151
|
Bietti M. Activation and Deactivation Strategies Promoted by Medium Effects for Selective Aliphatic C-H Bond Functionalization. Angew Chem Int Ed Engl 2018; 57:16618-16637. [PMID: 29873935 DOI: 10.1002/anie.201804929] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/31/2018] [Indexed: 12/17/2022]
Abstract
Selective functionalization of unactivated aliphatic C-H bonds represents an important goal of modern synthetic chemistry. Differentiating between such bonds in organic molecules with high levels of selectivity remains a crucial issue, and a profound understanding of even the subtlest reactivity trends is needed. Among the methods that have been developed, those based on hydrogen atom transfer (HAT) have attracted considerable interest. Within this framework, medium effects have proved effective in altering the reactivity and site selectivity in synthetically useful C-H functionalization procedures. In this Review, the mechanistic features behind the available strategies are discussed. It is shown that hydrogen bonding and acid-base interactions can promote C-H bond activation or deactivation toward HAT reagents, thereby providing fine-control over the site selectivity and product chemoselectivity as well as useful guidelines for future development and applications.
Collapse
Affiliation(s)
- Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133, Rome, Italy
| |
Collapse
|
152
|
Bastard K, Isabet T, Stura EA, Legrand P, Zaparucha A. Structural Studies based on two Lysine Dioxygenases with Distinct Regioselectivity Brings Insights Into Enzyme Specificity within the Clavaminate Synthase-Like Family. Sci Rep 2018; 8:16587. [PMID: 30410048 PMCID: PMC6224419 DOI: 10.1038/s41598-018-34795-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022] Open
Abstract
Iron(II)/α-ketoacid-dependent oxygenases (αKAOs) are enzymes that catalyze the oxidation of unactivated C-H bonds, mainly through hydroxylation. Among these, those that are active towards amino-acids and their derivatives are grouped in the Clavaminate Synthase Like (CSL) family. CSL enzymes exhibit high regio- and stereoselectivities with strict substrate specificity. This study reports the structural elucidation of two new regiodivergent members, KDO1 and KDO5, active towards lysine, and the structural and computational analysis of the whole family through modelling and classification of active sites. The structures of KDO1 and KDO5 in complex with their ligands show that one exact position in the active site controls the regioselectivity of the reaction. Our results suggest that the substrate specificity and high stereoselectivity typical of this family is linked to a lid that closes up in order to form a sub-pocket around the side chain of the substrate. This dynamic lid is found throughout the family with varying sequence and length and is associated with a conserved stable dimeric interface. Results from this study could be a starting-point for exploring the functional diversity of the CSL family and direct in vitro screening in the search for new enzymatic activities.
Collapse
Affiliation(s)
- Karine Bastard
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Tatiana Isabet
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - Enrico A Stura
- CEA, Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - Anne Zaparucha
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France.
| |
Collapse
|
153
|
Zhang RK, Huang X, Arnold FH. Selective CH bond functionalization with engineered heme proteins: new tools to generate complexity. Curr Opin Chem Biol 2018; 49:67-75. [PMID: 30343008 DOI: 10.1016/j.cbpa.2018.10.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
CH functionalization is an attractive strategy to construct and diversify molecules. Heme proteins, predominantly cytochromes P450, are responsible for an array of CH oxidations in biology. Recent work has coupled concepts from synthetic chemistry, computation, and natural product biosynthesis to engineer heme protein systems to deliver products with tailored oxidation patterns. Heme protein catalysis has been shown to go well beyond these native reactions and now accesses new-to-nature CH transformations, including CN and CC bond forming processes. Emerging work with these systems moves us along the ambitious path of building complexity from the ubiquitous CH bond.
Collapse
Affiliation(s)
- Ruijie K Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, CA 91125, United States
| | - Xiongyi Huang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, CA 91125, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, CA 91125, United States.
| |
Collapse
|
154
|
Abstract
In the period 1985 to 1995 applications of biocatalysis, driven by the need for more sustainable manufacture of chemicals and catalytic, (enantio)selective methods for the synthesis of pharmaceutical intermediates, largely involved the available hydrolases. This was followed, in the next two decades, by revolutionary developments in protein engineering and directed evolution for the optimisation of enzyme function and performance that totally changed the biocatalysis landscape. In the same period, metabolic engineering and synthetic biology revolutionised the use of whole cell biocatalysis in the synthesis of commodity chemicals by fermentation. In particular, developments in the enzymatic enantioselective synthesis of chiral alcohols and amines are highlighted. Progress in enzyme immobilisation facilitated applications under harsh industrial conditions, such as in organic solvents. The emergence of biocatalytic or chemoenzymatic cascade processes, often with co-immobilised enzymes, has enabled telescoping of multi-step processes. Discovering and inventing new biocatalytic processes, based on (meta)genomic sequencing, evolving enzyme promiscuity, chemomimetic biocatalysis, artificial metalloenzymes, and the introduction of non-canonical amino acids into proteins, are pushing back the limits of biocatalysis function. Finally, the integral role of biocatalysis in developing a biobased carbon-neutral economy is discussed.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa.
| | | |
Collapse
|
155
|
Milan M, Bietti M, Costas M. Enantioselective aliphatic C-H bond oxidation catalyzed by bioinspired complexes. Chem Commun (Camb) 2018; 54:9559-9570. [PMID: 30039814 DOI: 10.1039/c8cc03165g] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enantioselective aliphatic C-H bond oxidation simultaneously installs functionality and chirality into hydrocarbon units, converting in a single step readily available, inexpensive and typically inert hydrocarbons into precious building blocks for organic synthesis. The reaction remains however an open problem eager for catalyst development and improvement. Metal complexes reproducing structural and reactivity aspects of oxygenases are emerging as promising homogeneous catalysts for this class of reactions. The present work reviews the current status of field, analyzing the difficulties of the reaction, discussing principles of catalyst design, and critically highlighting the limitations of the current state-of-the-art methodologies.
