151
|
Martínez-Ruiz A, Araújo IM, Izquierdo-Álvarez A, Hernansanz-Agustín P, Lamas S, Serrador JM. Specificity in S-nitrosylation: a short-range mechanism for NO signaling? Antioxid Redox Signal 2013; 19:1220-35. [PMID: 23157283 PMCID: PMC3785806 DOI: 10.1089/ars.2012.5066] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO) classical and less classical signaling mechanisms (through interaction with soluble guanylate cyclase and cytochrome c oxidase, respectively) operate through direct binding of NO to protein metal centers, and rely on diffusibility of the NO molecule. S-Nitrosylation, a covalent post-translational modification of protein cysteines, has emerged as a paradigm of nonclassical NO signaling. RECENT ADVANCES Several nonenzymatic mechanisms for S-nitrosylation formation and destruction have been described. Enzymatic mechanisms for transnitrosylation and denitrosylation have been also studied as regulators of the modification of specific subsets of proteins. The advancement of modification-specific proteomic methodologies has allowed progress in the study of diverse S-nitrosoproteomes, raising clues and questions about the parameters for determining the protein specificity of the modification. CRITICAL ISSUES We propose that S-nitrosylation is mainly a short-range mechanism of NO signaling, exerted in a relatively limited range of action around the NO sources, and tightly related to the very controlled regulation of subcellular localization of nitric oxide synthases. We review the nonenzymatic and enzymatic mechanisms that support this concept, as well as physiological examples of mammalian systems that illustrate well the precise compartmentalization of S-nitrosylation. FUTURE DIRECTIONS Individual and proteomic studies of protein S-nitrosylation-based signaling should take into account the subcellular localization in order to gain further insight into the functional role of this modification in (patho)physiological settings.
Collapse
Affiliation(s)
- Antonio Martínez-Ruiz
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP) , Madrid, Spain
| | | | | | | | | | | |
Collapse
|
152
|
Jomova K, Valko M. Health protective effects of carotenoids and their interactions with other biological antioxidants. Eur J Med Chem 2013; 70:102-10. [PMID: 24141200 DOI: 10.1016/j.ejmech.2013.09.054] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/26/2013] [Accepted: 09/29/2013] [Indexed: 10/26/2022]
Abstract
Carotenoids are natural pigments attracting attention of physicists, chemists and biologists due to their multiple functions in the nature. While carotenoids have unusually high extinction coefficients, they do not exhibit adequate emission. This fact has resulted in detailed studies of photophysical and photochemical properties of carotenoids and their role as light-harvesting pigments in photosynthesis. Carotenoids are abundantly present in fruits and vegetables and are considered as important species with beneficial effect on human health by decreasing the risk of various diseases, particularly decreasing the incidence of cancers and eye disease. More trials are needed to ascertain the role of carotenoids in prevention of cardiovascular disease and metabolic disease. Carotenoids effectively scavenge peroxyl radicals and act predominantly as antioxidants. However, under conditions of increased concentration of oxygen and carotenoid concentration, beta-carotene was found to exhibit prooxidant behaviour. Photophysical properties of carotenoids and conditions affecting a switch between antioxidant and prooxidant behaviour of carotenoids are the main aims of this review. In addition, the localization of carotenoids in biological membranes, their interactions and reactions with ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) as well as their redox potentials are discussed in view of their antioxidant properties as beneficial species in preventing various diseases.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University, SK-949 74 Nitra, Slovakia
| | | |
Collapse
|
153
|
Ishaq M, Evans MM, Ostrikov KK. Effect of atmospheric gas plasmas on cancer cell signaling. Int J Cancer 2013; 134:1517-28. [PMID: 23754175 DOI: 10.1002/ijc.28323] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/24/2013] [Indexed: 12/11/2022]
Abstract
Cancer is one of the most life-threatening diseases with many forms still regarded as incurable. The conventional cancer treatments have unwanted side effects such as the death of normal cells. A therapy that can accurately target and effectively kill tumor cells could address the inadequacies of the available therapies. Atmospheric gas plasmas (AGP) that are able to specifically kill cancerous cells offer a promising alternative approach compared to conventional therapies. AGP have been shown to exploit tumor-specific genetic defects and a recent trial in mice has confirmed its antitumor effects. The mechanism by which the AGP act on tumor cells but not normal cells is not fully understood. A review of the current literature suggests that reactive oxygen species (ROS) generated by AGP induce death of cancer cells by impairing the function of intracellular regulatory factors. The majority of cancer cells are defective in tumor suppressors that interfere normal cell growth pathways. It appears that pro-oncogene or tumor suppressor-dependent regulation of antioxidant/or ROS signaling pathways may be involved in AGP-induced cancer cell death. The toxic effects of ROS are mitigated by normal cells by adjustment of their metabolic pathways. On the other hand, tumor cells are mostly defective in several regulatory signaling pathways which lead to the loss of metabolic balance within the cells and consequently, the regulation of cell growth. This review article evaluates the impact of AGP on the activation of cellular signaling and its importance for exploring mechanisms for safe and efficient anticancer therapies.
Collapse
Affiliation(s)
- Musarat Ishaq
- Plasma Nanomedicine CSIRO Materials Science and Engineering, North Ryde, PO Box 52, NSW 1670, Australia; Plasma Nanoscience, CSIRO Materials Science and Engineering, PO Box 218, Lindfield 2070, NSW, Australia
| | | | | |
Collapse
|
154
|
Kremer D, Schichel T, Förster M, Tzekova N, Bernard C, van der Valk P, van Horssen J, Hartung HP, Perron H, Küry P. Human endogenous retrovirus type W envelope protein inhibits oligodendroglial precursor cell differentiation. Ann Neurol 2013; 74:721-32. [DOI: 10.1002/ana.23970] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 06/20/2013] [Accepted: 06/28/2013] [Indexed: 12/14/2022]
Affiliation(s)
- David Kremer
- Department of Neurology Medical Faculty; Heinrich-Heine-University; Düsseldorf Germany
| | - Tanja Schichel
- Department of Neurology Medical Faculty; Heinrich-Heine-University; Düsseldorf Germany
| | - Moritz Förster
- Department of Neurology Medical Faculty; Heinrich-Heine-University; Düsseldorf Germany
| | - Nevena Tzekova
- Department of Neurology Medical Faculty; Heinrich-Heine-University; Düsseldorf Germany
| | | | - Paul van der Valk
- Department of Pathology; VU University Medical Center; Amsterdam the Netherlands
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology; VU University Medical Center; Amsterdam the Netherlands
| | - Hans-Peter Hartung
- Department of Neurology Medical Faculty; Heinrich-Heine-University; Düsseldorf Germany
| | | | - Patrick Küry
- Department of Neurology Medical Faculty; Heinrich-Heine-University; Düsseldorf Germany
| |
Collapse
|
155
|
Ullevig S, Kim HS, Asmis R. S-glutathionylation in monocyte and macrophage (dys)function. Int J Mol Sci 2013; 14:15212-32. [PMID: 23887649 PMCID: PMC3759857 DOI: 10.3390/ijms140815212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease involving the accumulation of monocytes and macrophages in the vascular wall. Monocytes and macrophages play a central role in the initiation and progression of atherosclerotic lesion development. Oxidative stress, which occurs when reactive oxygen species (ROS) overwhelm cellular antioxidant systems, contributes to the pathophysiology of many chronic inflammatory diseases, including atherosclerosis. Major targets of ROS are reactive thiols on cysteine residues in proteins, which when oxidized can alter cellular processes, including signaling pathways, metabolic pathways, transcription, and translation. Protein-S-glutathionylation is the process of mixed disulfide formation between glutathione (GSH) and protein thiols. Until recently, protein-S-glutathionylation was associated with increased cellular oxidative stress, but S-glutathionylation of key protein targets has now emerged as a physiologically important redox signaling mechanism, which when dysregulated contributes to a variety of disease processes. In this review, we will explore the role of thiol oxidative stress and protein-S-glutathionylation in monocyte and macrophage dysfunction as a mechanistic link between oxidative stress associated with metabolic disorders and chronic inflammatory diseases, including atherosclerosis.
