151
|
Characterizing steroid hormone receptor chromatin binding landscapes in male and female breast cancer. Nat Commun 2018; 9:482. [PMID: 29396493 PMCID: PMC5797120 DOI: 10.1038/s41467-018-02856-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/04/2018] [Indexed: 11/09/2022] Open
Abstract
Male breast cancer (MBC) is rare and poorly characterized. Like the female counterpart, most MBCs are hormonally driven, but relapse after hormonal treatment is also noted. The pan-hormonal action of steroid hormonal receptors, including estrogen receptor alpha (ERα), androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) in this understudied tumor type remains wholly unexamined. This study reveals genomic cross-talk of steroid hormone receptor action and interplay in human tumors, here in the context of MBC, in relation to the female disease and patient outcome. Here we report the characterization of human breast tumors of both genders for cistromic make-up of hormonal regulation in human tumors, revealing genome-wide chromatin binding landscapes of ERα, AR, PR, GR, FOXA1, and GATA3 and enhancer-enriched histone mark H3K4me1. We integrate these data with transcriptomics to reveal gender-selective and genomic location-specific hormone receptor actions, which associate with survival in MBC patients.
Collapse
|
152
|
Wang C, Pan B, Zhu H, Zhou Y, Mao F, Lin Y, Xu Q, Sun Q. Prognostic value of androgen receptor in triple negative breast cancer: A meta-analysis. Oncotarget 2018; 7:46482-46491. [PMID: 27374089 PMCID: PMC5216811 DOI: 10.18632/oncotarget.10208] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/03/2016] [Indexed: 12/31/2022] Open
Abstract
Background Androgen receptor (AR) is a promising therapeutic target for breast cancer. However, its prognostic value remains controversial in triple negative breast cancer (TNBC). Here we present a meta-analysis to investigate the correlation between AR expression and TNBC prognosis. Results Thirteen relevant studies with 2826 TNBC patients were included. AR positive rate was 24.4%. AR+ patients tended to have lower tumor grade (p< 0.001), but more lymph node metastases (p < 0.01). AR positivity was associated with prolonged disease free survival (HR 0.809, 95% CI = 0.659-0.995, p < 0.05), but had no significant impact on overall survival (HR 1.270, 95% CI=0.904-1.782, p = 0.168). No difference in survival existed between subgroups using different AR or estrogen receptor cutoff values. Materials and methods Literature search was performed in Pubmed, Embase and Cochrane Central Register of Controlled Trials databases to identify relevant articles on AR and TNBC prognosis. Fixed- and random-effect meta-analyses were conducted based on the heterogeneity of included studies. Heterogeneity and impacts of covariates were further evaluated by subgroup analyses and meta-regression. Conclusion AR positivity is associated with lower risk of disease recurrence in TNBC. Further clinical studies are warranted to clarify its prognostic role on TNBC recurrence and survival.
Collapse
Affiliation(s)
- Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Bo Pan
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Hanjiang Zhu
- Department of Dermatology, University of California, San Francisco, CA, USA
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Feng Mao
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yan Lin
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qianqian Xu
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
153
|
Daemen A, Manning G. HER2 is not a cancer subtype but rather a pan-cancer event and is highly enriched in AR-driven breast tumors. Breast Cancer Res 2018; 20:8. [PMID: 29382369 PMCID: PMC5791377 DOI: 10.1186/s13058-018-0933-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 01/09/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Approximately one in five breast cancers are driven by amplification and overexpression of the human epidermal growth factor receptor 2 (HER2) receptor kinase, and HER2-enriched (HER2E) is one of four major transcriptional subtypes of breast cancer. We set out to understand the genomics of HER2 amplification independent of subtype, and the underlying drivers and biology of HER2E tumors. METHODS We investigated published genomic data from 3155 breast tumors and 5391 non-breast tumors. RESULTS HER2 amplification is a distinct driver event seen in all breast cancer subtypes, rather than a subtype marker, with major characteristics restricted to amplification and overexpression of HER2 and neighboring genes. The HER2E subtype has a distinctive transcriptional landscape independent of HER2A that reflects androgen receptor signaling as replacement for estrogen receptor (ER)-driven tumorigenesis. HER2 amplification is also an event in 1.8% of non-breast tumors. CONCLUSIONS These discoveries reveal therapeutic opportunities for combining anti-HER2 therapy with anti-androgen agents in breast cancer, and highlight the potential for broader therapeutic use of HER2 inhibitors.
Collapse
Affiliation(s)
- Anneleen Daemen
- Bioinformatics & Computational Biology, Genentech, Inc, 1 DNA Way, MS444a, South San Francisco, CA, 94080, USA.
| | - Gerard Manning
- Bioinformatics & Computational Biology, Genentech, Inc, 1 DNA Way, MS444a, South San Francisco, CA, 94080, USA.
| |
Collapse
|
154
|
Shen H, Zhao L, Feng X, Xu C, Li C, Niu Y. Lin28A activates androgen receptor via regulation of c-myc and promotes malignancy of ER-/Her2+ breast cancer. Oncotarget 2018; 7:60407-60418. [PMID: 27494865 PMCID: PMC5312392 DOI: 10.18632/oncotarget.11004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/19/2016] [Indexed: 12/31/2022] Open
Abstract
Having previously demonstrated the co-expression status of the Lin28A and androgen receptor (AR) in ER−/Her2+ breast cancer, we tested the hypothesis that Lin28A can activate AR and promotes growth of ER−/Her2+ breast cancer. The expression of Lin28A and AR were examined after Lin28A siRNA and Lin28A plasmid were transfected into ER−/Her2+ breast cancer cells. Chromatin immune-precipitation (ChIP) analysis and Luciferase Assays were used to evaluate the effect of Lin28A and c-myc on AR promoter activity. MTT assays, Boyden chamber invasion assays, colony formation assays and flow cytometry analysis were performed. ER−/Her2+ breast cancer cells which transfected with Lin28A siRNAs and Lin28A plasmid were injected into nude mice, and tumorigenesis was monitored. Our data showed that Lin28A can induced AR expression in ER−/Her2+ breast cancer cells. ChIP analysis showed that Lin28A stimulates the recruitment of c-Myc to the promoter of the AR gene. Lin28A enhanced growth ability, colonies ability, cells proliferation activities, invasive ability and inhibited cells apoptosis of ER−/Her2+ breast cancer cells. Lin28A high expression cells exhibited significantly higher tumorigenic ability in vivo. Our study demonstrates that Lin28A can activates androgen receptor via regulation of c-myc and promotes malignancy of ER−/Her2+ breast cancer. Our findings underline a novel role for Lin28A in breast cancer development and activation of the AR axis.
Collapse
Affiliation(s)
- Honghong Shen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Ti Yuan Bei, Tianjin 300060, People's Republic of China
| | - Lin Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Ti Yuan Bei, Tianjin 300060, People's Republic of China
| | - Xiaolong Feng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Ti Yuan Bei, Tianjin 300060, People's Republic of China
| | - Cong Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Ti Yuan Bei, Tianjin 300060, People's Republic of China
| | - Congying Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Ti Yuan Bei, Tianjin 300060, People's Republic of China
| | - Yun Niu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Ti Yuan Bei, Tianjin 300060, People's Republic of China
| |
Collapse
|
155
|
Kwilas AR, Ardiani A, Gameiro SR, Richards J, Hall AB, Hodge JW. Androgen deprivation therapy sensitizes triple negative breast cancer cells to immune-mediated lysis through androgen receptor independent modulation of osteoprotegerin. Oncotarget 2018; 7:23498-511. [PMID: 27015557 PMCID: PMC5029642 DOI: 10.18632/oncotarget.8274] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 02/28/2016] [Indexed: 12/31/2022] Open
Abstract
Among breast cancer types, triple-negative breast cancer (TNBC) has the fewest treatment options and the lowest 5-year survival rate. Androgen receptor (AR) inhibition has displayed efficacy against breast cancer preclinically and is currently being examined clinically in AR positive TNBC patients. Androgen deprivation has been shown to induce immunogenic modulation; the alteration of tumor cell phenotype resulting in increased sensitivity to immune-mediated killing. We evaluated the ability of AR inhibition to reduce the growth and improve the immune-mediated killing of breast cancer cells with differing expression of the estrogen receptor and AR. While AR expression was required for the growth inhibitory effects of enzalutamide on breast cancer cells, both enzalutamide and abiraterone improved the sensitivity of breast cancer cells to immune-mediated lysis independent of detectable AR expression. This increase in sensitivity was linked to an increase in cell surface tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor expression as well as a significant reduction in the expression of osteoprotegerin (OPG). The reduction in OPG was further examined and found to be critical for the increase in sensitivity of AR- TNBC cells to immune-mediated killing. The data presented herein further support the use of AR inhibition therapy in the AR+ TNBC setting. These data, however, also support the consideration of AR inhibition therapy for the treatment of AR- TNBC, especially in combination with cancer immunotherapy, providing a potential novel therapeutic option for select patients.
Collapse
Affiliation(s)
- Anna R Kwilas
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andressa Ardiani
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob Richards
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ashley B Hall
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
156
|
Echavarria I, López-Tarruella S, Picornell A, García-Saenz JÁ, Jerez Y, Hoadley K, Gómez HL, Moreno F, Monte-Millan MD, Márquez-Rodas I, Alvarez E, Ramos-Medina R, Gayarre J, Massarrah T, Ocaña I, Cebollero M, Fuentes H, Barnadas A, Ballesteros AI, Bohn U, Perou CM, Martin M. Pathological Response in a Triple-Negative Breast Cancer Cohort Treated with Neoadjuvant Carboplatin and Docetaxel According to Lehmann's Refined Classification. Clin Cancer Res 2018; 24:1845-1852. [PMID: 29378733 DOI: 10.1158/1078-0432.ccr-17-1912] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/09/2017] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
Purpose: Triple-negative breast cancer (TNBC) requires the iden- tification of reliable predictors of response to neoadjuvant chemotherapy (NACT). For this purpose, we aimed to evaluate the performance of the TNBCtype-4 classifier in a cohort of patients with TNBC treated with neoadjuvant carboplatin and docetaxel (TCb).Methods: Patients with TNBC were accrued in a nonrandomized trial of neoadjuvant carboplatin AUC 6 and docetaxel 75 mg/m2 for six cycles. Response was evaluated in terms of pathologic complete response (pCR, ypT0/is ypN0) and residual cancer burden by Symmans and colleagues. Lehmann's subtyping was performed using the TNBCtype online tool from RNAseq data, and germline sequencing of a panel of seven DNA damage repair genes was conducted.Results: Ninety-four out of the 121 patients enrolled in the trial had RNAseq available. The overall pCR rate was 44.7%. Lehmann subtype distribution was 34.0% BL1, 20.2% BL2, 23.4% M, 14.9% LAR, and 7.4% were classified as ER+. Response to NACT with TCb was significantly associated with Lehmann subtype (P = 0.027), even in multivariate analysis including tumor size and nodal involvement, with BL1 patients achieving the highest pCR rate (65.6%), followed by BL2 (47.4%), M (36.4%), and LAR (21.4%). BL1 was associated with a significant younger age at diagnosis and higher ki67 values. Among our 10 germline mutation carriers, 30% were BL1, 40% were BL2, and 30% were M.Conclusions: TNBCtype-4 is associated with significantly different pCR rates for the different subtypes, with BL1 and LAR displaying the best and worse responses to NACT, respectively. Clin Cancer Res; 24(8); 1845-52. ©2018 AACR.
