with 3Q- and 1R-SNARE, requires SNARE chaperones (Sec17p/Sec18p and HOPS) and regulatory lipids (sterol, diacylglycerol and phosphoinositides). Pairs of liposomes of phosphatidylcholine/phosphatidylserine, bearing three vacuolar Q-SNAREs on one and the R-SNARE on the other, undergo slow lipid mixing, but this is unaffected by HOPS and inhibited by Sec17p/Sec18p. To study these essential fusion components, we reconstituted proteoliposomes of a more physiological composition, bearing vacuolar lipids and all four vacuolar SNAREs. Their fusion requires Sec17p/Sec18p and HOPS, and each regulatory lipid is important for rapid fusion. Although SNAREs can cause both fusion and lysis, fusion of these proteoliposomes with Sec17p/Sec18p and HOPS is not accompanied by lysis. Sec17p/Sec18p, which disassemble SNARE complexes, and HOPS, which promotes and proofreads SNARE assembly, act synergistically to form fusion-competent SNARE complexes, and this synergy requires phosphoinositides. This is the first chemically defined model of the physiological interactions of these conserved fusion catalysts.
Collapse
|
181
|
Gustavsson M, Barmark G, Larsson J, Murén E, Ronne H. Functional genomics of monensin sensitivity in yeast: implications for post-Golgi traffic and vacuolar H+-ATPase function. Mol Genet Genomics 2008; 280:233-48. [PMID: 18612650 DOI: 10.1007/s00438-008-0359-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 06/13/2008] [Indexed: 11/24/2022]
Abstract
We have screened a complete collection of yeast knockout mutants for sensitivity to monensin, an ionophore that interferes with intracellular transport. A total of 63 sensitive strains were found. Most of the strains were deleted for genes involved in post-Golgi traffic, with an emphasis on vacuolar biogenesis. A high correlation was thus seen with VPS and VAM genes, but there were also significant differences between the three sets of genes. A weaker correlation was seen with sensitivity to NaCl, in particular rate of growth effects. Interestingly, all 14 genes encoding subunits of the vacuolar H(+)-ATPase (V-ATPase) were absent in our screen, even though they appeared in the VPS or VAM screens. All monensin-sensitive mutants that could be tested interact synthetically with a deletion of the A subunit of the V-ATPase, Vma1. Synthetic lethality was limited to mutations affecting endocytosis or retrograde transport to Golgi. In addition, vma1 was epistatic over the monensin sensitivity of vacuolar transport mutants, but not endocytosis mutants. Deletions of the two isoforms of the V-ATPase a subunit, Vph1 and Stv1 had opposite effects on the monensin sensitivity of a ypt7 mutant. These findings are consistent with a model where monensin inhibits growth by interfering with the maintenance of an acidic pH in the late secretory pathway. The synthetic lethality of vma1 with mutations affecting retrograde transport to the Golgi further suggests that it is in the late Golgi that a low pH must be maintained.
Collapse
Affiliation(s)
- Marie Gustavsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
182
|
Abstract
Subcellular compartmentalization, cell growth, hormone secretion and neurotransmission require rapid, targeted, and regulated membrane fusion. Fusion entails extensive lipid rearrangements by two apposed (docked) membrane vesicles, joining their membrane proteins and lipids and mixing their luminal contents without lysis. Fusion of membranes in the secretory pathway involves Rab GTPases; their bound 'effector' proteins, which mediate downstream steps; SNARE proteins, which can 'snare' each other, in cis (bound to one membrane) or in trans (anchored to apposed membranes); and SNARE-associated proteins (SM proteins; NSF or Sec18p; SNAP or Sec17p; and others) cooperating with specific lipids to catalyze fusion. In contrast, mitochondrial and cell-cell fusion events are regulated by and use distinct catalysts.