Collapse
Affiliation(s)
- Sarah Ullevig
- Department of Biochemistry, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; E-Mail:
| | - Hong Seok Kim
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; E-Mail:
| | - Reto Asmis
- Department of Biochemistry, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; E-Mail:
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-210-567-3411; Fax: +1-210-567-3719
| |
Collapse
|
156
|
Griffiths HR. ROS as signalling molecules in T cells – evidence for abnormal redox signalling in the autoimmune disease, rheumatoid arthritis. Redox Rep 2013; 10:273-80. [PMID: 16438798 DOI: 10.1179/135100005x83680] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Reactive oxygen species are recognised as important signalling molecules within cells of the immune system. This is, at least in part, due to the reversible activation of kinases, phosphatases and transcription factors by modification of critical thiol residues. However, in the chronic inflammatory disease rheumatoid arthritis, cells of the immune system are exposed to increased levels of oxidative stress and the T cell becomes refractory to growth and death stimuli. This contributes to the perpetuation of the immune response. As many of the effective therapies used in the treatment of rheumatoid arthritis modulate intracellular redox state, this raises the question of whether increased oxidative stress is causative of T-cell hyporesponsiveness. To address this hypothesis, this review considers the putative sources of ROS involved in normal intracellular signalling in T cells and the evidence in support of abnormal ROS fluxes contributing to T-cell hyporesponsiveness.
Collapse
Affiliation(s)
- Helen R Griffiths
- Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK.
| |
Collapse
|
157
|
Gould N, Doulias PT, Tenopoulou M, Raju K, Ischiropoulos H. Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J Biol Chem 2013; 288:26473-9. [PMID: 23861393 DOI: 10.1074/jbc.r113.460261] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NO is a versatile free radical that mediates numerous biological functions within every major organ system. A molecular pathway by which NO accomplishes functional diversity is the selective modification of protein cysteine residues to form S-nitrosocysteine. This post-translational modification, S-nitrosylation, impacts protein function, stability, and location. Despite considerable advances with individual proteins, the in vivo biological chemistry, the structural elements that govern the selective S-nitrosylation of cysteine residues, and the potential overlap with other redox modifications are unknown. In this minireview, we explore the functional features of S-nitrosylation at the proteome level and the structural diversity of endogenously modified residues, and we discuss the potential overlap and complementation that may exist with other cysteine modifications.
Collapse
Affiliation(s)
- Neal Gould
- From the Children's Hospital of Philadelphia Research Institute and Departments of Pediatrics and Pharmacology, Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | | | | | | |
Collapse
|
158
|
Černý M, Skalák J, Cerna H, Brzobohatý B. Advances in purification and separation of posttranslationally modified proteins. J Proteomics 2013; 92:2-27. [PMID: 23777897 DOI: 10.1016/j.jprot.2013.05.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 11/25/2022]
Abstract
Posttranslational modifications (PTMs) of proteins represent fascinating extensions of the dynamic complexity of living cells' proteomes. The results of enzymatically catalyzed or spontaneous chemical reactions, PTMs form a fourth tier in the gene - transcript - protein cascade, and contribute not only to proteins' biological functions, but also to challenges in their analysis. There have been tremendous advances in proteomics during the last decade. Identification and mapping of PTMs in proteins have improved dramatically, mainly due to constant increases in the sensitivity, speed, accuracy and resolution of mass spectrometry (MS). However, it is also becoming increasingly evident that simple gel-free shotgun MS profiling is unlikely to suffice for comprehensive detection and characterization of proteins and/or protein modifications present in low amounts. Here, we review current approaches for enriching and separating posttranslationally modified proteins, and their MS-independent detection. First, we discuss general approaches for proteome separation, fractionation and enrichment. We then consider the commonest forms of PTMs (phosphorylation, glycosylation and glycation, lipidation, methylation, acetylation, deamidation, ubiquitination and various redox modifications), and the best available methods for detecting and purifying proteins carrying these PTMs. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Martin Černý
- Department of Molecular Biology and Radiobiology, Mendel University in Brno & CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | | | | | | |
Collapse
|
159
|
Grattagliano I, Diogo CV, Mastrodonato M, de Bari O, Persichella M, Wang DQH, Liquori A, Ferri D, Carratù MR, Oliveira PJ, Portincasa P. A silybin-phospholipids complex counteracts rat fatty liver degeneration and mitochondrial oxidative changes. World J Gastroenterol 2013; 19:3007-3017. [PMID: 23716980 PMCID: PMC3662940 DOI: 10.3748/wjg.v19.i20.3007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/06/2012] [Accepted: 11/11/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effectiveness of antioxidant compounds in modulating mitochondrial oxidative alterations and lipids accumulation in fatty hepatocytes. METHODS Silybin-phospholipid complex containing vitamin E (Realsil(®)) was daily administered by gavage (one pouch diluted in 3 mL of water and containing 15 mg vitamin E and 47 mg silybin complexed with phospholipids) to rats fed a choline-deprived (CD) or a high fat diet [20% fat, containing 71% total calories as fat, 11% as carbohydrate, and 18% as protein, high fat diet (HFD)] for 30 d and 60 d, respectively. The control group was fed a normal semi-purified diet containing adequate levels of choline (35% total calories as fat, 47% as carbohydrate, and 18% as protein). Circulating and hepatic redox active and nitrogen regulating molecules (thioredoxin, glutathione, glutathione