Collapse
Affiliation(s)
- Isabel Echavarria
- Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), CiberOnc, Madrid, Spain.
| | - Sara López-Tarruella
- Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), CiberOnc, Madrid, Spain
| | - Antoni Picornell
- Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), CiberOnc, Madrid, Spain
| | | | - Yolanda Jerez
- Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), CiberOnc, Madrid, Spain
| | - Katherine Hoadley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Henry L Gómez
- Medical Oncology, Instituto Nacional de Enfermedades Neoplasicas - INEN, Lima, Peru
| | | | | | - Iván Márquez-Rodas
- Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), CiberOnc, Madrid, Spain
| | - Enrique Alvarez
- Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), CiberOnc, Madrid, Spain
| | - Rocío Ramos-Medina
- Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), CiberOnc, Madrid, Spain
| | - Javier Gayarre
- Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), CiberOnc, Madrid, Spain
| | - Tatiana Massarrah
- Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), CiberOnc, Madrid, Spain
| | - Inmaculada Ocaña
- Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), CiberOnc, Madrid, Spain
| | - María Cebollero
- Department of Pathology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Hugo Fuentes
- Medical Oncology, Instituto Nacional de Enfermedades Neoplasicas - INEN, Lima, Peru
| | - Agusti Barnadas
- Medical Oncology Department, Hospital de Sant Pau, Barcelona, Spain
| | | | - Uriel Bohn
- Medical Oncology, Hospital de Gran Canaria Dr. Negrin, Las Palmas, Spain
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Miguel Martin
- Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), Universidad Complutense, CiberOnc, GEICAM, Madrid, Spain.
| |
Collapse
|
157
|
Christenson JL, Trepel JB, Ali HY, Lee S, Eisner JR, Baskin-Bey ES, Elias AD, Richer JK. Harnessing a Different Dependency: How to Identify and Target Androgen Receptor-Positive Versus Quadruple-Negative Breast Cancer. Discov Oncol 2018; 9:82-94. [PMID: 29340907 DOI: 10.1007/s12672-017-0314-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022] Open
Abstract
The androgen receptor (AR) is a promising therapeutic target for a subset of triple-negative breast cancers (TNBCs) in which AR is expressed. However, the mechanistic action of AR and the degree to which primary and metastatic tumors depend on AR, both before and after conventional treatment, remain to be defined. We discuss preclinical and clinical data for AR+ TNBC, the difficulties in monitoring AR protein levels, new methods for determining AR status, the influence of AR on "stemness" in the context of TNBC, the role of combined inhibition of sex steroid production and AR, and the role of AR in regulation of the immune system. Although the exact role of AR in subsets of TNBC is still being characterized, new therapies that target AR and the production of androgens may provide additional options for patients with TNBC for whom chemotherapy is currently the sole treatment option.
Collapse
Affiliation(s)
- Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jane B Trepel
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Sunmin Lee
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Anthony D Elias
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
158
|
Uva P, Cossu-Rocca P, Loi F, Pira G, Murgia L, Orrù S, Floris M, Muroni MR, Sanges F, Carru C, Angius A, De Miglio MR. miRNA-135b Contributes to Triple Negative Breast Cancer Molecular Heterogeneity: Different Expression Profile in Basal-like Versus non-Basal-like Phenotypes. Int J Med Sci 2018; 15:536-548. [PMID: 29725243 PMCID: PMC5930454 DOI: 10.7150/ijms.23402] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/05/2018] [Indexed: 01/03/2023] Open
Abstract
The clinical and genetic heterogeneity of Triple Negative Breast Cancer (TNBC) and the lack of unambiguous molecular targets contribute to the inadequacy of current therapeutic options for these variants. MicroRNAs (miRNA) are a class of small highly conserved regulatory endogenous non-coding RNA, which can alter the expression of genes encoding proteins and may play a role in the dysregulation of cellular pathways. Our goal was to improve the knowledge of the molecular pathogenesis of TNBC subgroups analyzing the miRNA expression profile, and to identify new prognostic and predictive biomarkers. We conducted a human miRNome analysis by TaqMan Low Density Array comparing different TNBC subtypes, defined by immunohistochemical basal markers EGFR and CK5/6. RT-qPCR confirmed differential expression of microRNAs. To inspect the function of the selected targets we perform Gene Ontology and KEGG enrichment analysis. We identified a single miRNA signature given by miR-135b expression level, which was strictly related to TNBC with basal-like phenotype. miR-135b target analysis revealed a role in the TGF-beta, WNT and ERBB pathways. A significant positive correlation was identified between neoplastic proliferative index and miR-135b expression. These findings confirm the oncogenic roles of miR-135b in the pathogenesis of TNBC expressing basal markers. A potential negative prognostic role of miR-135b overexpression might be related to the positive correlation with high proliferative index. Our study implies potential clinical applications: miR-135b could be a potential therapeutic target in basal-like TNBCs.
Collapse
Affiliation(s)
- Paolo Uva
- CRS4, Science and Technology Park Polaris, Piscina Manna, 09010, Pula, Cagliari, Italy
| | - Paolo Cossu-Rocca
- Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 8, 07100, Sassari, Italy.,Department of Diagnostic Services, Pathology Unit, "Giovanni Paolo II" Hospital, ASSL Olbia - ATS Sardegna, Via Bazzoni-Sircana, 07026, Olbia, Italy
| | - Federica Loi
- Osservatorio Epidemiologico Veterinario Regionale, Via XX Settembre 9, OEVR, 09125, Cagliari, Italy
| | - Giovanna Pira
- Department of Biomedical Sciences, University of Sassari, 07100,Viale San Pietro 43b, Sassari, Italy
| | - Luciano Murgia
- Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 8, 07100, Sassari, Italy
| | - Sandra Orrù
- Department of Pathology, "A. Businco" Oncologic Hospital, ASL Cagliari, Via Jenner 1, 09121, Cagliari, Italy
| | - Matteo Floris
- CRS4, Science and Technology Park Polaris, Piscina Manna, 09010, Pula, Cagliari, Italy
| | - Maria Rosaria Muroni
- Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 8, 07100, Sassari, Italy
| | - Francesca Sanges
- Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 8, 07100, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100,Viale San Pietro 43b, Sassari, Italy
| | - Andrea Angius
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042, Monserrato (CA), Italy
| | - Maria Rosaria De Miglio
- Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 8, 07100, Sassari, Italy
| |
Collapse
|
159
|
Mayer IA, Dent R, Tan T, Savas P, Loi S. Novel Targeted Agents and Immunotherapy in Breast Cancer. Am Soc Clin Oncol Educ Book 2017; 37:65-75. [PMID: 28561712 DOI: 10.1200/edbk_175631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The treatment of breast cancer is generally determined according to breast cancer subtype: hormone receptor-positive (luminal), triple-negative (basal-like), and HER2-overexpressing breast cancer. Recent years have seen the development of exciting novel and potent therapeutics based on molecular pathways, immune modulation, and antibody conjugates. In this article, we cover new and emerging therapeutic areas and ongoing clinical trials that may result in further improvements in breast cancer outcomes.
Collapse
Affiliation(s)
- Ingrid A Mayer
- From the Vanderbilt University Medical Center, Nashville, TN; Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore, Singapore; Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Rebecca Dent
- From the Vanderbilt University Medical Center, Nashville, TN; Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore, Singapore; Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Tira Tan
- From the Vanderbilt University Medical Center, Nashville, TN; Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore, Singapore; Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Peter Savas
- From the Vanderbilt University Medical Center, Nashville, TN; Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore, Singapore; Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sherene Loi
- From the Vanderbilt University Medical Center, Nashville, TN; Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore, Singapore; Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
160
|
Lyons TG, Traina TA. Androgen Receptor-Targeted Therapy for Breast Cancer. CURRENT BREAST CANCER REPORTS 2017. [DOI: 10.1007/s12609-017-0261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
161
|
Asadian P, Finnie G, Bienzle D. The expression profile of sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) in feline tissues. Vet Immunol Immunopathol 2017; 195:7-18. [PMID: 29249320 DOI: 10.1016/j.vetimm.2017.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/29/2017] [Accepted: 11/02/2017] [Indexed: 12/15/2022]
Abstract
SAMHD1 restricts lentiviruses by limiting availability of deoxynucleoside triphosphates for reverse transcription. HIV-2 and SIV have virion-associated proteins to counteract SAMHD1. Cats have an ortholog to human SAMHD1 and the FIV is restricted by human SAMHD1, but expression of feline SAMHD1 is unknown. Using a whole-body tissue microarray consisting of 24 tissues for immunohistochemistry, SAMHD1 expression was identified in a wide range of cat tissues. SAMHD1 was most strongly expressed in skin and mucosal epithelium, and in hemolymphatic and spermatogenic tissues. Both nuclear and cytoplasmic expression was detected. Feline cell lines susceptible to FIV infection also highly expressed SAMHD1. Preferential expression of SAMHD1 at sites of viral entry and replication supports a role for feline SAMHD1 in restricting FIV.
Collapse
Affiliation(s)
- Peyman Asadian
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Gillian Finnie
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
162
|
Secreto G, Muti P, Sant M, Meneghini E, Krogh V. Medical ovariectomy in menopausal breast cancer patients with high testosterone levels: a further step toward tailored therapy. Endocr Relat Cancer 2017; 24:C21-C29. [PMID: 28814452 DOI: 10.1530/erc-17-0251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022]
Abstract
Five years of adjuvant therapy with anti-estrogens reduce the incidence of disease progression by about 50% in estrogen receptor-positive breast cancer patients, but late relapse can still occur after anti-estrogens have been discontinued. In these patients, excessive androgen production may account for renewed excessive estrogen formation and increased risks of late relapse. In the 50% of patients who do not benefit with anti-estrogens, the effect of therapy is limited by de novo or acquired resistance to treatment. Androgen receptor and epidermal growth factor receptor overexpression are recognized mechanisms of endocrine resistance suggesting the involvement of androgens as activators of the androgen receptor pathway and as stimulators of epidermal growth factor synthesis and function. Data from a series of prospective studies on operable breast cancer patients, showing high serum testosterone levels are associated to increased risk of recurrence, provide further support to a role for androgens in breast cancer progression. According to the above reported evidence, we proposed to counteract excessive androgen production in the adjuvant setting of estrogen receptor-positive patients and suggested selecting postmenopausal patients with elevated levels of serum testosterone, marker of ovarian hyperandrogenemia, for adjuvant treatment with a gonadotropins-releasing hormone analogue (medical oophorectomy) in addition to standard therapy with anti-estrogens. The proposed approach provides an attempt of personalized medicine that needs to be further investigated in clinical trials.
Collapse
Affiliation(s)
- Giorgio Secreto
- Epidemiology and Prevention UnitFondazione IRCCS - Istituto Nazionale dei Tumori, Milano, Italy
| | - Paola Muti
- Department of OncologyMcMaster University, Hamilton, Ontario, Canada
| | - Milena Sant
- Analytical Epidemiology and Health Impact UnitFondazione IRCCS, Istituto Nazionale dei Tumori, Milano, Italy
| | - Elisabetta Meneghini
- Analytical Epidemiology and Health Impact UnitFondazione IRCCS, Istituto Nazionale dei Tumori, Milano, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention UnitFondazione IRCCS - Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
163
|
Park S, Koh E, Koo JS, Kim SI, Park BW, Kim KS. Lack of both androgen receptor and forkhead box A1 (FOXA1) expression is a poor prognostic factor in estrogen receptor-positive breast cancers. Oncotarget 2017; 8:82940-82955. [PMID: 29137314 PMCID: PMC5669940 DOI: 10.18632/oncotarget.20937] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/18/2017] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to examine the associations between androgen receptor (AR) and forkhead box A1 (FOXA1) and to investigate clinicopathological features and survival according to both biomarker status in estrogen receptor (ER)-positive breast cancers using in vitro study, patient cohort data, and the cBioPortal for Cancer Genomics and Kaplan-Meier Plotter websites. Experiments using T47D and ZR75-1 demonstrated AR-overexpressing cell lines decreased in cell proliferation through downregulation of ER, but FOXA1 did not change. Knockdown of FOXA1 resulted in a significantly reduced cell viability. Patients with immunohistochemically AR(-)/FOXA1(-) tumor frequently showed node metastasis, high grade, and high Ki-67 proliferation, therefore, significantly worse survival in ER-positive disease. AR and FOXA1 mRNA levels were significantly higher in ER-positive than in ER-negative tumors and AR-low/FOXA1-low tumors showed high grade, frequent basal-like subtype and worse disease-free survival in ER-positive cancers of public gene dataset, similarly to patient cohort results. The Kaplan-Meier Plotter analysis independently validated patients with both low AR/FOXA1 tumor were significantly associated with worse relapse-free survival in ER-positive cancers. This study suggests that distinctive clinicopathological features according to AR and FOXA1 are determined and a lack of both biomarkers is an independent poor prognostic factor in ER-positive tumors.
