151
|
Trautmann F, Cojoc M, Kurth I, Melin N, Bouchez LC, Dubrovska A, Peitzsch C. CXCR4 as biomarker for radioresistant cancer stem cells. Int J Radiat Biol 2014; 90:687-99. [PMID: 24650104 DOI: 10.3109/09553002.2014.906766] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Radioresistance of cancer cells remains a fundamental barrier for maximum efficient radiotherapy. Tumor heterogeneity and the existence of distinct cell subpopulations exhibiting different genotypes and biological behaviors raise difficulties to eradicate all tumorigenic cells. Recent evidence indicates that a distinct population of tumor cells, called cancer stem cells (CSC), is involved in tumor initiation and recurrence and is a putative cause of tumor radioresistance. There is an urgent need to identify the intrinsic molecular mechanisms regulating the generation and maintenance of resistance to radiotherapy, especially within the CSC subset. The chemokine C-X-C motif receptor 4 (CXCR4) has been found to be a prognostic marker in various types of cancer, being involved in chemotaxis, stemness and drug resistance. The interaction of CXCR4 with its ligand, the chemokine C-X-C motif ligand 12 (CXCL12), plays an important role in modulating the tumor microenvironment, angiogenesis and CSC niche. Moreover, the therapeutic inhibition of the CXCR4/CXCL12 signaling pathway is sensitizing the malignant cells to conventional anti-cancer therapy. CONTENT Within this review we are summarizing the role of the CXCR4/CXCL12 axis in the modulation of CSC properties, the regulation of the tumor microenvironment in response to irradiation, therapy resistance and tumor relapse. CONCLUSION In light of recent findings, the inhibition of the CXCR4/CXCL12 signaling pathway is a promising therapeutic option to refine radiotherapy.
Collapse
Affiliation(s)
- Franziska Trautmann
- OncoRay - National Center for Radiation Research in Oncology, Medizinische Fakultät Carl Gustav Carus der Technischen Universität and Helmholtz Zentrum Rossendorf , Dresden
| | | | | | | | | | | | | |
Collapse
|
152
|
Marković J, Uskoković A, Grdović N, Dinić S, Mihailović M, Jovanović JA, Poznanović G, Vidaković M. Identification of transcription factors involved in the transcriptional regulation of the CXCL12 gene in rat pancreatic insulinoma Rin-5F cell line. Biochem Cell Biol 2014; 93:54-62. [PMID: 25453873 DOI: 10.1139/bcb-2014-0104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetes is characterized by a deficit in the number of functional pancreatic β-cells. Understanding the mechanisms that stimulate neogenesis of β-cells should contribute to improved maintenance of β-cell mass. Chemokine CXCL12 has recently become established as a novel β-cell growth factor, however the mechanisms controlling its expression require clarification. We investigated the proteins involved in the transcriptional regulation of the rat β-cell CXCL12 gene (Cxcl12). Using the electrophoretic mobility shift assay and chromatin immunoprecipitation, we established the in vitro and in vivo binding of C/EBPβ, C/EBPα, STAT3, p53, FOXO3a, and HMG I/Y to the Cxcl12 promoter. Co-immunoprecipitation experiments revealed protein-protein interactions between YY1 and PARP-1, FOXO3a and PARP-1, Sp1 and PARP-1, p53 and PARP-1, C/EBPβ and PARP-1, YY1 and p53, YY1 and FOXO3a, p53 and FOXO3a, Sp1 and FOXO3a, C/EBPβ and FOXO3a, C/EBPα and FOXO3a, Sp1 and STAT3. Our data lay the foundation for research into the interplay of signaling pathways that determine the β-cell Cxcl12 expression profile.
Collapse
Affiliation(s)
- Jelena Marković
- a Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 10060 Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Grdović N, Dinić S, Mihailović M, Uskoković A, Jovanović JA, Poznanović G, Wagner L, Vidaković M. CXC chemokine ligand 12 protects pancreatic β-cells from necrosis through Akt kinase-mediated modulation of poly(ADP-ribose) polymerase-1 activity. PLoS One 2014; 9:e101172. [PMID: 24988468 PMCID: PMC4079329 DOI: 10.1371/journal.pone.0101172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/03/2014] [Indexed: 11/18/2022] Open
Abstract
The diabetes prevention paradigm envisages the application of strategies that support the maintenance of appropriate β-cell numbers. Herein we show that overexpression of CXC chemokine ligand12 (CXCL12) considerably improves the viability of isolated rat Langerhans islet cells and Rin-5F pancreatic β-cells after hydrogen peroxide treatment. In rat islets and wt cells hydrogen peroxide treatment induced necrotic cell death that was mediated by the rapid and extensive activation of poly(ADP-ribose) polymerase-1 (PARP-1). In contrast, CXCL12-overexpressing cells were protected from necrotic cell death as a result of significantly reduced PARP-1 activity. CXCL12 downstream signalling through Akt kinase was responsible for the reduction of PARP-1 activity which switched cell death from necrosis to apoptosis, providing increased protection to cells from oxidative stress. Our results offer a novel aspect of the CXCL12-mediated improvement of β-cell viability which is based on its antinecrotic action through modulation of PARP-1 activity.
Collapse
Affiliation(s)
- Nevena Grdović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Svetlana Dinić
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Uskoković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Jelena Arambašić Jovanović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Goran Poznanović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Ludwig Wagner
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
154
|
|
155
|
Wang Z, Moran E, Ding L, Cheng R, Xu X, Ma JX. PPARα regulates mobilization and homing of endothelial progenitor cells through the HIF-1α/SDF-1 pathway. Invest Ophthalmol Vis Sci 2014; 55:3820-32. [PMID: 24845641 DOI: 10.1167/iovs.13-13396] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The mechanism for the antiangiogenic activity of peroxisome proliferator-activated receptor alpha (PPARα) remains incompletely understood. Endothelial progenitor cells (EPC) are known to participate in neovascularization (NV). The purpose of this study was to investigate whether PPARα regulates EPC during retinal NV. METHODS Retinal NV was induced by oxygen-induced retinopathy (OIR). Mice with OIR were injected intraperitoneally with the PPARα agonist fenofibric acid (FA) or with adenovirus expressing PPARα (Ad-PPARα). Flow cytometry was used to quantify circulating and retinal EPC. Serum stromal cell-derived factor 1 (SDF-1) levels were measured by ELISA. Hypoxia was induced in primary human retinal capillary endothelial cells (HRCEC) and mouse brain endothelial cells (MBEC) by CoCl2. Levels of SDF-1 and hypoxia-inducible factor 1 alpha (HIF-1α) were measured by Western blotting. RESULTS Fenofibric acid and overexpression of PPARα attenuated the increase of circulating and retinal EPC, correlating with suppressed retinal NV in OIR mice at P17. The PPARα knockout enhanced the OIR-induced increase of circulating and retinal EPC. Fenofibric acid decreased retinal HIF-1α and SDF-1 levels as well as serum SDF-1 levels in the OIR model. In HRCEC, PPARα inhibited HIF-1α nuclear translocation and SDF-1 overexpression induced by hypoxia. Further, MBEC from PPARα(-/-) mice showed more prominent activation of HIF-1α and overexpression of SDF-1 induced by hypoxia, compared with the wild-type (WT) MBEC. PPARα failed to block SDF-1 overexpression induced by a constitutively active mutant of HIF-1α, suggesting that regulation of SDF-1 by PPARα was through blockade of HIF-1α activation. CONCLUSIONS Peroxisome proliferator-activated receptor alpha suppresses ischemia-induced EPC mobilization and homing through inhibition of the HIF-1α/SDF-1 pathway. This represents a novel molecular mechanism for PPARα's antiangiogenic effects.
Collapse
Affiliation(s)
- Zhongxiao Wang
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated with Shanghai Jiaotong University, Shanghai, China Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Elizabeth Moran
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Lexi Ding
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Xun Xu
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Jian-xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
156
|
Jin Q, Giannobile WV. SDF-1 enhances wound healing of critical-sized calvarial defects beyond self-repair capacity. PLoS One 2014; 9:e97035. [PMID: 24800841 PMCID: PMC4011888 DOI: 10.1371/journal.pone.0097035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/15/2014] [Indexed: 12/29/2022] Open
Abstract
Host blood circulating stem cells are an important cell source that participates in the repair of damaged tissues. The clinical challenge is how to improve the recruitment of circulating stem cells into the local wound area and enhance tissue regeneration. Stromal-derived factor-1 (SDF-1) has been shown to be a potent chemoattractant of blood circulating stem cells into the local wound microenvironment. In order to investigate effects of SDF-1 on bone development and the repair of a large bone defect beyond host self-repair capacity, the BMP-induced subcutaneous ectopic bone formation and calvarial critical-sized defect murine models were used in this preclinical study. A dose escalation of SDF-1 were loaded into collagen scaffolds containing BMP, VEGF, or PDGF, and implanted into subcutaneous sites at mouse dorsa or calvarial critical-sized bone defects for 2 and 4 weeks. The harvested biopsies were examined by microCT and histology. The results demonstrated that while SDF-1 had no effect in the ectopic bone model in promoting de novo osteogenesis, however, in the orthotopic bone model of the critical-sized defects, SDF-1 enhanced calvarial critical-sized bone defect healing similar to VEGF, and PDGF. These results suggest that SDF-1 plays a role in the repair of large critical-sized defect where more cells are needed while not impacting de novo bone formation, which may be associated with the functions of SDF-1 on circulating stem cell recruitment and angiogenesis.