Collapse
Affiliation(s)
- Michela Milan
- QBIS Research Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain.
| | | | | |
Collapse
|
156
|
Chatterjee S, Bhattacharya S, Paine TK. Bioinspired Olefin cis-Dihydroxylation and Aliphatic C–H Bond Hydroxylation with Dioxygen Catalyzed by a Nonheme Iron Complex. Inorg Chem 2018; 57:10160-10169. [DOI: 10.1021/acs.inorgchem.8b01353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sayanti Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Shrabanti Bhattacharya
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
157
|
|
158
|
Karasawa M, Stanfield JK, Yanagisawa S, Shoji O, Watanabe Y. Ganzzellbiotransformation von Benzol zu Phenol durch intrazelluläres Zytochrom P450BM3 aktiviert mithilfe externer Zusätze. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804924] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Masayuki Karasawa
- Department of Chemistry Graduate School of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry Graduate School of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Sota Yanagisawa
- Department of Chemistry Graduate School of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Osami Shoji
- Department of Chemistry Graduate School of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- Core Research for Evolutional Science and Technology Japan Science and Technology Agency 5 Sanbancho Chiyoda-ku Tokyo 102-0075 Japan
| | - Yoshihito Watanabe
- Research Center for Materials Science Nagoya University Furo-cho Chikusa-ku Nagoya 464-8602 Japan
| |
Collapse
|
159
|
Karasawa M, Stanfield JK, Yanagisawa S, Shoji O, Watanabe Y. Whole‐Cell Biotransformation of Benzene to Phenol Catalysed by Intracellular Cytochrome P450BM3 Activated by External Additives. Angew Chem Int Ed Engl 2018; 57:12264-12269. [DOI: 10.1002/anie.201804924] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Masayuki Karasawa
- Department of Chemistry Graduate School of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry Graduate School of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Sota Yanagisawa
- Department of Chemistry Graduate School of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Osami Shoji
- Department of Chemistry Graduate School of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- Core Research for Evolutional Science and Technology (Japan) Science and Technology Agency 5 Sanbancho, Chiyoda-ku Tokyo 102-0075 Japan
| | - Yoshihito Watanabe
- Research Center for Materials Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| |
Collapse
|
160
|
Hayashi T, Hilvert D, Green AP. Engineered Metalloenzymes with Non-Canonical Coordination Environments. Chemistry 2018; 24:11821-11830. [PMID: 29786902 DOI: 10.1002/chem.201800975] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 11/09/2022]
Abstract
Nature employs a limited number of genetically encoded, metal-coordinating residues to create metalloenzymes with diverse structures and functions. Engineered components of the cellular translation machinery can now be exploited to encode non-canonical ligands with user-defined electronic and structural properties. This ability to install "chemically programmed" ligands into proteins can provide powerful chemical probes of metalloenzyme mechanism and presents excellent opportunities to create metalloprotein catalysts with augmented properties and novel activities. In this Concept article, we provide an overview of several recent studies describing the creation of engineered metalloenzymes with interesting catalytic properties, and reveal how characterization of these systems has advanced our understanding of nature's bioinorganic mechanisms. We also highlight how powerful laboratory evolution protocols can be readily adapted to allow optimization of metalloenzymes with non-canonical ligands. This approach combines beneficial features of small molecule and protein catalysis by allowing the installation of a greater variety of local metal coordination environments into evolvable protein scaffolds, and holds great promise for the future creation of powerful metalloprotein catalysts for a host of synthetically valuable transformations.
Collapse
Affiliation(s)
- Takahiro Hayashi
- Laboratory of Organic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Anthony P Green
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
161
|
Aghahosseini H, Tabatabaei Rezaei SJ, Tadayyon M, Ramazani A, Amani V, Ahmadi R, Abdolahnjadian D. Highly Efficient Aqueous Synthesis of Propargylamines through C-H Activation Catalyzed by Magnetic Organosilica-Supported Gold Nanoparticles as an Artificial Metalloenzyme. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hamideh Aghahosseini
- Department of Chemistry; Faculty of Science; University of Zanjan; P.O. Box 45195-313 Zanjan Iran
| | | | - Mahsa Tadayyon
- Department of Chemistry; Faculty of Science; University of Zanjan; P.O. Box 45195-313 Zanjan Iran
| | - Ali Ramazani
- Department of Chemistry; Faculty of Science; University of Zanjan; P.O. Box 45195-313 Zanjan Iran
| | - Vahid Amani
- Department of Chemistry; Farhangian University; Tehran Iran
| | - Roya Ahmadi
- Department of Chemistry; Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch; Islamic Azad University; Tehran Iran
| | - Davod Abdolahnjadian
- Department of Chemistry; Faculty of Science; University of Zanjan; P.O. Box 45195-313 Zanjan Iran
| |
Collapse
|
162
|
Kalepu J, Gandeepan P, Ackermann L, Pilarski LT. C4-H indole functionalisation: precedent and prospects. Chem Sci 2018; 9:4203-4216. [PMID: 29780550 PMCID: PMC5944383 DOI: 10.1039/c7sc05336c] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/19/2018] [Indexed: 12/22/2022] Open
Abstract
C4-decorated indoles feature in a plethora of bioactive and functional compounds of importance to natural product synthesis, material sciences, as well as crop protection and pharmaceutical industries. Traditionally, their syntheses largely involved harsh stoichiometric metalations and radical reactions. However, transition metal catalysed C-H activation has recently evolved into a powerful strategy for the late-stage diversification of indoles at the C4-H position. Modern photoredox, enzymatic and precious transition metal catalysis represent the key stimuli for developing challenging C-C and C-Het bond forming transformations under mild reaction conditions. Herein, we discuss the evolution and application of these methods for the step-economical transformations of otherwise inert C4-H bonds up to December 2017.
Collapse
Affiliation(s)
- Jagadeesh Kalepu
- Department of Chemistry - BMC , Uppsala University , Box 576 , 75-123 Uppsala , Sweden . ; https://www.pilarskigroup.org/
| | - Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Goettingen , Germany .
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Goettingen , Germany .
| | - Lukasz T Pilarski
- Department of Chemistry - BMC , Uppsala University , Box 576 , 75-123 Uppsala , Sweden . ; https://www.pilarskigroup.org/
| |
Collapse
|
163
|
Affiliation(s)
- Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
164
|
Petrović D, Bokel A, Allan M, Urlacher VB, Strodel B. Simulation-Guided Design of Cytochrome P450 for Chemo- and Regioselective Macrocyclic Oxidation. J Chem Inf Model 2018. [PMID: 29522682 DOI: 10.1021/acs.jcim.8b00043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Engineering high chemo-, regio-, and stereoselectivity is a prerequisite for enzyme usage in organic synthesis. Cytochromes P450 can oxidize a broad range of substrates, including macrocycles, which are becoming popular scaffolds for therapeutic agents. However, a large conformational space explored by macrocycles not only reduces the selectivity of oxidation but also impairs computational enzyme design strategies based on docking and molecular dynamics (MD) simulations. We present a novel design workflow that uses enhanced-sampling Hamiltonian replica exchange (HREX) MD and focuses on quantifying the substrate binding for suggesting the mutations to be made. This computational approach is applied to P450 BM3 with the aim to shift regioselectively toward one of the numerous possible positions during β-cembrenediol oxidation. The predictions are experimentally tested and the resulting product distributions validate our design strategy, as single mutations led up to 5-fold regioselectivity increases. We thus conclude that the HREX-MD-based workflow is a promising tool for the identification of positions for mutagenesis aiming at P450 enzymes with improved regioselectivity.