Collapse
Affiliation(s)
- Seho Park
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
- Frontier Research Institute of Convergence Sports Science, Yonsei University, Seoul, South Korea
| | - Eunjin Koh
- Department of Biochemistry and Molecular Biology, Institute for Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Byeong-Woo Park
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyung-Sup Kim
- Department of Biochemistry and Molecular Biology, Institute for Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
164
|
Meng S, Liu G, Su L, Sun L, Wu D, Wang L, Zheng Z. Functional clusters analysis and research based on differential coexpression networks. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1358669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Shuai Meng
- College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| | - Guixia Liu
- College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| | - Lingtao Su
- College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| | - Liyan Sun
- College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| | - Di Wu
- College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| | - Lingwei Wang
- College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| | - Zhao Zheng
- College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| |
Collapse
|
165
|
Chen WY, Tsai YC, Yeh HL, Suau F, Jiang KC, Shao AN, Huang J, Liu YN. Loss of SPDEF and gain of TGFBI activity after androgen deprivation therapy promote EMT and bone metastasis of prostate cancer. Sci Signal 2017; 10:10/492/eaam6826. [PMID: 28811384 DOI: 10.1126/scisignal.aam6826] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Androgen deprivation therapy (ADT) targeting the androgen receptor (AR) is a standard therapeutic regimen for treating prostate cancer. However, most tumors progress to metastatic castration-resistant prostate cancer after ADT. We identified the type 1, 2, and 4 collagen-binding protein transforming growth factor-β (TGFβ)-induced protein (TGFBI) as an important factor in the epithelial-to-mesenchymal transition (EMT) and malignant progression of prostate cancer. In prostate cancer cell lines, AR signaling stimulated the activity of the transcription factor SPDEF, which repressed the expression of TGFBI ADT, AR antagonism, or overexpression of TGFBI inhibited the activity of SPDEF and enhanced the proliferation rates of prostate cancer cells. Knockdown of TGFBI suppressed migration and proliferation in cultured cells and reduced prostate tumor growth and brain and bone metastasis in xenograft models, extending the survival of tumor-bearing mice. Analysis of prostate tissue samples collected before and after ADT from the same patients showed that ADT reduced the nuclear abundance of SPDEF and increased the production of TGFBI. Our findings suggest that induction of TGFBI promotes prostate cancer growth and metastasis and can be caused by dysregulation or therapeutic inhibition of AR signaling.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuan-Chin Tsai
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Lien Yeh
- Institute of Information System and Applications, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Florent Suau
- Department of Microbiology, Faculty of Pharmacy, Dicle University, Diyarbakir 21280, Turkey
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ai-Ning Shao
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
166
|
Gucalp A, Traina TA. The Androgen Receptor: Is It a Promising Target? Ann Surg Oncol 2017; 24:2876-2880. [DOI: 10.1245/s10434-017-5961-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Indexed: 11/18/2022]
|
167
|
Pure Apocrine Carcinomas Represent a Clinicopathologically Distinct Androgen Receptor-Positive Subset of Triple-Negative Breast Cancers. Am J Surg Pathol 2017; 40:1109-16. [PMID: 27259012 DOI: 10.1097/pas.0000000000000671] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Apocrine carcinomas comprise ∼1% of all breast cancers and are characterized by large cells bearing abundant eosinophilic granular cytoplasm, round nuclei, and prominent nucleoli. They are typically estrogen receptor/progesterone receptor/HER2 negative, making them unresponsive to typical hormonal or HER2-based chemotherapy. However, this subtype of triple-negative breast cancers expresses androgen receptor (AR), a feature not shared by most nonapocrine triple-negative cancers (NA-TNCs). AR therefore represents a potential diagnostic tool and therapeutic target for apocrine breast carcinoma. All pure apocrine carcinomas diagnosed during a 10-year period were reviewed, and clinicopathologic characteristics were compared with a control group of 26 NA-TNC cases. Twenty apocrine carcinomas were identified (∼0.8% of all breast cancers). The mean age at diagnosis was 69.3 years for apocrine carcinomas and 56.7 years for NA-TNC. All apocrine carcinomas and no NA-TNC were AR positive. The proportions of apocrine carcinoma grades varied, with G1 being seen in 15% of patients, G2 in 55%, and G3 in 30%. In contrast, 100% of NA-TNC cases were G3. The majority of apocrine carcinomas presented at low T stage (T1: 70%; T2: 20%; T3: 10%; T4: 0%), whereas NA-TNC cases more often presented at T2 or higher (T1: 46.2%; T2: 30.8%; T3: 11.5%; T4: 11.5%). Thirty percent of apocrine carcinomas and 30.8% of NA-TNCs had nodal metastases at presentation. Apocrine carcinomas had a favorable clinical prognosis, with 80% of patients showing no evidence of disease-related morbidity or mortality (mean follow-up: 45.2 mo). Pure apocrine carcinomas represent a clinicopathologically distinct subgroup of triple-negative breast cancer characterized by AR positivity. When compared with NA-TNC, apocrine carcinomas more often present in older women with lower grade and T stage, a group in which a more conservative treatment regimen is often desired.
Collapse
|
168
|
Inhibition of the androgen receptor induces a novel tumor promoter, ZBTB46, for prostate cancer metastasis. Oncogene 2017; 36:6213-6224. [DOI: 10.1038/onc.2017.226] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/29/2017] [Accepted: 05/27/2017] [Indexed: 12/17/2022]
|
169
|
Elebro K, Bendahl PO, Jernström H, Borgquist S. Androgen receptor expression and breast cancer mortality in a population-based prospective cohort. Breast Cancer Res Treat 2017. [PMID: 28643022 PMCID: PMC5602002 DOI: 10.1007/s10549-017-4343-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Purpose The increase in clinical trials with androgen receptor (AR)-targeting drugs emphasizes the need of clarifying the role of AR expression in different breast cancer subtypes. AR confers good prognosis in estrogen receptor positive (ER+) breast cancer, but its role in ER-negative (ER−) breast cancer is unclear. The aim of this study was to elaborate on previous findings of a differential prognostic role for AR depending on ER status, using breast cancer mortality (BCM) as endpoint, in a population-based cohort from the Malmö Diet and Cancer Study. Methods Immunohistochemical AR expression was assessed in 910 women with invasive breast cancer diagnosed 1991–2010, supplemented with clinicopathological information, vital status, and cause of death, with the last follow-up in December 2014 (median 10 years). Survival analyses according to AR status and AR/ER combinations were performed. Results AR expression was available for 671 tumors. AR+ (n = 573, 85%) was associated with favorable established tumor markers and lower BCM in univariable analysis, especially during the first 5 years following diagnosis [HR 0.4; 95% confidence intervals (CI) 0.2–0.7]. Multivariable analysis for short-term follow-up indicated higher BCM among patients with AR+ER− tumors (HR 3.5; 95% CI 1.4–9.1) than other AR and ER combinations. Conclusions AR expression added prognostic information to ER expression with respect to short-term prognosis. The worst prognosis was seen for patients with AR+/ER− tumors in short-term follow-up, supporting the pre-specified hypothesis. However, larger cohorts are needed for further characterization of the role of AR expression in ER− breast cancer.
Collapse
Affiliation(s)
- Karin Elebro
- Division of Oncology and Pathology, Clinical Sciences Lund, Lund University, Lund, Sweden.
- Department of Plastic and Reconstructive Surgery, Skåne University Hospital, Jan Waldenströms gata 18, 205 02, Malmö, Sweden.
| | - Pär-Ola Bendahl
- Division of Oncology and Pathology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Helena Jernström
- Division of Oncology and Pathology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Signe Borgquist
- Division of Oncology and Pathology, Clinical Sciences Lund, Lund University, Lund, Sweden
- Clinical Trial Unit, Forum South, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
170
|
Barton VN, Christenson JL, Gordon MA, Greene LI, Rogers TJ, Butterfield K, Babbs B, Spoelstra NS, D'Amato NC, Elias A, Richer JK. Androgen Receptor Supports an Anchorage-Independent, Cancer Stem Cell-like Population in Triple-Negative Breast Cancer. Cancer Res 2017; 77:3455-3466. [PMID: 28512248 DOI: 10.1158/0008-5472.can-16-3240] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/17/2017] [Accepted: 05/10/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Valerie N Barton
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Michael A Gordon
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Lisa I Greene
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Thomas J Rogers
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Kiel Butterfield
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Beatrice Babbs
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Nicole S Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Nicholas C D'Amato
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Anthony Elias
- Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus Aurora, Colorado.
| |
Collapse
|
171
|
Naderi A. C1orf64 is a novel androgen receptor target gene and coregulator that interacts with 14-3-3 protein in breast cancer. Oncotarget 2017; 8:57907-57933. [PMID: 28915724 PMCID: PMC5593696 DOI: 10.18632/oncotarget.17826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
This study investigated the network of genes that are co-expressed with androgen receptor (AR) to discover novel AR targets in breast cancer. Bioinformatics analysis of two datasets from breast cancer cell lines resulted in the identification of an AR-gene signature constituted of 98 genes that highly correlated with AR expression. Notably, C1orf64 showed the highest positive correlation with AR across the datasets with a correlation coefficient (CC) of 0.737. In addition, C1orf64 closely correlated with AR expression in primary and metastatic breast tumors and C1orf64 expression was relatively higher in breast tumors with a lower grade and lobular histology. Furthermore, there is a functional interplay between AR and C1orf64 in breast cancer. In this process, AR activation directly represses C1orf64 transcription and C1orf64, in turn, interacts with AR as a corepressor and negatively regulates the AR-mediated induction of prolactin-induced protein (PIP) and AR reporter activity. Moreover, the corepressor effect of C1orf64 results in a reduction of AR binding to PIP promoter. The other aspect of this interplay involves a cross-talk between AR and estrogen receptor (ER) signaling in which C1orf64 silencing intensifies the AR-mediated down-regulation of ER target gene, progesterone receptor. Therefore, the repression of C1orf64 by AR provides an underlying mechanism for the AR inhibitory effects on ER signaling. To elucidate the biochemical mechanisms of C1orf64 function, this study demonstrates that C1orf64 is a phosphothreonine protein that interacts with the chaperone protein 14-3-3. In summary, C1orf64 is a novel AR coregulator and a 14-3-3 binding partner in breast cancer.