Collapse
Affiliation(s)
- Qiming Jin
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - William V. Giannobile
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
157
|
Dollery CT. Lost in Translation (LiT): IUPHAR Review 6. Br J Pharmacol 2014; 171:2269-90. [PMID: 24428732 PMCID: PMC3997269 DOI: 10.1111/bph.12580] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/20/2013] [Accepted: 12/18/2013] [Indexed: 12/14/2022] Open
Abstract
Translational medicine is a roller coaster with occasional brilliant successes and a large majority of failures. Lost in Translation 1 ('LiT1'), beginning in the 1950s, was a golden era built upon earlier advances in experimental physiology, biochemistry and pharmacology, with a dash of serendipity, that led to the discovery of many new drugs for serious illnesses. LiT2 saw the large-scale industrialization of drug discovery using high-throughput screens and assays based on affinity for the target molecule. The links between drug development and university sciences and medicine weakened, but there were still some brilliant successes. In LiT3, the coverage of translational medicine expanded from molecular biology to drug budgets, with much greater emphasis on safety and official regulation. Compared with R&D expenditure, the number of breakthrough discoveries in LiT3 was disappointing, but monoclonal antibodies for immunity and inflammation brought in a new golden era and kinase inhibitors such as imatinib were breakthroughs in cancer. The pharmaceutical industry is trying to revive the LiT1 approach by using phenotypic assays and closer links with academia. LiT4 faces a data explosion generated by the genome project, GWAS, ENCODE and the 'omics' that is in danger of leaving LiT4 in a computerized cloud. Industrial laboratories are filled with masses of automated machinery while the scientists sit in a separate room viewing the results on their computers. Big Data will need Big Thinking in LiT4 but with so many unmet medical needs and so many new opportunities being revealed there are high hopes that the roller coaster will ride high again.
Collapse
|
158
|
JASZCZYNSKA-NOWINKA KAROLINA, RUCINSKI MARCIN, ZIOLKOWSKA AGNIESZKA, MARKOWSKA ANNA, MALENDOWICZ LUDWIKK. Expression of SDF-1 and CXCR4 transcript variants and CXCR7 in epithelial ovarian cancer. Oncol Lett 2014; 7:1618-1624. [PMID: 24765189 PMCID: PMC3997724 DOI: 10.3892/ol.2014.1897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 12/12/2013] [Indexed: 01/17/2023] Open
Abstract
Chemokine stromal cell-derived factor-1 (SDF-1) and its receptors, CXCR4 and CXCR7, have been implicated in epithelial ovarian cancer progression and metastasis. However, limited data are available on the expression levels of SDF-1 and CXCR4 variants and CXCR7 in human epithelial ovarian cancer. The present study aimed to characterize the expression pattern and levels of SDF-1, CXCR4 and CXCR7 in normal human ovaries and epithelial ovarian cancer. The expression of SDF-1 and CXCR4 transcript variants and CXCR7 was determined by quantitative polymerase chain reaction (qPCR). Plasma SDF-1α levels were determined by commercially available EIA kits and cancer antigen 125 (CA 125) levels were quantified by automated microparticle enzyme immunosorbent assay. High expression levels of SDF-1 transcript variant 1 were identified in ovarian cancer and control ovaries. By contrast, in both groups the expression levels of SDF-1 transcript variants 3 and 4 were extremely low. Furthermore, SDF-1 variant 1 levels were notably higher in epithelial ovarian cancer than in control ovaries, while data for the remaining transcripts were similar in both groups. CXCR4 transcript variant 2 and CXCR7 expression levels in normal and neoplastic ovaries were similar. In both groups, CXCR4 transcript variant 2 was not detected. Plasma SDF-1α levels were notably higher in females with epithelial ovarian cancer than in the control ovaries. Elevated levels of blood SDF-1α were found prior to surgery, 6 days after surgery and following completion of the first chemotherapy course. These increases were independent of the type of epithelial ovarian cancer. Our results suggest that the expression of SDF-1 and the genes controlling alternative splicing are elevated in epithelial ovarian cancer, leading to an increased formation of SDF-1 variant 1. Elevated plasma SDF-1α levels in epithelial ovarian cancer patients are not associated with the presence of tumors and/or metastases, however reflect a general response to the disease.
Collapse
Affiliation(s)
| | - MARCIN RUCINSKI
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań 60-781, Poland
| | - AGNIESZKA ZIOLKOWSKA
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań 60-781, Poland
| | - ANNA MARKOWSKA
- Department of Perinatology and Gynecology, Poznań University of Medical Sciences, Poznań 60-781, Poland
| | - LUDWIK K. MALENDOWICZ
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań 60-781, Poland
| |
Collapse
|
159
|
Won YW, Patel AN, Bull DA. Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient. Biomaterials 2014; 35:5627-35. [PMID: 24731711 DOI: 10.1016/j.biomaterials.2014.03.070] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/24/2014] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cell (MSC) therapy for the treatment of myocardial infarction (MI) has shown considerable promise in clinical trials. A billion MSCs need to be administered for therapeutic efficacy, however, because only ∼1% of the cells reach the ischemic myocardium after systemic infusion. This is due to the loss of the homing signal on the surface of the MSCs during their expansion in culture. Stromal-derived factor-1 (SDF-1) is up-regulated immediately after infarction and is released into the peripheral blood. This SDF-1 reaches the bone marrow and recruits CXC chemokine receptor 4 (CXCR4)-positive stem cells. The CXCR4/SDF-1 axis plays an important role in MSC homing to the ischemic myocardium. Since SDF-1 is highly expressed for only 48 h after infarction, the current approaches requiring long-term culture of MSCs to induce CXCR4 expression are not clinically useful. To provide a clinically viable means to improve the homing of MSCs, we have developed a surface modification method to incorporate recombinant CXCR4 protein on the membrane of MSCs within 10 min. Using this method, we have confirmed the improved migration of MSCs toward an SDF-1 gradient.
Collapse
Affiliation(s)
- Young-Wook Won
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Amit N Patel
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - David A Bull
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
160
|
Bromage DI, Davidson SM, Yellon DM. Stromal derived factor 1α: a chemokine that delivers a two-pronged defence of the myocardium. Pharmacol Ther 2014; 143:305-15. [PMID: 24704323 PMCID: PMC4127789 DOI: 10.1016/j.pharmthera.2014.03.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 01/03/2023]
Abstract
Alleviating myocardial injury associated with ST elevation myocardial infarction is central to improving the global burden of coronary heart disease. The chemokine stromal cell-derived factor 1α (SDF-1α) has dual potential benefit in this regard. Firstly, SDF-1α is up-regulated in experimental and clinical studies of acute myocardial infarction (AMI) and regulates stem cell migration to sites of injury. SDF-1α delivery to the myocardium after AMI is associated with improved stem cell homing, angiogenesis, and left ventricular function in animal models, and improvements in heart failure and quality of life in humans. Secondly, SDF-1α may have a role in remote ischaemic conditioning (RIC), the phenomenon whereby non-lethal ischaemia–reperfusion applied to an organ or tissue remote from the heart protects the myocardium from lethal ischaemia–reperfusion injury (IRI). SDF-1α is increased in the serum of rats subjected to RIC and protects against myocardial IRI in ex vivo studies. Despite these potential pleiotropic effects, a limitation of SDF-1α is its short plasma half-life due to cleavage by dipeptidyl peptidase-4 (DPP-4). However, DPP-4 inhibitors increase the half-life of SDF-1α by preventing its degradation and are also protective against lethal IRI. In summary, SDF-1 potentially delivers a ‘two-pronged’ defence of the myocardium: acutely protecting it from IRI while simultaneously stimulating repair by recruiting stem cells to the site of injury. In this article we examine the evidence for acute and chronic cardioprotective roles of SDF-1α and discuss potential therapeutic manipulations of this mechanism with DPP-4 inhibitors to protect against lethal tissue injury in the clinical setting.
Collapse
Affiliation(s)
- Daniel I Bromage
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London WC1E 6HX, United Kingdom
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London WC1E 6HX, United Kingdom
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London WC1E 6HX, United Kingdom
| |
Collapse
|
161
|
Wang W, Choi BK, Li W, Lao Z, Lee AYH, Souza SC, Yates NA, Kowalski T, Pocai A, Cohen LH. Quantification of intact and truncated stromal cell-derived factor-1α in circulation by immunoaffinity enrichment and tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:614-625. [PMID: 24500701 DOI: 10.1007/s13361-013-0822-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 06/03/2023]
Abstract
Stromal cell-derived factor 1α (SDF-1α) or CXCL12 is a small pro-inflammatory chemoattractant cytokine and a substrate of dipeptidyl peptidase IV (DPP-IV). Proteolytic cleavage by DPP-IV inactivates SDF-1α and attenuates its interaction with CXCR4, its cell surface receptor. To enable investigation of suppression of such inactivation with pharmacologic inhibition of DPP-IV, we developed quantitative mass spectrometric methods that differentiate intact SDF-1α from its inactive form. Using top-down strategy in quantification, we demonstrated the unique advantage of keeping SDF-1α's two disulfide bridges intact in the analysis. To achieve the optimal sensitivity required for quantification of intact and truncated SDF-1α at endogenous levels in blood, we coupled nano-flow tandem mass spectrometry with antibody-based affinity enrichment. The assay has a quantitative range of 20 pmol/L to 20 nmol/L in human plasma as well as in rhesus monkey plasma. With only slight modification, the same assay can be used to quantify SDF-1α in mice. Using two in vivo animal studies as examples, we demonstrated that it was critical to differentiate intact SDF-1α from its truncated form in the analysis of biomarkers for pharmacologic inhibition of DPP-IV activity. These novel methods enable translational research on suppression of SDF-1 inactivation with DPP-IV inhibition and can be applied to relevant clinical samples in the future to yield new insights on change of SDF-1α levels in disease settings and in response to therapeutic interventions.
Collapse
Affiliation(s)
- Weixun Wang
- Pharmacokinetic Pharmacodynamics and Drug Metabolism, Merck and Co., Inc., Rahway, NJ, 07065, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Li Y, Alatan G, Ge Z, Liu D. Effects of benazepril on functional activity of endothelial progenitor cells from hypertension patients. Clin Exp Hypertens 2014; 36:545-9. [PMID: 24678643 DOI: 10.3109/10641963.2014.881840] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effect of angiotensin-converting enzyme inhibitors on hypertension patients regarding endothelial progenitor cell (EPC) functions is poorly understood. The aim of this study was to investigate the effects of benazepril on the proliferation, adhesion and migration capacity of EPCs and its possible mechanism. The functions of EPCs from hypertension patients were obviously reduced compared with control group, and this could be improved by benazepril in a dose-dependent manner, whereas this improvement were obviously blocked when AMD3100 were used together. Therefore, benazepril could obviously improve functions of EPCs from hypertension patients, and the potential mechanism may be related to SDF-1/CXCR4 axis.