Collapse
Affiliation(s)
- Dušan Petrović
- Institute of Complex Systems: Structural Biochemistry , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Ansgar Bokel
- Institute of Biochemistry , Heinrich Heine University Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| | - Matthew Allan
- Institute of Complex Systems: Structural Biochemistry , Forschungszentrum Jülich , 52425 Jülich , Germany.,Schreyer Honors College , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Vlada B Urlacher
- Institute of Biochemistry , Heinrich Heine University Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry , Forschungszentrum Jülich , 52425 Jülich , Germany.,Institute of Theoretical and Computational Chemistry , Heinrich Heine University Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| |
Collapse
|
165
|
Vidal D, Olivo G, Costas M. Controlling Selectivity in Aliphatic C−H Oxidation through Supramolecular Recognition. Chemistry 2018; 24:5042-5054. [DOI: 10.1002/chem.201704852] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Diego Vidal
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química; Universitat de Girona, Campus de Montilivi; 17071 Girona Spain
| | - Giorgio Olivo
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química; Universitat de Girona, Campus de Montilivi; 17071 Girona Spain
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química; Universitat de Girona, Campus de Montilivi; 17071 Girona Spain
| |
Collapse
|
166
|
Acevedo-Rocha CG, Gamble CG, Lonsdale R, Li A, Nett N, Hoebenreich S, Lingnau JB, Wirtz C, Fares C, Hinrichs H, Deege A, Mulholland AJ, Nov Y, Leys D, McLean KJ, Munro AW, Reetz MT. P450-Catalyzed Regio- and Diastereoselective Steroid Hydroxylation: Efficient Directed Evolution Enabled by Mutability Landscaping. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00389] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlos G. Acevedo-Rocha
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Charles G. Gamble
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Richard Lonsdale
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Aitao Li
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University 368 Youyi Road, Wuchang Wuhan 430062, China
| | - Nathalie Nett
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Sabrina Hoebenreich
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Julia B. Lingnau
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Cornelia Wirtz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Christophe Fares
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Heike Hinrichs
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Alfred Deege
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Yuval Nov
- Department of Statistics, University of Haifa, Haifa 31905, Israel
| | - David Leys
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Kirsty J. McLean
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Andrew W. Munro
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
167
|
Scheibel D, Gitsov I. Polymer-Assisted Biocatalysis: Effects of Macromolecular Architectures on the Stability and Catalytic Activity of Immobilized Enzymes toward Water-Soluble and Water-Insoluble Substrates. ACS OMEGA 2018; 3:1700-1709. [PMID: 30023814 PMCID: PMC6045370 DOI: 10.1021/acsomega.7b01721] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study is to develop efficient enzyme immobilization media that will enable the reuse of the biocatalysts over multiple cycles, increase their thermal stability, and attenuate their activity toward hydrophobic substrates for "green" transformations in aqueous media. For this purpose, amphiphilic AB and ABA block copolymers were synthesized and tested with laccase (a multicopper oxidase). In all cases, the hydrophilic B block consisted of poly(ethylene glycol), PEG, with molecular masses of 3, 5, 13, 20, or 13 kDa poly(ethylene oxide). The hydrophobic A blocks were made of linear poly(styrene), PS; hyperbranched poly(p-chloromethyl styrene); or dendritic poly(benzyl ether)s of generations 2, 3, and 4 (G2, G3, and G4) with molecular masses ranging from 1 to 24 kDa. A total of 23 different copolymers (self-assembling into micelles or physical networks) were evaluated. Notable activity enhancements were achieved with both micelles (up to 253%) and hydrogels (up to 408%). The highest enzymatic activity and thermal stability were observed with laccase immobilized in hydrogels consisting of the linear ABA block copolymer PS2.7k-PEG3k-PS2.7k (13 290 μkat/L, 65 °C, ABTS test). This represents a 1245% improvement over native laccase at the same conditions. At 25 °C, the same complex showed a 1236% higher activity than the enzyme. The highest polymerization yield for a water-insoluble monomer was achieved with laccase immobilized in hydrogels composed of linear-dendritic ABA copolymer G3-PEG5k-G3 (85.5%, 45 °C, tyrosine monomer). The broad substrate specificity and reusability of the immobilized laccase were also demonstrated by the successful discoloration of bromophenol blue, methyl orange, and rhodamine B over eight repetitive cycles.
Collapse
Affiliation(s)
- Dieter
M. Scheibel
- Department
of Chemistry, State University of New York,
College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Ivan Gitsov
- Department
of Chemistry, State University of New York,
College of Environmental Science and Forestry, Syracuse, New York 13210, United States
- The
Michael M. Szwarc Polymer Research Institute, Syracuse, New York 13210, United States
| |
Collapse
|
168
|
Ma Z, Chen C. Natural products as inspiration for the development of new synthetic methods. J CHIN CHEM SOC-TAIP 2018; 65:43-59. [PMID: 29430058 PMCID: PMC5800783 DOI: 10.1002/jccs.201700134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Natural products have played an important role in shaping modern synthetic organic chemistry. In particular, their complex molecular skeletons have stimulated the development of many new synthetic methods. We highlight in this article some recent examples of synthetic design inspired by the biosynthesis of natural products.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Chuo Chen
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
| |
Collapse
|
169
|
Klein JEMN, Mandal D, Ching WM, Mallick D, Que L, Shaik S. Privileged Role of Thiolate as the Axial Ligand in Hydrogen Atom Transfer Reactions by Oxoiron(IV) Complexes in Shaping the Potential Energy Surface and Inducing Significant H-Atom Tunneling. J Am Chem Soc 2017; 139:18705-18713. [PMID: 29179544 DOI: 10.1021/jacs.7b11300] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An H/D kinetic isotope effect (KIE) of 80 is found at -20 °C for the oxidation of 9,10-dihydroanthracene by [FeIV(O)(TMCS)]+, a complex supported by the tetramethylcyclam (TMC) macrocycle with a tethered thiolate. This KIE value approaches that previously predicted by DFT calculations. Other [FeIV(O)(TMC)(anion)] complexes exhibit values of 20, suggesting that the thiolate ligand of [FeIV(O)(TMCS)]+ plays a unique role in facilitating tunneling. Calculations show that tunneling is most enhanced (a) when the bond asymmetry between C-H bond breaking and O-H bond formation in the transition state is minimized, and (b) when the electrostatic interactions in the O---H---C moiety are maximal. These two factors-which peak for the best electron donor, the thiolate ligand-afford a slim and narrow barrier through which the H-atom can tunnel most effectively.
