151
|
Yang HC, Chen PJ. The potential and challenges of CRISPR-Cas in eradication of hepatitis B virus covalently closed circular DNA. Virus Res 2018; 244:304-310. [PMID: 28627393 DOI: 10.1016/j.virusres.2017.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022]
Abstract
Current antiviral therapy fails to cure chronic hepatitis B virus (HBV) infection, primarily because of the persistence of covalently closed circular DNA (cccDNA). Although nucleos(t)ide analogues (NAs) can inhibit the reverse transcriptase of HBV and suppress its replication to levels below the detection limit, viremia often rebounds after cessation of therapy. Nuclear cccDNA serves as the HBV replicative template and exhibits extraordinary stability, and is not affected by NAs. Therefore, curing chronic hepatitis B (CHB) requires novel therapy for purging cccDNA from patients. The CRISPR/Cas9 system is a newly developed programmable genome-editing tool and allows for sequence-specific cleavage of DNA. Compared to other genome-editing tools, the CRIPSR/Cas9 system is advantageous for its simplicity and flexibility of design. Theoretically, Cas9 can be redirected to specifically cleave any desired genome sequences simply by designing guide RNAs with about 20 nucleotides that match the particular sequences of genomes with downstream protospacer adjacent motifs. Recently, it has been demonstrated that the CRIPSR/Cas9 system can specifically destruct HBV genomes in vitro and in vivo. Although promising, the CRISPR/Cas9 system faces several challenges that need to be overcome for the clinical application, namely, off-target cleavage and the in vivo delivery efficiency. Cutting integrated HBV genomes by CRISPR/Cas9 also raises serious concern because this has the risk of genome instability. In summary, the CRISPR/Cas9 system bears the potential for curing CHB as long as several challenging issues can be successfully solved.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- CRISPR-Associated Protein 9
- CRISPR-Cas Systems
- Clustered Regularly Interspaced Short Palindromic Repeats
- DNA Cleavage
- DNA, Circular/genetics
- DNA, Circular/metabolism
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Endonucleases/genetics
- Endonucleases/metabolism
- Genomic Instability
- Hepatitis B virus/genetics
- Hepatitis B virus/growth & development
- Hepatitis B virus/metabolism
- Hepatitis B, Chronic/therapy
- Hepatitis B, Chronic/virology
- Humans
- Molecular Targeted Therapy/methods
- Patient Safety
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Hung-Chih Yang
- Department of Microbiology, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Research, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
152
|
Lessard S, Francioli L, Alfoldi J, Tardif JC, Ellinor PT, MacArthur DG, Lettre G, Orkin SH, Canver MC. Human genetic variation alters CRISPR-Cas9 on- and off-targeting specificity at therapeutically implicated loci. Proc Natl Acad Sci U S A 2017; 114:E11257-E11266. [PMID: 29229813 PMCID: PMC5748207 DOI: 10.1073/pnas.1714640114] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The CRISPR-Cas9 nuclease system holds enormous potential for therapeutic genome editing of a wide spectrum of diseases. Large efforts have been made to further understanding of on- and off-target activity to assist the design of CRISPR-based therapies with optimized efficacy and safety. However, current efforts have largely focused on the reference genome or the genome of cell lines to evaluate guide RNA (gRNA) efficiency, safety, and toxicity. Here, we examine the effect of human genetic variation on both on- and off-target specificity. Specifically, we utilize 7,444 whole-genome sequences to examine the effect of variants on the targeting specificity of ∼3,000 gRNAs across 30 therapeutically implicated loci. We demonstrate that human genetic variation can alter the off-target landscape genome-wide including creating and destroying protospacer adjacent motifs (PAMs). Furthermore, single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels) can result in altered on-target sites and novel potent off-target sites, which can predispose patients to treatment failure and adverse effects, respectively; however, these events are rare. Taken together, these data highlight the importance of considering individual genomes for therapeutic genome-editing applications for the design and evaluation of CRISPR-based therapies to minimize risk of treatment failure and/or adverse outcomes.
Collapse
Affiliation(s)
- Samuel Lessard
- Research Center, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Laurent Francioli
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
| | - Jessica Alfoldi
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
| | - Jean-Claude Tardif
- Research Center, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Patrick T Ellinor
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
| | - Guillaume Lettre
- Research Center, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115;
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, MA 02115
| | - Matthew C Canver
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115;
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
153
|
Ji M, Hu K. Recent advances in the study of hepatitis B virus covalently closed circular DNA. Virol Sin 2017; 32:454-464. [PMID: 29280054 DOI: 10.1007/s12250-017-4009-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis B infection is caused by hepatitis B virus (HBV) and a total cure is yet to be achieved. The viral covalently closed circular DNA (cccDNA) is the key to establish a persistent infection within hepatocytes. Current antiviral strategies have no effect on the pre-existing cccDNA reservoir. Therefore, the study of the molecular mechanism of cccDNA formation is becoming a major focus of HBV research. This review summarizes the current advances in cccDNA molecular biology and the latest studies on the elimination or inactivation of cccDNA, including three major areas: (1) epigenetic regulation of cccDNA by HBV X protein, (2) immune-mediated degradation, and (3) genome-editing nucleases. All these aspects provide clues on how to finally attain a cure for chronic hepatitis B infection.
Collapse
Affiliation(s)
- Mengying Ji
- Sino-German Biomedical Center, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Kanghong Hu
- Sino-German Biomedical Center, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
154
|
White MK, Khalili K. CRISPR/Cas9 and cancer targets: future possibilities and present challenges. Oncotarget 2017; 7:12305-17. [PMID: 26840090 PMCID: PMC4914286 DOI: 10.18632/oncotarget.7104] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/23/2016] [Indexed: 02/07/2023] Open
Abstract
All cancers have multiple mutations that can largely be grouped into certain classes depending on the function of the gene in which they lie and these include oncogenic changes that enhance cellular proliferation, loss of function of tumor suppressors that regulate cell growth potential and induction of metabolic enzymes that confer resistance to chemotherapeutic agents. Thus the ability to correct such mutations is an important goal in cancer treatment. Recent research has led to the developments of reagents which specifically target nucleotide sequences within the cellular genome and these have a huge potential for expanding our anticancer armamentarium. One such a reagent is the clustered regulatory interspaced short palindromic repeat (CRISPR)-associated 9 (Cas9) system, a powerful, highly specific and adaptable tool that provides unparalleled control for editing the cellular genome. In this short review, we discuss the potential of CRISPR/Cas9 against human cancers and the current difficulties in translating this for novel therapeutic approaches.
Collapse
Affiliation(s)
- Martyn K White
- Department of Neuroscience, Center for Neurovirology and Comprehensive Neuroaids Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and Comprehensive Neuroaids Center, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
155
|
Cribbs AP, Perera SMW. Science and Bioethics of CRISPR-Cas9 Gene Editing: An Analysis Towards Separating Facts and Fiction. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:625-634. [PMID: 29259526 PMCID: PMC5733851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Since its emergence in 2012, the genome editing technique known as CRISPR-Cas9 and its scientific use have rapidly expanded globally within a very short period of time. The technique consists of using an RNA guide molecule to bind to complementary DNA sequences, which simultaneously recruits the endonuclease Cas9 to introduce double-stranded breaks in the target DNA. The resulting double-stranded break is then repaired, allowing modification or removal of specific DNA bases. The technique has gained momentum in the laboratory because it is cheap, quick, and easy to use. Moreover, it is also being applied in vivo to generate more complex animal model systems. Such use of genome editing has proven to be highly effective and warrants a potential therapy for both genetic and non-genetic diseases. Although genome editing has the potential to be a transformative therapy for patients it is still in its infancy. Consequently, the legal and ethical frameworks are yet to be fully discussed and will be an increasingly important topic as the technology moves towards more contentious issues such as modification of the germline. Here, we review a number of scientific and ethical issues which may potentially influence the development of both the technology and its use in the clinical setting.