Collapse
Affiliation(s)
- Yongdong Li
- College of Life Sciences, Inner Mongolia University , Huhhot , China and
| | | | | | | |
Collapse
|
163
|
Si XY, Li JJ, Yao T, Wu XY. Transforming growth factor-β1 in the microenvironment of ischemia reperfusion-injured kidney enhances the chemotaxis of mesenchymal stem cells to stromal cell-derived factor-1 through upregulation of surface chemokine (C-X-C motif) receptor 4. Mol Med Rep 2014; 9:1794-8. [PMID: 24573381 DOI: 10.3892/mmr.2014.1989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/12/2014] [Indexed: 11/05/2022] Open
Abstract
Acute renal failure is one of the most common complications observed in hospitals. Although extensive studies have been carried out to search for therapeutic treatments, no effective cure has been established. In recent years, stem cell therapy for tissue engineering and repair has become a key area of study. Bone marrow mesenchymal stem cells (MSCs) have been demonstrated to exhibit a reparative role in ischemia reperfusion-injured kidney tissue, and the stromal cell-derived factor-1 (SDF-1)/chemokine (C-X-C motif) receptor 4 (CXCR4) axis has been found to play an important role in the migration and homing of MSCs. In the present study, transforming growth factor-β1 (TGF-β1) in the homogenate of the acute ischemia reperfusion-injured renal tissue was found to markedly increase the CXCR4 surface expression of MSCs, which contributes to the migration of MSCs to SDF-1. Neutralization of TGF-β1 inhibited the migration in an antibody concentration-dependent manner, through downregulation of CXCR4 localized to the membrane. These observations suggest a potential mechanism for MSC migration to the kidney which may provide a possible therapeutic target for curing acute renal failure.
Collapse
Affiliation(s)
- Xiao-Yun Si
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jing-Jing Li
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Tao Yao
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiao-Yan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
164
|
Sun Z, Wang C, Shi C, Sun F, Xu X, Qian W, Nie S, Han X. Activated Wnt signaling induces myofibroblast differentiation of mesenchymal stem cells, contributing to pulmonary fibrosis. Int J Mol Med 2014; 33:1097-109. [PMID: 24573542 PMCID: PMC4020487 DOI: 10.3892/ijmm.2014.1672] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/29/2014] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury may lead to fibrogenesis. However, no treatment is currently available. This study was conducted to determine the effects of bone marrow-derived mesenchymal stem cells (MSCs) in a model of HCl-induced acute lung injury in Sprague-Dawley (SD) rats. Stromal cell-derived factor (SDF)-1 and its receptor CXC chemokine receptor (CXCR)4 have been shown to participate in mobilizing MSCs. Adenovirus carrying the CXCR4 gene was used to transfect MSCs in order to increase the engraftment numbers of MSCs at injured sites. Histological examination data demonstrated that the engraftment of MSCs did not attenuate lung injury and pulmonary fibrosis. The results showed that engraftment of MSCs almost differentiated into myofibroblasts, but rarely differentiated into lung epithelial cells. Additionally, it was demonstrated that activated canonical Wnt/β-catenin signaling in injured lung tissue regulated the myofibroblast differentiation of MSCs in vivo. The in vitro study results demonstrated that activation of the Wnt/β-catenin signaling stimulated MSCs to express myofibroblast markers; however, this process was attenuated by Wnt antagonist DKK1. Therefore, the results demonstrated that the aberrant activation of Wnt signaling induces the myofibroblast differentiation of engrafted MSCs, thus contributing to pulmonary fibrosis following lung injury.
Collapse
Affiliation(s)
- Zhaorui Sun
- Immunology and Reproductive Biology Laboratory, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Cong Wang
- Immunology and Reproductive Biology Laboratory, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Chaowen Shi
- Immunology and Reproductive Biology Laboratory, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Fangfang Sun
- Immunology and Reproductive Biology Laboratory, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Xiaomeng Xu
- Immunology and Reproductive Biology Laboratory, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Weiping Qian
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu 210093, P.R. China
| | - Shinan Nie
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiaodong Han
- Immunology and Reproductive Biology Laboratory, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| |
Collapse
|
165
|
Nuclear pattern of CXCR4 expression is associated with a better overall survival in patients with gastric cancer. JOURNAL OF ONCOLOGY 2014; 2014:808012. [PMID: 24659999 PMCID: PMC3934579 DOI: 10.1155/2014/808012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/10/2013] [Accepted: 12/19/2013] [Indexed: 12/19/2022]
Abstract
Introduction. Previous studies have shown that stromal-derived factor-1 (CXCL12) and its receptor, CXCR4, play a crucial role in metastasis of various tumors. Similarly, it has been cleared that CXCR4 is expressed on the cell surface of gastric cancers. However, nuclear expression of CXCR4 and its clinical importance have not been yet studied. Materials and Methods. Herein, we studied the expression of CXCR4 in gastric samples from patients with gastric adenocarcinoma as well as human gastric carcinoma cell line, AGS, by employing RT-PCR, immunohistochemistry, and flow cytometry techniques. Results. RT-PCR data showed that CXCR4 is highly expressed on AGS cells. This was confirmed by IHC and FACS as CXCR4 was detected on cell membrane, in cytoplasm, and in nucleus of AGS cells. Moreover, we found that both cytoplasmic and nuclear CXCR4 are strongly expressed in primary gastric cancer and the cytoplasmic pattern of CXCR4 tends to be associated with a shorter overall survival than nuclear staining. In conclusion, we present evidence for the first time that both cytoplasmic and nuclear expression of CXCR4 are detectable in gastric cancer tissues. However, the role of both cytoplasmic and nuclear CXCR4 needs to be further elucidated.
Collapse
|
166
|
The prognosis and clinicopathology of CXCR4 in gastric cancer patients: a meta-analysis. Tumour Biol 2014; 35:4589-97. [DOI: 10.1007/s13277-013-1603-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/30/2013] [Indexed: 12/29/2022] Open
|
167
|
Shen W, Chen J, Zhu T, Chen L, Zhang W, Fang Z, Heng BC, Yin Z, Chen X, Ji J, Chen W, Ouyang HW. Intra-articular injection of human meniscus stem/progenitor cells promotes meniscus regeneration and ameliorates osteoarthritis through stromal cell-derived factor-1/CXCR4-mediated homing. Stem Cells Transl Med 2014; 3:387-94. [PMID: 24448516 DOI: 10.5966/sctm.2012-0170] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Meniscus injury is frequently encountered in clinical practice. Current surgical therapy involving partial or complete meniscectomy relieves pain in the short-term but often leads to osteoarthritis (OA) in the long-term. In this study, we report a new strategy of articular cartilage protection by intra-articular injection of novel human meniscus stem/progenitor cells (hMeSPCs). We found that hMeSPCs displayed both mesenchymal stem cell characteristics and high expression levels of collagen II. In the rat meniscus injury model, hMeSPC transplantation not only led to more neo-tissue formation and better-defined shape but also resulted in more rounded cells and matured extracellular matrix. Stromal cell-derived factor-1 (SDF-1) enhanced the migration of hMeSPCs, whereas AMD3100 abolished the chemotactic effects of SDF-1 on hMeSPCs, both in vitro and in vivo. In an experimental OA model, transplantation of hMeSPCs effectively protected articular cartilage, as evidenced by reduced expression of OA markers such as collagen I, collagen X, and hypoxia-inducible factor 2α but increased expression of collagen II. Our study demonstrated for the first time that intra-articular injection of hMeSPCs enhanced meniscus regeneration through the SDF-1/CXCR4 axis. Our study highlights a new strategy of intra-articular injection of hMeSPCs for meniscus regeneration.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Benzylamines
- Cartilage, Articular/injuries
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Chemokine CXCL12/genetics
- Chemokine CXCL12/pharmacology
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type II/genetics
- Collagen Type II/metabolism
- Collagen Type X/genetics
- Collagen Type X/metabolism
- Cyclams
- Gene Expression
- Heterocyclic Compounds/pharmacology
- Humans
- Injections, Intra-Articular
- Male
- Menisci, Tibial/metabolism
- Menisci, Tibial/pathology
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/metabolism
- Osteoarthritis/genetics
- Osteoarthritis/pathology
- Osteoarthritis/therapy
- Rats
- Rats, Sprague-Dawley
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Regeneration/physiology
- Signal Transduction
- Tibial Meniscus Injuries
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Weiliang Shen
- Center for Stem Cell and Tissue Engineering, Department of Orthopedic Surgery, Second Affiliated Hospital, and Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Yang X, Xu Z, Li D, Cheng S, Fan K, Li C, Li A, Zhang J, Feng M. Cell surface nucleolin is crucial in the activation of the CXCL12/CXCR4 signaling pathway. Tumour Biol 2014; 35:333-8. [PMID: 23918302 DOI: 10.1007/s13277-013-1044-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 07/19/2013] [Indexed: 01/19/2023] Open
Abstract
Recently, CXCL12-CXCR4 has been focused on therapeutic strategies for papillary thyroid carcinoma (PTC) and other cancers. At the same time, cell surface nucleolin is also over-expressed in PTC and others. Interestingly, a few reports suggest that either CXCR4 or cell surface nucleolin is a co-receptor for HIV-1 entry into CD4+ T cells, which indicates that there is a relationship between CXCR4 and nucleolin. In this study, antibody and siRNA were used to identify effects of cell surface nucleolin and CXCR4 on cell signaling; soft-agar colony formation assay and Transwell assay were used to determine roles of nucleolin and CXCR4 in cell proliferation and migration. Importantly, co-immunoprecipitation was used to demonstrate the relationship between CXCR4 and nucleolin. Results showed CXCR4 and nucleolin were co-expressed in PTC cell line K1, B-CPAP, and TPC-1. Either cell surface nucleolin or CXCR4 was necessary to prompt extracellular signal-regulated kinase phosphorylation. When blocked, CXCR4 or nucleolin can significantly affect TPC-1 proliferation and migration (p < 0.01). Co-immunoprecipitation analysis identified that nucleolin can bind and interact with CXCR4 to activate CXCR4 signaling. This study suggests that nucleolin is crucial in the activation of CXCR4 signaling, which affects cell growth, migration, and invasiveness. Further, nucleolin may interact with other receptors. Our study also offers new ideas for cancer therapy.