Collapse
Affiliation(s)
- Ali Naderi
- University of Hawaii Cancer Center, Cancer Biology Program, Honolulu, Hawaii 96813, USA
| |
Collapse
|
172
|
Gucalp A, Traina TA. Androgen receptor-positive, triple-negative breast cancer. Cancer 2017; 123:1686-1688. [DOI: 10.1002/cncr.30683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ayca Gucalp
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College; New York New York
| | - Tiffany A. Traina
- Breast Medicine Service, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College; New York New York
| |
Collapse
|
173
|
Hu XQ, Chen WL, Ma HG, Jiang K. Androgen receptor expression identifies patient with favorable outcome in operable triple negative breast cancer. Oncotarget 2017; 8:56364-56374. [PMID: 28915596 PMCID: PMC5593567 DOI: 10.18632/oncotarget.16913] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/15/2017] [Indexed: 11/25/2022] Open
Abstract
In this study we sought to investigate the prevalence and prognostic value of androgen receptor (AR) status in operable triple-negative breast cancer (TNBC) patients. We collected the clinical data of 360 patients with TNBC, and found a positivity AR expression of 31.4% with a cut-off value of 10%. Tumors expressing the negative CK5/6 (P=0.013) and low Ki-67 (P=0.007) are more likely to have positive AR. In multivariate survival analysis, AR expression is correlated with increased DFS (HR=0.467, 95%CI 0.271-0.805; P=0.006) and OS (HR=0.488, 95%CI 0.267-0.894, P=0.020) independently. In addition, patients with AR+ tumors are more likely to have favorable outcome in patients with young, pre-menopausal, large tumor size, more node involvement (4+), high stage, high grade, vascular invasion+, P53+, CK5/6-, and higher Ki-67. Our study has indicated that the absence of AR might help to identify patients with relatively higher risk of disease relapse and death, and further clinical studies of anti-androgen agents are warranted to enrich the therapeutic strategy options for AR+ TNBCs.
Collapse
Affiliation(s)
- Xiao-Qing Hu
- Department of Surgical Oncology, Wenzhou Central Hospital, Zhejiang, China
| | - Wei-Li Chen
- Department of Breast Surgery, Yue Yang Hospital of Traditional Chinese & Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Guang Ma
- Department of Surgical Oncology, Wenzhou Central Hospital, Zhejiang, China
| | - Ke Jiang
- Department of Breast Surgery, Yue Yang Hospital of Traditional Chinese & Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
174
|
Paquet ER, Lesurf R, Tofigh A, Dumeaux V, Hallett MT. Detecting gene signature activation in breast cancer in an absolute, single-patient manner. Breast Cancer Res 2017; 19:32. [PMID: 28327201 PMCID: PMC5361722 DOI: 10.1186/s13058-017-0824-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/02/2017] [Indexed: 01/20/2023] Open
Abstract
Background The ability to reliably identify the state (activated, repressed, or latent) of any molecular process in the tumor of a patient from an individual whole-genome gene expression profile obtained from microarray or RNA sequencing (RNA-seq) promises important clinical utility. Unfortunately, all previous bioinformatics tools are only applicable in large and diverse panels of patients, or are limited to a single specific pathway/process (e.g. proliferation). Methods Using a panel of 4510 whole-genome gene expression profiles from 10 different studies we built and selected models predicting the activation status of a compendium of 1733 different biological processes. Using a second independent validation dataset of 742 patients we validated the final list of 1773 models to be included in a de novo tool entitled absolute inference of patient signatures (AIPS). We also evaluated the prognostic significance of the 1773 individual models to predict outcome in all and in specific breast cancer subtypes. Results We described the development of the de novo tool entitled AIPS that can identify the activation status of a panel of 1733 different biological processes from an individual breast cancer microarray or RNA-seq profile without recourse to a broad cohort of patients. We demonstrated that AIPS is stable compared to previous tools, as the inferred pathway state is not affected by the composition of a dataset. We also showed that pathway states inferred by AIPS are in agreement with previous tools but use far fewer genes. We determined that several AIPS-defined pathways are prognostic across and within molecularly and clinically define subtypes (two-sided log-rank test false discovery rate (FDR) <5%). Interestingly, 74.5% (1291/1733) of the models are able to distinguish patients with luminal A cancer from those with luminal B cancer (Fisher’s exact test FDR <5%). Conclusion AIPS represents the first tool that would allow an individual breast cancer patient to obtain a thorough knowledge of the molecular processes active in their tumor from only one individual gene expression (N-of-1) profile. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0824-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E R Paquet
- Centre for Bioinformatics, McGill University, Montreal, Quebec, H3G 0B1, Canada.,The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - R Lesurf
- Centre for Bioinformatics, McGill University, Montreal, Quebec, H3G 0B1, Canada.,The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - A Tofigh
- Centre for Bioinformatics, McGill University, Montreal, Quebec, H3G 0B1, Canada.,The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada.,School of Computer Science, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | - V Dumeaux
- Centre for Bioinformatics, McGill University, Montreal, Quebec, H3G 0B1, Canada.,The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada.,School of Computer Science, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | - M T Hallett
- Centre for Bioinformatics, McGill University, Montreal, Quebec, H3G 0B1, Canada. .,The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada. .,School of Computer Science, McGill University, Montreal, Quebec, H3A 0E9, Canada.
| |
Collapse
|
175
|
Severson TM, Zwart W. A review of estrogen receptor/androgen receptor genomics in male breast cancer. Endocr Relat Cancer 2017; 24:R27-R34. [PMID: 28062545 DOI: 10.1530/erc-16-0225] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/06/2017] [Indexed: 01/17/2023]
Abstract
Male breast cancer is a rare disease, of which little is known. In contrast to female breast cancer, the very vast majority of all cases are positive for estrogen receptor alpha (ERα), implicating the function of this steroid hormone receptor in tumor development and progression. Consequently, adjuvant treatment of male breast cancer revolves around inhibition of ERα. In addition, the androgen receptor (AR) gradually receives more attention as a relevant novel target in breast cancer treatment. Importantly, the rationale of treatment decision making is strongly based on parallels with female breast cancer. Yet, prognostic indicators are not necessarily the same in breast cancer between both genders, complicating translatability of knowledge developed in female breast cancer toward male patients. Even though ERα and AR are expressed both in female and male disease, are the genomic functions of both steroid hormone receptors conserved between genders? Recent studies have reported on mutational and epigenetic similarities and differences between male and female breast cancer, further suggesting that some features are strongly conserved between the two diseases, whereas others are not. This review critically discusses the recent developments in the study of male breast cancer in relation to ERα and AR action and highlights the potential future studies to further elucidate the genomic regulation of this rare disease.
Collapse
Affiliation(s)
- Tesa M Severson
- Division of Molecular Pathologythe Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Molecular Carcinogenesisthe Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wilbert Zwart
- Division of Molecular Pathologythe Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
176
|
AR Signaling in Breast Cancer. Cancers (Basel) 2017; 9:cancers9030021. [PMID: 28245550 PMCID: PMC5366816 DOI: 10.3390/cancers9030021] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/13/2017] [Accepted: 02/18/2017] [Indexed: 12/31/2022] Open
Abstract
Androgen receptor (AR, a member of the steroid hormone receptor family) status has become increasingly important as both a prognostic marker and potential therapeutic target in breast cancer. AR is expressed in up to 90% of estrogen receptor (ER) positive breast cancer, and to a lesser degree, human epidermal growth factor 2 (HER2) amplified tumors. In the former, AR signaling has been correlated with a better prognosis given its inhibitory activity in estrogen dependent disease, though conversely has also been shown to increase resistance to anti-estrogen therapies such as tamoxifen. AR blockade can mitigate this resistance, and thus serves as a potential target in ER-positive breast cancer. In HER2 amplified breast cancer, studies are somewhat conflicting, though most show either no effect or are associated with poorer survival. Much of the available data on AR signaling is in triple-negative breast cancer (TNBC), which is an aggressive disease with inferior outcomes comparative to other breast cancer subtypes. At present, there are no approved targeted therapies in TNBC, making study of the AR signaling pathway compelling. Gene expression profiling studies have also identified a luminal androgen receptor (LAR) subtype that is dependent on AR signaling in TNBC. Regardless, there seems to be an association between AR expression and improved outcomes in TNBC. Despite lower pathologic complete response (pCR) rates with neoadjuvant therapy, patients with AR-expressing TNBC have been shown to have a better prognosis than those that are AR-negative. Clinical studies targeting AR have shown somewhat promising results. In this paper we review the literature on the biology of AR in breast cancer and its prognostic and predictive roles. We also present our thoughts on therapeutic strategies.
Collapse
|
177
|
Christenson JL, Butterfield KT, Spoelstra NS, Norris JD, Josan JS, Pollock JA, McDonnell DP, Katzenellenbogen BS, Katzenellenbogen JA, Richer JK. MMTV-PyMT and Derived Met-1 Mouse Mammary Tumor Cells as Models for Studying the Role of the Androgen Receptor in Triple-Negative Breast Cancer Progression. Discov Oncol 2017; 8:69-77. [PMID: 28194662 DOI: 10.1007/s12672-017-0285-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/27/2017] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has a faster rate of metastasis compared to other breast cancer subtypes, and no effective targeted therapies are currently FDA-approved. Recent data indicate that the androgen receptor (AR) promotes tumor survival and may serve as a potential therapeutic target in TNBC. Studies of AR in disease progression and the systemic effects of anti-androgens have been hindered by the lack of an AR-positive (AR+) immunocompetent preclinical model. In this study, we identified the transgenic MMTV-PyMT (mouse mammary tumor virus-polyoma middle tumor-antigen) mouse mammary gland carcinoma model of breast cancer and Met-1 cells derived from this model as tools to study the role of AR in breast cancer progression. AR protein expression was examined in late-stage primary tumors and lung metastases from MMTV-PyMT mice as well as in Met-1 cells by immunohistochemistry (IHC). Sensitivity of Met-1 cells to the AR agonist dihydrotestosterone (DHT) and anti-androgen therapy was examined using cell viability, migration/invasion, and anchorage-independent growth assays. Late-stage primary tumors and lung metastases from MMTV-PyMT mice and Met-1 cells expressed abundant nuclear AR protein, while negative for estrogen and progesterone receptors. Met-1 sensitivity to DHT and AR antagonists demonstrated a reliance on AR for survival, and AR antagonists inhibited invasion and anchorage-independent growth. These data suggest that the MMTV-PyMT model and Met-1 cells may serve as valuable tools for mechanistic studies of the role of AR in disease progression and how anti-androgens affect the tumor microenvironment.
Collapse
Affiliation(s)
- Jessica L Christenson
- Department of Pathology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | - Kiel T Butterfield
- Department of Pathology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | - Nicole S Spoelstra
- Department of Pathology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | - John D Norris
- Department of Pharmacology and Cancer Biology, Duke University, 450 Research Drive, Durham, NC, 27708, USA
| | - Jatinder S Josan
- Department of Chemistry, Virginia Tech University, 900 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Julie A Pollock
- Department of Chemistry, University of Richmond, 28 Westhampton Way, Richmond, VA, 23173, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University, 450 Research Drive, Durham, NC, 27708, USA
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois, 407 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - John A Katzenellenbogen
- Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO, 80045, USA.
| |
Collapse
|
178
|
Schaafsma SM, Gagnidze K, Reyes A, Norstedt N, Månsson K, Francis K, Pfaff DW. Sex-specific gene-environment interactions underlying ASD-like behaviors. Proc Natl Acad Sci U S A 2017; 114:1383-1388. [PMID: 28115688 PMCID: PMC5307430 DOI: 10.1073/pnas.1619312114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The male bias in the incidence of autism spectrum disorders (ASDs) is one of the most notable characteristics of this group of neurodevelopmental disorders. The etiology of this sex bias is far from known, but pivotal for understanding the etiology of ASDs in general. Here we investigate whether a "three-hit" (genetic load × environmental factor × sex) theory of autism may help explain the male predominance. We found that LPS-induced maternal immune activation caused male-specific deficits in certain social responses in the contactin-associated protein-like 2 (Cntnap2) mouse model for ASD. The three "hits" had cumulative effects on ultrasonic vocalizations at postnatal day 3. Hits synergistically affected social recognition in adulthood: only mice exposed to all three hits showed deficits in this aspect of social behavior. In brains of the same mice we found a significant three-way interaction on corticotropin-releasing hormone receptor-1 (Crhr1) gene expression, in the left hippocampus specifically, which co-occurred with epigenetic alterations in histone H3 N-terminal lysine 4 trimethylation (H3K4me3) over the Crhr1 promoter. Although it is highly likely that multiple (synergistic) interactions may be at work, change in the expression of genes in the hypothalamic-pituitary-adrenal/stress system (e.g., Crhr1) is one of them. The data provide proof-of-principle that genetic and environmental factors interact to cause sex-specific effects that may help explain the male bias in ASD incidence.