Collapse
Affiliation(s)
- Adam P. Cribbs
- Computational Genomics and Training Centre (CGAT), MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK,Campion Hall, Oxford, UK,To whom all correspondence should be addressed:
Dr. Adam P Cribbs, Botnar Research Centre Windmill Road, Oxford, OX3 7LD, UK, Phone: +441865222443,
| | - Sumeth M. W. Perera
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK,Campion Hall, Oxford, UK
| |
Collapse
|
156
|
Biswas B, Kandpal M, Vivekanandan P. A G-quadruplex motif in an envelope gene promoter regulates transcription and virion secretion in HBV genotype B. Nucleic Acids Res 2017; 45:11268-11280. [PMID: 28981800 PMCID: PMC5737607 DOI: 10.1093/nar/gkx823] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 09/07/2017] [Indexed: 12/20/2022] Open
Abstract
HBV genotypes differ in pathogenicity. In addition, genotype-specific differences in the regulation of transcription and virus replication exist in HBV, but the underlying mechanisms are unknown. Here, we show the presence of a G-quadruplex motif in the promoter of the preS2/S gene; this G-quadruplex is highly conserved only in HBV genotype B but not in other HBV genotypes. We demonstrate that this G-quadruplex motif forms a hybrid intramolecular G-quadruplex structure. Interestingly, mutations disrupting the G-quadruplex in HBV genotype B reduced the preS2/S promoter activity, leading to reduced hepatitis B surface antigen (HBsAg) levels. G-quadruplex ligands stabilized the G-quadruplex in genotype B and enhanced the preS2/S promoter activity. Furthermore, mutations disrupting the G-quadruplex in the full-length HBV genotype B constructs were associated with impaired virion secretion. In contrast to typical G-quadruplexes within promoters which are negative regulators of transcription the G-quadruplex in the preS2/S promoter of HBV represents an unconventional positive regulatory element. Our findings highlight (a) G-quadruplex mediated enhancement of transcription and virion secretion in HBV and (b) a yet unknown role for DNA secondary structures in complex genotype-specific regulatory mechanisms in virus genomes.
Collapse
Affiliation(s)
- Banhi Biswas
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Manish Kandpal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
157
|
Trevisan M, Palù G, Barzon L. Genome editing technologies to fight infectious diseases. Expert Rev Anti Infect Ther 2017; 15:1001-1013. [PMID: 29090592 DOI: 10.1080/14787210.2017.1400379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Genome editing by programmable nucleases represents a promising tool that could be exploited to develop new therapeutic strategies to fight infectious diseases. These nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) and homing endonucleases, are molecular scissors that can be targeted at predetermined loci in order to modify the genome sequence of an organism. Areas covered: By perturbing genomic DNA at predetermined loci, programmable nucleases can be used as antiviral and antimicrobial treatment. This approach includes targeting of essential viral genes or viral sequences able, once mutated, to inhibit viral replication; repurposing of CRISPR-Cas9 system for lethal self-targeting of bacteria; targeting antibiotic-resistance and virulence genes in bacteria, fungi, and parasites; engineering arthropod vectors to prevent vector-borne infections. Expert commentary: While progress has been done in demonstrating the feasibility of using genome editing as antimicrobial strategy, there are still many hurdles to overcome, such as the risk of off-target mutations, the raising of escape mutants, and the inefficiency of delivery methods, before translating results from preclinical studies into clinical applications.
Collapse
Affiliation(s)
- Marta Trevisan
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Giorgio Palù
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Luisa Barzon
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| |
Collapse
|
158
|
Zheng Q, Bai L, Zheng S, Liu M, Zhang J, Wang T, Xu Z, Chen Y, Li J, Duan Z. Efficient inhibition of duck hepatitis B virus DNA by the CRISPR/Cas9 system. Mol Med Rep 2017; 16:7199-7204. [PMID: 28944845 PMCID: PMC5865846 DOI: 10.3892/mmr.2017.7518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 03/28/2017] [Indexed: 12/30/2022] Open
Abstract
Current therapeutic strategies cannot eradicate hepatitis B virus covalently closed circular DNA (HBV cccDNA), which accounts for the persistence of HBV infection. Very recently, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‑associated protein 9 (Cas9) system has been used as an efficient and powerful tool for viral genome editing. Given that the primary duck hepatocyte (PDH) infected with duck hepatitis B virus (DHBV) has been widely used to study human HBV infection in vitro, the present study aimed to demonstrate the targeted inhibition of DHBV DNA, especially cccDNA, by the CRISPR/Cas9 system using this model. We designed six single‑guide RNAs (sgRNA1‑6) targeting the DHBV genome. The sgRNA/Cas9 plasmid was transfected into DHBV‑infected PDHs, and then DHBV total DNA (in culture medium and PDHs) and cccDNA were quantified by reverse transcription‑quantitative polymerase chain reaction. The combined inhibition of CRISPR/Cas9 system and entecavir (ETV) was also assessed. Two sgRNAs, sgRNA4 and sgRNA6, exhibited efficient inhibition on DHBV total DNA (77.23 and 86.51%, respectively), cccDNA (75.67 and 85.34%, respectively) in PDHs, as well as DHBV total DNA in the culture medium (62.17 and 59.52%, respectively). The inhibition remained or enhanced from day 5 to day 9 following transfection. The combination of the CRISPR/Cas9 system and ETV further increased the inhibitory effect on DHBV total DNA in PDHs and culture medium, but not cccDNA. The CRISPR/Cas9 system has the potential to be a useful tool for the suppression of DHBV DNA.
Collapse
Affiliation(s)
- Qingfen Zheng
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Weihui, Henan 410781, P.R. China
| | - Li Bai
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Sujun Zheng
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Mei Liu
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Jinyan Zhang
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Ting Wang
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Zhongwei Xu
- Department of Gastroenterology, Pennsylvania Hospital, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu Chen
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Jiansheng Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhongping Duan
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
159
|
Gao Y, Feng J, Yang G, Zhang S, Liu Y, Bu Y, Sun M, Zhao M, Chen F, Zhang W, Ye L, Zhang X. Hepatitis B virus X protein-elevated MSL2 modulates hepatitis B virus covalently closed circular DNA by inducing degradation of APOBEC3B to enhance hepatocarcinogenesis. Hepatology 2017; 66:1413-1429. [PMID: 28608964 DOI: 10.1002/hep.29316] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/10/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED Chronic hepatitis B virus (HBV) infection is a leading cause in the occurrence of hepatitis B, liver cirrhosis, and liver cancer, in which nuclear HBV covalently closed circular DNA (cccDNA), the genomic form that templates viral transcription and sustains viral persistence, plays crucial roles. In the present study, we explored the hypothesis that HBV X protein (HBx)-elevated male-specific lethal 2 (MSL2) activated HBV replication by modulating cccDNA in hepatoma cells, leading to hepatocarcinogenesis. Immunohistochemical analysis revealed that the expression of MSL2 was positively associated with that of HBV and was increased in the liver tissues of HBV-transgenic mice and clinical HCC patients. Interestingly, microarray profiling identified that MSL2 was associated with those genes responding to the virus. Mechanistically, MSL2 could maintain HBV cccDNA stability through degradation of APOBEC3B by ubiquitylation in hepatoma cells. Above all, HBx accounted for the up-regulation of MSL2 in stably HBx-transfected hepatoma cell lines and liver tissues of HBx-transgenic mice. Luciferase reporter gene assays revealed that the promoter region of MSL2 regulated by HBx was located at nucleotide -1317/-1167 containing FoxA1 binding element. Chromatin immunoprecipitation assay validated that HBx could enhance the binding property of FoxA1 to MSL2 promoter region. HBx up-regulated MSL2 by activating YAP/FoxA1 signaling. Functionally, silencing MSL2 was able to block the growth of hepatoma cells in vitro and in vivo. CONCLUSION HBx-elevated MSL2 modulates HBV cccDNA in hepatoma cells to promote hepatocarcinogenesis, forming a positive feedback loop of HBx/MSL2/cccDNA/HBV. Our finding uncovers insights into the mechanism by which MSL2 as a promotion factor in host cells selectively activates extrachromosomal DNA. (Hepatology 2017;66:1413-1429).
Collapse
Affiliation(s)
- Yuen Gao
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinyan Feng
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Shuqin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunxia Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanan Bu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingming Sun
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Man Zhao
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Fuquan Chen
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Weiying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaodong Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
160
|
Martinez-Lage M, Torres-Ruiz R, Rodriguez-Perales S. CRISPR/Cas9 Technology: Applications and Human Disease Modeling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 152:23-48. [PMID: 29150003 DOI: 10.1016/bs.pmbts.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The CRISPR/Cas9 system development has revolutionized the field of genome engineering through the efficient creation of targeted breaks in the DNA of almost any organism and cell type, opening an avenue for a wide range of applications in biomedical research and medicine. Apart from gene edition through knock-in or knock-out approaches, CRISPR/Cas9 technology has been used for many other purposes, including regulation of endogenous gene expression, epigenome editing, live-cell imaging of chromosomal loci, edition of RNA and high-throughput screening. With all those technological improvements, CRISPR/Cas9 system has broadened the number of alternatives for studying gene function and the generation of more accurate disease models. Although many mechanistic questions remain to be answered and several challenges have yet to be addressed, the use of CRISPR/Cas9-based genome engineering technologies will increase our knowledge of disease processes and their treatment in the near future.