peroxidase), NO metabolites (nitrosothiols, nitrotyrosine), lipid peroxides [malondialdehyde-thiobarbituric (MDA-TBA)], and pro-inflammatory keratins (K-18) were measured on days 0, 7, 14, 30, and 60. Mitochondrial respiratory chain proteins and the extent of hepatic fatty infiltration were evaluated. RESULTS Both diet regimens produced liver steatosis (50% and 25% of liver slices with CD and HFD, respectively) with no signs of necro-inflammation: fat infiltration ranged from large droplets at day 14 to disseminated and confluent vacuoles resulting in microvesicular steatosis at day 30 (CD) and day 60 (HFD). In plasma, thioredoxin and nitrosothiols were not significantly changed, while MDA-TBA, nitrotyrosine (from 6 ± 1 nmol/L to 14 ± 3 nmol/L day 30 CD, P < 0.001, and 12 ± 2 nmol/L day 60 HFD, P < 0.001), and K-18 (from 198 ± 20 to 289 ± 21 U/L day 30 CD, P < 0.001, and 242 ± 23 U/L day 60 HFD, P < 0.001) levels increased significantly with ongoing steatosis. In the liver, glutathione was decreased (from 34.0 ± 1.3 to 25.3 ± 1.2 nmol/mg prot day 30 CD, P < 0.001, and 22.4 ± 2.4 nmol/mg prot day 60 HFD, P < 0.001), while thioredoxin and glutathione peroxidase were initially increased and then decreased. Nitrosothiols were constantly increased. MDA-TBA levels were five-fold increased from 9.1 ± 1.2 nmol/g to 75.6 ± 5.4 nmol/g on day 30, P < 0.001 (CD) and doubled with HFD on day 60. Realsil administration significantly lowered the extent of fat infiltration, maintained liver glutathione levels during the first half period, and halved its decrease during the second half. Also, Realsil modulated thioredoxin changes and the production of NO derivatives and significantly lowered MDA-TBA levels both in liver (from 73.6 ± 5.4 to 57.2 ± 6.3 nmol/g day 30 CD, P < 0.01 and from 27.3 ± 2.1 nmol/g to 20.5 ± 2.2 nmol/g day 60 HFD, P < 0.01) and in plasma. Changes in mitochondrial respiratory complexes were also attenuated by Realsil in HFD rats with a major protective effect on Complex II subunit CII-30. CONCLUSION Realsil administration effectively contrasts hepatocyte fat deposition, NO derivatives formation, and mitochondrial alterations, allowing the liver to maintain a better glutathione and thioredoxin antioxidant activity.
Collapse
|
160
|
Zhang C, Kuo CC, Chiu AWL, Feng J. Prediction of S-glutathionylated proteins progression in Alzheimer's transgenic mouse model using principle component analysis. J Alzheimers Dis 2013; 30:919-34. [PMID: 22475799 DOI: 10.3233/jad-2012-120028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To date, prediction of Alzheimer's disease (AD) is mainly based on clinical criteria because no well-established biochemical biomarkers for routine clinical diagnosis of AD currently exist. We developed an approach to aid in the early diagnosis of AD by using principal component analysis (PCA)-based spectral analysis of oxidized protein electrophoretic profiling. We found that the combination of capillary electrophoresis and PCA analysis of S-glutathionylation distribution characterization can be used in the sample classification and molecular weight (Mw) prediction. The comparison of leave-one-out AD versus non-AD gives the sensitivity of 100% and 93.33% in brain tissues and blood samples, respectively, while the specificity of 100% in brain and 90.0% in blood samples. Our findings demonstrate that PCA of S-glutathionylation electrophoretic profiling detects AD pathology features, and that the molecular weight based electrophoretic profiling of blood and brain S-glutathionylated proteins are sensitive to change, even at the early stage of the disease. Our results offer a previously unexplored diagnostic approach by using electrophoretic characteristics of oxidized proteins to serve as a predictor of AD progression and early stage screening.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA
| | | | | | | |
Collapse
|
161
|
Chen NH, Couñago RM, Djoko KY, Jennings MP, Apicella MA, Kobe B, McEwan AG. A glutathione-dependent detoxification system is required for formaldehyde resistance and optimal survival of Neisseria meningitidis in biofilms. Antioxid Redox Signal 2013; 18:743-55. [PMID: 22937752 PMCID: PMC3555115 DOI: 10.1089/ars.2012.4749] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIM The glutathione-dependent AdhC-EstD formaldehyde detoxification system is found in eukaryotes and prokaryotes. It is established that it confers protection against formaldehyde that is produced from environmental sources or methanol metabolism. Thus, its presence in the human host-adapted bacterial pathogen Neisseria meningitidis is intriguing. This work defined the biological function of this system in the meningococcus using phenotypic analyses of mutants linked to biochemical and structural characterization of purified enzymes. RESULTS We demonstrated that mutants in the adhC and/or estD were sensitive to killing by formaldehyde. Inactivation of adhC and/or estD also led to a loss of viability in biofilm communities, even in the absence of exogenous formaldehyde. Detailed biochemical and structural analyses of the esterase component demonstrated that S-formylglutathione was the only biologically relevant substrate for EstD. We further showed that an absolutely conserved cysteine residue was covalently modified by S-glutathionylation. This leads to inactivation of EstD. INNOVATION The results provide several conceptual innovations. They provide a new insight into formaldehyde detoxification in bacteria that do not generate formaldehyde during the catabolism of methanol. Our results also indicate that the conserved cysteine, found in all EstD enzymes from humans to microbes, is a site of enzyme regulation, probably via S-glutathionylation. CONCLUSION The adhc-estD system protects against formaldehyde produced during endogenous metabolism.
Collapse
Affiliation(s)
- Nathan H Chen
- Australian Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St. Lucia, Australia
| | | | | | | | | | | | | |
Collapse
|
162
|
Abstract
Many proteins contain free thiols that can be modified by the reversible formation of mixed disulfides with glutathione. Protein glutathionylation is of significance for defense against oxidative damage and in redox signaling. Here we outline the mechanisms and possible significance of protein glutathionylation.