Collapse
Affiliation(s)
- Sara M Schaafsma
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10065
| | - Khatuna Gagnidze
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10065
| | - Anny Reyes
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10065
| | - Natalie Norstedt
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10065
| | - Karl Månsson
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10065
| | - Kerel Francis
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10065
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10065
| |
Collapse
|
179
|
Kim JY, Park K, Lee E, Jung HH, Ahn JS, Im YH, Park WY, Park YH. The effect of androgen receptor expression on clinical characterization of metastatic breast cancer. Oncotarget 2017; 8:8693-8706. [PMID: 28060723 PMCID: PMC5352433 DOI: 10.18632/oncotarget.14414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
In breast cancer (BC), androgen receptor (AR) expression is related to estrogen receptor (ER) and/or progesterone receptor (PgR) expression. AR expression is an indicator of good prognosis in breast cancer regardless of hormone receptor (HR) status. In this study, we evaluated the effect of AR-related gene expression on clinical characterization of metastatic BC. We performed RNA-Seq to evaluate gene expression using mRNA extracted from 37 patients with metastatic BC. Intrinsic subtype prediction, analysis of differential gene expression, and gene set enrichment pathway analysis were then performed. Metastatic BCs were categorized into three subgroups based on AR, ER, PgR, and HER2 expression. According to this subcategorization, 70 genes including AR, ER, and HER2 were differentially expressed among the three groups. In gene set enrichment pathway analysis, the low AR group was associated with the cell cycle pathway, whereas mammalian target of rapamycin (mTOR) pathways was prevalent in the high ER and AR group. In survival analysis, a higher level of AR expression correlated with prolonged overall survival in metastatic BC (high expression vs. low expression, median OS 53.1 vs. 27.2 months, p=.001). In conclusion, we propose that AR and AR-related gene expression could be utilized to predict the prognosis of metastatic BC and thus may be useful in treatment planning for refractory BC.
Collapse
Affiliation(s)
- Ji-Yeon Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul 06351, Korea
| | - Kyunghee Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Eunjin Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Hae Hyun Jung
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul 06351, Korea
| | - Young-Hyuck Im
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul 06351, Korea
- Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul 06351, Korea
- Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| |
Collapse
|
180
|
Pakula H, Xiang D, Li Z. A Tale of Two Signals: AR and WNT in Development and Tumorigenesis of Prostate and Mammary Gland. Cancers (Basel) 2017; 9:E14. [PMID: 28134791 PMCID: PMC5332937 DOI: 10.3390/cancers9020014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers and among the leading causes of cancer deaths for men in industrialized countries. It has long been recognized that the prostate is an androgen-dependent organ and PCa is an androgen-dependent disease. Androgen action is mediated by the androgen receptor (AR). Androgen deprivation therapy (ADT) is the standard treatment for metastatic PCa. However, almost all advanced PCa cases progress to castration-resistant prostate cancer (CRPC) after a period of ADT. A variety of mechanisms of progression from androgen-dependent PCa to CRPC under ADT have been postulated, but it remains largely unclear as to when and how castration resistance arises within prostate tumors. In addition, AR signaling may be modulated by extracellular factors among which are the cysteine-rich glycoproteins WNTs. The WNTs are capable of signaling through several pathways, the best-characterized being the canonical WNT/β-catenin/TCF-mediated canonical pathway. Recent studies from sequencing PCa genomes revealed that CRPC cells frequently harbor mutations in major components of the WNT/β-catenin pathway. Moreover, the finding of an interaction between β-catenin and AR suggests a possible mechanism of cross talk between WNT and androgen/AR signaling pathways. In this review, we discuss the current knowledge of both AR and WNT pathways in prostate development and tumorigenesis, and their interaction during development of CRPC. We also review the possible therapeutic application of drugs that target both AR and WNT/β-catenin pathways. Finally, we extend our review of AR and WNT signaling to the mammary gland system and breast cancer. We highlight that the role of AR signaling and its interaction with WNT signaling in these two hormone-related cancer types are highly context-dependent.
Collapse
Affiliation(s)
- Hubert Pakula
- Division of Genetics, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Room 466, Boston, MA 02115, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Dongxi Xiang
- Division of Genetics, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Room 466, Boston, MA 02115, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Zhe Li
- Division of Genetics, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Room 466, Boston, MA 02115, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
181
|
Doane AS, Elemento O. Regulatory elements in molecular networks. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28093886 DOI: 10.1002/wsbm.1374] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/06/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022]
Abstract
Regulatory elements determine the connectivity of molecular networks and mediate a variety of regulatory processes ranging from DNA looping to transcriptional, posttranscriptional, and posttranslational regulation. This review highlights our current understanding of the different types of regulatory elements found in molecular networks with a focus on DNA regulatory elements. We highlight technical advances and current challenges for the mapping of regulatory elements at the genome-wide scale, and describe new computational methods to uncover these elements via reconstructing regulatory networks from large genomic datasets. WIREs Syst Biol Med 2017, 9:e1374. doi: 10.1002/wsbm.1374 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ashley S Doane
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
182
|
Britschgi A, Duss S, Kim S, Couto JP, Brinkhaus H, Koren S, De Silva D, Mertz KD, Kaup D, Varga Z, Voshol H, Vissieres A, Leroy C, Roloff T, Stadler MB, Scheel CH, Miraglia LJ, Orth AP, Bonamy GMC, Reddy VA, Bentires-Alj M. The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature 2017; 541:541-545. [PMID: 28068668 DOI: 10.1038/nature20829] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/24/2016] [Indexed: 01/06/2023]
Abstract
Cell fate perturbations underlie many human diseases, including breast cancer. Unfortunately, the mechanisms by which breast cell fate are regulated are largely unknown. The mammary gland epithelium consists of differentiated luminal epithelial and basal myoepithelial cells, as well as undifferentiated stem cells and more restricted progenitors. Breast cancer originates from this epithelium, but the molecular mechanisms that underlie breast epithelial hierarchy remain ill-defined. Here, we use a high-content confocal image-based short hairpin RNA screen to identify tumour suppressors that regulate breast cell fate in primary human breast epithelial cells. We show that ablation of the large tumour suppressor kinases (LATS) 1 and 2 (refs 5, 6), which are part of the Hippo pathway, promotes the luminal phenotype and increases the number of bipotent and luminal progenitors, the proposed cells-of-origin of most human breast cancers. Mechanistically, we have identified a direct interaction between Hippo and oestrogen receptor-α (ERα) signalling. In the presence of LATS, ERα was targeted for ubiquitination and Ddb1-cullin4-associated-factor 1 (DCAF1)-dependent proteasomal degradation. Absence of LATS stabilized ERα and the Hippo effectors YAP and TAZ (hereafter YAP/TAZ), which together control breast cell fate through intrinsic and paracrine mechanisms. Our findings reveal a non-canonical (that is, YAP/TAZ-independent) effect of LATS in the regulation of human breast cell fate.
Collapse
Affiliation(s)
- Adrian Britschgi
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Stephan Duss
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Sungeun Kim
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Joana Pinto Couto
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Department of Biomedicine, University of Basel, University Hospital Basel, 4031 Basel, Switzerland
| | - Heike Brinkhaus
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Shany Koren
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Department of Biomedicine, University of Basel, University Hospital Basel, 4031 Basel, Switzerland
| | - Duvini De Silva
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Department of Biomedicine, University of Basel, University Hospital Basel, 4031 Basel, Switzerland
| | - Kirsten D Mertz
- Institute of Pathology Liestal, Cantonal Hospital Baselland, 4410 Liestal, Switzerland
| | - Daniela Kaup
- Institute of Pathology Liestal, Cantonal Hospital Baselland, 4410 Liestal, Switzerland
| | - Zsuzsanna Varga
- Institute of Surgical Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Hans Voshol
- Novartis Institutes for Biomedical Research, 4058 Basel, Switzerland
| | | | - Cedric Leroy
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Novartis Institutes for Biomedical Research, 4058 Basel, Switzerland
| | - Tim Roloff
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Christina H Scheel
- Institute of Stem Cell Research, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Loren J Miraglia
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Anthony P Orth
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Ghislain M C Bonamy
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Venkateshwar A Reddy
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Mohamed Bentires-Alj
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Department of Biomedicine, University of Basel, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
183
|
Novel Nine-Exon AR Transcripts (Exon 1/Exon 1b/Exons 2-8) in Normal and Cancerous Breast and Prostate Cells. Int J Mol Sci 2016; 18:ijms18010040. [PMID: 28035996 PMCID: PMC5297675 DOI: 10.3390/ijms18010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/08/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022] Open
Abstract
Nearly 20 different transcripts of the human androgen receptor (AR) are reported with two currently listed as Refseq isoforms in the NCBI database. Isoform 1 encodes wild-type AR (type 1 AR) and isoform 2 encodes the variant AR45 (type 2 AR). Both variants contain eight exons: they share common exons 2-8 but differ in exon 1 with the canonical exon 1 in isoform 1 and the variant exon 1b in isoform 2. Splicing of exon 1 or exon 1b is reported to be mutually exclusive. In this study, we identified a novel exon 1b (1b/TAG) that contains an additional TAG trinucleotide upstream of exon 1b. Moreover, we identified AR transcripts in both normal and cancerous breast and prostate cells that contained either exon 1b or 1b/TAG spliced between the canonical exon 1 and exon 2, generating nine-exon AR transcripts that we have named isoforms 3a and 3b. The proteins encoded by these new AR variants could regulate androgen-responsive reporters in breast and prostate cancer cells under androgen-depleted conditions. Analysis of type 3 AR-GFP fusion proteins showed partial nuclear localization in PC3 cells under androgen-depleted conditions, supporting androgen-independent activation of the AR. Type 3 AR proteins inhibited androgen-induced growth of LNCaP cells. Microarray analysis identified a small set of type 3a AR target genes in LNCaP cells, including genes known to modulate growth and proliferation of prostate cancer (PCGEM1, PEG3, EPHA3, and EFNB2) or other types of human cancers (TOX3, ST8SIA4, and SLITRK3), and genes that are diagnostic/prognostic biomarkers of prostate cancer (GRINA3, and BCHE).