Collapse
Affiliation(s)
- Marta Martinez-Lage
- Molecular Cytogenetics and Genome Engineering Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Engineering Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain.
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Engineering Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain.
| |
Collapse
|
161
|
Soppe JA, Lebbink RJ. Antiviral Goes Viral: Harnessing CRISPR/Cas9 to Combat Viruses in Humans. Trends Microbiol 2017; 25:833-850. [PMID: 28522157 DOI: 10.1016/j.tim.2017.04.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/07/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems are RNA-guided sequence-specific prokaryotic antiviral immune systems. In prokaryotes, small RNA molecules guide Cas effector endonucleases to invading foreign genetic elements in a sequence-dependent manner, resulting in DNA cleavage by the endonuclease upon target binding. A rewired CRISPR/Cas9 system can be used for targeted and precise genome editing in eukaryotic cells. CRISPR/Cas has also been harnessed to target human pathogenic viruses as a potential new antiviral strategy. Here, we review recent CRISPR/Cas9-based approaches to combat specific human viruses in humans and discuss challenges that need to be overcome before CRISPR/Cas9 may be used in the clinic as an antiviral strategy.
Collapse
Affiliation(s)
- Jasper Adriaan Soppe
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
162
|
Wahid B, Usman S, Ali A, Saleem K, Rafique S, Naz Z, Ahsan Ashfaq H, Idrees M. Therapeutic Strategies of Clustered Regularly Interspaced Palindromic Repeats-Cas Systems for Different Viral Infections. Viral Immunol 2017; 30:552-559. [DOI: 10.1089/vim.2017.0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sana Usman
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Amjad Ali
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Komal Saleem
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shazia Rafique
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Hafiz Ahsan Ashfaq
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
- Vice Chancellor Hazara University, Mansehra, Pakistan
| |
Collapse
|
163
|
Wei ZQ, Zhang YH, Ke CZ, Chen HX, Ren P, He YL, Hu P, Ma DQ, Luo J, Meng ZJ. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation. World J Gastroenterol 2017; 23:6252-6260. [PMID: 28974891 PMCID: PMC5603491 DOI: 10.3748/wjg.v23.i34.6252] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/29/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the potential effect of curcumin on hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) and the underlying mechanism. METHODS A HepG2.2.15 cell line stably transfected with HBV was treated with curcumin, and HBV surface antigen (HBsAg) and e antigen (HBeAg) expression levels were assessed by ELISA. Intracellular HBV DNA replication intermediates and cccDNA were detected by Southern blot and real-time PCR, respectively. The acetylation levels of histones H3 and H4 were measured by Western blot. H3/H4-bound cccDNA was detected by chromatin immunoprecipitation (ChIP) assays. The deacetylase inhibitors trichostatin A and sodium butyrate were used to study the mechanism of action for curcumin. Additionally, short interfering RNAs (siRNAs) targeting HBV were tested along with curcumin. RESULTS Curcumin treatment led to time- and dose-dependent reductions in HBsAg and HBeAg expression and significant reductions in intracellular HBV DNA replication intermediates and HBV cccDNA. After treatment with 20 μmol/L curcumin for 2 d, HBsAg and cccDNA levels in HepG2.2.15 cells were reduced by up to 57.7% (P < 0.01) and 75.5% (P < 0.01), respectively, compared with levels in non-treated cells. Meanwhile, time- and dose-dependent reductions in the histone H3 acetylation levels were also detected upon treatment with curcumin, accompanied by reductions in H3- and H4-bound cccDNA. Furthermore, the deacetylase inhibitors trichostatin A and sodium butyrate could block the effects of curcumin. Additionally, transfection of siRNAs targeting HBV enhanced the inhibitory effects of curcumin. CONCLUSION Curcumin inhibits HBV gene replication via down-regulation of cccDNA-bound histone acetylation and has the potential to be developed as a cccDNA-targeting antiviral agent for hepatitis B.
Collapse
Affiliation(s)
- Zhi-Qiang Wei
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Yong-Hong Zhang
- Institute of Wudang Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Chang-Zheng Ke
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Hong-Xia Chen
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Pan Ren
- Hubei University of Chinese Medicine, Wuhan 430000, Hubei Province, China
| | - Yu-Lin He
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Pei Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430000, Hubei Province, China
| | - De-Qiang Ma
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Jie Luo
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Zhong-Ji Meng
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| |
Collapse
|
164
|
Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release 2017; 266:17-26. [PMID: 28911805 DOI: 10.1016/j.jconrel.2017.09.012] [Citation(s) in RCA: 380] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/05/2017] [Accepted: 09/10/2017] [Indexed: 12/25/2022]
Abstract
The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes.
Collapse
Affiliation(s)
- Chang Liu
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, United States
| | - Li Zhang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, United States
| | - Hao Liu
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, United States
| | - Kun Cheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, United States.
| |
Collapse
|
165
|
CRISPR editing in biological and biomedical investigation. J Cell Physiol 2017; 233:3875-3891. [DOI: 10.1002/jcp.26141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 12/23/2022]
|
166
|
Scott T, Moyo B, Nicholson S, Maepa MB, Watashi K, Ely A, Weinberg MS, Arbuthnot P. ssAAVs containing cassettes encoding SaCas9 and guides targeting hepatitis B virus inactivate replication of the virus in cultured cells. Sci Rep 2017; 7:7401. [PMID: 28785016 PMCID: PMC5547162 DOI: 10.1038/s41598-017-07642-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
Management of infection with hepatitis B virus (HBV) remains a global health problem. Persistence of stable covalently closed circular DNA (cccDNA) during HBV replication is responsible for modest curative efficacy of currently licensed drugs. Novel gene editing technologies, such as those based on CRISPR/Cas9, provide the means for permanently disabling cccDNA. However, efficient delivery of antiviral sequences to infected hepatocytes is challenging. A limiting factor is the large size of sequences encoding Cas9 from Streptococcus pyogenes, and resultant incompatibility with the popular single stranded adeno-associated viral vectors (ssAAVs). We thus explored the utility of ssAAVs for delivery of engineered CRISPR/Cas9 of Staphylococcus aureus (Sa), which is encoded by shorter DNA sequences. Short guide RNAs (sgRNAs) were designed with cognates in the S open reading frame of HBV and incorporated into AAVs that also encoded SaCas9. Intended targeted mutation of HBV DNA was observed after transduction of cells with the all-in-one vectors. Efficacy against HBV-infected hNTCP-HepG2 cells indicated that inactivation of cccDNA was successful. Analysis of likely off-target mutagenesis revealed no unintended sequence changes. Use of ssAAVs to deliver all components required to disable cccDNA by SaCas9 is novel and the technology has curative potential for HBV infection.