Collapse
|
163
|
Protein sulfhydryl group oxidation and mixed-disulfide modifications in stable and unstable human carotid plaques. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:403973. [PMID: 23431411 PMCID: PMC3575616 DOI: 10.1155/2013/403973] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 12/28/2012] [Indexed: 11/17/2022]
Abstract
Objectives. Oxidative stress has been implicated in the outcome of atherosclerotic plaques. However, at present, no data are available neither on the degree of plaque protein sulfhydryl groups oxidation nor on its relationship with plaque vulnerability. We investigated the entity of protein-SH oxidative modifications, focusing on low molecular weight thiols adduction, in human carotid plaque extracts in relation to plaque stability/instability. Methods. Plaque stability/instability was histologically assessed. The extent of protein-SH oxidative modifications was established by a differential proteomic approach on fluorescein-5-maleimide-labeled plaque extracts and corresponding plasma samples from 48 endarterectomized patients. The analysis on protein thiolation was performed by capillary zone electrophoresis. Results. We observed a higher protein-SH oxidation of both plasma-derived and topically expressed proteins in unstable plaques, partly due to higher levels of S-thiolation. Conversely, in plasma, none of the investigated parameters discriminated among patients with stable and unstable plaques. Conclusions. Our results suggest the presence of a more pronounced oxidative environment in unstable plaques. Identifying specific oxidative modifications and understanding their effects on protein function could provide further insight into the relevance of oxidative stress in atherosclerosis.
Collapse
|
164
|
Hartmanová T, Tambor V, Lenčo J, Staab-Weijnitz CA, Maser E, Wsól V. S-Nitrosoglutathione covalently modifies cysteine residues of human carbonyl reductase 1 and affects its activity. Chem Biol Interact 2013; 202:136-45. [DOI: 10.1016/j.cbi.2012.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 01/23/2023]
|
165
|
Paranjpe A, Srivenugopal KS. Degradation of NF-κB, p53 and other regulatory redox-sensitive proteins by thiol-conjugating and -nitrosylating drugs in human tumor cells. Carcinogenesis 2013; 34:990-1000. [PMID: 23354308 DOI: 10.1093/carcin/bgt032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ionized cysteines present on the surfaces of many redox-sensitive proteins play functionally essential roles and are readily targeted by the reactive oxygen and reactive nitrogen species. Using disulfiram (DSF) and nitroaspirin (NCX4016) as the model compounds that mediate thiol-conjugating and nitrosylating reactions, respectively, we investigated the fate of p53, nuclear factor-kappaB (NF-κB) and other redox-responsive proteins following the exposure of human cancer cell lines to the drugs. Both drugs induced glutathionylation of bulk proteins in tumor cells and cell-free extracts. A prominent finding of this study was a time- and dose-dependent degradation of the redox-regulated proteins after brief treatments of tumor cells with DSF or NCX4016. DSF and copper-chelated DSF at concentrations of 50-200 µM induced the disappearance of wild-type p53, mutant p53, NF-κB subunit p50 and the ubiquitin-activating enzyme E1 (UBE1) in tumor cell lines. DSF also induced the glutathionylation of p53. The recombinant p53 protein modified by DSF was preferentially degraded by rabbit reticulocyte lysates. The proteasome inhibitor PS341 curtailed the DSF-induced degradation of p53 in HCT116 cells. Further, the NCX4016 induced a dose-dependent disappearance of the UBE1 and NF-κB p50 proteins in cell lines, besides a time-dependent degradation of aldehyde dehydrogenase in mouse liver after a single injection of 150 mg/kg. The loss of p53 and NF-kB proteins correlated with decreases in their specific binding to DNA. Our results demonstrate the hitherto unrecognized ability of the non-toxic thiolating and nitrosylating agents to degrade regulatory proteins and highlight the exploitable therapeutic benefits.
Collapse
Affiliation(s)
- Ameya Paranjpe
- Department of Biomedical Sciences, Cancer Biology Research Centre, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter Drive, Amarillo, TX 79106, USA
| | | |
Collapse
|
166
|
Maity S, Jannasch A, Adamec J, Watkins JM, Nalepa T, Höök TO, Sepúlveda MS. Elucidating causes of Diporeia decline in the Great Lakes via metabolomics: physiological responses after exposure to different stressors. Physiol Biochem Zool 2013; 86:213-23. [PMID: 23434781 DOI: 10.1086/669132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The benthic macroinvertebrate Diporeia spp. have been extirpated from many areas of the Laurentian Great Lakes, but the mechanisms underlying such declines are not fully understood. Diporeia declines coinciding with the invasion of exotic dreissenid mussels (zebra and quagga) have led to the hypothesis that Diporeia declines are a result of decreased food availability from increasing competition with dreissenids for diatoms. There is additional evidence that Diporeia are negatively affected when in close proximity to dreissenids, probably because of exposure to toxins present in the mussels' pseudofeces. Diporeia are also known to be sensitive to anthropogenic contaminants (such as polychlorinated biphenyls [PCBs]) present in Great Lakes sediments. To better understand the physiological responses of Diporeia to diverse stressors, we conducted three 28-d experiments evaluating changes in the metabolomes of Diporeia (1) fed diatoms (Cyclotella meneghiniana) versus starved, (2) exposed (from Lake Michigan and Cayuga Lake) to quagga mussels (Dreissena bugensis), and (3) exposed to sediments contaminated with PCBs. The metabolomes of samples were examined using both two-dimensional gas and liquid chromatography coupled with mass spectrometry. Each stressor elicited a unique metabolome response characterized by enhanced citric acid cycle, fatty acid biosynthesis, and protein metabolism in diatom-fed Diporeia; impaired glycolysis, protein catabolism, and folate metabolism in Diporeia from Lake Michigan irrespective of quagga mussel exposure, suggesting lake-specific adaptation mechanisms; and altered cysteine and phospholipid metabolism during PCB exposure. Subsequent comparisons of these stressor-specific metabolic responses with metabolomes of a feral Diporeia population would help identify stressors affecting Diporeia populations throughout the Great Lakes.