Collapse
|
184
|
Hamy AS, Bonsang-Kitzis H, Lae M, Moarii M, Sadacca B, Pinheiro A, Galliot M, Abecassis J, Laurent C, Reyal F. A Stromal Immune Module Correlated with the Response to Neoadjuvant Chemotherapy, Prognosis and Lymphocyte Infiltration in HER2-Positive Breast Carcinoma Is Inversely Correlated with Hormonal Pathways. PLoS One 2016; 11:e0167397. [PMID: 28005906 PMCID: PMC5178998 DOI: 10.1371/journal.pone.0167397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION HER2-positive breast cancer (BC) is a heterogeneous group of aggressive breast cancers, the prognosis of which has greatly improved since the introduction of treatments targeting HER2. However, these tumors may display intrinsic or acquired resistance to treatment, and classifiers of HER2-positive tumors are required to improve the prediction of prognosis and to develop novel therapeutic interventions. METHODS We analyzed 2893 primary human breast cancer samples from 21 publicly available datasets and developed a six-metagene signature on a training set of 448 HER2-positive BC. We then used external public datasets to assess the ability of these metagenes to predict the response to chemotherapy (Ignatiadis dataset), and prognosis (METABRIC dataset). RESULTS We identified a six-metagene signature (138 genes) containing metagenes enriched in different gene ontologies. The gene clusters were named as follows: Immunity, Tumor suppressors/proliferation, Interferon, Signal transduction, Hormone/survival and Matrix clusters. In all datasets, the Immunity metagene was less strongly expressed in ER-positive than in ER-negative tumors, and was inversely correlated with the Hormonal/survival metagene. Within the signature, multivariate analyses showed that strong expression of the "Immunity" metagene was associated with higher pCR rates after NAC (OR = 3.71[1.28-11.91], p = 0.019) than weak expression, and with a better prognosis in HER2-positive/ER-negative breast cancers (HR = 0.58 [0.36-0.94], p = 0.026). Immunity metagene expression was associated with the presence of tumor-infiltrating lymphocytes (TILs). CONCLUSION The identification of a predictive and prognostic immune module in HER2-positive BC confirms the need for clinical testing for immune checkpoint modulators and vaccines for this specific subtype. The inverse correlation between Immunity and hormone pathways opens research perspectives and deserves further investigation.
Collapse
Affiliation(s)
- Anne-Sophie Hamy
- Institut Curie, PSL Research University, Translational Research Department, INSERM, U932 Immunity and Cancer, Residual Tumor & Response to Treatment Laboratory (RT2Lab), Paris, France
| | - Hélène Bonsang-Kitzis
- Institut Curie, PSL Research University, Translational Research Department, INSERM, U932 Immunity and Cancer, Residual Tumor & Response to Treatment Laboratory (RT2Lab), Paris, France
- Department of Surgery, Institut Curie, Paris, France
| | - Marick Lae
- Department of Tumor Biology, Institut Curie, Paris, France
| | - Matahi Moarii
- Mines Paristech, PSL-Research University, CBIO-Centre for Computational Biology, Mines ParisTech, Fontainebleau, France
- U900, INSERM, Institut Curie, Paris, France
| | - Benjamin Sadacca
- Institut Curie, PSL Research University, Translational Research Department, INSERM, U932 Immunity and Cancer, Residual Tumor & Response to Treatment Laboratory (RT2Lab), Paris, France
- Laboratoire de Mathématiques et Modélisation d’Evry, Université d’Évry Val d’Essonne, Evry, France
| | - Alice Pinheiro
- Institut Curie, PSL Research University, Translational Research Department, INSERM, U932 Immunity and Cancer, Residual Tumor & Response to Treatment Laboratory (RT2Lab), Paris, France
| | - Marion Galliot
- Institut Curie, PSL Research University, Translational Research Department, INSERM, U932 Immunity and Cancer, Residual Tumor & Response to Treatment Laboratory (RT2Lab), Paris, France
| | - Judith Abecassis
- Institut Curie, PSL Research University, Translational Research Department, INSERM, U932 Immunity and Cancer, Residual Tumor & Response to Treatment Laboratory (RT2Lab), Paris, France
- Mines Paristech, PSL-Research University, CBIO-Centre for Computational Biology, Mines ParisTech, Fontainebleau, France
- U900, INSERM, Institut Curie, Paris, France
| | - Cecile Laurent
- Institut Curie, PSL Research University, Translational Research Department, INSERM, U932 Immunity and Cancer, Residual Tumor & Response to Treatment Laboratory (RT2Lab), Paris, France
| | - Fabien Reyal
- Institut Curie, PSL Research University, Translational Research Department, INSERM, U932 Immunity and Cancer, Residual Tumor & Response to Treatment Laboratory (RT2Lab), Paris, France
- Department of Surgery, Institut Curie, Paris, France
| |
Collapse
|
185
|
Narayanan R, Dalton JT. Androgen Receptor: A Complex Therapeutic Target for Breast Cancer. Cancers (Basel) 2016; 8:cancers8120108. [PMID: 27918430 PMCID: PMC5187506 DOI: 10.3390/cancers8120108] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/01/2016] [Accepted: 11/23/2016] [Indexed: 12/29/2022] Open
Abstract
Molecular and histopathological profiling have classified breast cancer into multiple sub-types empowering precision treatment. Although estrogen receptor (ER) and human epidermal growth factor receptor (HER2) are the mainstay therapeutic targets in breast cancer, the androgen receptor (AR) is evolving as a molecular target for cancers that have developed resistance to conventional treatments. The high expression of AR in breast cancer and recent discovery and development of new nonsteroidal drugs targeting the AR provide a strong rationale for exploring it again as a therapeutic target in this disease. Ironically, both nonsteroidal agonists and antagonists for the AR are undergoing clinical trials, making AR a complicated target to understand in breast cancer. This review provides a detailed account of AR’s therapeutic role in breast cancer.
Collapse
Affiliation(s)
- Ramesh Narayanan
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| | - James T Dalton
- College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
186
|
Lim E, Tarulli G, Portman N, Hickey TE, Tilley WD, Palmieri C. Pushing estrogen receptor around in breast cancer. Endocr Relat Cancer 2016; 23:T227-T241. [PMID: 27729416 DOI: 10.1530/erc-16-0427] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 12/21/2022]
Abstract
The estrogen receptor-α (herein called ER) is a nuclear sex steroid receptor (SSR) that is expressed in approximately 75% of breast cancers. Therapies that modulate ER action have substantially improved the survival of patients with ER-positive breast cancer, but resistance to treatment still remains a major clinical problem. Treating resistant breast cancer requires co-targeting of ER and alternate signalling pathways that contribute to resistance to improve the efficacy and benefit of currently available treatments. Emerging data have shown that other SSRs may regulate the sites at which ER binds to DNA in ways that can powerfully suppress the oncogenic activity of ER in breast cancer. This includes the progesterone receptor (PR) that was recently shown to reprogram the ER DNA binding landscape towards genes associated with a favourable outcome. Another attractive candidate is the androgen receptor (AR), which is expressed in the majority of breast cancers and inhibits growth of the normal breast and ER-positive tumours when activated by ligand. These findings have led to the initiation of breast cancer clinical trials evaluating therapies that selectively harness the ability of SSRs to 'push' ER towards anti-tumorigenic activity. Our review will focus on the established and emerging clinical evidence for activating PR or AR in ER-positive breast cancer to inhibit the tumour growth-promoting functions of ER.
Collapse
Affiliation(s)
- Elgene Lim
- Garvan Institute of Medical Research and St Vincent's HospitalUniversity of New South Wales, Sydney, New South Wales, Australia
| | - Gerard Tarulli
- Dame Roma Mitchell Cancer Research Laboratories and Adelaide Prostate Cancer Research CentreUniversity of Adelaide, Adelaide, South Australia, Australia
| | - Neil Portman
- Garvan Institute of Medical Research and St Vincent's HospitalUniversity of New South Wales, Sydney, New South Wales, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories and Adelaide Prostate Cancer Research CentreUniversity of Adelaide, Adelaide, South Australia, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories and Adelaide Prostate Cancer Research CentreUniversity of Adelaide, Adelaide, South Australia, Australia
| | - Carlo Palmieri
- Institute of Translational MedicineUniversity of Liverpool, Clatterbridge Cancer Centre, NHS Foundation Trust, and Royal Liverpool University Hospital, Liverpool, Merseyside, UK
| |
Collapse
|
187
|
Bozovic-Spasojevic I, Zardavas D, Brohée S, Ameye L, Fumagalli D, Ades F, de Azambuja E, Bareche Y, Piccart M, Paesmans M, Sotiriou C. The Prognostic Role of Androgen Receptor in Patients with Early-Stage Breast Cancer: A Meta-analysis of Clinical and Gene Expression Data. Clin Cancer Res 2016; 23:2702-2712. [PMID: 28151718 DOI: 10.1158/1078-0432.ccr-16-0979] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/03/2016] [Accepted: 10/27/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Androgen receptor (AR) expression has been observed in about 70% of patients with breast cancer, but its prognostic role remains uncertain.Experimental Design: To assess the prognostic role of AR expression in early-stage breast cancer, we performed a meta-analysis of studies that evaluated the impact of AR at the protein and gene expression level on disease-free survival (DFS) and/or overall survival (OS). Eligible studies were identified by systematic review of electronic databases using the MeSH-terms "breast neoplasm" and "androgen receptor" and were selected after a qualitative assessment based on the REMARK criteria. A pooled gene expression analysis of 35 publicly available microarray data sets was also performed from patients with early-stage breast cancer with available gene expression and clinical outcome data.Results: Twenty-two of 33 eligible studies for the clinical meta-analysis, including 10,004 patients, were considered as evaluable for the current study after the qualitative assessment. AR positivity defined by IHC was associated with improved DFS in all patients with breast cancer [multivariate (M) analysis, HR 0.46; 95% confidence interval (CI) 0.37-0.58, P < 0.001] and better OS [M-HR 0.53; 95% CI, 0.38-0.73, P < 0.001]. Thirty-five datasets including 7,220 patients were eligible for the pooled gene expression analysis. High AR mRNA levels were found to confer positive prognosis overall in terms of DFS (HR 0.82; 95% CI 0.72-0.92;P = 0.0007) and OS (HR 0.84; 95% CI, 0.75-0.94; P = 0.02) only in univariate analysis.Conclusions: Our analysis, conducted among more than 17,000 women with early-stage breast cancer included in clinical and gene expression analysis, demonstrates that AR positivity is associated with favorable clinical outcome. Clin Cancer Res; 23(11); 2702-12. ©2016 AACR.