Collapse
Affiliation(s)
- Tristan Scott
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, South Africa
- HIV Pathogenesis Research Unit, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, South Africa
| | - Buhle Moyo
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, South Africa
| | - Samantha Nicholson
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, South Africa
| | - Koichi Watashi
- National Institute of Infectious Diseases, Department of Virology II, Tokyo, Japan
| | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, South Africa
| | - Marc S Weinberg
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
167
|
Wang J, Chen R, Zhang R, Ding S, Zhang T, Yuan Q, Guan G, Chen X, Zhang T, Zhuang H, Nunes F, Block T, Liu S, Duan Z, Xia N, Xu Z, Lu F. The gRNA-miRNA-gRNA Ternary Cassette Combining CRISPR/Cas9 with RNAi Approach Strongly Inhibits Hepatitis B Virus Replication. Theranostics 2017; 7:3090-3105. [PMID: 28839466 PMCID: PMC5566108 DOI: 10.7150/thno.18114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/08/2017] [Indexed: 02/07/2023] Open
Abstract
The CRISPR/Cas9 system is a novel genome editing technology which has been successfully used to inhibit HBV replication. Here, we described a novel gRNA-microRNA (miRNA)-gRNA ternary cassette driven by a single U6 promoter. With an anti-HBV pri-miR31 mimic integrated between two HBV-specific gRNAs, both gRNAs could be separated from the long transcript of gRNA-miR-HBV-gRNA ternary cassette through Drosha/DGCR8 processing. The results showed that the gRNA-miR-HBV-gRNA ternary cassette could efficiently express two gRNAs and miR-HBV. The optimal length of pri-miRNA flanking sequence in our ternary cassette was determined to be 38 base pairs (bp). Besides, HBV-specific gRNAs and miR-HBV in gRNA-miR-HBV-gRNA ternary cassette could exert a synergistic effect in inhibiting HBV replication and destroying HBV genome in vitro and in vivo. Most importantly, together with RNA interference (RNAi) approach, the HBV-specific gRNAs showed the potent activity on the destruction of HBV covalently closed circular DNA (cccDNA). Since HBV cccDNA is an obstacle for the elimination of chronic HBV infection, the gRNA-miR-HBV-gRNA ternary cassette may be a potential tool for the clearance of HBV cccDNA.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ran Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ruiyang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shanlong Ding
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Guiwen Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiangmei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ting Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hui Zhuang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Frederick Nunes
- Department of Gastroenterology, Pennsylvania Hospital, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy Block
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, USA
| | - Shuang Liu
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhongping Duan
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Zhongwei Xu
- Department of Gastroenterology, Pennsylvania Hospital, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fengmin Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
168
|
Kurihara T, Fukuhara T, Ono C, Yamamoto S, Uemura K, Okamoto T, Sugiyama M, Motooka D, Nakamura S, Ikawa M, Mizokami M, Maehara Y, Matsuura Y. Suppression of HBV replication by the expression of nickase- and nuclease dead-Cas9. Sci Rep 2017; 7:6122. [PMID: 28733609 PMCID: PMC5522428 DOI: 10.1038/s41598-017-05905-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/05/2017] [Indexed: 12/26/2022] Open
Abstract
Complete removal of hepatitis B virus (HBV) DNA from nuclei is difficult by the current therapies. Recent reports have shown that a novel genome-editing tool using Cas9 with a single-guide RNA (sgRNA) system can cleave the HBV genome in vitro and in vivo. However, induction of a double-strand break (DSB) on the targeted genome by Cas9 risks undesirable off-target cleavage on the host genome. Nickase-Cas9 cleaves a single strand of DNA, and thereby two sgRNAs are required for inducing DSBs. To avoid Cas9-induced off-target mutagenesis, we examined the effects of the expressions of nickase-Cas9 and nuclease dead Cas9 (d-Cas9) with sgRNAs on HBV replication. The expression of nickase-Cas9 with a pair of sgRNAs cleaved the target HBV genome and suppressed the viral-protein expression and HBV replication in vitro. Moreover, nickase-Cas9 with the sgRNA pair cleaved the targeted HBV genome in mouse liver. Interestingly, d-Cas9 expression with the sgRNAs also suppressed HBV replication in vitro without cleaving the HBV genome. These results suggest the possible use of nickase-Cas9 and d-Cas9 with a pair of sgRNAs for eliminating HBV DNA from the livers of chronic hepatitis B patients with low risk of undesirable off-target mutation on the host genome.
Collapse
Affiliation(s)
- Takeshi Kurihara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Medicine, Department of Surgery and Science, Kyushu University, Fukuoka, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Satomi Yamamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Kentaro Uemura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masaya Sugiyama
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masato Ikawa
- Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masashi Mizokami
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yoshihiko Maehara
- Graduate School of Medicine, Department of Surgery and Science, Kyushu University, Fukuoka, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| |
Collapse
|
169
|
NgAgo-gDNA system efficiently suppresses hepatitis B virus replication through accelerating decay of pregenomic RNA. Antiviral Res 2017; 145:20-23. [PMID: 28709658 DOI: 10.1016/j.antiviral.2017.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 11/21/2022]
Abstract
Covalently closed circular DNA (cccDNA) in the hepatocytes nucleus is responsible for persistent infection of Hepatitis B virus (HBV). Current antiviral therapy drugs nucleos(t)ide analogs or interferon fail to eradicate HBV cccDNA. Genome editing technique provides an effective approach for HBV treatment through targeting viral cccDNA. Natronobacterium gregoryi Argonaute (NgAgo)-guide DNA (gDNA) system with powerful genome editing prompts us to explore its application in inhibiting HBV replication. Preliminary function verification indicated that NgAgo/EGFP-gDNA obviously inhibited EGFP expression. To further explore the potential role of NgAgo in restricting HBV replication, 10 of gDNAs targeting the critical region of viral genome were designed, only S-142, P-263 and P-2166 gDNAs led to significant inhibition on HBsAg, HBeAg and pregenomic RNA (pgRNA) level in Huh7 and HepG2 cells transfected with pcDNA-HBV1.1 plasmid. Similar results were also found in HBV infected HLCZ01 cells and Huh7-NTCP cells. However, we failed to detect any DNA editing in S-142, P-263 and P-2166 targeting region through T7E1 assay and Sanger sequencing. Remarkably, we found that NgAgo/P-2166 significantly accelerated the decay of viral pgRNA. Taken together, our results firstly demonstrate the potential of NgAgo/gDNA in inhibiting HBV replication through accelerating pgRNA degradation, but not DNA editing.
Collapse
|
170
|
Pankowicz FP, Jarrett KE, Lagor WR, Bissig KD. CRISPR/Cas9: at the cutting edge of hepatology. Gut 2017; 66:1329-1340. [PMID: 28487442 PMCID: PMC5878048 DOI: 10.1136/gutjnl-2016-313565] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 genome engineering has revolutionised biomedical science and we are standing on the cusp of medical transformation. The therapeutic potential of this technology is tremendous, however, its translation to the clinic will be challenging. In this article, we review recent progress using this genome editing technology and explore its potential uses in studying and treating diseases of the liver. We discuss the development of new research tools and animal models as well as potential clinical applications, strategies and challenges.
Collapse
Affiliation(s)
- Francis P Pankowicz
- Center for Cell and Gene Therapy, Center for Stem Cells and
Regenerative Medicine, Baylor College of Medicine, Houston, Texas, USA,Graduate Program Department of Molecular & Cellular Biology,
Baylor College of Medicine, Houston, Texas, USA
| | - Kelsey E Jarrett
- Department of Molecular Physiology and Biophysics, Baylor College of
Medicine, Houston, Texas, USA,Integrative Molecular and Biomedical Sciences Graduate Program,
Baylor College of Medicine, Houston, Texas, USA
| | - William R Lagor
- Center for Cell and Gene Therapy, Center for Stem Cells and
Regenerative Medicine, Baylor College of Medicine, Houston, Texas, USA,Department of Molecular Physiology and Biophysics, Baylor College of
Medicine, Houston, Texas, USA,Integrative Molecular and Biomedical Sciences Graduate Program,
Baylor College of Medicine, Houston, Texas, USA,Texas Medical Center Digestive Diseases Center, Baylor College of
Medicine, Houston, Texas, USA
| | - Karl-Dimiter Bissig
- Center for Cell and Gene Therapy, Center for Stem Cells and
Regenerative Medicine, Baylor College of Medicine, Houston, Texas, USA,Graduate Program Department of Molecular & Cellular Biology,
Baylor College of Medicine, Houston, Texas, USA,Texas Medical Center Digestive Diseases Center, Baylor College of
Medicine, Houston, Texas, USA,Graduate Program in Translational Biology and Molecular Medicine,
Baylor College of Medicine, Houston, Texas, USA,Department of Molecular and Cellular Biology, Baylor College of
Medicine, Houston, Texas, USA,Program in Developmental Biology, Baylor College of Medicine,
Houston, Texas, USA,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston,
Texas, USA
| |
Collapse
|
171
|
Lin J, Zhou Y, Liu J, Chen J, Chen W, Zhao S, Wu Z, Wu N. Progress and Application of CRISPR/Cas Technology in Biological and Biomedical Investigation. J Cell Biochem 2017; 118:3061-3071. [DOI: 10.1002/jcb.26198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 06/06/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Jiachen Lin
- Department of Orthopedic Surgery, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Genetic Research of Skeletal DeformityBeijingChina
- Medical Research Center of OrthopedicsChinese Academy of Medical SciencesBeijingChina
| | - Yangzhong Zhou
- Beijing Key Laboratory for Genetic Research of Skeletal DeformityBeijingChina
- Medical Research Center of OrthopedicsChinese Academy of Medical SciencesBeijingChina
- Department of Internal Medicine, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Jiaqi Liu
- Department of Orthopedic Surgery, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Genetic Research of Skeletal DeformityBeijingChina
- Department of Breast Surgical Oncology, National Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jia Chen
- Department of Orthopedic Surgery, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Genetic Research of Skeletal DeformityBeijingChina
- Medical Research Center of OrthopedicsChinese Academy of Medical SciencesBeijingChina
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Genetic Research of Skeletal DeformityBeijingChina
- Medical Research Center of OrthopedicsChinese Academy of Medical SciencesBeijingChina
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Genetic Research of Skeletal DeformityBeijingChina
- Medical Research Center of OrthopedicsChinese Academy of Medical SciencesBeijingChina
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal DeformityBeijingChina
- Medical Research Center of OrthopedicsChinese Academy of Medical SciencesBeijingChina
- Department of Central Laboratory, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Beijing Key Laboratory for Genetic Research of Skeletal DeformityBeijingChina
- Medical Research Center of OrthopedicsChinese Academy of Medical SciencesBeijingChina
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| |
Collapse
|
172
|
Dandri M, Petersen J. Animal models of HBV infection. Best Pract Res Clin Gastroenterol 2017; 31:273-279. [PMID: 28774409 DOI: 10.1016/j.bpg.2017.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/28/2017] [Indexed: 01/31/2023]
Abstract
The mechanisms determining hepatitis B virus (HBV) persistence and pathogenesis are not fully elucidated, but appear to be multi-factorial. Current medication to repress viral replication is available; however, the unique replication strategies employed by HBV enable the virus to persist within the infected hepatocytes. Consequently, cure is rarely achieved. Progresses in HBV research and preclinical testing of antiviral agents have been limited by the narrow species- and tissue-tropism of the virus, the paucity of infection models available and the restrictions imposed by the use of chimpanzees, the only animals fully susceptible to HBV infection. Mice are not HBV permissive but major efforts have focused on the development of mouse models of HBV replication and infection, such as the generation of humanized mice. By presenting the different animal models available, this review will highlight the most important and clinically relevant findings that have been retrieved from the respective systems.