Collapse
Affiliation(s)
- William Wickner
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, New Hampshire 03755-3844, USA.
| | | |
Collapse
|
183
|
Martens S, McMahon HT. Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 2008; 9:543-56. [PMID: 18496517 DOI: 10.1038/nrm2417] [Citation(s) in RCA: 541] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Membrane fusion can occur between cells, between different intracellular compartments, between intracellular compartments and the plasma membrane and between lipid-bound structures such as viral particles and cellular membranes. In order for membranes to fuse they must first be brought together. The more highly curved a membrane is, the more fusogenic it becomes. We discuss how proteins, including SNAREs, synaptotagmins and viral fusion proteins, might mediate close membrane apposition and induction of membrane curvature to drive diverse fusion processes. We also highlight common principles that can be derived from the analysis of the role of these proteins.
Collapse
Affiliation(s)
- Sascha Martens
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK.
| | | |
Collapse
|
184
|
Heider D, Barnekow A. DNA watermarks: a proof of concept. BMC Mol Biol 2008; 9:40. [PMID: 18426578 PMCID: PMC2375902 DOI: 10.1186/1471-2199-9-40] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 04/21/2008] [Indexed: 11/17/2022] Open
Abstract
Background DNA-based watermarks are helpful tools to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. In silico analyses showed that in coding regions synonymous codons can be used to insert encrypted information into the genome of living organisms by using the DNA-Crypt algorithm. Results We integrated an authenticating watermark in the Vam7 sequence. For our investigations we used a mutant Saccharomyces cerevisiae strain, called CG783, which has an amber mutation within the Vam7 sequence. The CG783 cells are unable to sporulate and in addition display an abnormal vacuolar morphology. Transformation of CG783 with pRS314 Vam7 leads to a phenotype very similar to the wildtype yeast strain CG781. The integrated watermark did not influence the function of Vam7 and the resulting phenotype of the CG783 cells transformed with pRS314 Vam7-TB shows no significant differences compared to the CG783 cells transformed with pRS314 Vam7. Conclusion From our experiments we conclude that the DNA watermarks produced by DNA-Crypt do not influence the translation from mRNA into protein. By analyzing the vacuolar morphology, growth rate and ability to sporulate we confirmed that the resulting Vam7 protein was functionally active.
Collapse
Affiliation(s)
- Dominik Heider
- Department of Experimental Tumorbiology, University of Muenster, Badestrasse 9, 48149 Muenster, Germany.
| | | |
Collapse
|
185
|
Xu T, Xu P. Searching for Molecular Players Differentially Involved in Neurotransmitter and Neuropeptide Release. Neurochem Res 2008; 33:1915-9. [DOI: 10.1007/s11064-008-9648-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Accepted: 02/29/2008] [Indexed: 11/24/2022]
|
186
|
Starai VJ, Hickey CM, Wickner W. HOPS proofreads the trans-SNARE complex for yeast vacuole fusion. Mol Biol Cell 2008; 19:2500-8. [PMID: 18385512 DOI: 10.1091/mbc.e08-01-0077] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The fusion of yeast vacuoles, like other organelles, requires a Rab-family guanosine triphosphatase (Ypt7p), a Rab effector and Sec1/Munc18 (SM) complex termed HOPS (homotypic fusion and vacuole protein sorting), and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The central 0-layer of the four bundled vacuolar SNAREs requires the wild-type three glutaminyl (Q) and one arginyl (R) residues for optimal fusion. Alterations of this layer dramatically increase the K(m) value for SNAREs to assemble trans-SNARE complexes and to fuse. We now find that added purified HOPS complex strongly suppresses the fusion of vacuoles bearing 0-layer alterations, but it has little effect on the fusion of vacuoles with wild-type SNAREs. HOPS proofreads at two levels, inhibiting the formation of trans-SNARE complexes with altered 0-layers and suppressing the ability of these mismatched 0-layer trans-SNARE complexes to support membrane fusion. HOPS proofreading also extends to other parts of the SNARE complex, because it suppresses the fusion of trans-SNARE complexes formed without the N-terminal Phox homology domain of Vam7p (Q(c)). Unlike some other SM proteins, HOPS proofreading does not require the Vam3p (Q(a)) N-terminal domain. HOPS thus proofreads SNARE domain and N-terminal domain structures and regulates the fusion capacity of trans-SNARE complexes, only allowing full function for wild-type SNARE configurations. This is the most direct evidence to date that HOPS is directly involved in the fusion event.