Collapse
Affiliation(s)
- Suman Maity
- Department of Forestry and Natural Resources, Purdue University, 195 Marsteller Street, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | |
Collapse
|
167
|
Lozinsky OV, Lushchak OV, Kryshchuk NI, Shchypanska NY, Riabkina AH, Skarbek SV, Maksymiv IV, Storey JM, Storey KB, Lushchak VI. S-nitrosoglutathione-induced toxicity in Drosophila melanogaster: Delayed pupation and induced mild oxidative/nitrosative stress in eclosed flies. Comp Biochem Physiol A Mol Integr Physiol 2013; 164:162-70. [DOI: 10.1016/j.cbpa.2012.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 02/04/2023]
|
168
|
Yin F, Sancheti H, Cadenas E. Mitochondrial thiols in the regulation of cell death pathways. Antioxid Redox Signal 2012; 17:1714-27. [PMID: 22530585 PMCID: PMC3474184 DOI: 10.1089/ars.2012.4639] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Regulation of mitochondrial H(2)O(2) homeostasis and its involvement in the regulation of redox-sensitive signaling and transcriptional pathways is the consequence of the concerted activities of the mitochondrial energy- and redox systems. RECENT ADVANCES The energy component of this mitochondrial energy-redox axis entails the formation of reducing equivalents and their flow through the respiratory chain with the consequent electron leak to generate [Formula: see text] and H(2)O(2). The mitochondrial redox component entails the thiol-based antioxidant system, largely accounted for by glutathione- and thioredoxin-based systems that support the activities of glutathione peroxidases, peroxiredoxins, and methionine sulfoxide reductase. The ultimate reductant for these systems is NADPH: mitochondrial sources of NADPH are the nicotinamide nucleotide transhydrogenase, isocitrate dehydrogenase-2, and malic enzyme. NADPH also supports the glutaredoxin activity that regulates the extent of S-glutathionylation of mitochondrial proteins in response to altered redox status. CRITICAL ISSUES The integrated network of these mitochondrial thiols constitute a regulatory device involved in the maintenance of steady-state levels of H(2)O(2), mitochondrial and cellular redox and metabolic homeostasis, as well as the modulation of cytosolic redox-sensitive signaling; disturbances of this regulatory device affects transcription, growth, and ultimately influences cell survival/death. FUTURE DIRECTIONS The modulation of key mitochondrial thiol proteins, which participate in redox signaling, maintenance of the bioenergetic machinery, oxidative stress responses, and cell death programming, provides a pivotal direction in developing new therapies towards the prevention and treatment of several diseases.
Collapse
Affiliation(s)
- Fei Yin
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
169
|
Nakamoto M, Hirose M, Kawakatsu M, Nakayama T, Urata Y, Kamata K, Kaminogo M, Li TS, Nagata I. Serum S-glutathionylated proteins as a potential biomarker of carotid artery stenosis. Clin Biochem 2012; 45:1331-5. [DOI: 10.1016/j.clinbiochem.2012.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/18/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
|
170
|
Superoxide dismutase as a novel macromolecular nitric oxide carrier: preparation and characterization. Int J Mol Sci 2012. [PMID: 23203045 PMCID: PMC3509561 DOI: 10.3390/ijms131113985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nitric oxide (NO) is an important molecule that exerts multiple functions in biological systems. Because of the short-lived nature of NO, S-nitrosothiols (RSNOs) are believed to act as stable NO carriers. Recently, sulfhydryl (SH) containing macromolecules have been shown to be promising NO carriers. In the present study, we aimed to synthesize and characterize a potential NO carrier based on bovine Cu,Zn-superoxide dismutase (bSOD). To prepare S-nitrosated bSOD, the protein was incubated with S-nitrosoglutathione (GSNO) under varied experimental conditions. The results show that significant S-nitrosation of bSOD occurred only at high temperature (50 °C) for prolonged incubation time (>2 h). S-nitrosation efficiency increased with reaction time and reached a plateau at ~4 h. The maximum amount of NO loaded was determined to be about 0.6 mol SNO/mol protein (~30% loading efficiency). The enzymatic activity of bSOD, however, decreased with reaction time. Our data further indicate that NO functionality can only be measured in the presence of extremely high concentrations of Hg2+ or when the protein was denatured by guanidine. Moreover, mildly acidic pH was shown to favor S-nitrosation of bSOD. A model based on unfolding and refolding of bSOD during preparation was proposed to possibly explain our observation.
Collapse
|
171
|
Agarwal AR, Zhao L, Sancheti H, Sundar IK, Rahman I, Cadenas E. Short-term cigarette smoke exposure induces reversible changes in energy metabolism and cellular redox status independent of inflammatory responses in mouse lungs. Am J Physiol Lung Cell Mol Physiol 2012; 303:L889-98. [PMID: 23064950 DOI: 10.1152/ajplung.00219.2012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cigarette smoking leads to alteration in cellular redox status, a hallmark in the pathogenesis of chronic obstructive pulmonary disease. This study examines the role of cigarette smoke (CS) exposure in the impairment of energy metabolism and, consequently, mitochondrial dysfunction. Male A/J mice were exposed to CS generated by a smoking machine for 4 or 8 wk. A recovery group was exposed to CS for 8 wk and allowed to recover for 2 wk. Acute CS exposure altered lung glucose metabolism, entailing a decrease in the rate of glycolysis and an increase in the pentose phosphate pathway, as evidenced by altered expression and activity of GAPDH and glucose-6-phosphate dehydrogenase, respectively. Impairment of GAPDH was found to be due to glutathionylation of its catalytic site cysteines. Metabolic changes were associated with changes in cellular and mitochondrial redox status, assessed in terms of pyridine nucleotides and glutathione. CS exposure elicited an upregulation of the expression of complexes II, III, IV, and V and of the activity of complexes II, IV, and V. Microarray analysis of gene expression in mouse lungs after exposure to CS for 8 wk revealed upregulation of a group of genes involved in metabolism, electron transfer chain, oxidative phosphorylation, mitochondrial transport and dynamics, and redox regulation. These changes occurred independently of inflammatory responses. These findings have implications for the early onset of alterations in energy and redox metabolism upon acute lung exposure to CS.
Collapse
Affiliation(s)
- Amit R Agarwal
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, Univ. of Southern California, Los Angeles, CA 90089-9121, USA
| | | | | | | | | | | |
Collapse
|
172
|
Mohanty S, Cock IE. The chemotherapeutic potential of Terminalia ferdinandiana: Phytochemistry and bioactivity. Pharmacogn Rev 2012; 6:29-36. [PMID: 22654402 PMCID: PMC3358965 DOI: 10.4103/0973-7847.95855] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 03/25/2011] [Accepted: 05/08/2012] [Indexed: 12/02/2022] Open
Abstract
Plants contain a myriad of natural compounds which exhibit important bioactive properties. These compounds may provide alternatives to current medications and afford a significant avenue for new drug discovery. Despite this, little information is available in the literature regarding native Australian plants and their potential for medicinal and industrial uses. Recent studies have reported Terminalia ferdinandiana to be an extremely good source of antioxidants. Indeed, T. ferdinandiana has been reported to have ascorbic acid levels per gram of fruit more than 900 times higher than blueberries. T. ferdinandiana also has high levels of a variety of other antioxidants, including phenolic compounds and anthocyanins. Antioxidants have been associated with the prevention of cancer, cardiovascular diseases, and neurological degenerative disorders. They are also linked with antidiabetic bioactivities and have been associated with the reduction of obesity. Antioxidants can directly scavenge free radicals, protecting cells against oxidative stress-related damage to proteins, lipids, and nucleic acids. Therefore, T. ferdinandiana has potential in the treatment of a variety of diseases and disorders and its potential bioactivities warrant further investigation.