Collapse
Affiliation(s)
- Maura Dandri
- I. Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF) Hamburg-Lübeck-Borstel Site, Germany.
| | - Joerg Petersen
- IFI Institute for Interdisciplinary Medicine at Asklepios Clinic St. Georg, Hamburg, Germany
| |
Collapse
|
173
|
Ko C, Michler T, Protzer U. Novel viral and host targets to cure hepatitis B. Curr Opin Virol 2017; 24:38-45. [DOI: 10.1016/j.coviro.2017.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/06/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023]
|
174
|
Hensel KO, Rendon JC, Navas MC, Rots MG, Postberg J. Virus-host interplay in hepatitis B virus infection and epigenetic treatment strategies. FEBS J 2017; 284:3550-3572. [PMID: 28457020 DOI: 10.1111/febs.14094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/25/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
Worldwide, chronic hepatitis B virus (HBV) infection is a major health problem and no cure exists. Importantly, hepatocyte intrusion by HBV particles results in a complex deregulation of both viral and host cellular genetic and epigenetic processes. Among the attempts to develop novel therapeutic approaches against HBV infection, several options targeting the epigenomic regulation of HBV replication are gaining attention. These include the experimental treatment with 'epidrugs'. Moreover, as a targeted approach, the principle of 'epigenetic editing' recently is being exploited to control viral replication. Silencing of HBV by specific rewriting of epigenetic marks might diminish viral replication, viremia, and infectivity, eventually controlling the disease and its complications. Additionally, epigenetic editing can be used as an experimental tool to increase our limited understanding regarding the role of epigenetic modifications in viral infections. Aiming for permanent epigenetic reprogramming of the viral genome without unspecific side effects, this breakthrough may pave the roads for an ambitious technological pursuit: to start designing a curative approach utilizing manipulative molecular therapies for viral infections in vivo.
Collapse
Affiliation(s)
- Kai O Hensel
- HELIOS Medical Centre Wuppertal, Paediatrics Centre, Centre for Clinical & Translational Research (CCTR), Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Germany
| | - Julio C Rendon
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), The Netherlands.,Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellin, Colombia
| | - Maria-Cristina Navas
- Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellin, Colombia
| | - Marianne G Rots
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), The Netherlands
| | - Jan Postberg
- HELIOS Medical Centre Wuppertal, Paediatrics Centre, Centre for Clinical & Translational Research (CCTR), Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Germany
| |
Collapse
|
175
|
Song M. The CRISPR/Cas9 system: Their delivery, in vivo and ex vivo applications and clinical development by startups. Biotechnol Prog 2017; 33:1035-1045. [PMID: 28440027 DOI: 10.1002/btpr.2484] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/09/2017] [Indexed: 12/23/2022]
Abstract
The CRISPR/Cas9 gene editing system was originally derived from the prokaryotic adaptive immune system mediated by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated proteins (Cas). The system has been successfully applied to genome editing in eukaryotes and has contributed to remarkable advances in the life sciences, in areas ranging from agriculture to genetic disease therapies. For efficient editing and extending the influence of this system, proper delivery of its components is crucial. Both viral and nonviral delivery methods are reviewed here, along with the advantages and disadvantages of each. In addition, we review ex vivo and in vivo CRISPR/Cas9 applications for disease therapies. Related remarkable studies are highlighted and relevant startup companies and their drug development pipelines are described. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1035-1045, 2017.
Collapse
Affiliation(s)
- Minjung Song
- Dept. of Food Biotechnology, Silla University, Baekyangdaero 700, Sasang-ku, Busan, Korea
| |
Collapse
|
176
|
Puschnik AS, Majzoub K, Ooi YS, Carette JE. A CRISPR toolbox to study virus-host interactions. Nat Rev Microbiol 2017; 15:351-364. [PMID: 28420884 PMCID: PMC5800792 DOI: 10.1038/nrmicro.2017.29] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viruses are obligate intracellular pathogens that depend on host cellular components for replication. Genetic screens are an unbiased and comprehensive method to uncover host cellular components that are critical for the infection with viruses. Loss-of-function screens result in the genome-wide disruption of gene expression, whereas gain-of-function screens rely on large-scale overexpression of host genes. Genetic knockout screens can be conducted using haploid insertional mutagenesis or the CRISPR–Cas system. Genetic screens using the CRISPR–Cas system have provided crucial insights in the host determinants of infections with important human pathogens such as dengue virus, West Nile virus, Zika virus and hepatitis C virus. CRISPR–Cas-based techniques additionally provide ways to generate both in vitro and in vivo models to study viral pathogenesis, to manipulate viral genomes, to eradicate viral disease vectors using gene drive systems and to advance the development of antiviral therapeutics.
In this Review, Puschnik and colleagues discuss the technical aspects of using CRISPR–Cas technology in genome-scale knockout screens to study virus–host interactions, and they compare these screens with alternative genetic screening technologies. Viruses depend on their hosts to complete their replication cycles; they exploit cellular receptors for entry and hijack cellular functions to replicate their genome, assemble progeny virions and spread. Recently, genome-scale CRISPR–Cas screens have been used to identify host factors that are required for virus replication, including the replication of clinically relevant viruses such as Zika virus, West Nile virus, dengue virus and hepatitis C virus. In this Review, we discuss the technical aspects of genome-scale knockout screens using CRISPR–Cas technology, and we compare these screens with alternative genetic screening technologies. The relative ease of use and reproducibility of CRISPR–Cas make it a powerful tool for probing virus–host interactions and for identifying new antiviral targets.
Collapse
Affiliation(s)
- Andreas S Puschnik
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA
| | - Karim Majzoub
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA
| | - Yaw Shin Ooi
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
177
|
Lau V, Davie JR. The discovery and development of the CRISPR system in applications in genome manipulation. Biochem Cell Biol 2017; 95:203-210. [PMID: 28103055 DOI: 10.1139/bcb-2016-0159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR) associated 9 (Cas9) system is a microbial adaptive immune system that has been recently developed for genomic engineering. From the moment the CRISPR system was discovered in Escherichia coli, the drive to understand the mechanism prevailed, leading to rapid advancement in the knowledge and applications of the CRISPR system. With the ability to characterize and understand the function of the Cas9 endonuclease came the ability to adapt the CRISPR-Cas9 system for use in a variety of applications and disciplines ranging from agriculture to biomedicine. This review will provide a brief overview of the discovery and development of the CRISPR-Cas9 system in applications such as genome regulation and epigenome engineering, as well as the challenges faced.