Collapse
Affiliation(s)
- Johannes E M N Klein
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Debasish Mandal
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel
| | - Wei-Min Ching
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Dibyendu Mallick
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel
| |
Collapse
|
170
|
Benjdia A, Balty C, Berteau O. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs). Front Chem 2017; 5:87. [PMID: 29167789 PMCID: PMC5682303 DOI: 10.3389/fchem.2017.00087] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/11/2017] [Indexed: 11/13/2022] Open
Abstract
Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large and diverse family of natural products. They possess interesting biological properties such as antibiotic or anticancer activities, making them attractive for therapeutic applications. In contrast to polyketides and non-ribosomal peptides, RiPPs derive from ribosomal peptides and are post-translationally modified by diverse enzyme families. Among them, the emerging superfamily of radical SAM enzymes has been shown to play a major role. These enzymes catalyze the formation of a wide range of post-translational modifications some of them having no counterparts in living systems or synthetic chemistry. The investigation of radical SAM enzymes has not only illuminated unprecedented strategies used by living systems to tailor peptides into complex natural products but has also allowed to uncover novel RiPP families. In this review, we summarize the current knowledge on radical SAM enzymes catalyzing RiPP post-translational modifications and discuss their mechanisms and growing importance notably in the context of the human microbiota.
Collapse
Affiliation(s)
- Alhosna Benjdia
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Clémence Balty
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Olivier Berteau
- Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
171
|
Mi L, He F, Jiang L, Shangguan L, Zhang X, Ding T, Liu A, Zhang Y, Liu S. Electrochemically-driven benzo[a]pyrene metabolism via human cytochrome P450 1A1 with reductase coated nitrogen-doped graphene nano-composites. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.09.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
172
|
Abstract
The application of small molecules as catalysts for the diversification of natural product scaffolds is reviewed. Specifically, principles that relate to the selectivity challenges intrinsic to complex molecular scaffolds are summarized. The synthesis of analogues of natural products by this approach is then described as a quintessential "late-stage functionalization" exercise wherein natural products serve as the lead scaffolds. Given the historical application of enzymatic catalysts to the site-selective alteration of complex molecules, the focus of this Review is on the recent studies of nonenzymatic catalysts. Reactions involving hydroxyl group derivatization with a variety of electrophilic reagents are discussed. C-H bond functionalizations that lead to oxidations, aminations, and halogenations are also presented. Several examples of site-selective olefin functionalizations and C-C bond formations are also included. Numerous classes of natural products have been subjected to these studies of site-selective alteration including polyketides, glycopeptides, terpenoids, macrolides, alkaloids, carbohydrates, and others. What emerges is a platform for chemical remodeling of naturally occurring scaffolds that targets virtually all known chemical functionalities and microenvironments. However, challenges for the design of very broad classes of catalysts, with even broader selectivity demands (e.g., stereoselectivity, functional group selectivity, and site-selectivity) persist. Yet, a significant spectrum of powerful, catalytic alterations of complex natural products now exists such that expansion of scope seems inevitable. Several instances of biological activity assays of remodeled natural product derivatives are also presented. These reports may foreshadow further interdisciplinary impacts for catalytic remodeling of natural products, including contributions to SAR development, mode of action studies, and eventually medicinal chemistry.
Collapse
Affiliation(s)
- Christopher R. Shugrue
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
173
|
Brill ZG, Condakes ML, Ting CP, Maimone TJ. Navigating the Chiral Pool in the Total Synthesis of Complex Terpene Natural Products. Chem Rev 2017; 117:11753-11795. [PMID: 28293944 PMCID: PMC5638449 DOI: 10.1021/acs.chemrev.6b00834] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pool of abundant chiral terpene building blocks (i.e., "chiral pool terpenes") has long served as a starting point for the chemical synthesis of complex natural products, including many terpenes themselves. As inexpensive and versatile starting materials, such compounds continue to influence modern synthetic chemistry. This review highlights 21st century terpene total syntheses which themselves use small, terpene-derived materials as building blocks. An outlook to the future of research in this area is highlighted as well.
Collapse
Affiliation(s)
- Zachary G. Brill
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Matthew L. Condakes
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Chi P. Ting
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Thomas J. Maimone
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
174
|
Rudolf JD, Chang CY, Ma M, Shen B. Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat Prod Rep 2017; 34:1141-1172. [PMID: 28758170 PMCID: PMC5585785 DOI: 10.1039/c7np00034k] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to January 2017Cytochrome P450 enzymes (P450s) are some of the most exquisite and versatile biocatalysts found in nature. In addition to their well-known roles in steroid biosynthesis and drug metabolism in humans, P450s are key players in natural product biosynthetic pathways. Natural products, the most chemically and structurally diverse small molecules known, require an extensive collection of P450s to accept and functionalize their unique scaffolds. In this review, we survey the current catalytic landscape of P450s within the Streptomyces genus, one of the most prolific producers of natural products, and comprehensively summarize the functionally characterized P450s from Streptomyces. A sequence similarity network of >8500 P450s revealed insights into the sequence-function relationships of these oxygen-dependent metalloenzymes. Although only ∼2.4% and <0.4% of streptomycete P450s have been functionally and structurally characterized, respectively, the study of streptomycete P450s involved in the biosynthesis of natural products has revealed their diverse roles in nature, expanded their catalytic repertoire, created structural and mechanistic paradigms, and exposed their potential for biomedical and biotechnological applications. Continued study of these remarkable enzymes will undoubtedly expose their true complement of chemical and biological capabilities.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | |
Collapse
|
175
|
Liu T, Zheng D, Li Z, Wu J. A Route to O
-Aminosulfonates and Sulfonamides through Insertion of Sulfur Dioxide and Hydrogen Atom Transfer. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700501] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tong Liu
- Department of Chemistry; Fudan University; 220 Handan Road Shanghai 200433 People's Republic of China
| | - Danqing Zheng
- Department of Chemistry; Fudan University; 220 Handan Road Shanghai 200433 People's Republic of China
| | - Zhenhua Li
- Department of Chemistry; Fudan University; 220 Handan Road Shanghai 200433 People's Republic of China
| | - Jie Wu
- Department of Chemistry; Fudan University; 220 Handan Road Shanghai 200433 People's Republic of China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|
176
|
Schwizer F, Okamoto Y, Heinisch T, Gu Y, Pellizzoni MM, Lebrun V, Reuter R, Köhler V, Lewis JC, Ward TR. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chem Rev 2017; 118:142-231. [PMID: 28714313 DOI: 10.1021/acs.chemrev.7b00014] [Citation(s) in RCA: 533] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The incorporation of a synthetic, catalytically competent metallocofactor into a protein scaffold to generate an artificial metalloenzyme (ArM) has been explored since the late 1970's. Progress in the ensuing years was limited by the tools available for both organometallic synthesis and protein engineering. Advances in both of these areas, combined with increased appreciation of the potential benefits of combining attractive features of both homogeneous catalysis and enzymatic catalysis, led to a resurgence of interest in ArMs starting in the early 2000's. Perhaps the most intriguing of potential ArM properties is their ability to endow homogeneous catalysts with a genetic memory. Indeed, incorporating a homogeneous catalyst into a genetically encoded scaffold offers the opportunity to improve ArM performance by directed evolution. This capability could, in turn, lead to improvements in ArM efficiency similar to those obtained for natural enzymes, providing systems suitable for practical applications and greater insight into the role of second coordination sphere interactions in organometallic catalysis. Since its renaissance in the early 2000's, different aspects of artificial metalloenzymes have been extensively reviewed and highlighted. Our intent is to provide a comprehensive overview of all work in the field up to December 2016, organized according to reaction class. Because of the wide range of non-natural reactions catalyzed by ArMs, this was done using a functional-group transformation classification. The review begins with a summary of the proteins and the anchoring strategies used to date for the creation of ArMs, followed by a historical perspective. Then follows a summary of the reactions catalyzed by ArMs and a concluding critical outlook. This analysis allows for comparison of similar reactions catalyzed by ArMs constructed using different metallocofactor anchoring strategies, cofactors, protein scaffolds, and mutagenesis strategies. These data will be used to construct a searchable Web site on ArMs that will be updated regularly by the authors.