Collapse
Affiliation(s)
- Ivana Bozovic-Spasojevic
- Breast Data Centre, Medical Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles, Brusells, Belgium.,Institute for Oncology and Radiology of Serbia, National Cancer Research Centre, Belgrade, Republic of Serbia
| | | | - Sylvain Brohée
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brusells, Belgium
| | - Lieveke Ameye
- Data Centre, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Felipe Ades
- Breast Data Centre, Medical Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles, Brusells, Belgium.,Hospital Albert Einstein, São Paulo, Brazil
| | - Evandro de Azambuja
- Breast Data Centre, Medical Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles, Brusells, Belgium
| | - Yacine Bareche
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brusells, Belgium
| | - Martine Piccart
- Medical Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Marianne Paesmans
- Data Centre, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brusells, Belgium.
| |
Collapse
|
188
|
Gao W, Wu MH, Wang N, Ying MZ, Zhang YY, Hua J, Chuan L, Wang YJ. Mitochondrial transcription factor A contributes to cisplatin resistance in patients with estrogen receptor-positive breast cancer. Mol Med Rep 2016; 14:5304-5310. [DOI: 10.3892/mmr.2016.5881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 09/19/2016] [Indexed: 11/05/2022] Open
|
189
|
Hu DG, Selth LA, Tarulli GA, Meech R, Wijayakumara D, Chanawong A, Russell R, Caldas C, Robinson JLL, Carroll JS, Tilley WD, Mackenzie PI, Hickey TE. Androgen and Estrogen Receptors in Breast Cancer Coregulate Human UDP-Glucuronosyltransferases 2B15 and 2B17. Cancer Res 2016; 76:5881-5893. [PMID: 27496708 DOI: 10.1158/0008-5472.can-15-3372] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 07/14/2016] [Indexed: 11/16/2022]
Abstract
Glucuronidation is an enzymatic process that terminally inactivates steroid hormones, including estrogens and androgens, thereby influencing carcinogenesis in hormone-dependent cancers. While estrogens drive breast carcinogenesis via the estrogen receptor alpha (ERα), androgens play a critical role as prohormones for estrogen biosynthesis and ligands for the androgen receptor (AR). In this study, the expression and regulation of two androgen-inactivating enzymes, the UDP-glucuronosyltransferases UGT2B15 and UGT2B17, was assessed in breast cancer. In large clinical cohorts, high UGT2B15 and UGT2B17 levels positively influenced disease-specific survival in distinct molecular subgroups. Expression of these genes was highest in cases positive for ERα. In cell line models, ERα, AR, and the transcription factor FOXA1 cooperated to increase transcription via tandem binding events at their proximal promoters. ERα activity was dependent on FOXA1, facilitated by AR activation, and potently stimulated by estradiol as well as estrogenic metabolites of 5α-dihydrotestosterone. AR activity was mediated via binding to an estrogen receptor half-site 3' to the FOXA1 and ERα-binding sites. Although AR and FOXA1 bound the UGT promoters in AR-positive/ERα-negative breast cancer cell lines, androgen treatment did not influence basal transcription levels. Ex vivo culture of human breast tissue and ERα+ tumors provided evidence for upregulation of UGT2B15 and UGT2B17 by estrogen or androgen treatment. ERα binding was evident at the promoters of these genes in a small cohort of primary tumors and distant metastases. Collectively, these data provide insight into sex steroid receptor-mediated regulation of androgen-inactivating enzymes in ERα+ breast cancer, which may have subtype-specific consequences for disease progression and outcomes. Cancer Res; 76(19); 5881-93. ©2016 AACR.
Collapse
Affiliation(s)
- Dong G Hu
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia. Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Gerard A Tarulli
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Dhilushi Wijayakumara
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Apichaya Chanawong
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Roslin Russell
- Breast Cancer Genomics Group, Cancer Research UK, Cambridge Institute, Cambridge University, Cambridge, United Kingdom
| | - Carlos Caldas
- Breast Cancer Genomics Group, Cancer Research UK, Cambridge Institute, Cambridge University, Cambridge, United Kingdom
| | - Jessica L L Robinson
- Nuclear Transcription Factor Laboratory, Cancer Research UK, Cambridge Institute, Cambridge University, Cambridge, United Kingdom
| | - Jason S Carroll
- Nuclear Transcription Factor Laboratory, Cancer Research UK, Cambridge Institute, Cambridge University, Cambridge, United Kingdom
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia. Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, South Australia, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
190
|
Pourteimoor V, Mohammadi-Yeganeh S, Paryan M. Breast cancer classification and prognostication through diverse systems along with recent emerging findings in this respect; the dawn of new perspectives in the clinical applications. Tumour Biol 2016; 37:14479-14499. [DOI: 10.1007/s13277-016-5349-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 09/06/2016] [Indexed: 01/10/2023] Open
|
191
|
Gucalp A, Traina TA. Targeting the androgen receptor in triple-negative breast cancer. Curr Probl Cancer 2016; 40:141-150. [PMID: 27816190 DOI: 10.1016/j.currproblcancer.2016.09.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer represents approximately 15%-20% of all newly diagnosed breast cancers, but it accounts for a disproportionate number of breast cancer-related deaths each year. Owing to the lack of estrogen, progesterone, and human epidermal growth factor receptor 2 expression, patients with triple-negative breast cancer do not benefit from generally well-tolerated and effective therapies targeting the estrogen and human epidermal growth factor receptor 2 signaling pathways and are faced with an increased risk of disease progression and poorer overall survival. The heterogeneity of triple-negative breast cancer has been increasingly recognized and this may lead to therapeutic opportunities because of newly defined oncogenic drivers and targets. A subset of triple-negative breast tumors expresses the androgen receptor (AR) and this may benefit from treatments that inhibit the AR-signaling pathway. The first proof-of-concept trial established activity of the AR antagonist, bicalutamide, in patients with advanced AR+ triple-negative breast cancer. Since that time, evidence further supports the activity of other next-generation AR-targeted agents such as enzalutamide. Not unlike in estrogen receptor-positive breast cancer, mechanisms of resistance are being investigated and rationale exists for thoughtful, well-designed combination regimens such as AR antagonism with CDK4/6 pathway inhibitors or PI3K inhibitors. Furthermore, novel agents developed for the treatment of prostate cancer, which reduce androgen production such as abiraterone acetate and seviteronel, are being tested as well. This review summarizes the underlying biology of AR signaling in breast cancer development and the available clinical trial data for the use of anti-androgen therapy in the treatment of AR+ triple-negative breast cancer.
Collapse
Affiliation(s)
- Ayca Gucalp
- Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| | - Tiffany A Traina
- Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY.
| |
Collapse
|
192
|
Dalin MG, Desrichard A, Katabi N, Makarov V, Walsh LA, Lee KW, Wang Q, Armenia J, West L, Dogan S, Wang L, Ramaswami D, Ho AL, Ganly I, Solit DB, Berger MF, Schultz ND, Reis-Filho JS, Chan TA, Morris LGT. Comprehensive Molecular Characterization of Salivary Duct Carcinoma Reveals Actionable Targets and Similarity to Apocrine Breast Cancer. Clin Cancer Res 2016; 22:4623-33. [PMID: 27103403 PMCID: PMC5026550 DOI: 10.1158/1078-0432.ccr-16-0637] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/08/2016] [Indexed: 01/15/2023]
Abstract
PURPOSE Salivary duct carcinoma (SDC) is an aggressive salivary malignancy, which is resistant to chemotherapy and has high mortality rates. We investigated the molecular landscape of SDC, focusing on genetic alterations and gene expression profiles. EXPERIMENTAL DESIGN We performed whole-exome sequencing, RNA sequencing, and immunohistochemical analyses in 16 SDC tumors and examined selected alterations via targeted sequencing of 410 genes in a second cohort of 15 SDCs. RESULTS SDCs harbored a higher mutational burden than many other salivary carcinomas (1.7 mutations/Mb). The most frequent genetic alterations were mutations in TP53 (55%), HRAS (23%), PIK3CA (23%), and amplification of ERBB2 (35%). Most (74%) tumors had alterations in either MAPK (BRAF/HRAS/NF1) genes or ERBB2 Potentially targetable alterations based on supportive clinical evidence were present in 61% of tumors. Androgen receptor (AR) was overexpressed in 75%; several potential resistance mechanisms to androgen deprivation therapy (ADT) were identified, including the AR-V7 splice variant (present in 50%, often at low ratios compared with full-length AR) and FOXA1 mutations (10%). Consensus clustering and pathway analyses in transcriptome data revealed striking similarities between SDC and molecular apocrine breast cancer. CONCLUSIONS This study illuminates the landscape of genetic alterations and gene expression programs in SDC, identifying numerous molecular targets and potential determinants of response to AR antagonism. This has relevance for emerging clinical studies of ADT and other targeted therapies in SDC. The similarities between SDC and apocrine breast cancer indicate that clinical data in breast cancer may generate useful hypotheses for SDC. Clin Cancer Res; 22(18); 4623-33. ©2016 AACR.
Collapse
Affiliation(s)
- Martin G Dalin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexis Desrichard
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vladimir Makarov
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Logan A Walsh
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ken-Wing Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Qingguo Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua Armenia
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lyndsay West
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Snjezana Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lu Wang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Deepa Ramaswami
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alan L Ho
- Head and Neck Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ian Ganly
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York. Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York. Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikolaus D Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jorge S Reis-Filho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Luc G T Morris
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
193
|
Sharma P. Biology and Management of Patients With Triple-Negative Breast Cancer. Oncologist 2016; 21:1050-62. [PMID: 27401886 PMCID: PMC5016071 DOI: 10.1634/theoncologist.2016-0067] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/17/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED : Triple-negative breast cancer (TNBC) accounts for 15% of all breast cancers and is associated with poor long-term outcomes compared with other breast cancer subtypes. Because of the lack of approved targeted therapy, at present chemotherapy remains the mainstay of treatment for early and advanced disease. TNBC is enriched for germline BRCA mutation, providing a foundation for the use of this as a biomarker to identify patients suitable for treatment with DNA-damaging agents. Inherited and acquired defects in homologous recombination DNA repair, a phenotype termed "BRCAness," may be present in a large proportion of TNBC cases, making it an attractive selection and response biomarker for DNA-damaging therapy. Triple-negative breast cancer is a diverse entity for which additional subclassifications are needed. Increasing understanding of biologic heterogeneity of TNBC has provided insight into identifying potentially effective systemic therapies, including cytotoxic and targeted agents. Numerous experimental approaches are under way, and several encouraging drug classes, such as immune checkpoint inhibitors, poly(ADP-ribose) polymerase inhibitors, platinum agents, phosphatidylinositol-3-kinase pathway inhibitors, and androgen receptor inhibitors, are being investigated in TNBC. Molecular biomarker-based patient selection in early-phase trials has the potential to accelerate development of effective therapies for this aggressive breast cancer subtype. TNBC is a complex disease, and it is likely that several different targeted approaches will be needed to make meaningful strides in improving the outcomes. IMPLICATIONS FOR PRACTICE Triple-negative breast cancer (TNBC) is an aggressive subtype that is associated with poor outcomes. This article reviews clinical features and discusses the molecular diversity of this unique subtype. Current treatment paradigms, the role of germline testing, and platinum agents in TNBC are reviewed. Results and observations from pertinent clinical trials with potential implications for patient management are summarized. This article also discusses the clinical development and ongoing clinical trials of novel promising therapeutic agents in TNBC.
Collapse
|
194
|
Nozaki F, Hirotani Y, Nakanishi Y, Yamaguchi H, Nishimaki H, Noda H, Tang X, Yamamoto H, Suzuki A, Seki T, Masuda S. p62 Regulates the Proliferation of Molecular Apocrine Breast Cancer Cells. Acta Histochem Cytochem 2016; 49:125-30. [PMID: 27682016 PMCID: PMC5011237 DOI: 10.1267/ahc.16013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/28/2016] [Indexed: 11/22/2022] Open
Abstract
p62, also called sequestosome 1 (SQSTM1), is a multifunctional signaling molecule that affects cell proliferation. Recently, we found accumulation of p62 in apocrine carcinoma of the breast, however, the biological role of p62 expression in apocrine carcinoma still remains unclear. To investigate whether p62 might contribute to tumor cell proliferation in apocrine carcinomas, we used the MDA-MB-453 (androgen receptor-positive, HER2-type) and MFM223 (androgen receptor-positive, triple-negative type) breast cancer cell lines as models of molecular apocrine carcinoma. Both MDA-MB-453 and MFM223 showed strong and d high p62 protein expression than MCF7 cells (androgen receptor-negative, luminal A type). Knockdown of p62 resulted in significant reduction of the cell proliferative activity in both MDA-MB-453 (P<0.01) and MFM223 (P<0.05). In conclusion, p62 could contribute to cell proliferation and represent a therapeutic target in apocrine carcinoma.