Collapse
Affiliation(s)
- S Mohanty
- Biomolecular and Physical Sciences, Environmental Future Centre, Nathan Campus, Griffith University, Nathan Brisbane, Queensland, Australia
| | | |
Collapse
|
173
|
Adams DJ, Dai M, Pellegrino G, Wagner BK, Stern AM, Shamji AF, Schreiber SL. Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs. Proc Natl Acad Sci U S A 2012; 109:15115-20. [PMID: 22949699 PMCID: PMC3458345 DOI: 10.1073/pnas.1212802109] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Piperlongumine is a naturally occurring small molecule recently identified to be toxic selectively to cancer cells in vitro and in vivo. This compound was found to elevate cellular levels of reactive oxygen species (ROS) selectively in cancer cell lines. The synthesis of 80 piperlongumine analogs has revealed structural modifications that retain, enhance, and ablate key piperlongumine-associated effects on cells, including elevation of ROS, cancer cell death, and selectivity for cancer cells over nontransformed cell types. Structure/activity relationships suggest that the electrophilicity of the C2-C3 olefin is critical for the observed effects on cells. Furthermore, we show that analogs lacking a reactive C7-C8 olefin can elevate ROS to levels observed with piperlongumine but show markedly reduced cell death, suggesting that ROS-independent mechanisms, including cellular cross-linking events, may also contribute to piperlongumine's induction of apoptosis. In particular, we have identified irreversible protein glutathionylation as a process associated with cellular toxicity. We propose a mechanism of action for piperlongumine that may be relevant to other small molecules having two sites of reactivity, one with greater and the other with lesser electrophilicity.
Collapse
Affiliation(s)
- Drew J. Adams
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142
- Howard Hughes Medical Institute, 7 Cambridge Center, Cambridge, MA 02142; and
| | - Mingji Dai
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | | | - Bridget K. Wagner
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142
| | - Andrew M. Stern
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142
| | - Alykhan F. Shamji
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142
| | - Stuart L. Schreiber
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142
- Howard Hughes Medical Institute, 7 Cambridge Center, Cambridge, MA 02142; and
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
174
|
Chen HJC, Chen YC. Reactive nitrogen oxide species-induced post-translational modifications in human hemoglobin and the association with cigarette smoking. Anal Chem 2012; 84:7881-90. [PMID: 22958097 DOI: 10.1021/ac301597r] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is essential for normal physiology, but excessive production of NO during inflammatory processes can damage the neighboring tissues. Reactive nitrogen oxide species (RNOx), including peroxynitrite (ONOO(-)), are powerful nitrating agents. Biological protein nitration is involved in several disease states, including inflammatory diseases, and it is evident by detection of 3-nitrotyrosine (3NT) in inflamed tissues. In this study, we identified peroxynitrite-induced post-translational modifications (PTMs) in human hemoglobin by accurate mass measurement as well as by the MS(2) and MS(3) spectra. Nitration on Tyr-24, Tyr-42 (α-globin), and Tyr-130 (β-globin) as well as nitrosation on Tyr-24 (α-globin) were identified. Also characterized were oxidation of all three methionine residues, α-Met-32, α-Met-76, and β-Met-55 to the sulfoxide, as well as cysteine oxidation determined as sulfinic acid on α-Cys-104 and sulfonic acid on α-Cys-104, β-Cys-93, and β-Cys-112. These modifications are detected in hemoglobin freshly isolated from human blood and the extents of modifications were semiquantified relative to the reference peptides by nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) under the selected reaction monitoring (SRM) mode. The results showed a statistically significant positive correlation between cigarette smoking and the extents of tyrosine nitration at α-Tyr-24 and at α-Tyr-42. To our knowledge, this is the first report on identification and quantification of multiple PTMs in hemoglobin from human blood and association of a specific 3NT-containing peptide with cigarette smoking. This highly sensitive and specific assay only requires hemoglobin isolated from one drop (∼10 μL) of blood. Thus, measurement of these PTMs in hemoglobin might be feasible for assessing nitrative stress in vivo.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Ming-Hsiung, Chia-Yi, Taiwan.
| | | |
Collapse
|
175
|
Petrini S, Passarelli C, Pastore A, Tozzi G, Coccetti M, Colucci M, Bianchi M, Carrozzo R, Bertini E, Piemonte F. Protein glutathionylation in cellular compartments: a constitutive redox signal. Redox Rep 2012; 17:63-71. [PMID: 22564349 DOI: 10.1179/1351000212y.0000000009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glutathione provides means of regulating protein function by the process of glutathionylation. Despite the role of oxidative stress biomarkers assumed recently by glutathionylated proteins in human diseases, so far no information is available on the intracellular distribution of glutathionylated proteins in human cell lines. In this study, we combined the specificity of monoclonal antibody labeling for protein-bound glutathione (GS-Pro) with the ability of confocal microscopy to localize molecules with high spatial resolution. We performed immunofluorescence analysis on dermal fibroblasts, both in steady state than in proliferative conditions, and on in situ extracted matrix samples. For the first time, we report the compartmentalization of constitutively glutathionylated proteins in different subcellular districts and we found a tight association between glutathione, nuclear lamina, and cytoskeleton. In proliferating cells, total GS-Pro fluorescence increases in the early phases of growth and significantly drops when cells reach confluence. Interestingly, a nuclear shift of GS-Pro was observed between 6 and 48 hours after plating, becoming homogeneous with the cytoplasm when growth slows. The ability to visualize a detailed intracellular distribution of this critical marker of protein oxidation may provide an additional tool to highlight pathways in turns 'redox-activated' and to identify new pathogenic pathways in human diseases.
Collapse
Affiliation(s)
- Stefania Petrini
- Laboratories of Research, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Ostrakhovitch EA, Semenikhin OA. The role of redox environment in neurogenic development. Arch Biochem Biophys 2012; 534:44-54. [PMID: 22910298 DOI: 10.1016/j.abb.2012.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/19/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
Abstract
The dynamic changes of cellular redox elements during neurogenesis allow the control of specific programs for selective lineage progression. There are many redox couples that influence the cellular redox state. The shift from a reduced to an oxidized state and vice versa may act as a cellular switch mechanism of stem cell mode of action from proliferation to differentiation. The redox homeostasis ensures proper functioning of redox-sensitive signaling pathways through oxidation/reduction of critical cysteine residues on proteins involved in signal transduction. This review presents the current knowledge on the relation between changes in the cellular redox environment and stem cell programming in the course of commitment to a restricted neural lineage, focusing on in vivo neurogenesis and in vitro neuronal differentiation. The first two sections outline the main systems that control the intracellular redox environment and make it more oxidative or reductive. The last section provides the background on redox-sensitive signaling pathways that regulate neurogenesis.