Collapse
Affiliation(s)
- Fabian Schwizer
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yasunori Okamoto
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Tillmann Heinisch
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yifan Gu
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Michela M Pellizzoni
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Vincent Lebrun
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Raphael Reuter
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Valentin Köhler
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Jared C Lewis
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Thomas R Ward
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| |
Collapse
|
177
|
Lock M, Nichol T, Murrell JC, Smith TJ. Mutagenesis and expression of methane monooxygenase to alter regioselectivity with aromatic substrates. FEMS Microbiol Lett 2017; 364:3906680. [PMID: 28854685 PMCID: PMC5812538 DOI: 10.1093/femsle/fnx137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/27/2017] [Indexed: 11/13/2022] Open
Abstract
Soluble methane monooxygenase (sMMO) from methane-oxidising bacteria can oxygenate more than 100 hydrocarbons and is one of the most catalytically versatile biological oxidation catalysts. Expression of recombinant sMMO has to date not been achieved in Escherichia coli and so an alternative expression system must be used to manipulate it genetically. Here we report substantial improvements to the previously described system for mutagenesis of sMMO and expression of recombinant enzymes in a methanotroph (Methylosinus trichosporium OB3b) expression system. This system has been utilised to make a number of new mutants and to engineer sMMO to increase its catalytic precision with a specific substrate whilst increasing activity by up to 6-fold. These results are the first 'proof-of-principle' experiments illustrating the feasibility of developing sMMO-derived catalysts for diverse applications.
Collapse
Affiliation(s)
- Malcolm Lock
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Tim Nichol
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Thomas J. Smith
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
178
|
Meng X, Wang Y, Wang Y, Chen B, Jing Z, Chen G, Zhao P. OMS-2-Supported Cu Hydroxide-Catalyzed Benzoxazoles Synthesis from Catechols and Amines via Domino Oxidation Process at Room Temperature. J Org Chem 2017; 82:6922-6931. [PMID: 28597654 DOI: 10.1021/acs.joc.7b01119] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the presence of manganese oxide octahedral molecular sieve (OMS-2) supported copper hydroxide Cu(OH)x/OMS-2, aerobic synthesis of benzoxazoles from catechols and amines via domino oxidation/cyclization at room temperature is achieved. This heterogeneous benzoxazoles synthesis initiated by the efficient oxidation of catechols over Cu(OH)x/OMS-2 tolerates a variety of substrates, especially amines containing sensitive groups (hydroxyl, cyano, amino, vinyl, ethynyl, ester, and even acetyl groups) and heterocycles, which affords functionalized benzoxazoles in good to excellent yields by employing low catalyst loading (2 mol % Cu). The characterization and plausible catalytic mechanism of Cu(OH)x/OMS-2 are described. The notable features of our catalytic protocol such as the use of air as the benign oxidant and EtOH as the solvent, mild conditions, ease of product separation, being scalable up to the gram level, and superior reusability of catalyst (up to 10 cycles) make it more practical and environmentally friendly for organic synthesis.
Collapse
Affiliation(s)
- Xu Meng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000, P. R. China
| | - Yanmin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000, P. R. China
| | - Yuanguang Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000, P. R. China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University , Lanzhou 730000, P. R. China
| | - Zhenqiang Jing
- Suzhou Institute of Nano-Tech and Nano-Bionic (SINANO), Chinese Academy of Sciences , Suzhou 215123, P. R. China
| | - Gexin Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000, P. R. China
| | - Peiqing Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000, P. R. China
| |
Collapse
|
179
|
Shalan H, Kato M, Cheruzel L. Keeping the spotlight on cytochrome P450. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:80-87. [PMID: 28599858 DOI: 10.1016/j.bbapap.2017.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/26/2017] [Accepted: 06/03/2017] [Indexed: 12/22/2022]
Abstract
This review describes the recent advances utilizing photosensitizers and visible light to harness the synthetic potential of P450 enzymes. The structures of the photosensitizers investigated to date are first presented along with their photophysical and redox properties. Functional photosensitizers range from organic and inorganic complexes to nanomaterials as well as the biological photosystem I complex. The focus is then on the three distinct approaches that have emerged for the activation of P450 enzymes. The first approach utilizes the in situ generation of reactive oxygen species entering the P450 mechanism via the peroxide shunt pathway. The other two approaches are sustained by electron injections into catalytically competent heme domains either facilitated by redox partners or through direct heme domain reduction. Achievements as well as pitfalls of each approach are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Hadil Shalan
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Mallory Kato
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Lionel Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States.
| |
Collapse
|
180
|
Biocatalysts for the pharmaceutical industry created by structure-guided directed evolution of stereoselective enzymes. Bioorg Med Chem 2017; 26:1241-1251. [PMID: 28693917 DOI: 10.1016/j.bmc.2017.05.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/11/2017] [Accepted: 05/09/2017] [Indexed: 01/01/2023]
Abstract
Enzymes have been used for a long time as catalysts in the asymmetric synthesis of chiral intermediates needed in the production of therapeutic drugs. However, this alternative to man-made catalysts has suffered traditionally from distinct limitations, namely the often observed wrong or insufficient enantio- and/or regioselectivity, low activity, narrow substrate range, and insufficient thermostability. With the advent of directed evolution, these problems can be generally solved. The challenge is to develop and apply the most efficient mutagenesis methods which lead to highest-quality mutant libraries requiring minimal screening. Structure-guided saturation mutagenesis and its iterative form have emerged as the method of choice for evolving stereo- and regioselective mutant enzymes needed in the asymmetric synthesis of chiral intermediates. The number of (industrial) applications in the preparation of chiral pharmaceuticals is rapidly increasing. This review features and analyzes typical case studies.