Collapse
Affiliation(s)
- Vincent J Starai
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
187
|
Shestakova A, Suvorova E, Pavliv O, Khaidakova G, Lupashin V. Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. ACTA ACUST UNITED AC 2008; 179:1179-92. [PMID: 18086915 PMCID: PMC2140037 DOI: 10.1083/jcb.200705145] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tethering factors mediate initial interaction of transport vesicles with target membranes. Soluble N-ethylmaleimide–sensitive fusion protein attachment protein receptors (SNAREs) enable consequent docking and membrane fusion. We demonstrate that the vesicle tether conserved oligomeric Golgi (COG) complex colocalizes and coimmunoprecipitates with intra-Golgi SNARE molecules. In yeast cells, the COG complex preferentially interacts with the SNARE complexes containing yeast Golgi target (t)-SNARE Sed5p. In mammalian cells, hCog4p and hCog6p interact with Syntaxin5a, the mammalian homologue of Sed5p. Moreover, fluorescence resonance energy transfer reveals an in vivo interaction between Syntaxin5a and the COG complex. Knockdown of the mammalian COG complex decreases Golgi SNARE mobility, produces an accumulation of free Syntaxin5, and decreases the steady-state levels of the intra-Golgi SNARE complex. Finally, overexpression of the hCog4p N-terminal Syntaxin5a-binding domain destabilizes intra-Golgi SNARE complexes, disrupting the Golgi. These data suggest that the COG complex orchestrates vesicular trafficking similarly in yeast and mammalian cells by binding to the t-SNARE Syntaxin5a/Sed5p and enhancing the stability of intra-Golgi SNARE complexes.
Collapse
Affiliation(s)
- Anna Shestakova
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | |
Collapse
|
188
|
Bao Y, Lopez JA, James DE, Hunziker W. Snapin Interacts with the Exo70 Subunit of the Exocyst and Modulates GLUT4 Trafficking. J Biol Chem 2008; 283:324-331. [DOI: 10.1074/jbc.m706873200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
189
|
Cabrera M, Ungermann C. Chapter Thirteen Purification and In Vitro Analysis of Yeast Vacuoles. Methods Enzymol 2008; 451:177-96. [DOI: 10.1016/s0076-6879(08)03213-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
190
|
Schonthaler HB, Fleisch VC, Biehlmaier O, Makhankov Y, Rinner O, Bahadori R, Geisler R, Schwarz H, Neuhauss SCF, Dahm R. The zebrafish mutant lbk/vam6 resembles human multisystemic disorders caused by aberrant trafficking of endosomal vesicles. Development 2007; 135:387-99. [PMID: 18077594 DOI: 10.1242/dev.006098] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The trafficking of intracellular vesicles is essential for a number of cellular processes and defects in this process have been implicated in a wide range of human diseases. We identify the zebrafish mutant lbk as a novel model for such disorders. lbk displays hypopigmentation of skin melanocytes and the retinal pigment epithelium (RPE), an absence of iridophore reflections, defects in internal organs (liver, intestine) as well as functional defects in vision and the innate immune system (macrophages). Positional cloning, an allele screen, rescue experiments and morpholino knock-down reveal a mutation in the zebrafish orthologue of the vam6/vps39 gene. Vam6p is part of the HOPS complex, which is essential for vesicle tethering and fusion. Affected cells in the lbk RPE, liver, intestine and macrophages display increased numbers and enlarged intracellular vesicles. Physiological and behavioural analyses reveal severe defects in visual ability in lbk mutants. The present study provides the first phenotypic description of a lack of vam6 gene function in a multicellular organism. lbk shares many of the characteristics of human diseases and suggests a novel disease gene for pathologies associated with defective vesicle transport, including the arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome, the Hermansky-Pudlak syndrome, the Chediak-Higashi syndrome and the Griscelli syndrome.