Collapse
Affiliation(s)
- Xiangshan Yang
- Department of Pathology, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Song M, Heo J, Chun JY, Bae HS, Kang JW, Kang H, Cho YM, Kim SW, Shin DM, Choo MS. The paracrine effects of mesenchymal stem cells stimulate the regeneration capacity of endogenous stem cells in the repair of a bladder-outlet-obstruction-induced overactive bladder. Stem Cells Dev 2013; 23:654-63. [PMID: 24192209 DOI: 10.1089/scd.2013.0277] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Overactive bladder (OAB), which is characterized by the sudden and uncomfortable need to urinate with or without urinary leakage, is a challenging urological condition. The insufficient efficacy of current pharmacotherapies that uses antimuscarinic agents has increased the demand for novel long-term/stable therapeutic strategies. Here, we report the superior therapeutic efficacy of using mesenchymal stem cells (MSCs) for the treatment of OAB and a novel therapeutic mechanism that activates endogenous Oct4(+) primitive stem cells. We induced OAB using bladder-outlet-obstruction (BOO) in a rat model and either administered a single transplantation of human adipose-derived MSCs or daily intravenous injections of solifenacin, an antimuscarinic agent, for 2 weeks. Within 2 weeks, both the MSC- and solifenacin-treated groups similarly demonstrated relief from BOO-induced detrusor overactivity, hypertrophic smooth muscle, and neurological injuries. In contrast with the solifenacin-treated groups, a single transplantation of MSCs improved most OAB parameters to normal levels within 4 weeks. Although the transplanted human MSCs were hardly engrafted into the damaged bladders, the bladder tissues transplanted with MSCs increased rat sequence-specific transcription of Oct4, Sox2, and Stella, which are surrogate markers for primitive pluripotent stem cells. In addition, MSCs enhanced the expression of several genes, responsible for stem cell trafficking, including SDF-1/CXCR4, HGF/cMet, PDGF/PDGFR, and VEGF/VEGFR signaling axis. These changes in gene expression were not observed in the solifenacin-treated group. Therefore, we suggest the novel mechanisms for the paracrine effect of MSCs as unleashing/mobilizing primitive endogenous stem cells, which could not only explain the long-term/stable therapeutic efficacy of MSCs, but also provide promising new therapies for the treatment of OAB.
Collapse
Affiliation(s)
- Miho Song
- 1 Department of Urology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Ratajczak MZ, Jadczyk T, Schneider G, Kakar SS, Kucia M. Induction of a tumor-metastasis-receptive microenvironment as an unwanted and underestimated side effect of treatment by chemotherapy or radiotherapy. J Ovarian Res 2013; 6:95. [PMID: 24373588 PMCID: PMC3880975 DOI: 10.1186/1757-2215-6-95] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/26/2013] [Indexed: 12/12/2022] Open
Abstract
There are well-known side effects of chemotherapy and radiotherapy that are mainly related to the toxicity and impaired function of vital organs; however, the induction by these therapies of expression of several pro-metastatic factors in various tissues and organs that in toto create a pro-metastatic microenvironment is still, surprisingly, not widely acknowledged. In this review, we support the novel concept that toxic damage in various organs leads to upregulation in "bystander" tissues of several factors such as chemokines, growth factors, alarmines, and bioactive phosphosphingolipids, which attract circulating normal stem cells for regeneration but unfortunately also provide chemotactic signals to cancer cells that survived the initial treatment. We propose that this mechanism plays an important role in the metastasis of cancer cells to organs such as bones, lungs, and liver, which are highly susceptible to chemotherapeutic agents as well as ionizing irradiation. This problem indicates the need to develop efficient anti-metastatic drugs that will work in combination with, or follow, standard therapies in order to prevent the possibility of therapy-induced spread of tumor cells.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA
| | - Tomasz Jadczyk
- Third Division of Cardiology, Silesian Medical University, Katowice, Poland
| | - Gabriela Schneider
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA
| | - Sham S Kakar
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA
| | - Magda Kucia
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA
| |
Collapse
|
171
|
Rizzo P, Perico N, Gagliardini E, Novelli R, Alison MR, Remuzzi G, Benigni A. Nature and mediators of parietal epithelial cell activation in glomerulonephritides of human and rat. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1769-1778. [PMID: 24095923 DOI: 10.1016/j.ajpath.2013.08.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/31/2013] [Accepted: 08/07/2013] [Indexed: 02/07/2023]
Abstract
Bowman's capsule parietal epithelial cell activation occurs in several human proliferative glomerulonephritides. The cellular composition of the resulting hyperplastic lesions is controversial, although a population of CD133(+)CD24(+) progenitor cells has been proposed to be a major constituent. Mediator(s) involved in proliferation and migration of progenitor cells into the Bowman's space have been poorly explored. In a series of 36 renal biopsies of patients with proliferative and nonproliferative glomerulopathies, dysregulated CD133(+)CD24(+) progenitor cells of the Bowman's capsule invade the glomerular tuft exclusively in proliferative disorders. Up-regulation of the CXCR4 chemokine receptor on progenitor cells was accompanied by high expression of its ligand, SDF-1, in podocytes. Parietal epithelial cell proliferation might be sustained by increased expression of the angiotensin II (Ang II) type-1 (AT1) receptor. Similar changes of CXCR4, SDF-1, and AT1 receptor expression were found in Munich Wistar Frömter rats with proliferative glomerulonephritis. Moreover, an angiotensin-converting enzyme inhibitor normalized CXCR4 and AT1 receptor expression on progenitors concomitant with regression of crescentic lesions in a patient with crescentic glomerulonephritis. These results suggest that glomerular hyperplastic lesions derive from the proliferation and migration of renal progenitors in response to injured podocytes. The Ang II/AT1 receptor pathway may participate, together with SDF-1/CXCR4 axis, to the dysregulated response of renal precursors. Thus, targeting the Ang II/AT1 receptor/CXCR4 pathways may be beneficial in severe forms of glomerular proliferative disorders.
Collapse
Affiliation(s)
- Paola Rizzo
- Mario Negri Institute for Pharmacological Research (IRCCS), Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Norberto Perico
- Mario Negri Institute for Pharmacological Research (IRCCS), Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Elena Gagliardini
- Mario Negri Institute for Pharmacological Research (IRCCS), Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Rubina Novelli
- Mario Negri Institute for Pharmacological Research (IRCCS), Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Malcolm R Alison
- Centre for Tumour Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Giuseppe Remuzzi
- Mario Negri Institute for Pharmacological Research (IRCCS), Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy; Unit of Nephrology and Dialysis, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy.
| | - Ariela Benigni
- Mario Negri Institute for Pharmacological Research (IRCCS), Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
172
|
Cojoc M, Peitzsch C, Trautmann F, Polishchuk L, Telegeev GD, Dubrovska A. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco Targets Ther 2013; 6:1347-61. [PMID: 24124379 PMCID: PMC3794844 DOI: 10.2147/ott.s36109] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The chemokine CXCL12 (SDF-1) and its cell surface receptor CXCR4 were first identified as regulators of lymphocyte trafficking to the bone marrow. Soon after, the CXCL12/CXCR4 axis was proposed to regulate the trafficking of breast cancer cells to sites of metastasis. More recently, it was established that CXCR4 plays a central role in cancer cell proliferation, invasion, and dissemination in the majority of malignant diseases. The stem cell concept of cancer has revolutionized the understanding of tumorigenesis and cancer treatment. A growing body of evidence indicates that a subset of cancer cells, referred to as cancer stem cells (CSCs), plays a critical role in tumor initiation, metastatic colonization, and resistance to therapy. Although the signals generated by the metastatic niche that regulate CSCs are not yet fully understood, accumulating evidence suggests a key role of the CXCL12/CXCR4 axis. In this review we focus on physiological functions of the CXCL12/CXCR4 signaling pathway and its role in cancer and CSCs, and we discuss the potential for targeting this pathway in cancer management.
Collapse
Affiliation(s)
- Monica Cojoc
- OncoRay National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
173
|
Martins-Green M, Petreaca M, Wang L. Chemokines and Their Receptors Are Key Players in the Orchestra That Regulates Wound Healing. Adv Wound Care (New Rochelle) 2013; 2:327-347. [PMID: 24587971 DOI: 10.1089/wound.2012.0380] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Indexed: 12/13/2022] Open
Abstract
SIGNIFICANCE Normal wound healing progresses through a series of overlapping phases, all of which are coordinated and regulated by a variety of molecules, including chemokines. Because these regulatory molecules play roles during the various stages of healing, alterations in their presence or function can lead to dysregulation of the wound-healing process, potentially leading to the development of chronic, nonhealing wounds. RECENT ADVANCES A discovery that chemokines participate in a variety of disease conditions has propelled the study of these proteins to a level that potentially could lead to new avenues to treat disease. Their small size, exposed termini, and the fact that their only modifications are two disulfide bonds make them excellent targets for manipulation. In addition, because they bind to G-protein-coupled receptors (GPCRs), they are highly amenable to pharmacological modulation. CRITICAL ISSUES Chemokines are multifunctional, and in many situations, their functions are highly dependent on the microenvironment. Moreover, each specific chemokine can bind to several GPCRs to stimulate the function, and both can function as monomers, homodimers, heterodimers, and even oligomers. Activation of one receptor by any single chemokine can lead to desensitization of other chemokine receptors, or even other GPCRs in the same cell, with implications for how these proteins or their receptors could be used to manipulate function. FUTURE DIRECTIONS Investment in better understanding of the functions of chemokines and their receptors in a local context can reveal new ways for therapeutic intervention. Understanding how different chemokines can activate the same receptor and vice versa could identify new possibilities for drug development based on their heterotypic interactions.