Collapse
|
181
|
Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5784-5863. [PMID: 28375000 PMCID: PMC5534343 DOI: 10.1021/acs.chemrev.6b00621] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products that contain functional groups with heteroatom-heteroatom linkages (X-X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X-X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X-X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X-X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Tai L. Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
182
|
Esguerra KVN, Lumb JP. A Bioinspired Catalytic Aerobic Functionalization of Phenols: Regioselective Construction of Aromatic C–N and C–O Bonds. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00437] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
183
|
Hayes MA, Roberts I, Grönberg G, Lv K, Lin B, Bergare J, Elmore CS. Synthesis of 1β-hydroxydeoxycholic acid in H-2 and unlabeled forms. J Labelled Comp Radiopharm 2017; 60:221-229. [PMID: 28183147 DOI: 10.1002/jlcr.3495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 11/08/2022]
Abstract
1β-hydroxydeoxycholic acid in unlabeled and stable isotope labeled forms was required for use as a biomarker for Cytochrome P450 3A4/5 activity. A lengthy synthesis was undertaken to deliver the unlabeled compound and in the process, to develop a route to the deuterium labeled compound. The synthesis of the unlabeled compound was completed but in a very low yield. Concurrent with the synthetic approach, a biosynthetic route was pursued and this approach proved to be much more rapid and afforded the compound in both unlabeled and deuterium labeled forms in a 1-step oxidation from deoxycholic acid and [D4 ]deoxycholic acid, respectively.
Collapse
Affiliation(s)
- Martin A Hayes
- Cardiovascular and Metabolic Diseases Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - Ieuan Roberts
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridgeshire, UK
| | - Gunnar Grönberg
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | | | | | - Jonas Bergare
- Pharmaceutical Sciences Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - Charles S Elmore
- Pharmaceutical Sciences Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
184
|
Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Enantioselective cyanation of benzylic C-H bonds via copper-catalyzed radical relay. Science 2017; 353:1014-1018. [PMID: 27701109 DOI: 10.1126/science.aaf7783] [Citation(s) in RCA: 474] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/01/2016] [Indexed: 12/25/2022]
Abstract
Direct methods for stereoselective functionalization of sp3-hybridized carbon-hydrogen [C(sp3)-H] bonds in complex organic molecules could facilitate much more efficient preparation of therapeutics and agrochemicals. Here, we report a copper-catalyzed radical relay pathway for enantioselective conversion of benzylic C-H bonds into benzylic nitriles. Hydrogen-atom abstraction affords an achiral benzylic radical that undergoes asymmetric C(sp3)-CN bond formation upon reaction with a chiral copper catalyst. The reactions proceed efficiently at room temperature with the benzylic substrate as limiting reagent, exhibit broad substrate scope with high enantioselectivity (typically 90 to 99% enantiomeric excess), and afford products that are key precursors to important bioactive molecules. Mechanistic studies provide evidence for diffusible organic radicals and highlight the difference between these reactions and C-H oxidations mediated by enzymes and other catalysts that operate via radical rebound pathways.
Collapse
Affiliation(s)
- Wen Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Fei Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Scott D McCann
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Dinghai Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
185
|
Affiliation(s)
- Yan Qin
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihui Zhu
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sanzhong Luo
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
186
|
Davis HJ, Phipps RJ. Harnessing non-covalent interactions to exert control over regioselectivity and site-selectivity in catalytic reactions. Chem Sci 2017; 8:864-877. [PMID: 28572898 PMCID: PMC5452277 DOI: 10.1039/c6sc04157d] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/05/2016] [Indexed: 12/20/2022] Open
Abstract
Asymmetric catalysis has been revolutionised by the realisation that attractive non-covalent interactions such as hydrogen bonds and ion pairs can act as powerful controllers of enantioselectivity when incorporated into appropriate small molecule chiral scaffolds. Given these tremendous advances it is surprising that there are still a relatively limited number of examples of non-covalent interactions being harnessed for control of regioselectivity or site-selectivity in catalysis, two other fundamental selectivity aspects facing the synthetic chemist. This perspective examines the progress that has been made in this area thus far using non-covalent interactions in conjunction with transition metal catalysis as well as in the context of purely organic catalysts. We hope this will highlight the great potential in this approach for designing selective catalytic reactions.
Collapse
Affiliation(s)
- Holly J Davis
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Robert J Phipps
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| |
Collapse
|
187
|
Upp DM, Lewis JC. Selective C-H bond functionalization using repurposed or artificial metalloenzymes. Curr Opin Chem Biol 2017; 37:48-55. [PMID: 28135654 DOI: 10.1016/j.cbpa.2016.12.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/23/2016] [Indexed: 11/26/2022]
Abstract
Catalytic CH bond functionalization has become an important tool for organic synthesis. Metalloenzymes offer a solution to one of the foremost challenges in this field, site-selective CH functionalization, but they are only capable of catalyzing a subset of the CH functionalization reactions known to small molecule catalysts. To overcome this limitation, metalloenzymes have been repurposed by exploiting the reactivity of their native cofactors toward substrates not found in nature. Additionally, new reactivity has been accessed by incorporating synthetic metal cofactors into protein scaffolds to form artificial metalloenzymes. The selectivity and activity of these catalysts has been tuned using directed evolution. This review covers the recent progress in developing and optimizing both repurposed and artificial metalloenzymes as catalysts for selective CH bond functionalization.
Collapse
Affiliation(s)
- David M Upp
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Jared C Lewis
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
188
|
Quin MB, Wallin KK, Zhang G, Schmidt-Dannert C. Spatial organization of multi-enzyme biocatalytic cascades. Org Biomol Chem 2017; 15:4260-4271. [DOI: 10.1039/c7ob00391a] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multi-enzyme cascades provide a wealth of valuable chemicals. Efficiency of reaction schemes can be improved by spatial organization of biocatalysts. This review will highlight various methods of spatial organization of biocatalysts: fusion, immobilization, scaffolding and encapsulation.