Collapse
Affiliation(s)
- Helia B Schonthaler
- Swiss Federal Institute of Technology, Department of Biology, and Brain Research Institute of the University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Swennen D, Beckerich JM. Yarrowia lipolytica vesicle-mediated protein transport pathways. BMC Evol Biol 2007; 7:219. [PMID: 17997821 PMCID: PMC2241642 DOI: 10.1186/1471-2148-7-219] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 11/12/2007] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Protein secretion is a universal cellular process involving vesicles which bud and fuse between organelles to bring proteins to their final destination. Vesicle budding is mediated by protein coats; vesicle targeting and fusion depend on Rab GTPase, tethering factors and SNARE complexes. The Génolevures II sequencing project made available entire genome sequences of four hemiascomycetous yeasts, Yarrowia lipolytica, Debaryomyces hansenii, Kluyveromyces lactis and Candida glabrata. Y. lipolytica is a dimorphic yeast and has good capacities to secrete proteins. The translocation of nascent protein through the endoplasmic reticulum membrane was well studied in Y. lipolytica and is largely co-translational as in the mammalian protein secretion pathway. RESULTS We identified S. cerevisiae proteins involved in vesicular secretion and these protein sequences were used for the BLAST searches against Génolevures protein database (Y. lipolytica, C. glabrata, K. lactis and D. hansenii). These proteins are well conserved between these yeasts and Saccharomyces cerevisiae. We note several specificities of Y. lipolytica which may be related to its good protein secretion capacities and to its dimorphic aspect. An expansion of the Y. lipolytica Rab protein family was observed with autoBLAST and the Rab2- and Rab4-related members were identified with BLAST against NCBI protein database. An expansion of this family is also found in filamentous fungi and may reflect the greater complexity of the Y. lipolytica secretion pathway. The Rab4p-related protein may play a role in membrane recycling as rab4 deleted strain shows a modification of colony morphology, dimorphic transition and permeability. Similarly, we find three copies of the gene (SSO) encoding the plasma membrane SNARE protein. Quantification of the percentages of proteins with the greatest homology between S. cerevisiae, Y. lipolytica and animal homologues involved in vesicular transport shows that 40% of Y. lipolytica proteins are closer to animal ones, whereas they are only 13% in the case of S. cerevisiae. CONCLUSION These results provide further support for the idea, previously noted about the endoplasmic reticulum translocation pathway, that Y. lipolytica is more representative of vesicular secretion of animals and other fungi than is S. cerevisiae.
Collapse
Affiliation(s)
- Dominique Swennen
- Laboratoire de Microbiologie et Génétique Moléculaire INRA-CNRS-AgroParisTech UMR 1238 CBAI BP01 F-78850 Thiverval Grignon, France.
| | | |
Collapse
|
192
|
Starai VJ, Jun Y, Wickner W. Excess vacuolar SNAREs drive lysis and Rab bypass fusion. Proc Natl Acad Sci U S A 2007; 104:13551-8. [PMID: 17699614 PMCID: PMC1959418 DOI: 10.1073/pnas.0704741104] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although concentrated soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) drive liposome fusion and lysis, the fusion of intracellular membranes also requires Rab GTPases, Rab effectors, SM proteins, and specific regulatory lipids and is accompanied by little or no lysis. To rationalize these findings, we generated yeast strains that overexpress all four vacuolar SNAREs (4SNARE(++)). Although vacuoles with physiological levels of Rab, Rab effector/SM complex, and SNAREs support rapid fusion without Rab- and SNARE-dependent lysis, vacuoles from 4SNARE(++) strains show extensive lysis and a reduced need for the Rab Ypt7p or regulatory lipids for fusion. SNARE overexpression and the addition of pure homotypic fusion and vacuole protein sorting complex (HOPS), which bears the vacuolar SM protein, enables ypt7Delta vacuoles to fuse, allowing direct comparison of Rab-dependent and Rab-independent fusion. Because 3- to 40-fold more of each of the five components that form the SNARE/HOPS fusion complex are required for vacuoles from ypt7Delta strains to fuse at the same rate as vacuoles from wild-type strains, the apparent forward rate constant of 4SNARE/HOPS complex assembly is enhanced many thousand-fold by Ypt7p. Rabs function in normal membrane fusion by concentrating SNAREs, other proteins (e.g., SM), and key lipids at a fusion site and activating them for fusion without lysis.