Collapse
Affiliation(s)
- Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Melissa Petreaca
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Lei Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| |
Collapse
|
174
|
Liu X, Liang F, Yang J, Li Z, Hou X, Wang Y, Gao C. Effects of stromal cell derived factor-1 and CXCR4 on the promotion of neovascularization by hyperbaric oxygen treatment in skin flaps. Mol Med Rep 2013; 8:1118-24. [PMID: 23969990 DOI: 10.3892/mmr.2013.1638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/08/2013] [Indexed: 02/06/2023] Open
Abstract
Hyperbaric oxygen (HBO) is known to increase the survival of skin flaps by promoting neovascularization; however, the detailed mechanisms involved are not fully understood. In the present study, we aimed to characterize the effects of HBO treatment on neovascularization and skin flap survival. We also analyzed the mechanisms associated with the expression of angiogenic molecules, such as stromal cell derived factor-1 (SDF‑1) and its specific receptor CXCR4, to assess the effects of SDF-1 and CXCR4 on the promotion of neovascularization by HBO treatment in skin flaps. The epigastric pedicle skin flap model was established in rats that were randomly divided into the following groups: i) sham‑operated (SH group); ii) ischemia followed by reperfusion and analysis on the third and fifth day (IR3d and IR5d groups, respectively) postoperatively; iii) ischemia followed by reperfusion, HBO treatment and analysis on the third and fifth day (HBO3d and HBO5d groups, respectively) postoperatively. In the two HBO groups, animals received 1 h of HBO treatment in a 2.0 ATA chamber with 100% O2 twice per day for 3 days and then daily for 2 consecutive days following surgery. On the postoperative third and fifth day, skin flap survival measurement, histological analysis, immunohistochemical staining and western blotting for SDF‑1 and CXCR4 expression, were performed. Compared with those of the IR groups, skin flap survival, microvessel density (MVD) and expression of SDF‑1 and CXCR4 proteins were significantly increased in the HBO groups. Pearson's correlation analysis demonstrated a positive correlation between MVD and the high expression of SDF‑1 and CXCR4 following HBO treatment. Results of this study suggested that the effects of HBO treatment in promoting neovascularization may be explained by the upregulation of SDF‑1 and CXCR4 expression in the skin flaps of rats.
Collapse
Affiliation(s)
- Xuehua Liu
- Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | | | | | | | | | | | | |
Collapse
|
175
|
Suresh R, Chiriac A, Goel K, Villarraga HR, Lopez-Jimenez F, Thomas RJ, Terzic A, Nelson TJ, Perez-Terzic C. CXCR4+ and FLK-1+ identify circulating cells associated with improved cardiac function in patients following myocardial infarction. J Cardiovasc Transl Res 2013; 6:787-97. [PMID: 23934537 DOI: 10.1007/s12265-013-9502-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/09/2013] [Indexed: 12/13/2022]
Abstract
The biomarkers CXCR4/FLK-1 select cardiac progenitors from a stem cell pool in experimental models. However, the translational value of these cells in human ischemic heart disease is unknown. Here, flow-cytometry identified CD45(-)/CXCR4(+)/FLK-1(+) cells in 30 individuals without ischemic heart disease and 33 first-time acute myocardial infarction (AMI) patients. AMI patients had higher CD45(-)/CXCR4(+)/FLK-1(+) cell-load at 48-h and 3- and 6-months post-AMI (p = 0.003,0.04,0.04, respectively) than controls. Cardiovascular risk factors and left ventricular (LV) ejection fraction were not associated with cell-load. 2D-speckle-tracking strain echocardiography assessment of LV systolic function showed improvement in longitudinal strain and dyssynchrony during follow-up associated with longitudinal increases in and higher 48-h post-AMI CD45(-)/CXCR4(+)/FLK-1(+) cell-load (r = -0.525, p = 0.025; r = -0.457, p = 0.029, respectively). In conclusion, CD45(-)/CXCR4(+)/FLK-1(+) cells are present in adult human circulation, increased in AMI and associated with improved LV systolic function. Thus, CD45(-)/CXCR4(+)/FLK-1(+) cells may provide a diagnostic tool to follow cardiac regenerative capacity and potentially serve as a prognostic marker in AMI.
Collapse
Affiliation(s)
- Rahul Suresh
- Mayo Medical School, College of Medicine, Rochester, MN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Liu C, Weng Y, Yuan T, Zhang H, Bai H, Li B, Yang D, Zhang R, He F, Yan S, Zhan X, Shi Q. CXCL12/CXCR4 signal axis plays an important role in mediating bone morphogenetic protein 9-induced osteogenic differentiation of mesenchymal stem cells. Int J Med Sci 2013; 10:1181-92. [PMID: 23935395 PMCID: PMC3739017 DOI: 10.7150/ijms.6657] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/11/2013] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal progenitor stem cells (MPCs) are a group of bone marrow stromal progenitor cells processing osteogenic, chondrogenic, adipogenic and myogenic lineages differentiations. Previous studies have demonstrated that bone morphogeneic protein 9(BMP9) is one of the most osteogenic BMPs both in vitro and in vivo, however, the underlying molecular mechanism of osteogenesis induced by BMP9 is needed to be deep explored. Here, we used the recombinant adenoviruses assay to introduce BMP9 into C3H10T1/2 mesenchymal stem cells to elucidate the role of CXCL12/CXCR4 signal axis during BMP9-incuced osteogenic differentiation. The results showed that CXCL12 and CXCR4 expressions were down-regulated at the stage of BMP9-induced osteogenic differentiation, in a dose- and time-dependent. Pretreatment of C3H10T1/2 cells with CXCL12/CXCR4 could significantly affect the early and mid osteogenic markers alkaline phosphatase (ALP), osteocalcin (OCN), the transcription factors of Runx2, Osx, Plzf and Dlx5 expression, through activating the Smad, MAPK signaling pathway. Addition of exogenous CXCL12 did not affect the changes of the late osteogenic marker calcium deposition. Thus, our findings suggest a co-requirement of the CXCL12/CXCR4 signal axis in BMP9-induced the early- and mid-process of osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Chen Liu
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yaguang Weng
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Taixian Yuan
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hong Zhang
- 2. Department of Laboratory Medicine, Jinan Sixth Hospital, Zhangqiu250200, China
| | - Huili Bai
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Baolin Li
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Dandan Yang
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ruyi Zhang
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Fang He
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shujuan Yan
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoqin Zhan
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qiong Shi
- 1. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
177
|
Yang XT, Pan DC, Chen ET, Bi YY, Feng DF. Glial cells activation potentially contributes to the upregulation of stromal cell-derived factor-1α after optic nerve crush in rats. Neurochem Res 2013; 38:1996-2008. [PMID: 23832528 DOI: 10.1007/s11064-013-1106-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/17/2013] [Accepted: 06/29/2013] [Indexed: 02/04/2023]
Abstract
Stromal cell-derived factor-1α (SDF-1α) plays an important role after injury. However, little is known regarding its temporal and spatial expression patterns or how it interacts with glial cells after optic nerve crush injury. We characterized the temporal and spatial expression pattern of SDF-1α in the retina and optic nerve following optic nerve crush and demonstrated that SDF-1α is localized to the glial cells that are distributed in the retina and optic nerve. CXCR4, the receptor for SDF-1α, is expressed along the ganglion cell layer (GCL). The relative expression levels of Sdf-1α mRNA and SDF-1α protein in the retina and optic nerve 1, 2, 3, 5, 7, 10 and 14 days after injury were determined using real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay, respectively, and the Cxcr4 mRNA expression was determined using real-time PCR. Immunofluorescence and immunohistochemical approaches were used to detect the localization of SDF-1α and CXCR4 after injury. The upregulation of Sdf-1α and Cxcr4 mRNA was detected as early as day one after injury in the retina and day two in the optic nerve, the expression peaks 5-7 days after injury. The expression of Sdf-1α and Cxcr4 mRNA was maintained for at least 14 days after the optic nerve crush injury. Furthermore, SDF-1α-positive zones were distributed locally in the reactive glial cells, which suggested potential autocrine stimulation. CXCR4 was mainly expressed in the GCL, which was also adjacent to the the glial cells. These findings suggest that following optic nerve crush, the levels of endogenous SDF-1α and CXCR4 increase in the retina and optic nerve, where activated glial cells may act as a source of increased SDF-1α protein.
Collapse
Affiliation(s)
- Xi-Tao Yang
- Department of Neurosurgery, Shanghai Third People's Hospital, Shanghai Jiaotong University School of Medicine, 280 Mo-He Road, Shanghai, 201900, China,
| | | | | | | | | |
Collapse
|
178
|
CXCL12/CXCR4 axis promotes mesenchymal stem cell mobilization to burn wounds and contributes to wound repair. J Surg Res 2013; 183:427-34. [DOI: 10.1016/j.jss.2013.01.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/16/2012] [Accepted: 01/10/2013] [Indexed: 12/29/2022]
|
179
|
SDF-1α reduces fibronectin expression in rat mesangial cells induced by TGF-β1 and high glucose through PI3K/Akt pathway. Exp Cell Res 2013; 319:1796-1803. [DOI: 10.1016/j.yexcr.2013.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/04/2013] [Accepted: 03/28/2013] [Indexed: 01/31/2023]
|
180
|
HGF Expressing Stem Cells in Usual Interstitial Pneumonia Originate from the Bone Marrow and Are Antifibrotic. PLoS One 2013; 8:e65453. [PMID: 23840329 PMCID: PMC3686785 DOI: 10.1371/journal.pone.0065453] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/24/2013] [Indexed: 12/15/2022] Open
Abstract
Background Pulmonary fibrosis may result from abnormal alveolar wound repair after injury. Hepatocyte growth factor (HGF) improves alveolar epithelial wound repair in the lung. Stem cells were shown to play a major role in lung injury, repair and fibrosis. We studied the presence, origin and antifibrotic properties of HGF-expressing stem cells in usual interstitial pneumonia. Methods Immunohistochemistry was performed in lung tissue sections and primary alveolar epithelial cells obtained from patients with usual interstitial pneumonia (UIP, n = 7). Bone marrow derived stromal cells (BMSC) from adult male rats were transfected with HGF, instilled intratracheally into bleomycin injured rat lungs and analyzed 7 and 14 days later. Results In UIP, HGF was expressed in specific cells mainly located in fibrotic areas close to the hyperplastic alveolar epithelium. HGF-positive cells showed strong co-staining for the mesenchymal stem cell markers CD44, CD29, CD105 and CD90, indicating stem cell origin. HGF-positive cells also co-stained for CXCR4 (HGF+/CXCR4+) indicating that they originate from the bone marrow. The stem cell characteristics were confirmed in HGF secreting cells isolated from UIP lung biopsies. In vivo experiments showed that HGF-expressing BMSC attenuated bleomycin induced pulmonary fibrosis in the rat, indicating a beneficial role of bone marrow derived, HGF secreting stem cells in lung fibrosis. Conclusions HGF-positive stem cells are present in human fibrotic lung tissue (UIP) and originate from the bone marrow. Since HGF-transfected BMSC reduce bleomycin induced lung fibrosis in the bleomycin lung injury and fibrosis model, we assume that HGF-expressing, bone-marrow derived stem cells in UIP have antifibrotic properties.