Collapse
Affiliation(s)
- Veronica Lau
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - James R Davie
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
178
|
Transgenic Clustered Regularly Interspaced Short Palindromic Repeat/Cas9-Mediated Viral Gene Targeting for Antiviral Therapy of Bombyx mori Nucleopolyhedrovirus. J Virol 2017; 91:JVI.02465-16. [PMID: 28122981 PMCID: PMC5375672 DOI: 10.1128/jvi.02465-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/20/2017] [Indexed: 11/20/2022] Open
Abstract
We developed a novel antiviral strategy by combining transposon-based transgenesis and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system for the direct cleavage of Bombyx mori nucleopolyhedrovirus (BmNPV) genome DNA to promote virus clearance in silkworms. We demonstrate that transgenic silkworms constitutively expressing Cas9 and guide RNAs targeting the BmNPV immediate early-1 (ie-1) and me53 genes effectively induce target-specific cleavage and subsequent mutagenesis, especially large (∼7-kbp) segment deletions in BmNPV genomes, and thus exhibit robust suppression of BmNPV proliferation. Transgenic animals exhibited higher and inheritable resistance to BmNPV infection than wild-type animals. Our approach will not only contribute to modern sericulture but also shed light on future antiviral therapy. IMPORTANCE Pathogen genome targeting has shown its potential in antiviral research. However, transgenic CRISPR/Cas9 system-mediated viral genome targeting has not been reported as an antiviral strategy in a natural animal host of a virus. Our data provide an effective approach against BmNPV infection in a real-world biological system and demonstrate the potential of transgenic CRISPR/Cas9 systems in antiviral research in other species.
Collapse
|
179
|
Li H, Sheng C, Wang S, Yang L, Liang Y, Huang Y, Liu H, Li P, Yang C, Yang X, Jia L, Xie J, Wang L, Hao R, Du X, Xu D, Zhou J, Li M, Sun Y, Tong Y, Li Q, Qiu S, Song H. Removal of Integrated Hepatitis B Virus DNA Using CRISPR-Cas9. Front Cell Infect Microbiol 2017; 7:91. [PMID: 28382278 PMCID: PMC5360708 DOI: 10.3389/fcimb.2017.00091] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
The presence of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) and the permanent integration of HBV DNA into the host genome confers the risk of viral reactivation and hepatocellular carcinoma. Nucleoside/nucleotide analogs alone have little or no capacity to eliminate replicative HBV templates consisting of cccDNA or integrated HBV DNA. Recently, CRISPR/Cas9 technology has been widely applied as a promising genome-editing tool, and HBV-specific CRISPR-Cas9 systems were shown to effectively mediate HBV cccDNA disruption. However, the integrated HBV DNA fragments are considered as important pro-oncogenic properties and it serves as an important template for viral replication and expression in stable HBV cell line. In this study, we completely excised a full-length 3,175-bp integrated HBV DNA fragment and disrupted HBV cccDNA in a stable HBV cell line. In HBV-excised cell line, the HBV cccDNA inside cells, supernatant HBV DNA, HBsAg, and HBeAg remained below the negative critical values for more than 10 months. Besides, by whole genome sequencing, we analyzed off-target effects and excluded cell contamination. It is the first time that the HBV infection has been fully eradicated in a stable HBV cell line. These findings demonstrate that the CRISPR-Cas9 system is a potentially powerful tool capable of promoting a radical or “sterile” HBV cure.
Collapse
Affiliation(s)
- Hao Li
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Chunyu Sheng
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Shan Wang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Lang Yang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Yuan Liang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Hongbo Liu
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Peng Li
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Chaojie Yang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Xiaoxia Yang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Leili Jia
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Jing Xie
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Ligui Wang
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Rongzhang Hao
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Xinying Du
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Dongping Xu
- Research Centre for Liver Failure, Beijing 302nd Hospital Beijing, China
| | - Jianjun Zhou
- Research Center for Translational Medicine, Cancer Stem Cell Institute, East Hospital, Tongji University School of MedicineShanghai, China; Gladcan Consulting CompanyBeijing, China
| | - Mingzhen Li
- Research and Development Department, Beijing Center for Physical and Chemical Analysis Beijing, China
| | - Yansong Sun
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Qiao Li
- Department of Surgery, University of Michigan Ann Arbor, MI, USA
| | - Shaofu Qiu
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Hongbin Song
- Center for Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| |
Collapse
|
180
|
Jasinski D, Haque F, Binzel DW, Guo P. Advancement of the Emerging Field of RNA Nanotechnology. ACS NANO 2017; 11:1142-1164. [PMID: 28045501 PMCID: PMC5333189 DOI: 10.1021/acsnano.6b05737] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/03/2017] [Indexed: 05/14/2023]
Abstract
The field of RNA nanotechnology has advanced rapidly during the past decade. A variety of programmable RNA nanoparticles with defined shape, size, and stoichiometry have been developed for diverse applications in nanobiotechnology. The rising popularity of RNA nanoparticles is due to a number of factors: (1) removing the concern of RNA degradation in vitro and in vivo by introducing chemical modification into nucleotides without significant alteration of the RNA property in folding and self-assembly; (2) confirming the concept that RNA displays very high thermodynamic stability and is suitable for in vivo trafficking and other applications; (3) obtaining the knowledge to tune the immunogenic properties of synthetic RNA constructs for in vivo applications; (4) increased understanding of the 4D structure and intermolecular interaction of RNA molecules; (5) developing methods to control shape, size, and stoichiometry of RNA nanoparticles; (6) increasing knowledge of regulation and processing functions of RNA in cells; (7) decreasing cost of RNA production by biological and chemical synthesis; and (8) proving the concept that RNA is a safe and specific therapeutic modality for cancer and other diseases with little or no accumulation in vital organs. Other applications of RNA nanotechnology, such as adapting them to construct 2D, 3D, and 4D structures for use in tissue engineering, biosensing, resistive biomemory, and potential computer logic gate modules, have stimulated the interest of the scientific community. This review aims to outline the current state of the art of RNA nanoparticles as programmable smart complexes and offers perspectives on the promising avenues of research in this fast-growing field.
Collapse
Affiliation(s)
| | | | - Daniel W Binzel
- College of Pharmacy, Division
of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine,
Department of Physiology & Cell Biology; and Dorothy M. Davis
Heart and Lung Research Institute, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Peixuan Guo
- College of Pharmacy, Division
of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine,
Department of Physiology & Cell Biology; and Dorothy M. Davis
Heart and Lung Research Institute, The Ohio
State University, Columbus, Ohio 43210, United States
| |
Collapse
|
181
|
Lebbink RJ, de Jong DCM, Wolters F, Kruse EM, van Ham PM, Wiertz EJHJ, Nijhuis M. A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape. Sci Rep 2017; 7:41968. [PMID: 28176813 PMCID: PMC5296774 DOI: 10.1038/srep41968] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/30/2016] [Indexed: 01/05/2023] Open
Abstract
HIV presents one of the highest evolutionary rates ever detected and combination antiretroviral therapy is needed to overcome the plasticity of the virus population and control viral replication. Conventional treatments lack the ability to clear the latent reservoir, which remains the major obstacle towards a cure. Novel strategies, such as CRISPR/Cas9 gRNA-based genome-editing, can permanently disrupt the HIV genome. However, HIV genome-editing may accelerate viral escape, questioning the feasibility of the approach. Here, we demonstrate that CRISPR/Cas9 targeting of single HIV loci, only partially inhibits HIV replication and facilitates rapid viral escape at the target site. A combinatorial approach of two strong gRNAs targeting different regions of the HIV genome can completely abrogate viral replication and prevent viral escape. Our data shows that the accelerating effect of gene-editing on viral escape can be overcome and as such gene-editing may provide a future alternative for control of HIV-infection.