Collapse
Affiliation(s)
- Vincent J. Starai
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 07355
| | - Youngsoo Jun
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 07355
| | - William Wickner
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 07355
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
193
|
Jun Y, Wickner W. Assays of vacuole fusion resolve the stages of docking, lipid mixing, and content mixing. Proc Natl Acad Sci U S A 2007; 104:13010-5. [PMID: 17664431 PMCID: PMC1941832 DOI: 10.1073/pnas.0700970104] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane fusion entails organelle docking and subsequent mixing of membrane bilayers and luminal compartments. We now present an in vitro assay of fusion, using yeast vacuoles bearing domains of either Fos or Jun fused to complementary halves of beta-lactamase. Upon fusion, these proteins associate to yield beta-lactamase activity. This assay complements the standard fusion assay (activation of pro-Pho8p in protease-deficient vacuoles by proteases from pho8Delta vacuoles). Both the beta-lactamase and pro-Pho8p activation assays of fusion show the same long kinetic delay between SNARE pairing and luminal compartment mixing. Lipid-mixing occurs rapidly after SNARE pairing but well before aqueous compartment mixing. These results support a model in which SNARE pairing leads to rapid hemifusion, followed by slow further lipid rearrangement and aqueous compartment mixing.
Collapse
Affiliation(s)
- Youngsoo Jun
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755
| | - William Wickner
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755
- *To whom correspondence should be addressed at:
Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755-3844. E-mail:
| |
Collapse
|
194
|
Cai H, Reinisch K, Ferro-Novick S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 2007; 12:671-82. [PMID: 17488620 DOI: 10.1016/j.devcel.2007.04.005] [Citation(s) in RCA: 523] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tethering factors have been shown to interact with Rabs and SNAREs and, more recently, with coat proteins. Coat proteins are required for cargo selection and membrane deformation to bud a transport vesicle from a donor compartment. It was once thought that a vesicle must uncoat before it recognizes its target membrane. However, recent findings have revealed a role for the coat in directing a vesicle to its correct intracellular destination. In this review we will discuss the literature that links coat proteins to vesicle targeting events.
Collapse
Affiliation(s)
- Huaqing Cai
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | | |
Collapse
|
195
|
Peplowska K, Markgraf DF, Ostrowicz CW, Bange G, Ungermann C. The CORVET tethering complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis. Dev Cell 2007; 12:739-50. [PMID: 17488625 DOI: 10.1016/j.devcel.2007.03.006] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 12/27/2006] [Accepted: 03/08/2007] [Indexed: 11/16/2022]
Abstract
The dynamic equilibrium between vesicle fission and fusion at Golgi, endosome, and vacuole/lysosome is critical for the maintenance of organelle identity. It depends, among others, on Rab GTPases and tethering factors, whose function and regulation are still unclear. We now show that transport among Golgi, endosome, and vacuole is controlled by two homologous tethering complexes, the previously identified HOPS complex at the vacuole and a novel endosomal tethering (CORVET) complex, which interacts with the Rab GTPase Vps21. Both complexes share the four class C Vps proteins: Vps11, Vps16, Vps18, and Vps33. The HOPS complex, in addition, contains Vps41/Vam2 and Vam6, whereas the CORVET complex has the Vps41 homolog Vps8 and the (h)Vam6 homolog Vps3. Strikingly, the CORVET and HOPS complexes can interconvert; we identify two additional intermediate complexes, both consisting of the class C core bound to Vam6-Vps8 or Vps3-Vps41. Our data suggest that modular assembled tethering complexes define organelle biogenesis in the endocytic pathway.