Collapse
|
181
|
Zhang M, Liu HX, Teng XD, Wang HB, Cui J, Jia SS, Gu XY, Li ZG. The differences in CXCR4 protein expression are significant for the five molecular subtypes of breast cancer. Ultrastruct Pathol 2013; 36:381-6. [PMID: 23216236 DOI: 10.3109/01913123.2012.728687] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim was to investigate the expression of the CXCR4 protein in five molecular subtypes of breast cancer. The authors randomly selected the breast cancer paraffin-embedded specimens of the Affiliated Third Hospital of Harbin Medical University between 2007 and 2009. Details are as follows: basal-like subtype-ER (-), PR (-), C-erbB-2 (-), CK5/6 (+), n = 36; normal breast subtype-ER (-), PR (-), C-erbB-2 (-), CK5/6(-), n = 40; luminal A subtype-ER/PR (+), C-erbB-2 (-), n = 38; luminal B subtype-ER/PR (+), C-erbB-2 (+), n = 60; C-erbB-2 (+) subtype-ER (-), PR (-), C-erbB-2 (+), n = 58. Using the immunohistochemistry method, the authors detected the expression of the CXCR4 protein in the five subtypes. The CXCR4 protein expression in the basal-like subtype was the highest, and that in the luminal A subtype was the lowest. In terms of five molecular subtypes of breast cancer, the differences in CXCR4 protein expression were significant (p < .001). In terms of C-erbB-2 expression, tumor stage, and lymph node metastasis of breast cancer, the differences in CXCR4 protein expression were significant (p < .01).
Collapse
Affiliation(s)
- Ming Zhang
- Department of Breast Surgery, Affiliated Third Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Verma S, Singh A, Mishra A. Gallic acid: molecular rival of cancer. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:473-85. [PMID: 23501608 DOI: 10.1016/j.etap.2013.02.011] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/02/2013] [Accepted: 02/06/2013] [Indexed: 05/11/2023]
Abstract
Gallic acid, a predominant polyphenol, has been shown to inhibit carcinogenesis in animal models and in vitro cancerous cell lines. The inhibitory effect of gallic acid on cancer cell growth is mediated via the modulation of genes which encodes for cell cycle, metastasis, angiogenesis and apoptosis. Gallic acid inhibits activation of NF-κB and Akt signaling pathways along with the activity of COX, ribonucleotide reductase and GSH. Moreover, gallic acid activates ATM kinase signaling pathways to prevent the processes of carcinogenesis. The data so far available, both from in vivo and in vitro studies, indicate that this dietary polyphenol could be promising agent in the field of cancer chemoprevention.
Collapse
Affiliation(s)
- Sharad Verma
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | | | | |
Collapse
|
183
|
Raman R, Kumar RS, Hinge A, Kumar S, Nayak R, Xu J, Szczur K, Cancelas JA, Filippi MD. p190-B RhoGAP regulates the functional composition of the mesenchymal microenvironment. Leukemia 2013; 27:2209-19. [PMID: 23563238 PMCID: PMC3919554 DOI: 10.1038/leu.2013.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 03/29/2013] [Accepted: 03/29/2013] [Indexed: 12/22/2022]
Abstract
Hematopoiesis is regulated by components of the microenvironment, so-called niche. Here, we show that p190-B GTPase-activating protein (p190-B) deletion in mice causes hematopoietic failure during ontogeny, in p190-B(-/-) fetal liver and bones, and in p190-B(+/-) adult bones and spleen. These defects are non-cell autonomous, as we previously showed that transplantation of p190-B(-/-) hematopoietic cells into wild-type (WT) hosts leads to normal hematopoiesis. Coculture of mesenchymal stem (MSC)/progenitor cells and wild-type bone marrow (BM) cells reveals that p190-B(-/-) MSCs are dysfunctional in supporting hematopoiesis owing to impaired Wnt signaling. Furthermore, p190-B loss causes alteration in BM niche composition, including abnormal colony-forming unit (CFU)-fibroblast, CFU-adipocyte and CFU-osteoblast numbers. This is due to altered MSC lineage fate specification to osteoblast and adipocyte lineages. Thus, p190-B organizes a functional mesenchymal/microenvironment for normal hematopoiesis during development.
Collapse
Affiliation(s)
- R Raman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Voloshin T, Voest EE, Shaked Y. The host immunological response to cancer therapy: An emerging concept in tumor biology. Exp Cell Res 2013; 319:1687-95. [PMID: 23518388 DOI: 10.1016/j.yexcr.2013.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/23/2013] [Accepted: 03/02/2013] [Indexed: 02/04/2023]
Abstract
Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet only partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction-both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy.
Collapse
Affiliation(s)
- Tali Voloshin
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine and the Rappaport Institute, Technion-Israel Institute of Technology, 1 Efron Street, Bat Galim, Haifa 31096, Israel
| | - Emile E Voest
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yuval Shaked
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine and the Rappaport Institute, Technion-Israel Institute of Technology, 1 Efron Street, Bat Galim, Haifa 31096, Israel.
| |
Collapse
|
185
|
McIver SC, Loveland KL, Roman SD, Nixon B, Kitazawa R, McLaughlin EA. The chemokine CXCL12 and its receptor CXCR4 are implicated in human seminoma metastasis. Andrology 2013; 1:517-29. [DOI: 10.1111/j.2047-2927.2013.00081.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 01/16/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Affiliation(s)
- S. C. McIver
- ARC Centre of Excellence in Biotechnology & Development; Discipline of Biological Sciences School of Environmental & Life Sciences; University of Newcastle; Callaghan; NSW; Australia
| | | | - S. D. Roman
- ARC Centre of Excellence in Biotechnology & Development; Discipline of Biological Sciences School of Environmental & Life Sciences; University of Newcastle; Callaghan; NSW; Australia
| | - B. Nixon
- ARC Centre of Excellence in Biotechnology & Development; Discipline of Biological Sciences School of Environmental & Life Sciences; University of Newcastle; Callaghan; NSW; Australia
| | - R. Kitazawa
- Division of Molecular Pathology; Graduate School of Medicine; Ehime University; Ehime; Japan
| | - E. A. McLaughlin
- ARC Centre of Excellence in Biotechnology & Development; Discipline of Biological Sciences School of Environmental & Life Sciences; University of Newcastle; Callaghan; NSW; Australia
| |
Collapse
|
186
|
Kim C, Schneider G, Abdel-Latif A, Mierzejewska K, Sunkara M, Borkowska S, Ratajczak J, Morris AJ, Kucia M, Ratajczak MZ. Ceramide-1-phosphate regulates migration of multipotent stromal cells and endothelial progenitor cells--implications for tissue regeneration. Stem Cells 2013; 31:500-510. [PMID: 23193025 PMCID: PMC3582849 DOI: 10.1002/stem.1291] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/08/2012] [Accepted: 11/10/2012] [Indexed: 12/13/2022]
Abstract
Ceramide-1-phosphate (C1P) is a bioactive lipid that, in contrast to ceramide, is an antiapoptotic molecule released from cells that are damaged and "leaky." As reported recently, C1P promotes migration of hematopoietic cells. In this article, we tested the hypothesis that C1P released upon tissue damage may play an underappreciated role in chemoattraction of various types of stem cells and endothelial cells involved in tissue/organ regeneration. We show for the first time that C1P is upregulated in damaged tissues and chemoattracts bone marrow (BM)-derived multipotent stromal cells, endothelial progenitor cells, and very small embryonic-like stem cells. Furthermore, compared to other bioactive lipids, C1P more potently chemoattracted human umbilical vein endothelial cells and stimulated tube formation by these cells. C1P also promoted in vivo vascularization of Matrigel implants and stimulated secretion of stromal cell-derived factor-1 from BM-derived fibroblasts. Thus, our data demonstrate, for the first time, that C1P is a potent bioactive lipid released from damaged cells that potentially plays an important and novel role in recruitment of stem/progenitor cells to damaged organs and may promote their vascularization.
Collapse
Affiliation(s)
- ChiHwa Kim
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Kentucky, USA
| | - Gabriela Schneider
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Kentucky, USA
| | - Ahmed Abdel-Latif
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, Kentucky, USA
| | - Kasia Mierzejewska
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Kentucky, USA
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Manjula Sunkara
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, Kentucky, USA
| | - Sylwia Borkowska
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Kentucky, USA
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Janina Ratajczak
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Kentucky, USA
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, Kentucky, USA
| | - Magda Kucia
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Kentucky, USA
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Mariusz Z. Ratajczak
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Kentucky, USA
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
187
|
Wurster T, Stellos K, Haap M, Seizer P, Geisler T, Otton J, Indermuehle A, Ishida M, Schuster A, Nagel E, Gawaz M, Bigalke B. Platelet expression of stromal-cell-derived factor-1 (SDF-1): An indicator for ACS? Int J Cardiol 2013; 164:111-5. [DOI: 10.1016/j.ijcard.2011.06.082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/17/2011] [Accepted: 06/15/2011] [Indexed: 11/26/2022]
|
188
|
Bumpers H, Huang MB, Katkoori V, Manne U, Bond V. Nef-M1, a CXCR4 Peptide Antagonist, Enhances Apoptosis and Inhibits Primary Tumor Growth and Metastasis in Breast Cancer. ACTA ACUST UNITED AC 2013; 4:898-906. [PMID: 25285238 PMCID: PMC4181386 DOI: 10.4236/jct.2013.44101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Results from studies with animal models suggest that, in many cancers, CXCR4 is an important therapeutic target and that CXCR4 antagonists may be promising treatments for primary cancers and for metastases. The Nef protein effectively competes with CXCR4’s natural ligand, SDF-1α, and induces apoptosis. As described in this report, the Nef-M1 peptide (Nef protein amino acids 50 – 60) inhibits primary tumor growth and metastasis of breast cancer (BC). Four BC cell lines (MDA-MB-231, MDA-MB-468, MCF 7, and DU4475) and primary human mammary epithelium (HME) cells were evaluated for their response to the Nef protein and to the Nef-M1 peptide. The presence of CXCR4 receptors in these cells was determined by RT-PCR, Western blot (WB), and immunohistochemical analyses. The apoptotic effect of Nef-M1 was assessed by terminal transferase dUTP nick-end labeling (TUNEL). WBs was used to assess caspase 3 activation. BC xenografts grown in SCID mice were evaluated for the presence of CXCR4 and for their metastatic potential. CXCR4 was presented in MDA-MB-231, MCF 7, and DU 4475 BC cells but not in MDA-MB-468 BC or HME cells. Cells expressing CXCR4 and treated with Nef-M1 peptide or the Nef protein had higher rates of apoptosis than untreated cells. Caspase-3 activation increased in MDA-MB 231 cells treated with the Nef protein, the Nef 41 – 60 peptide, or Nef-M1. Nef-M1, administered to mice starting at the time of xenograft implantation, inhibited growth of primary tumors and metastatic spread. Untreated mice developed diffuse intraperitoneal metastases. We conclude that, in BCs, Nef-M1, through interaction with CXCR4, inhibits primary tumor growth and metastasis by causing apoptosis.