Collapse
Affiliation(s)
- M. B. Quin
- University of Minnesota
- Dept. of Biochemistry
- Molecular Biology and Biophysics
- St Paul
- USA
| | - K. K. Wallin
- University of Minnesota
- Dept. of Biochemistry
- Molecular Biology and Biophysics
- St Paul
- USA
| | - G. Zhang
- University of Minnesota
- Dept. of Biochemistry
- Molecular Biology and Biophysics
- St Paul
- USA
| | - C. Schmidt-Dannert
- University of Minnesota
- Dept. of Biochemistry
- Molecular Biology and Biophysics
- St Paul
- USA
| |
Collapse
|
189
|
Schiavini P, Cheong KJ, Moitessier N, Auclair K. Active Site Crowding of Cytochrome P450 3A4 as a Strategy To Alter Its Selectivity. Chembiochem 2016; 18:248-252. [PMID: 27897366 DOI: 10.1002/cbic.201600546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Paolo Schiavini
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Kin J. Cheong
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Nicolas Moitessier
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Karine Auclair
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| |
Collapse
|
190
|
Mukherjee S, Maji B, Tlahuext-Aca A, Glorius F. Visible-Light-Promoted Activation of Unactivated C(sp 3)-H Bonds and Their Selective Trifluoromethylthiolation. J Am Chem Soc 2016; 138:16200-16203. [PMID: 27935270 DOI: 10.1021/jacs.6b09970] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective functionalization of ubiquitous C(sp3)-H bonds using visible light is a highly challenging yet desirable goal in organic synthesis. The development of such processes relies on both rational design and serendipitous discoveries from innovative tools such as screening technologies. Applying a mechanism-based screening strategy, we herein report photoredox-mediated hydrogen atom transfer catalysis for the selective activation of otherwise unactivated C(sp3)-H bonds, followed by their trifluoromethylthiolation, which has high potential as a late-stage functionalization tool. The generality of this method is exhibited through incorporation of the trifluoromethylthio group in a large number of C(sp3)-H bonds with high selectivity without the need for an excess of valuable substrate.
Collapse
Affiliation(s)
- Satobhisha Mukherjee
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster , Corrensstrasse 40, 48149 Münster, Germany
| | - Biplab Maji
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster , Corrensstrasse 40, 48149 Münster, Germany
| | - Adrian Tlahuext-Aca
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster , Corrensstrasse 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster , Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
191
|
Richers J, Heilmann M, Drees M, Tiefenbacher K. Synthesis of Lactones via C–H Functionalization of Nonactivated C(sp3)–H Bonds. Org Lett 2016; 18:6472-6475. [DOI: 10.1021/acs.orglett.6b03371] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Johannes Richers
- Department
of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Michael Heilmann
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Markus Drees
- Department
of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Konrad Tiefenbacher
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse
26, 4058 Basel, Switzerland
| |
Collapse
|
192
|
Huang X, Groves JT. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C-H activation. J Biol Inorg Chem 2016; 22:185-207. [PMID: 27909920 PMCID: PMC5350257 DOI: 10.1007/s00775-016-1414-3] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/03/2016] [Indexed: 11/24/2022]
Abstract
Since our initial report in 1976, the oxygen rebound mechanism has become the consensus mechanistic feature for an expanding variety of enzymatic C-H functionalization reactions and small molecule biomimetic catalysts. For both the biotransformations and models, an initial hydrogen atom abstraction from the substrate (R-H) by high-valent iron-oxo species (Fen=O) generates a substrate radical and a reduced iron hydroxide, [Fen-1-OH ·R]. This caged radical pair then evolves on a complicated energy landscape through a number of reaction pathways, such as oxygen rebound to form R-OH, rebound to a non-oxygen atom affording R-X, electron transfer of the incipient radical to yield a carbocation, R+, desaturation to form olefins, and radical cage escape. These various flavors of the rebound process, often in competition with each other, give rise to the wide range of C-H functionalization reactions performed by iron-containing oxygenases. In this review, we first recount the history of radical rebound mechanisms, their general features, and key intermediates involved. We will discuss in detail the factors that affect the behavior of the initial caged radical pair and the lifetimes of the incipient substrate radicals. Several representative examples of enzymatic C-H transformations are selected to illustrate how the behaviors of the radical pair [Fen-1-OH ·R] determine the eventual reaction outcome. Finally, we discuss the powerful potential of "radical rebound" processes as a general paradigm for developing novel C-H functionalization reactions with synthetic, biomimetic catalysts. We envision that new chemistry will continue to arise by bridging enzymatic "radical rebound" with synthetic organic chemistry.
Collapse
|
193
|
Hydrogen atom transfer from tertiary alkanamides to the cumyloxyl radical. The role of substrate structure on alkali and alkaline earth metal ion induced C–H bond deactivation. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
194
|
Genovino J, Sames D, Hamann LG, Touré BB. Die Erschließung von Wirkstoffmetaboliten durch übergangsmetallkatalysierte C-H-Oxidation: die Leber als Inspiration für die Synthese. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602644] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Julien Genovino
- Pfizer Inc.; Worldwide Medicinal Chemistry, Cardiovascular, Metabolic, and Endocrine Diseases (CVMED); 558 Eastern Point Road Groton CT 06340 USA
| | - Dalibor Sames
- Columbia University; Department of Chemistry and Neurotechnology Center; 3000 Broadway MC3101 New York NY 10027 USA
| | - Lawrence G. Hamann
- Novartis Institutes for Biomedical Sciences (NIBR), Global Discovery Chemistry (GDC); 181 Massachusetts Avenue Cambridge MA 02139 USA
| | - B. Barry Touré
- Novartis Institutes for Biomedical Sciences (NIBR), Global Discovery Chemistry (GDC); 100 Technology Square Cambridge MA 02139 USA
| |
Collapse
|
195
|
Genovino J, Sames D, Hamann LG, Touré BB. Accessing Drug Metabolites via Transition-Metal Catalyzed C-H Oxidation: The Liver as Synthetic Inspiration. Angew Chem Int Ed Engl 2016; 55:14218-14238. [PMID: 27723189 DOI: 10.1002/anie.201602644] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/08/2016] [Indexed: 11/07/2022]
Abstract
Can classical and modern chemical C-H oxidation reactions complement biotransformation in the synthesis of drug metabolites? We have surveyed the literature in an effort to try to answer this important question of major practical significance in the pharmaceutical industry. Drug metabolites are required throughout all phases of the drug discovery and development process; however, their synthesis is still an unsolved problem. This Review, not intended to be comprehensive or historical, highlights relevant applications of chemical C-H oxidation reactions, electrochemistry and microfluidic technologies to drug templates in order to access drug metabolites, and also highlights promising reactions to this end. Where possible or appropriate, the contrast with biotransformation is drawn. In doing so, we have tried to identify gaps where they exist in the hope to spur further activity in this very important research area.