Collapse
Affiliation(s)
- Karolina Peplowska
- University of Osnabrück, Department of Biology, Biochemistry Section, Barbarastrasse 13, 49076 Osnabrück, Germany
| | | | | | | | | |
Collapse
|
196
|
Collins KM, Wickner WT. Trans-SNARE complex assembly and yeast vacuole membrane fusion. Proc Natl Acad Sci U S A 2007; 104:8755-60. [PMID: 17502611 PMCID: PMC1885575 DOI: 10.1073/pnas.0702290104] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
cis-SNARE complexes (anchored in one membrane) are disassembled by Sec17p (alpha-SNAP) and Sec18p (NSF), permitting the unpaired SNAREs to assemble in trans. We now report a direct assay of trans-SNARE complex formation during yeast vacuole docking. SNARE complex assembly and fusion is promoted by high concentrations of the SNARE Vam7p or Nyv1p or by addition of HOPS (homotypic fusion and vacuole protein sorting), a Ypt7p (Rab)-effector complex with a Sec1/Munc18-family subunit. Inhibitors that target Ypt7p, HOPS, or key regulatory lipids prevent trans-SNARE complex assembly and ensuing fusion. Strikingly, the lipid ligand MED (myristoylated alanine-rich C kinase substrate effector domain) or elevated concentrations of Sec17p, which can displace HOPS from SNARE complexes, permit full trans-SNARE pairing but block fusion. These findings suggest that efficient fusion requires trans-SNARE complex associations with factors such as HOPS and subsequent regulated lipid rearrangements.
Collapse
Affiliation(s)
- Kevin M. Collins
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755-3844
| | - William T. Wickner
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755-3844
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
197
|
Fratti RA, Collins KM, Hickey CM, Wickner W. Stringent 3Q.1R composition of the SNARE 0-layer can be bypassed for fusion by compensatory SNARE mutation or by lipid bilayer modification. J Biol Chem 2007; 282:14861-7. [PMID: 17400548 DOI: 10.1074/jbc.m700971200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SNARE proteins form bundles of four alpha-helical SNARE domains with conserved polar amino acids, 3Q and 1R, at the "0-layer" of the bundle. Previous studies have confirmed the importance of 3Q.1R for fusion but have not shown whether it regulates SNARE complex assembly or the downstream functions of assembled SNAREs. Yeast vacuole fusion requires regulatory lipids (ergosterol, phosphoinositides, and diacylglycerol), the Rab Ypt7p, the Rab-effector complex HOPS, and 4 SNAREs: the Q-SNAREs Vti1p, Vam3p, and Vam7p and the R-SNARE Nyv1p. We now report that alterations in the 0-layer Gln or Arg residues of Vam7p or Nyv1p, respectively, strongly inhibit fusion. Vacuoles with wild-type Nyv1p show exquisite discrimination for the wild-type Vam7p over Vam7(Q283R), yet Vam7(Q283R) is preferred by vacuoles with Nyv1(R191Q). Rotation of the position of the arginine in the 0-layer increases the K(m) for Vam7p but does not affect the maximal rate of fusion. Vam7(Q283R) forms stable 2Q.2R complexes that do not promote fusion. However, fusion is restored by the lipophilic amphiphile chlorpromazine or by the phospholipase C inhibitor U73122, perturbants of the lipid phase of the membrane. Thus, SNARE function as regulated by the 0-layer is intimately coupled to the lipids, which must rearrange for fusion.
Collapse
Affiliation(s)
- Rutilio A Fratti
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
198
|
Fratti RA, Wickner W. Distinct targeting and fusion functions of the PX and SNARE domains of yeast vacuolar Vam7p. J Biol Chem 2007; 282:13133-8. [PMID: 17347148 DOI: 10.1074/jbc.m700584200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Regulated membrane fusion requires organelle tethering, enrichment of selected proteins and lipids at the fusion site, bilayer distortion, and lipid rearrangement. Yeast vacuole homotypic fusion requires regulatory lipids (ergosterol, diacylglycerol, and phosphoinositides), the Rab family GTPase Ypt7p, the multisubunit Ypt7p-effector complex HOPS (homotypic fusion and vacuole protein sorting), and four SNAREs. One SNARE, Vam7p, has an N-terminal PX domain which binds to phosphatidylinositol 3-phosphate (PI(3)P) and to HOPS and a C-terminal SNARE domain but no apolar membrane anchor. We have exploited an in vitro reaction of vacuole fusion to analyze the functions of each domain, removing the PX domain or mutating it to abolish its PI(3)P affinity. Lowering the PI(3)P affinity of the PX domain, or even deleting the PX domain, affects the fusion K(m) for Vam7p but not the maximal fusion rate. Fusion driven by the SNARE domain alone is strikingly enhanced by the PLC inhibitor U73122 through enhanced binding of Vam7p SNARE domain to vacuoles, and the further addition of Plc1p blocks this U73122 effect. The PX domain, through its affinities for phosphoinositides and HOPS, is thus exclusively required for enhancing the targeting of Vam7p rather than for execution of the Vam7p functions in HOPS.SNARE complex assembly and fusion.