Collapse
Affiliation(s)
- Harvey Bumpers
- Department of Surgery, Michigan State University College of Human Medicine, Lansing, USA
| | - Ming-Bo Huang
- Department of Biochemistry Microbiology and Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Venkat Katkoori
- Department of Surgery, Michigan State University College of Human Medicine, Lansing, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, USA
| | - Vincent Bond
- Department of Biochemistry Microbiology and Immunology, Morehouse School of Medicine, Atlanta, USA
| |
Collapse
|
189
|
Feng Y, Zou Z, Gao L, Zhang X, Wang T, Sun H, Liu Y, Chen X. Umbilical cord blood-derived stromal cells regulate megakaryocytic proliferation and migration through SDF-1/PECAM-1 pathway. Cell Biochem Biophys 2012; 64:5-15. [PMID: 22552856 DOI: 10.1007/s12013-012-9362-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have previously reported that human umbilical cord blood-derived stromal cells (hUCBDSCs) are able to enhance the expansion of CFU-Meg in vitro, particularly promote the megakaryocytic lineage recovery, and effectively protect the survival of irradiated mice. In this study, we demonstrated that hUCBDSCs secreted SDF-1 to stimulate PECAM-1 expression in HEL cells (MK cell line), and consequently promoted the proliferation and migration of HEL cells. On the other hand, SDF-1 knock down in hUCBDSCs or PECAM-1 knock down in HEL cells diminished or abrogated the above effect. In addition, SDF-1/PECAM-1 probably activated PI3K/Akt and MAPK/ERK1/2 pathways. This report for the first time defines a SDF-1/PECAM-1 signaling pathway in the proliferation and migration of MKs, which provides supportive evidence for the clinical applications of hUCBDSCs in the treatment of megakaryocytic injury.
Collapse
Affiliation(s)
- Yimei Feng
- Department of Hematology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Zwingenberger S, Yao Z, Jacobi A, Vater C, Valladares RD, Li C, Nich C, Rao AJ, Christman JE, Antonios JK, Gibon E, Schambach A, Mätzig T, Günther KP, Goodman SB, Stiehler M. Stem cell attraction via SDF-1α expressing fat tissue grafts. J Biomed Mater Res A 2012; 101:2067-74. [PMID: 23281045 DOI: 10.1002/jbm.a.34512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/08/2012] [Accepted: 10/24/2012] [Indexed: 12/22/2022]
Abstract
Mesenchymal stromal cell (MSCs) are key cellular components for site-specific tissue regeneration. The chemokine stromal derived factor 1 alpha (SDF-1α) is known to attract stem cells via the C-X-C chemokine receptor-4 (CXCR4) receptor. The aim of the study was to develop a model for stem cell attraction using SDF-1α overexpressing fat tissue grafts. Murine MSCs were lentiviral transduced to express the genes for enhanced green fluorescent protein, firefly luciferace, and human CXCR4 (hCXCR4). Murine fat tissue was adenoviral transduced to express SDF-1α and red fluorescent protein transgenes. MSCs were cultured on transwells with SDF-1α containing supernatants from transduced fat tissue. The numbers of migrated MSCs in four groups (with hCXCR4 positive (+) or hCXCR4 negative (-) MSCs with or without SDF-1α containing supernatant) were investigated. After 36 h of culture, 9025 ± 925 cells migrated through the membrane of the transwells in group 1 (CXCR4+/SDF-1α+), 4817 ± 940 cells in group 2 (CXCR4-/SDF-1α+), 2050 ± 766 cells in group 3 (CXCR4+/SDF-1α-), and 2108 ± 426 cells in group 4 (CXCR4-/SDF-1α-). Both, the presence of SDF-1α and the expression of hCXCR4 significantly increased the migration rates (p < 0.0001). MSCs overexpressing the CXCR4 receptor by lentiviral transduction are highly attracted by medium from SDF-1α expressing fat tissue in vitro. Thus, SDF-1α activated tissue grafts may be a strategy to enhance site-specific musculoskeletal tissue regeneration.
Collapse
Affiliation(s)
- Stefan Zwingenberger
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Wang HP, Liu CW, Chang HW, Tsai JW, Sung YZ, Chang LC. Cordyceps sinensis protects against renal ischemia/reperfusion injury in rats. Mol Biol Rep 2012. [DOI: 10.1007/s11033-012-2316-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
192
|
Abstract
Cell-derived vesicles represent a recently discovered mechanism for intercellular communication. We investigated their potential role in interaction of microbes with host organisms. We provide evidence that different stimuli induced isolated neutrophilic granulocytes to release microvesicles with different biologic properties. Only opsonized particles initiated the formation of microvesicles that were able to impair bacterial growth. The antibacterial effect of neutrophil-derived microvesicles was independent of production of toxic oxygen metabolites and opsonization or engulfment of the microbes, but depended on β(2) integrin function, continuous actin remodeling, and on the glucose supply. Neutrophil-derived microvesicles were detected in the serum of healthy donors, and their number was significantly increased in the serum of bacteremic patients. We propose a new extracellular mechanism to restrict bacterial growth and dissemination.
Collapse
|
193
|
Brzoska E, Kowalewska M, Markowska-Zagrajek A, Kowalski K, Archacka K, Zimowska M, Grabowska I, Czerwińska AM, Czarnecka-Góra M, Stremińska W, Jańczyk-Ilach K, Ciemerych MA. Sdf-1 (CXCL12) improves skeletal muscle regeneration via the mobilisation of Cxcr4 and CD34 expressing cells. Biol Cell 2012; 104:722-37. [PMID: 22978573 DOI: 10.1111/boc.201200022] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/11/2012] [Indexed: 01/27/2023]
Abstract
BACKGROUND INFORMATION The regeneration of skeletal muscles involves satellite cells, which are muscle-specific precursor cells. In muscles, injured either mechanically or as a consequence of a disease, such as muscular dystrophy, local release of the growth factors and cytokines leads to satellite cells activation, proliferation and differentiation of the resulting myoblasts, followed by the formation of new myofibres. Various cell types, such as stem and progenitor cells, originating from other tissues different than the muscle, are also able to follow a myogenic program. Participation of these cells in the repair process depends on their precise mobilisation to the site of the injury. RESULTS In this study, we showed that stromal-derived factor-1 (Sdf-1) impacts on the mobilisation of CXC chemokine receptor (Cxcr)4-positive cells and improves skeletal muscle regeneration. Analysis of isolated and in vitro cultured satellite cells showed that Sdf-1 did not influence myoblasts proliferation and expression of myogenic regulatory transcription factors but induced migration of the myoblasts in Cxcr4-dependent ways. This phenomenon was also associated with the increased activity of crucial extracellular matrix modifiers, i.e. metalloproteases Mmp-2 and Mmp-9. CONCLUSIONS Thus, positive impact of Sdf-1 on muscle regeneration is related to the mobilisation of endogenous cells, that is satellite cells and myoblasts, as well as non-muscle stem cells, expressing Cxcr4 and CD34.
Collapse
Affiliation(s)
- Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Tung SY, Chang SF, Chou MH, Huang WS, Hsieh YY, Shen CH, Kuo HC, Chen CN. CXC chemokine ligand 12/stromal cell-derived factor-1 regulates cell adhesion in human colon cancer cells by induction of intercellular adhesion molecule-1. J Biomed Sci 2012; 19:91. [PMID: 23098564 PMCID: PMC3488341 DOI: 10.1186/1423-0127-19-91] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/22/2012] [Indexed: 02/06/2023] Open
Abstract
Background The CXC chemokine ligand 12 (CXCL12)/stromal cell-derived factor-1 (SDF-1) and CXC receptor 4 (CXCR4) axis is involved in human colorectal cancer (CRC) carcinogenesis and can promote the progression of CRC. Interaction between CRC cells and endothelium is a key event in tumor progression. The aim of this study was to investigate the effect of SDF-1 on the adhesion of CRC cells. Methods Human CRC DLD-1 cells were used to study the effect of SDF-1 on intercellular adhesion molecule-1 (ICAM-1) expression and cell adhesion to endothelium. Results SDF-1 treatment induced adhesion of DLD-1 cells to the endothelium and increased the expression level of the ICAM-1. Inhibition of ICAM-1 by small interfering RNA (siRNA) and neutralizing antibody inhibited SDF-1-induced cell adhesion. By using specific inhibitors and short hairpin RNA (shRNA), we demonstrated that the activation of ERK, JNK and p38 pathways is critical for SDF-1-induced ICAM-1 expression and cell adhesion. Promoter activity and transcription factor ELISA assays showed that SDF-1 increased Sp1-, C/EBP-β- and NF-κB-DNA binding activities in DLD-1 cells. Inhibition of Sp1, C/EBP-β and NF-κB activations by specific siRNA blocked the SDF-1-induced ICAM-1 promoter activity and expression. The effect of SDF-1 on cell adhesion was mediated by the CXCR4. Conclusion Our findings support the hypothesis that ICAM-1 up-regulation stimulated by SDF-1 may play an active role in CRC cell adhesion.
Collapse
Affiliation(s)
- Shui-Yi Tung
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Jaerve A, Schira J, Müller HW. Concise review: the potential of stromal cell-derived factor 1 and its receptors to promote stem cell functions in spinal cord repair. Stem Cells Transl Med 2012. [PMID: 23197665 DOI: 10.5966/sctm.2012-0068] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transplanted stem cells provide beneficial effects on regeneration/recovery after spinal cord injury (SCI) by the release of growth-promoting factors, increased tissue preservation, and provision of a permissive environment for axon regeneration. A rise in chemokine stromal cell-derived factor 1 (SDF-1/CXCL12) expression levels in central nervous system (CNS) injury sites has been shown to play a central role in recruiting transplanted stem cells. Although technically more challenging, it has been shown that after SCI few endogenous stem cells are recruited via SDF-1/CXCR4 signaling. Evidence is accumulating that increasing SDF-1 levels at the injury site (e.g., by exogenous application or transfection methods) further enhances stem cell recruitment. Moreover, SDF-1 might, in addition to migration, also influence survival, proliferation, differentiation, and cytokine secretion of stem cells. Here, we discuss the experimental data available on the role of SDF-1 in stem and progenitor cell biology following CNS injury and suggest strategies for how manipulation of the SDF-1 system could facilitate stem cell-based therapeutic approaches in SCI. In addition, we discuss challenges such as how to circumvent off-target effects in order to facilitate the transfer of SDF-1 to the clinic.