Collapse
Affiliation(s)
- Robert Jan Lebbink
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dorien C. M. de Jong
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Femke Wolters
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elisabeth M. Kruse
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra M. van Ham
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J. H. J. Wiertz
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique Nijhuis
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
182
|
A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res 2017; 27:440-443. [PMID: 28117345 DOI: 10.1038/cr.2017.16] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
183
|
Komor AC, Badran AH, Liu DR. CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell 2017; 168:20-36. [PMID: 27866654 PMCID: PMC5235943 DOI: 10.1016/j.cell.2016.10.044] [Citation(s) in RCA: 624] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 12/18/2022]
Abstract
The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes within living cells. In this Review, we summarize CRISPR-based technologies that enable mammalian genome editing and their various applications. We describe recent developments that extend the generality, DNA specificity, product selectivity, and fundamental capabilities of natural CRISPR systems, and we highlight some of the remarkable advancements in basic research, biotechnology, and therapeutics science that these developments have facilitated.
Collapse
Affiliation(s)
- Alexis C Komor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Ahmed H Badran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - David R Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA.
| |
Collapse
|
184
|
Chin WX, Ang SK, Chu JJH. Recent advances in therapeutic recruitment of mammalian RNAi and bacterial CRISPR-Cas DNA interference pathways as emerging antiviral strategies. Drug Discov Today 2017; 22:17-30. [DOI: 10.1016/j.drudis.2016.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/20/2016] [Accepted: 08/19/2016] [Indexed: 01/01/2023]
|
185
|
Kim EJ, Kang KH, Ju JH. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Korean J Intern Med 2017; 32:42-61. [PMID: 28049282 PMCID: PMC5214730 DOI: 10.3904/kjim.2016.198] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/10/2016] [Indexed: 12/13/2022] Open
Abstract
Recent advances in genome editing with programmable nucleases have opened up new avenues for multiple applications, from basic research to clinical therapy. The ease of use of the technology-and particularly clustered regularly interspaced short palindromic repeats (CRISPR)-will allow us to improve our understanding of genomic variation in disease processes via cellular and animal models. Here, we highlight the progress made in correcting gene mutations in monogenic hereditary disorders and discuss various CRISPR-associated applications, such as cancer research, synthetic biology, and gene therapy using induced pluripotent stem cells. The challenges, ethical issues, and future prospects of CRISPR-based systems for human research are also discussed.
Collapse
Affiliation(s)
- Eun Ji Kim
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Ki Ho Kang
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Correspondence to Ji Hyeon Ju, M.D. Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6893 Fax: +82-2-3476-2274 E-mail:
| |
Collapse
|
186
|
DiCarlo JE, Deeconda A, Tsang SH. Viral Vectors, Engineered Cells and the CRISPR Revolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1016:3-27. [PMID: 29130151 DOI: 10.1007/978-3-319-63904-8_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past few decades the ability to edit human cells has revolutionized modern biology and medicine. With advances in genome editing methodologies, gene delivery and cell-based therapeutics targeted at treatment of genetic disease have become a reality that will become more and more essential in clinical practice. Modifying specific mutations in eukaryotic cells using CRISPR-Cas systems derived from prokaryotic immune systems has allowed for precision in correcting various disease mutations. Furthermore, delivery of genetic payloads by employing viral tropism has become a crucial and effective mechanism for delivering genes and gene editing systems into cells. Lastly, cells modified ex vivo have tremendous potential and have shown effective in studying and treating a myriad of diseases. This chapter seeks to highlight and review important progress in the realm of the editing of human cells using CRISPR-Cas systems, the use of viruses as vectors for gene therapy, and the application of engineered cells to study and treat disease.
Collapse
Affiliation(s)
- James E DiCarlo
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA. .,Department of Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians, Columbia University, New York, NY, USA. .,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA.
| | - Anurag Deeconda
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians, Columbia University, New York, NY, USA.,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA
| | - Stephen H Tsang
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Ophthalmology, Columbia University, New York, NY, USA.,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
187
|
Liu J, Shui SL. Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing. J Control Release 2016; 244:83-97. [PMID: 27865852 DOI: 10.1016/j.jconrel.2016.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/30/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
|
188
|
|
189
|
White MK, Hu W, Khalili K. Gene Editing Approaches against Viral Infections and Strategy to Prevent Occurrence of Viral Escape. PLoS Pathog 2016; 12:e1005953. [PMID: 27930735 PMCID: PMC5145235 DOI: 10.1371/journal.ppat.1005953] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Martyn K. White
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Wenhui Hu
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
190
|
Chou YY, Krupp A, Kaynor C, Gaudin R, Ma M, Cahir-McFarland E, Kirchhausen T. Inhibition of JCPyV infection mediated by targeted viral genome editing using CRISPR/Cas9. Sci Rep 2016; 6:36921. [PMID: 27841295 PMCID: PMC5107994 DOI: 10.1038/srep36921] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a debilitating disease resulting from infection of oligodendrocytes by the JC polyomavirus (JCPyV). Currently, there is no anti-viral therapeutic available against JCPyV infection. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system (CRISPR/Cas9) is a genome editing tool capable of introducing sequence specific breaks in double stranded DNA. Here we show that the CRISPR/Cas9 system can restrict the JCPyV life cycle in cultured cells. We utilized CRISPR/Cas9 to target the noncoding control region and the late gene open reading frame of the JCPyV genome. We found significant inhibition of virus replication and viral protein expression in cells recipient of Cas9 together with JCPyV-specific single-guide RNA delivered prior to or after JCPyV infection.
Collapse
Affiliation(s)
- Yi-ying Chou
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Annabel Krupp
- Department of Neuroimmunology, Biogen, Cambridge, MA 02142, USA
| | - Campbell Kaynor
- Department of Neuroimmunology, Biogen, Cambridge, MA 02142, USA
| | - Raphaël Gaudin
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Minghe Ma
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
191
|
Tang L, Zhao Q, Wu S, Cheng J, Chang J, Guo JT. The current status and future directions of hepatitis B antiviral drug discovery. Expert Opin Drug Discov 2016; 12:5-15. [PMID: 27797587 DOI: 10.1080/17460441.2017.1255195] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The current standard care of chronic hepatitis B fails to induce a durable off-drug control of hepatitis B virus (HBV) replication in the majority of treated patients. The primary reasons are its inability to eliminate the covalently closed circular (ccc) DNA, the nuclear form of HBV genome, and restoration of the dysfunctional host antiviral immune response against the virus. Accordingly, discovery and development of therapeutics to completely stop HBV replication, eliminate or functionally inactivate cccDNA as well as activate a functional antiviral immune response against HBV are the primary efforts for finding a cure for chronic hepatitis B. Area covered: Herein, the authors highlight the current efforts of HBV drug discovery and offer their opinions for the future directions of this research. Expert opinion: The authors believe that through a consecutive or overlapping three-stage antiviral and immunotherapy program to: (i) completely stop HBV replication and cccDNA amplification; (ii) reduce viral antigen load and induce HBV surface antigen (HBsAg) seroclearance through eradication or inactivation of cccDNA and RNA interference-mediated degradation of viral mRNA and (iii) activate a functional antiviral immune response against HBV through therapeutic immunization or immunotherapy, a functional cure of chronic HBV infection can be achieved in the majority of chronic HBV carriers.
Collapse
Affiliation(s)
- Liudi Tang
- a Microbiology and Immunology graduate program , Drexel University College of medicine , Philadelphia , PA , USA
| | - Qiong Zhao
- b Baruch S. Blumberg Institute , Hepatitis B foundation , Philadelphia , PA , USA
| | - Shuo Wu
- b Baruch S. Blumberg Institute , Hepatitis B foundation , Philadelphia , PA , USA
| | - Junjun Cheng
- b Baruch S. Blumberg Institute , Hepatitis B foundation , Philadelphia , PA , USA
| | - Jinhong Chang
- b Baruch S. Blumberg Institute , Hepatitis B foundation , Philadelphia , PA , USA
| | - Ju-Tao Guo
- b Baruch S. Blumberg Institute , Hepatitis B foundation , Philadelphia , PA , USA
| |
Collapse
|
192
|
Abstract
Hepatitis B virus (HBV) infection is a major global health challenge. HBV can cause significant morbidity and mortality by establishing acute and chronic hepatitis. Approximately 250 million people worldwide are chronically infected, and more than 2 billion people have been exposed to HBV. Since the discovery of HBV, the advances in our understanding of HBV virology and immunology have translated into effective vaccines and therapies for HBV infection. Although current therapies successfully suppress viral replication but rarely succeed in viral eradication, recent discoveries in HBV virology and immunology provide exciting rationales for novel treatment strategies aiming at HBV cure.