Collapse
Affiliation(s)
- Rutilio A Fratti
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
199
|
Dulubova I, Khvotchev M, Liu S, Huryeva I, Südhof TC, Rizo J. Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci U S A 2007; 104:2697-702. [PMID: 17301226 PMCID: PMC1815244 DOI: 10.1073/pnas.0611318104] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Indexed: 11/18/2022] Open
Abstract
Both SM proteins (for Sec1/Munc18-like proteins) and SNARE proteins (for soluble NSF-attachment protein receptors) are essential for intracellular membrane fusion, but the general mechanism of coupling between their functions is unclear, in part because diverse SM protein/SNARE binding modes have been described. During synaptic vesicle exocytosis, the SM protein Munc18-1 is known to bind tightly to the SNARE protein syntaxin-1, but only when syntaxin-1 is in a closed conformation that is incompatible with SNARE complex formation. We now show that Munc18-1 also binds tightly to assembled SNARE complexes containing syntaxin-1. The newly discovered Munc18-1/SNARE complex interaction involves contacts of Munc18-1 with the N-terminal H(abc) domain of syntaxin-1 and the four-helical bundle of the assembled SNARE complex. Together with earlier studies, our results suggest that binding of Munc18-1 to closed syntaxin-1 is a specialization that evolved to meet the strict regulatory requirements of neuronal exocytosis, whereas binding of Munc18-1 to assembled SNARE complexes reflects a general function of SM proteins involved in executing membrane fusion.
Collapse
Affiliation(s)
| | | | - Siqi Liu
- Departments of *Biochemistry and Pharmacology
| | | | | | - Josep Rizo
- Departments of *Biochemistry and Pharmacology
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390
| |
Collapse
|
200
|
Kinch LN, Grishin NV. Longin-like folds identified in CHiPS and DUF254 proteins: vesicle trafficking complexes conserved in eukaryotic evolution. Protein Sci 2007; 15:2669-74. [PMID: 17075139 PMCID: PMC2242422 DOI: 10.1110/ps.062419006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eukaryotic protein trafficking pathways require specific transfer of cargo vesicles to different target organelles. A number of vesicle trafficking and membrane fusion components participate in this process, including various tethering factor complexes that interact with small GTPases prior to SNARE-mediated vesicle fusion. In Saccharomyces cerevisiae a protein complex of Mon1 and Ccz1 functions with the small GTPase Ypt7 to mediate vesicle trafficking to the vacuole. Mon1 belongs to DUF254 found in a diverse range of eukaryotic genomes, while Ccz1 includes a CHiPS domain that is also present in a known human protein trafficking disorder gene (HPS-4). The present work identifies the CHiPS domain and a sequence region from another trafficking disorder gene (HPS-1) as homologs of an N-terminal domain from DUF254. This link establishes the evolutionary conservation of a protein complex (HPS-1/HPS-4) that functions similarly to Mon1/Ccz1 in vesicle trafficking to lysosome-related organelles of diverse eukaryotic species. Furthermore, the newly identified DUF254 domain is a distant homolog of the mu-adaptin longin domain found in clathrin adapter protein (AP) complexes of known structure that function to localize cargo protein to specific organelles. In support of this fold assignment, known longin domains such as the AP complex sigma-adaptin, the synaptobrevin N-terminal domains sec22 and Ykt6, and the srx domain of the signal recognition particle receptor also regulate vesicle trafficking pathways by mediating SNARE fusion, recognizing specialized compartments, and interacting with small GTPases that resemble Ypt7.
Collapse
Affiliation(s)
- Lisa N Kinch
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9050, USA.
| | | |
Collapse
|