Collapse
Affiliation(s)
- Julien Genovino
- Pfizer Inc., Worldwide Medicinal Chemistry, Cardiovascular, Metabolic, and Endocrine Diseases (CVMED), 558 Eastern Point Road, Groton, CT, 06340, USA
| | - Dalibor Sames
- Columbia University, Department of Chemistry and Neurotechnology Center, 3000 Broadway MC3101, New York, NY, 10027, USA
| | - Lawrence G Hamann
- Novartis Institutes for Biomedical Sciences (NIBR), Global Discovery Chemistry (GDC), 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - B Barry Touré
- Novartis Institutes for Biomedical Sciences (NIBR), Global Discovery Chemistry (GDC), 100 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
196
|
Nastri F, Chino M, Maglio O, Bhagi-Damodaran A, Lu Y, Lombardi A. Design and engineering of artificial oxygen-activating metalloenzymes. Chem Soc Rev 2016; 45:5020-54. [PMID: 27341693 PMCID: PMC5021598 DOI: 10.1039/c5cs00923e] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many efforts are being made in the design and engineering of metalloenzymes with catalytic properties fulfilling the needs of practical applications. Progress in this field has recently been accelerated by advances in computational, molecular and structural biology. This review article focuses on the recent examples of oxygen-activating metalloenzymes, developed through the strategies of de novo design, miniaturization processes and protein redesign. Considerable progress in these diverse design approaches has produced many metal-containing biocatalysts able to adopt the functions of native enzymes or even novel functions beyond those found in Nature.
Collapse
Affiliation(s)
- Flavia Nastri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
- IBB, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Illinois at Urbana-Champaign, A322 CLSL, 600 South Mathews Avenue, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, A322 CLSL, 600 South Mathews Avenue, Urbana, IL 61801
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
197
|
Salamone M, Carboni G, Bietti M. Fine Control over Site and Substrate Selectivity in Hydrogen Atom Transfer-Based Functionalization of Aliphatic C-H Bonds. J Org Chem 2016; 81:9269-9278. [PMID: 27618473 DOI: 10.1021/acs.joc.6b01842] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The selective functionalization of unactivated aliphatic C-H bonds over intrinsically more reactive ones represents an ongoing challenge of synthetic chemistry. Here we show that in hydrogen atom transfer (HAT) from the aliphatic C-H bonds of alkane, ether, alcohol, amide, and amine substrates to the cumyloxyl radical (CumO•) fine control over site and substrate selectivity is achieved by means of acid-base interactions. Protonation of the amines and metal ion binding to amines and amides strongly deactivates the C-H bonds of these substrates toward HAT to CumO•, providing a powerful method for selective functionalization of unactivated or intrinsically less reactive C-H bonds. With 5-amino-1-pentanol, site-selectivity has been drastically changed through protonation of the strongly activating NH2 group, with HAT that shifts to the C-H bonds that are adjacent to the OH group. In the intermolecular selectivity studies, trifluoroacetic acid, Mg(ClO4)2, and LiClO4 have been employed in a orthogonal fashion for selective functionalization of alkane, ether, alcohol, and amide (or amine) substrates in the presence of an amine (or amide) one. Ca(ClO4)2, that promotes deactivation of amines and amides by Ca2+ binding, offers, moreover, the opportunity to selectively functionalize the C-H bonds of alkane, ether, and alcohol substrates in the presence of both amines and amides.
Collapse
Affiliation(s)
- Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata" , Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Giulia Carboni
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata" , Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata" , Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| |
Collapse
|
198
|
Schnepel C, Minges H, Frese M, Sewald N. A High-Throughput Fluorescence Assay to Determine the Activity of Tryptophan Halogenases. Angew Chem Int Ed Engl 2016; 55:14159-14163. [DOI: 10.1002/anie.201605635] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Schnepel
- Organische und Bioorganische Chemie; Fakultät für Chemie; Universität Bielefeld; Universitätsstrasse 25 33615 Bielefeld Germany
| | - Hannah Minges
- Organische und Bioorganische Chemie; Fakultät für Chemie; Universität Bielefeld; Universitätsstrasse 25 33615 Bielefeld Germany
| | - Marcel Frese
- Organische und Bioorganische Chemie; Fakultät für Chemie; Universität Bielefeld; Universitätsstrasse 25 33615 Bielefeld Germany
| | - Norbert Sewald
- Organische und Bioorganische Chemie; Fakultät für Chemie; Universität Bielefeld; Universitätsstrasse 25 33615 Bielefeld Germany
| |
Collapse
|
199
|
Schnepel C, Minges H, Frese M, Sewald N. Ein Hochdurchsatz-Fluoreszenz-Assay zur Bestimmung der Aktivität von Tryptophan-Halogenasen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605635] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christian Schnepel
- Organische und Bioorganische Chemie; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Hannah Minges
- Organische und Bioorganische Chemie; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Marcel Frese
- Organische und Bioorganische Chemie; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Norbert Sewald
- Organische und Bioorganische Chemie; Fakultät für Chemie; Universität Bielefeld; Universitätsstraße 25 33615 Bielefeld Deutschland
| |
Collapse
|
200
|
Kuzikov AV, Masamrekh RA, Khatri Y, Zavialova MG, Bernhardt R, Archakov AI, Shumyantseva VV. Scrutiny of electrochemically-driven electrocatalysis of C-19 steroid 1α-hydroxylase (CYP260A1) from Sorangium cellulosum So ce56. Anal Biochem 2016; 513:28-35. [PMID: 27567992 DOI: 10.1016/j.ab.2016.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 01/08/2023]
Abstract
Direct electrochemistry and bioelectrocatalysis of a newly discovered C-19 steroid 1α-hydroxylase (CYP260A1) from the myxobacterium Sorangium cellulosum So ce56 were investigated. CYP260A1 was immobilized on screen-printed graphite electrodes (SPE) modified with gold nanoparticles, stabilized by didodecyldimethylammonium bromide (SPE/DDAB/Au). Cyclic voltammograms in argon-saturated substrate free 0.1 M potassium phosphate buffer, pH 7.4, and in enzyme-substrate complex with androstenedione demonstrated a redox processes with a single redox couple of E(0') of -299 ± 16 mV and -297.5 ± 21 mV (vs. Ag/AgCl), respectively. CYP260A1 exhibited an electrocatalytic activity detected by an increase of the reduction current in the presence of dissolved oxygen and upon addition of the substrate (androstenedione) in the air-saturated buffer. The catalytic current of the enzyme correlated with substrate concentration in the electrochemical system and this dependence can be described by electrochemical Michaelis-Menten model. The products of CYP260A1-depended electrolysis at controlled working electrode potential of androstenedione were analyzed by mass-spectrometry. MS analysis revealed a mono-hydroxylated product of CYP260A1-dependent electrocatalytic reaction towards androstenedione.
Collapse
Affiliation(s)
- Alexey V Kuzikov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia; Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia
| | - Rami A Masamrekh
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia; Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia
| | - Yogan Khatri
- Institute of Biochemistry, Saarland University, Saarbruecken 66123, Germany
| | - Maria G Zavialova
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Saarbruecken 66123, Germany
| | - Alexander I Archakov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia; Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia
| | - Victoria V Shumyantseva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia; Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia.
| |
Collapse
|