Collapse
Affiliation(s)
- E A Ostrakhovitch
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7.
| | | |
Collapse
|
177
|
Abstract
In humans, oxidative stress and antioxidant defenses are the sum of a complicated network of enzymatic and non-enzymatic processes. Depending on the stage and severity of diseases, a patient's antioxidant armamentarium may increase as an appropriate response to an oxidant challenge, whereas others may decrease as an indication of unbalanced consumption. In some cases, the formation of reactive oxygen species is a requisite and healthy event. In fact, free radicals can affect intracellular signal transduction and gene regulation, resulting in cytokine production essential to the inflammatory process. In many other cases, especially liver diseases, excessive oxidative stress undoubtedly contributes to the progression and pathological findings of disease and serves as a prognostic indicator. Reactive oxygen species are highly reactive molecules that are naturally generated in small amounts through metabolism and could damage cellular molecules such as lipids, proteins or DNA. Oxidative stress plays a major role in many liver diseases. In this review, we summarize the biological character of free radicals and some antioxidants, and the related methods of analysis. Then, we discusses the association of oxidative stress to many types of liver diseases.
Collapse
Affiliation(s)
- Runzhi Zhu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | | | | | | |
Collapse
|
178
|
The Redox System in C. elegans, a Phylogenetic Approach. J Toxicol 2012; 2012:546915. [PMID: 22899914 PMCID: PMC3415087 DOI: 10.1155/2012/546915] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/28/2012] [Accepted: 05/31/2012] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a toxic state caused by an imbalance between the production and elimination of reactive oxygen species (ROS). ROS cause oxidative damage to cellular components such as proteins, lipids, and nucleic acids. While the role of ROS in cellular damage is frequently all that is noted, ROS are also important in redox signalling. The "Redox Hypothesis" has been proposed to emphasize a dual role of ROS. This hypothesis suggests that the primary effect of changes to the redox state is modified cellular signalling rather than simply oxidative damage. In extreme cases, alteration of redox signalling can contribute to the toxicity of ROS, as well as to ageing and age-related diseases. The nematode species Caenorhabditis elegans provides an excellent model for the study of oxidative stress and redox signalling in animals. We use protein sequences from central redox systems in Homo sapiens, Drosophila melanogaster, and Saccharomyces cerevisiae to query Genbank for homologous proteins in C. elegans. We then use maximum likelihood phylogenetic analysis to compare protein families between C. elegans and the other organisms to facilitate future research into the genetics of redox biology.
Collapse
|
179
|
Petrushanko IY, Yakushev S, Mitkevich VA, Kamanina YV, Ziganshin RH, Meng X, Anashkina AA, Makhro A, Lopina OD, Gassmann M, Makarov AA, Bogdanova A. S-glutathionylation of the Na,K-ATPase catalytic α subunit is a determinant of the enzyme redox sensitivity. J Biol Chem 2012; 287:32195-205. [PMID: 22798075 DOI: 10.1074/jbc.m112.391094] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Na,K-ATPase is highly sensitive to changes in the redox state, and yet the mechanisms of its redox sensitivity remain unclear. We have explored the possible involvement of S-glutathionylation of the catalytic α subunit in redox-induced responses. For the first time, the presence of S-glutathionylated cysteine residues was shown in the α subunit in duck salt glands, rabbit kidneys, and rat myocardium. Exposure of the Na,K-ATPase to oxidized glutathione (GSSG) resulted in an increase in the number of S-glutathionylated cysteine residues. Increase in S-glutathionylation was associated with dose- and time-dependent suppression of the enzyme function up to its complete inhibition. The enzyme inhibition concurred with S-glutathionylation of the Cys-454, -458, -459, and -244. Upon binding of glutathione to these cysteines, the enzyme was unable to interact with adenine nucleotides. Inhibition of the Na,K-ATPase by GSSG did not occur in the presence of ATP at concentrations above 0.5 mm. Deglutathionylation of the α subunit catalyzed by glutaredoxin or dithiothreitol resulted in restoration of the Na,K-ATPase activity. Oxidation of regulatory cysteines made them inaccessible for glutathionylation but had no profound effect on the enzyme activity. Regulatory S-glutathionylation of the α subunit was induced in rat myocardium in response to hypoxia and was associated with oxidative stress and ATP depletion. S-Glutathionylation was followed by suppression of the Na,K-ATPase activity. The rat α2 isoform was more sensitive to GSSG than the α1 isoform. Our findings imply that regulatory S-glutathionylation of the catalytic subunit plays a key role in the redox-induced regulation of Na,K-ATPase activity.
Collapse
Affiliation(s)
- Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 11999 Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Albino A, Marco S, Di Maro A, Chambery A, Masullo M, De Vendittis E. Characterization of a cold-adapted glutathione synthetase from the psychrophile Pseudoalteromonas haloplanktis. MOLECULAR BIOSYSTEMS 2012; 8:2405-14. [PMID: 22777241 DOI: 10.1039/c2mb25116g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glutathione (GSH) biosynthesis occurs through two ATP-dependent reactions, usually involving distinct enzymes; in the second step of this process, catalysed by glutathione synthetase (GshB), GSH is formed from γ-glutamylcysteine and glycine. A recombinant form of GshB from the cold-adapted source Pseudoalteromonas haloplanktis (rPhGshB) was purified and characterised. The enzyme formed a disulfide adduct with β-mercaptoethanol, when purified in the presence of this reducing agent. The homotetrameric form of rPhGshB observed at high protein concentration disassembled into two homodimers at low concentration. A new method for directly determining the rPhGshB activity was developed, based on [γ-(32)P]ATP hydrolysis coupled to the GSH synthesis. The ATPase activity required the presence of both γ-glutamylcysteine and glycine and its optimum was reached in the 7.4-8.6 pH range; a divalent cation was absolutely required for the activity, whereas monovalent cations were dispensable. rPhGshB was active at low temperatures and had a similar affinity for ATP (K(m) 0.26 mM) and γ-glutamylcysteine (K(m) 0.25 mM); a lower affinity was measured for glycine (K(m) 0.75 mM). The oxidised form of glutathione (GSSG) acted as an irreversible inhibitor of rPhGshB (K(i) 10.7 mM) and formed disulfide adducts with the enzyme. rPhGshB displayed a great temperature-dependent increase in its activity with an unusually high value of energy of activation (75 kJ mol(-1)) for a psychrophilic enzyme. The enzyme was moderately thermostable, its half inactivation temperature being 50.5 °C after 10 min exposure. The energy of activation of the heat inactivation process was 208 kJ mol(-1). To our knowledge, this is the first contribution to the characterization of a GshB from cold-adapted sources.