Collapse
Affiliation(s)
- Fumi Nozaki
- Department of Pathology, St. Luke’s International Hospital
- Department of Oncologic Pathology, Nihon University School of Medicine
| | - Yukari Hirotani
- Division of Morphological and Functional Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine
| | - Yoko Nakanishi
- Department of Oncologic Pathology, Nihon University School of Medicine
| | - Hiromi Yamaguchi
- Division of Morphological and Functional Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine
| | - Haruna Nishimaki
- Department of Oncologic Pathology, Nihon University School of Medicine
| | - Hiroko Noda
- Department of Oncologic Pathology, Nihon University School of Medicine
| | - Xiaoyan Tang
- Department of Oncologic Pathology, Nihon University School of Medicine
| | - Hisae Yamamoto
- Division of Pathology, Nihon University Itabashi Hospital
| | - Atsuko Suzuki
- Division of Pathology, Nihon University Itabashi Hospital
| | - Toshimi Seki
- Division of Pathology, Nihon University Itabashi Hospital
| | - Shinobu Masuda
- Department of Oncologic Pathology, Nihon University School of Medicine
| |
Collapse
|
195
|
Di Palma S, Simpson RHW, Marchiò C, Skálová A, Ungari M, Sandison A, Whitaker S, Parry S, Reis-Filho JS. Salivary duct carcinomas can be classified into luminal androgen receptor-positive, HER2 and basal-like phenotypes. Histopathology 2016; 61:629-43. [PMID: 22882517 DOI: 10.1111/j.1365-2559.2012.04252.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The aim of this study was to devise a molecular classification for salivary duct carcinomas (SDCs) based on the similarities between SDCs and breast carcinomas and on characteristics of the microarray-based gene expression profiling-defined molecular subtypes of breast cancer. METHODS AND RESULTS Forty-two pure salivary duct carcinomas, 35 of which contained an in-situ component as defined by histological review and/or immunohistochemical analysis, were stained with antibodies for oestrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR), human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor (EGFR) and cytokeratin (CK) 5/6. Based on these markers, tumours were classified into HER2, luminal androgen receptor-positive, basal-like, luminal and indeterminate phenotype. Analysis revealed that 16.7%, 69%, 4.8%, 9.5% and 0% were of HER2, luminal androgen receptor-positive, basal-like, indeterminate and luminal phenotype, respectively. The in-situ and invasive components displayed the same molecular subtype in all but one case. CONCLUSION Salivary duct carcinomas can be classified into molecular subgroups approximately equivalent to those in the breast. We also report on the existence of a subgroup of bona fide pure salivary duct carcinomas that have a 'basal-like' phenotype. Understanding the phenotypic complexity of SDCs may help to expedite the identification of novel therapeutic targets for these aggressive tumours.
Collapse
Affiliation(s)
- Silvana Di Palma
- Department of Histopathology, Royal Surrey County Hospital, Guildford, SurreyDivision of Clinical Medicine, University of Surrey, Guildford, SurreyDepartment of Histopathology, Royal Devon and Exeter Hospital, Exeter, DevonThe Breakthrough Breast Cancer Research Centre - Institute of Cancer Research, London, UKDepartment of Pathology, Faculty of Medicine, Charles University in Prague, Plzeň, Czech RepublicDepartment of Pathology, Spedali Civili Brescia, Brescia, ItalyDepartment of Histopathology, Imperial College Healthcare Trust, Charing Cross Hospital, LondonDepartment of Oncology, St Lukes Cancer Centre, Royal Surrey County Hospital, Guildford, Surrey, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Triple negative breast cancer: looking for the missing link between biology and treatments. Oncotarget 2016; 6:26560-74. [PMID: 26387133 PMCID: PMC4694936 DOI: 10.18632/oncotarget.5306] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
The so called “Triple Negative Breast Cancer” (TNBC) represents approximately 15-20% of breast cancers. This acronym simply means that the tumour does not express oestrogen receptor (ER) and progesterone receptor (PR) and does not exhibit amplification of the human epidermal growth factor receptor 2 (HER2) gene. Despite this unambiguous definition, TNBCs are an heterogeneous group of tumours with just one common clinical feature: a distinctly aggressive nature with higher rates of relapse and shorter overall survival in the metastatic setting compared with other subtypes of breast cancer. Because of the absence of well-defined molecular targets, cytotoxic chemotherapy is currently the only treatment option for TNBC. In the last decades, the use of more aggressive chemotherapy has produced a clear improvement of the prognosis in women with TNBC, but this approach results in an unacceptable deterioration in the quality of life, also if some support therapies try to relieve patients from distress. In addition, there is the general belief that it is impossible to further improve the prognosis of TNBC patients with chemotherapy alone. In view of that, there is a feverish search for new “clever drugs” able both to rescue chemo-resistant, and to reduce the burden of chemotherapy in chemo-responsive TNBC patients. A major obstacle to identifying actionable targets in TNBC is the vast disease heterogeneity both inter-tumour and intra-tumour and years of study have failed to demonstrate a single unifying alteration that is targetable in TNBC. TNBC is considered the subtype that best benefits from the neoadjuvant model, since the strong correlation between pathological Complete Response and long-term Disease-Free-Survival in these patients. In this review, we discuss the recent discoveries that have furthered our understanding of TNBC, with a focus on the subtyping of TNBC. We also explore the implications of these discoveries for future treatments and highlight the need for a completely different type of clinical trials.
Collapse
|
197
|
Novel targets for paclitaxel nano formulations: Hopes and hypes in triple negative breast cancer. Pharmacol Res 2016; 111:577-591. [PMID: 27461138 DOI: 10.1016/j.phrs.2016.07.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/30/2022]
Abstract
Triple negative breast cancer is defined as one of the utmost prevailing breast cancers worldwide, possessing an inadequate prognosis and treatment option limited to chemotherapy and radiotherapy, creating a challenge for researchers as far as developing a specific targeted therapy is concerned. The past research era has shown several promising outcomes for TNBC such as nano-formulations of the chemotherapeutic agents already used for the management of the malignant tumor. Taking a glance at paclitaxel nano formulations, it has been proven beneficial in several researches in the past decade; nevertheless its solubility is often a challenge to scientists in achieving success. We have henceforth discussed the basic heterogeneity of triple negative breast cancer along with the current management options as well as a brief outlook on pros and cons of paclitaxel, known as the most widely used chemotherapeutic agent for the treatment of the disease. We further analyzed the need of nanotechnology pertaining to the problems encountered with the current paclitaxel formulations available discussing the strategic progress in various nano-formulations till date taking into account the basic research strategies required in terms of solubility, permeability, physicochemical properties, active and passive targeting. A thorough review in recent advances in active targeting for TNBC was carried out whereby the various ligands which are at present finding its way into TNBC research such as hyaluronic acid, folic acid, transferrin, etc. were discussed. These ligands have specific receptor affinity to TNBC tumor cells hence can be beneficial for novel drug targeting approaches. Conversely, there are currently several novel strategies in the research pipeline whose targeting ligands have not yet been studied. Therefore, we reviewed upon the numerous novel receptor targets along with the respective nano-formulation aspects which have not yet been fully researched upon and could be exemplified as outstanding target strategies for TNBC which is currently an urgent requirement.
Collapse
|
198
|
Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J Hum Genet 2016; 62:15-24. [PMID: 27439682 DOI: 10.1038/jhg.2016.89] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/11/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate the function of target genes at the post-transcriptional phase. miRNAs are considered to have roles in the development, progression and metastasis of cancer. Recent studies have indicated that particular miRNA signatures are correlated with tumor aggressiveness, response to drug therapy and patient outcome in breast cancer. On the other hand, in routine clinical practice, the treatment regimens for breast cancer are determined based on the intrinsic subtype of the primary tumor. Previous studies have shown that miRNA expression profiles of each intrinsic subtypes of breast cancer differ. In hormone receptor-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer, miRNA expressions are found to be correlated with endocrine therapy resistance, progesterone receptor expression and heat shock protein activity. Some miRNAs are associated with resistance to HER2-targeted therapy and HER3 expression in HER2-positive breast cancer. In triple-negative breast cancer, miRNA expressions are found to be associated with BRCA mutations, immune system, epithelial-mesenchymal transition, cancer stem cell properties and androgen receptor expression. As it has been clarified that the expression levels and functions of miRNA differ among the various subtypes of breast cancer, and it is necessary to take account of the characteristics of each breast cancer subtype during research into the roles of miRNA in breast cancer. In addition, the discovery of the roles played by miRNAs in breast cancer might provide new opportunities for the development of novel strategies for diagnosing and treating breast cancer.
Collapse
|
199
|
Carroll JS. Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer. Eur J Endocrinol 2016; 175:R41-9. [PMID: 26884552 PMCID: PMC5065078 DOI: 10.1530/eje-16-0124] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/10/2016] [Accepted: 02/15/2016] [Indexed: 12/24/2022]
Abstract
Most breast cancers are driven by a transcription factor called oestrogen receptor (ER). Understanding the mechanisms of ER activity in breast cancer has been a major research interest and recent genomic advances have revealed extraordinary insights into how ER mediates gene transcription and what occurs during endocrine resistance. This review discusses our current understanding on ER activity, with an emphasis on several evolving, but important areas of ER biology.
Collapse
Affiliation(s)
- J S Carroll
- Cancer Research UKCambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
200
|
Onodera Y, Takagi K, Miki Y, Takayama KI, Shibahara Y, Watanabe M, Ishida T, Inoue S, Sasano H, Suzuki T. TACC2 (transforming acidic coiled-coil protein 2) in breast carcinoma as a potent prognostic predictor associated with cell proliferation. Cancer Med 2016; 5:1973-82. [PMID: 27333920 PMCID: PMC4971925 DOI: 10.1002/cam4.736] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 01/10/2023] Open
Abstract
Transforming acidic coiled‐coil protein 2 (TACC2) belongs to TACC family proteins and involved in a variety of cellular processes through interactions with some molecules involved in centrosomes/microtubules dynamics. Mounting evidence suggests that TACCs is implicated in the progression of some human malignancies, but significance of TACC2 protein in breast carcinoma is still unknown. Therefore, in this study, we examined the clinical significance of TACC2 in breast carcinoma and biological functions by immunohistochemistry and in vitro experiments. Immunohistochemistry for TACC2 was performed in 154 cases of invasive ductal carcinoma. MCF‐7 and MDA‐MB‐453 breast carcinoma cell lines were transfected with small interfering RNA (siRNA) for TACC2, and subsequently, cell proliferation, 5‐Bromo‐2′‐deoxyuridine (BrdU), and invasion assays were performed. TACC2 immunoreactivity was detected in 78 out of 154 (51%) breast carcinoma tissues, and it was significantly associated with Ki‐67 LI. The immunohistochemical TACC2 status was significantly associated with increased incidence of recurrence and breast cancer‐specific death of the patients, and multivariate analyses demonstrated TACC2 status as an independent prognostic factor for both disease‐free and breast cancer‐specific survival. Subsequent in vitro experiments showed that TACC2 significantly increased the proliferation activity of MCF‐7 and MDA‐MB‐453. These results suggest that TACC2 plays an important role in the cell proliferation of breast carcinoma and therefore immunohistochemical TACC2 status is a candidate of worse prognostic factor in breast cancer cases.
Collapse
Affiliation(s)
- Yoshiaki Onodera
- Department of Anatomic Pathology, Tohoku University Graduate school of Medicine, Sendai, Japan
| | - Kiyoshi Takagi
- Pathology and Histotechnology, Tohoku University Graduate school of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate school of Medicine, Sendai, Japan
| | - Ken-Ichi Takayama
- Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiko Shibahara
- Department of Anatomic Pathology, Tohoku University Graduate school of Medicine, Sendai, Japan
| | - Mika Watanabe
- Department of Pathology, Tohoku University Hospital, Sendai, Japan
| | - Takanori Ishida
- Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan.,Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate school of Medicine, Sendai, Japan.,Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Suzuki
- Pathology and Histotechnology, Tohoku University Graduate school of Medicine, Sendai, Japan
| |
Collapse
|