Collapse
Affiliation(s)
- Bertram Bengsch
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 331 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Kyong-Mi Chang
- Medical Research, Philadelphia Corporal Michael J. Crescenz VA Medical Center (CMC VAMC), A424, University and Woodland Avenue, Philadelphia, PA 19104, USA; Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
193
|
Seto W, Yuen M. New pharmacological approaches to a functional cure of hepatitis B. Clin Liver Dis (Hoboken) 2016; 8:83-88. [PMID: 31041070 PMCID: PMC6490200 DOI: 10.1002/cld.577] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 02/04/2023] Open
Affiliation(s)
- Wai‐Kay Seto
- Department of Medicine and State Key Laboratory for Liver ResearchUniversity of Hong Kong, Queen Mary HospitalHong Kong
| | - Man‐Fung Yuen
- Department of Medicine and State Key Laboratory for Liver ResearchUniversity of Hong Kong, Queen Mary HospitalHong Kong
| |
Collapse
|
194
|
Buchholz F, Hauber J. Antiviral therapy of persistent viral infection using genome editing. Curr Opin Virol 2016; 20:85-91. [PMID: 27723558 DOI: 10.1016/j.coviro.2016.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023]
Abstract
Chronic viral infections are often incurable because current antiviral strategies do not target chromosomally integrated or non-replicating episomal viral genomes. The rapid development of technologies for genome editing may possibly soon allow for therapeutic targeting of viral genomes and, hence, for development of curative strategies for persistent viral infection. However, detailed investigation of different antiviral genome editing approaches recently revealed various undesired effects. In particular, the problem of frequent and swift development of resistant viruses has to be thoroughly analysed before genome editing approaches become an established option for antiviral treatment.
Collapse
Affiliation(s)
- Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Am Tatzberg 47/49, D-01307 Dresden, Germany
| | - Joachim Hauber
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg, Germany.
| |
Collapse
|
195
|
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a major health burden worldwide. Currently available antiviral treatment options for chronic hepatitis B include pegylated interferon alpha2a (PegIFN) or nucleos(t)ide analogues (NAs). The major advantages of NAs are good tolerance and potent antiviral activity associated with high rates of sustained on-treatment response to therapy. The advantages of PegIFN include a finite course of treatment, the absence of drug resistance, and an opportunity to obtain a durable post-treatment response to therapy. Furthermore, PegIFN is the only approved agent known to be active against hepatitis D virus (HDV). The use of these two antiviral agents with different mechanisms of action in combination against hepatitis B is theoretically an attractive approach for treatment. Although several studies have confirmed certain virological advantages of combination therapies, data supporting a long-term clinical benefit for patients are lacking and monotherapy with PegIFN or NAs remains the therapy of choice. Moreover, with the current treatment approaches, only a limited number of patients achieve hepatitis B surface antigen (HBsAg) loss. HBsAg loss is considered a "functional cure", but does not mean viral eradication. There is a need for novel therapeutic approaches that enable not only suppression of viral replication, but resolution of HBV infection. A key challenge is to target covalently closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. The recent development and availability of innovative in vitro and in vivo systems and sensitive molecular techniques has opened new possibilities to study the complex network of interactions that HBV establishes with the host in the course of infection and to define new targets for antiviral strategies. Several new antiviral or immunomodulatory compounds have reached preclinical or clinical testing with the aim of silencing or eradicating cccDNA to achieve functional cure. Many of these strategies may also be effective for the treatment of HDV, which is dependent on HBsAg for its life cycle. This Clinical Trial Watch summarizes the most recent therapeutic strategies designed to directly target the viruses B and D or to improve immune responses during chronic HBV infection.
Collapse
|
196
|
Chang KM, Liu M. Chronic hepatitis B: immune pathogenesis and emerging immunotherapeutics. Curr Opin Pharmacol 2016; 30:93-105. [PMID: 27570126 DOI: 10.1016/j.coph.2016.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 12/22/2022]
Abstract
Hepatitis B virus (HBV) evades, subverts, activates and regulates host immune components, thereby impacting its natural history and disease pathogenesis. Recent advances in our understanding of immune interactions in chronic viral infection and tumor therapy are applicable to chronic hepatitis B (CHB). With recent successes of tumor immunotherapy, there is a renewed interest in exploring immunotherapeutics in achieving sustained and functional cure of chronic hepatitis B. In this review, we discuss aspects of host innate and adaptive immune regulatory and pathogenic responses relevant for HBV infection. We also highlight several immune modulatory approaches in clinical development to treat CHB.
Collapse
Affiliation(s)
- Kyong-Mi Chang
- University of Pennsylvania Perelman School of Medicine, USA; Philadelphia Corporal Michael J. Crescenz VA Medical Center, USA.
| | - Mengfei Liu
- University of Pennsylvania Perelman School of Medicine, USA
| |
Collapse
|
197
|
Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol 2016; 34:933-941. [DOI: 10.1038/nbt.3659] [Citation(s) in RCA: 577] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 07/31/2016] [Indexed: 02/06/2023]
|
198
|
Peng Z, Ouyang T, Pang D, Ma T, Chen X, Guo N, Chen F, Yuan L, Ouyang H, Ren L. Pseudorabies virus can escape from CRISPR-Cas9-mediated inhibition. Virus Res 2016; 223:197-205. [PMID: 27507009 DOI: 10.1016/j.virusres.2016.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 12/20/2022]
Abstract
The CRISPR-Cas9 system is a newly developed genome-engineering tool used to inhibit virus infection by targeting the conserved regions of the viral genomic DNA. In the present study, we constructed a cell line stably expressing Cas9 endonuclease and sgRNA targeting the conserved UL30 gene of pseudorabies virus (PRV). During the PRV infection, the CRISPR-Cas9 system was efficient in cleaving the UL30 gene in each passage. However, deletions and insertions occurred at low passages, while substitutions were frequently observed at high passages. Furthermore, copy numbers and virus titers of PRV were significantly increased in a passage-dependent manner, indicating that viral genomic replication and assembly were more effective at the high passages than at low passages. These results demonstrated that PRV could escape from CRISPR-Cas9-mediated inhibition. Therefore, whether the CRISPR-Cas9 system is suitable for antiviral application should be considered and carefully verified.
Collapse
Affiliation(s)
- Zhiyuan Peng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Ting Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Teng Ma
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Xinrong Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Ning Guo
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Fuwang Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Lin Yuan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Linzhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| |
Collapse
|
199
|
Stone D, Niyonzima N, Jerome KR. Genome editing and the next generation of antiviral therapy. Hum Genet 2016; 135:1071-82. [PMID: 27272125 PMCID: PMC5002242 DOI: 10.1007/s00439-016-1686-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/15/2016] [Indexed: 12/18/2022]
Abstract
Engineered endonucleases such as homing endonucleases (HEs), zinc finger nucleases (ZFNs), Tal-effector nucleases (TALENS) and the RNA-guided engineered nucleases (RGENs or CRISPR/Cas9) can target specific DNA sequences for cleavage, and are proving to be valuable tools for gene editing. Recently engineered endonucleases have shown great promise as therapeutics for the treatment of genetic disease and infectious pathogens. In this review, we discuss recent efforts to use the HE, ZFN, TALEN and CRISPR/Cas9 gene-editing platforms as antiviral therapeutics. We also discuss the obstacles facing gene-editing antiviral therapeutics as they are tested in animal models of disease and transition towards human application.
Collapse
Affiliation(s)
- Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nixon Niyonzima
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
200
|
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system, a versatile RNA-guided DNA targeting platform, has been revolutionizing our ability to modify, manipulate, and visualize the human genome, which greatly advances both biological research and therapeutics development. Here, we review the current development of CRISPR/Cas9 technologies for gene editing, transcription regulation, genome imaging, and epigenetic modification. We discuss the broad application of this system to the study of functional genomics, especially genome-wide genetic screening, and to therapeutics development, including establishing disease models, correcting defective genetic mutations, and treating diseases.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158; ,
| | - Meng Chen
- Department of Bioengineering, Stanford University, Stanford, California 94305; ,
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305
- ChEM-H, Stanford University, Stanford, California 94305
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158;
| | - Wendell A Lim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158; ,
| | - Dehua Zhao
- Department of Bioengineering, Stanford University, Stanford, California 94305; ,
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, California 94305; ,
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305
- ChEM-H, Stanford University, Stanford, California 94305
| |
Collapse
|