Collapse
Affiliation(s)
- Anne Jaerve
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Center Düsseldorf, Düsseldorf, Germany
| | | | | |
Collapse
|
196
|
Kriechbaumer V, Nabok A, Widdowson R, Smith DP, Abell BM. Quantification of ligand binding to G-protein coupled receptors on cell membranes by ellipsometry. PLoS One 2012; 7:e46221. [PMID: 23049983 PMCID: PMC3458955 DOI: 10.1371/journal.pone.0046221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/28/2012] [Indexed: 12/18/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are prime drug targets and targeted by approximately 60% of current therapeutic drugs such as β-blockers, antipsychotics and analgesics. However, no biophysical methods are available to quantify their interactions with ligand binding in a native environment. Here, we use ellipsometry to quantify specific interactions of receptors within native cell membranes. As a model system, the GPCR-ligand CXCL12α and its receptor CXCR4 are used. Human-derived Ishikawa cells were deposited onto gold coated slides via Langmuir-Schaefer film deposition and interactions between the receptor CXCR4 on these cells and its ligand CXCL12α were detected via total internal reflection ellipsometry (TIRE). This interaction could be inhibited by application of the CXCR4-binding drug AMD3100. Advantages of this approach are that it allows measurement of interactions in a lipid environment without the need for labelling, protein purification or reconstitution of membrane proteins. This technique is potentially applicable to a wide variety of cell types and their membrane receptors, providing a novel method to determine ligand or drug interactions targeting GPCRs and other membrane proteins.
Collapse
Affiliation(s)
- Verena Kriechbaumer
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, United Kingdom.
| | | | | | | | | |
Collapse
|
197
|
Singh AK, Arya RK, Trivedi AK, Sanyal S, Baral R, Dormond O, Briscoe DM, Datta D. Chemokine receptor trio: CXCR3, CXCR4 and CXCR7 crosstalk via CXCL11 and CXCL12. Cytokine Growth Factor Rev 2012; 24:41-9. [PMID: 22989616 DOI: 10.1016/j.cytogfr.2012.08.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/20/2012] [Indexed: 12/16/2022]
Abstract
Although chemokines are well established to function in immunity and endothelial cell activation and proliferation, a rapidly growing literature suggests that CXC Chemokine receptors CXCR3, CXCR4 and CXCR7 are critical in the development and progression of solid tumors. The effect of these chemokine receptors in tumorigenesis is mediated via interactions with shared ligands I-TAC (CXCL11) and SDF-1 (CXCL12). Over the last decade, CXCR4 has been extensively reported to be overexpressed in most human solid tumors and has earned considerable attention toward elucidating its role in cancer metastasis. To enrich the existing armamentarium of anti-cancerous agents, many inhibitors of CXCL12-CXCR4 axis have emerged as additional or alternative agents for neo-adjuvant treatments and even many of them are in preclinical and clinical stages of their development. However, the discovery of CXCR7 as another receptor for CXCL12 with rather high binding affinity and recent reports about its involvement in cancer progression, has questioned the potential of "selective blockade" of CXCR4 as cancer chemotherapeutics. Interestingly, CXCR7 can also bind another chemokine CXCL11, which is an established ligand for CXCR3. Recent reports have documented that CXCR3 and their ligands are overexpressed in different solid tumors and regulate tumor growth and metastasis. Therefore, it is important to consider the interactions and crosstalk between these three chemokine receptors and their ligand mediated signaling cascades for the development of effective anti-cancer therapies. Emerging evidence also indicates that these receptors are differentially expressed in tumor endothelial cells as well as in cancer stem cells, suggesting their direct role in regulating tumor angiogenesis and metastasis. In this review, we will focus on the signals mediated by this receptor trio via their shared ligands and their role in tumor growth and progression.
Collapse
Affiliation(s)
- Anup Kumar Singh
- Drug Target Discovery and Development (DTDD) Division, CSIR-Central Drug Research Institute, Lucknow 226001, India
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Marlicz W, Zuba-Surma E, Kucia M, Blogowski W, Starzynska T, Ratajczak MZ. Various types of stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients with Crohn's disease. Inflamm Bowel Dis 2012; 18:1711-1722. [PMID: 22238186 DOI: 10.1002/ibd.22875] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/12/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Developmentally early cells, including hematopoietic stem progenitor cells (HSPCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), and very small embryonic-like stem cells (VSELs), are mobilized into peripheral blood (PB) in response to tissue/organ injury. We sought to determine whether these cells are mobilized into PB in patients with Crohn's disease (CD). METHODS Twenty-five patients with active CD, 20 patients in clinical remission, and 25 age-matched controls were recruited and PB samples harvested. The circulating CD133+/Lin-/CD45+ and CD34+/Lin-/CD45+ cells enriched for HSPCs, CD105+/STRO-1+/CD45- cells enriched for MSCs, CD34+/KDR+/CD31+/CD45-cells enriched for EPCs, and small CXCR4+CD34+CD133+ subsets of Lin-CD45- cells that correspond to the population of VSELs were counted by fluorescence-activated cell sorting (FACS) and evaluated by direct immunofluorescence staining for pluripotency embryonic markers and by reverse-transcription polymerase chain reaction (RT-PCR) for expression of messenger (m)RNAs for a panel of genes expressed in intestine epithelial stem cells. The serum concentration of factors involved in stem cell trafficking, such as stromal derived factor-1 (SDF-1), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Our data indicate that cells expressing markers for MSCs, EPCs, and small Oct-4+Nanog+SSEA-4+CXCR4+lin-CD45- VSELs are mobilized into PB in CD. The mobilized cells also expressed at the mRNA level genes playing a role in development and regeneration of gastrointestinal epithelium. All these changes were accompanied by increased serum concentrations of VEGF and HGF. CONCLUSIONS CD triggers the mobilization of MSCs, EPCs, and VSELs, while the significance and precise role of these mobilized cells in repair of damaged intestine requires further study.
Collapse
Affiliation(s)
- Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
| | | | | | | | | | | |
Collapse
|
199
|
Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjögren syndrome. Blood 2012; 120:3142-51. [PMID: 22927248 DOI: 10.1182/blood-2011-11-391144] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sjögren syndrome (SS) is a systemic autoimmune disease characterized by dry mouth and eyes, and the cellular and molecular mechanisms for its pathogenesis are complex. Here we reveal, for the first time, that bone marrow mesenchymal stem cells in SS-like NOD/Ltj mice and human patients were defective in immunoregulatory functions. Importantly, treatment with mesenchymal stem cells (MSCs) suppressed autoimmunity and restored salivary gland secretory function in both mouse models and SS patients. MSC treatment directed T cells toward Treg and Th2, while suppressing Th17 and Tfh responses, and alleviated disease symptoms. Infused MSCs migrated toward the inflammatory regions in a stromal cell-derived factor-1-dependent manner, as neutralization of stromal cell-derived factor-1 ligand CXCR4 abolished the effectiveness of bone marrow mesenchymal stem cell treatment. Collectively, our study suggests that immunologic regulatory functions of MSCs play an important role in SS pathogenesis, and allogeneic MSC treatment may provide a novel, effective, and safe therapy for patients with SS.
Collapse
|
200
|
Andoniadou CL, Gaston-Massuet C, Reddy R, Schneider RP, Blasco MA, Le Tissier P, Jacques TS, Pevny LH, Dattani MT, Martinez-Barbera JP. Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma. Acta Neuropathol 2012; 124:259-71. [PMID: 22349813 PMCID: PMC3400760 DOI: 10.1007/s00401-012-0957-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/02/2012] [Accepted: 02/04/2012] [Indexed: 01/22/2023]
Abstract
Activating mutations in the gene encoding β-catenin have been identified in the paediatric form of human craniopharyngioma (adamantinomatous craniopharyngioma, ACP), a histologically benign but aggressive pituitary tumour accounting for up to 10% of paediatric intracranial tumours. Recently, we generated an ACP mouse model and revealed that, as in human ACP, nucleocytoplasmic accumulation of β-catenin (β-cat(nc)) and over-activation of the Wnt/β-catenin pathway occurs only in a very small proportion of cells, which form clusters. Here, combining mouse genetics, fluorescence labelling and flow-sorting techniques, we have isolated these cells from tumorigenic mouse pituitaries and shown that the β-cat(nc) cells are enriched for colony-forming cells when cultured in stem cell-promoting media, and have longer telomeres, indicating shared properties with normal pituitary progenitors/stem cells (PSCs). Global gene profiling analysis has revealed that these β-cat(nc) cells express high levels of secreted mitogenic signals, such as members of the SHH, BMP and FGF family, in addition to several chemokines and their receptors, suggesting an important autocrine/paracrine role of these cells in the pathogenesis of ACP and a reciprocal communication with their environment. Finally, we highlight the clinical relevance of these findings by showing that these pathways are also up-regulated in the β-cat(nc) cell clusters identified in human ACP. As well as providing further support to the concept that pituitary stem cells may play an important role in the oncogenesis of human ACP, our data reveal novel disease biomarkers and potential pharmacological targets for the treatment of these devastating childhood tumours.
Collapse
Affiliation(s)
- Cynthia L. Andoniadou
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Carles Gaston-Massuet
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Rukmini Reddy
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Ralph P. Schneider
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Paul Le Tissier
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Thomas S. Jacques
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
- Department of Histopathology, Great Ormond Street Hospital for Children, London, WC1N 3JH UK
| | - Larysa H. Pevny
- Department of Cell and Developmental Biology, Neuroscience Center, University of North Carolina, Chapel Hill, NC USA
| | - Mehul T. Dattani
- Developmental Endocrinology Research Group, UCL Institute of Child Health, London, WC1N 1EH UK
| | | |
Collapse
|