Collapse
Affiliation(s)
- Antonella Albino
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
181
|
Oxidative damage and carcinogenesis. Contemp Oncol (Pozn) 2012; 16:230-3. [PMID: 23788885 PMCID: PMC3687415 DOI: 10.5114/wo.2012.29290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 07/29/2011] [Accepted: 08/09/2011] [Indexed: 12/13/2022] Open
Abstract
Oxygen is an essential element to conduct life processes but some of the metabolic byproducts e.g. reactive oxygen species (ROS), are toxic for living organisms. Endogenous ROS are produced e.g. reduction of dioxygen; some exogenous sources of radicals also exist, including nicotine and ionizing radiation. Reactive oxygen species include superoxide anion, hydroxyl radical, singlet oxygen, hydrogen peroxide and hypochlorous acid. Carcinogenesis is a multistep process. The exact reasons for the development of cancer are still unknown. Many factors contribute to the development of carcinogenesis, one of which is oxidative stress. Oxidative stress is defined as an imbalance between oxidizing agents (pro-oxidants) and antioxidants, agents that protect biomolecules against injury by pro-oxidants. When reactive oxygen species are overproduced it can damage nucleic acids, proteins and lipids. ROS are considered as a significant class of carcinogens participating in cancer initiation, promotion and progression.
Collapse
|
182
|
Díez-Dacal B, Pérez-Sala D. A-class prostaglandins: Early findings and new perspectives for overcoming tumor chemoresistance. Cancer Lett 2012; 320:150-7. [DOI: 10.1016/j.canlet.2012.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 01/20/2023]
|
183
|
Farrugia G, Balzan R. Oxidative stress and programmed cell death in yeast. Front Oncol 2012; 2:64. [PMID: 22737670 PMCID: PMC3380282 DOI: 10.3389/fonc.2012.00064] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/02/2012] [Indexed: 12/11/2022] Open
Abstract
Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed.
Collapse
Affiliation(s)
- Gianluca Farrugia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| | - Rena Balzan
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| |
Collapse
|
184
|
Chen W, Seefeldt T, Young A, Zhang X, Zhao Y, Ruffolo J, Kaushik RS, Guan X. Microtubule S-glutathionylation as a potential approach for antimitotic agents. BMC Cancer 2012; 12:245. [PMID: 22703118 PMCID: PMC3534152 DOI: 10.1186/1471-2407-12-245] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 05/28/2012] [Indexed: 11/29/2022] Open
Abstract
Background Microtubules have been one of the most effective targets for the development of anticancer agents. Cancer cells treated by these agents are characterized by cell arrest at G2/M phase. Microtubule-targeting drugs are, therefore, referred to as antimitotic agents. However, the clinical application of the current antimitotic drugs is hampered by emerging drug resistance which is the major cause of cancer treatment failure. The clinical success of antimitotic drugs and emerging drug resistance has prompted a search for new antimitotic agents, especially those with novel mechanisms of action. The aim of this study was to determine whether microtubules can be S-glutathionylated in cancer cells and whether the glutathionylation will lead to microtubule dysfunction and cell growth inhibition. The study will determine whether microtubule S-glutathionylation can be a novel approach for antimitotic agents. Methods 2-Acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylcarbonylamino)phenyl carbamoylsulfanyl]propionic acid (2-AAPA) was used as a tool to induce microtubule S-glutathionylation. UACC-62 cells, a human melanoma cell line, were used as a cancer cell model. A pull-down assay with glutathione S-transferase (GST)-agarose beads followed by Western blot analysis was employed to confirm microtubule S-glutathionylation. Immunofluorescence microscopy using a mouse monoclonal anti-α-tubulin-FITC was used to study the effect of the S-glutathionylation on microtubule function; mainly polymerization and depolymerization. Flow cytometry was employed to examine the effect of the S-glutathionylation on cell cycle distribution and apoptosis. Cell morphological change was followed through the use of a Zeiss AXIO Observer A1 microscope. Cancer cell growth inhibition by 2-AAPA was investigated with ten human cancer cell lines. Results Our investigation demonstrated that cell morphology was changed and microtubules were S-glutathionylated in the presence of 2-AAPA in UACC-62 cells. Accordingly, microtubules were found depolymerized and cells were arrested at G2/M phase. The affected cells were found to undergo apoptosis. Cancer growth inhibition experiments demonstrated that the concentrations of 2-AAPA required to produce the effects on microtubules were compatible to the concentrations producing cancer cell growth inhibition. Conclusions The data from this investigation confirms that microtubule S-glutathionylation leads to microtubule dysfunction and cell growth inhibition and can be a novel approach for developing antimitotic agents.
Collapse
Affiliation(s)
- Wei Chen
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Zhang C, Rodriguez C, Spaulding J, Aw TY, Feng J. Age-dependent and tissue-related glutathione redox status in a mouse model of Alzheimer's disease. J Alzheimers Dis 2012; 28:655-66. [PMID: 22045490 DOI: 10.3233/jad-2011-111244] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glutathione plays an essential role in the intracellular antioxidant defense against oxidant radicals, especially the •OH radical. To understand the early and progressive cellular changes in the development of Alzheimer's disease (AD), we investigated reduced glutathione/oxidized glutathione (GSH/GSSG) status in a double mutated AD transgenic mouse model (B6.Cg-Tg), which carries Swedish amyloid-β protein precursor mutation (AβPPswe) and exon 9 deletion of the PSEN1 gene. In this study, we quantified and compared both GSH/GSSG and mixed-disulfide (Pr-SSG) levels in blood samples and three anatomic positions in brain (cerebrum, cerebellum, and hippocampus) at 3 age stages (1, 5, and 11 months) of AD transgenic (Tg)/wild type mice. The present study was designed to characterize and provide insight into the glutathione redox state of both brain tissues and blood samples at different disease stages of this Tg model. The level of Pr-SSG increased in all AD brain tissues and blood compared with controls regardless of age. The GSH/GSSG ratio in AD-Tg brain tissue started at a higher value at 1 month, fell at the transitional period of 5 months, right before the onset of amyloid plaques, followed by an increase in GSSG and associated decrease of GSH/GSSG at 11 months. These results suggest that formation of Pr-SSG may be an early event, preceding amyloid plaque appearance, and the data further implies that tissue thiol redox is tightly regulated. Notably, the high basal levels of mixed-disulfides in hippocampus suggest a potential for increased oxidative damage under oxidizing conditions and increased GSSG in this vulnerable region.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA
| | | | | | | | | |
Collapse
|
186
|
Majumdar U, Biswas P, Subhra Sarkar T, Maiti D, Ghosh S. Regulation of cell cycle and stress responses under nitrosative stress in Schizosaccharomyces pombe. Free Radic Biol Med 2012; 52:2186-200. [PMID: 22561704 DOI: 10.1016/j.freeradbiomed.2012.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/13/2012] [Accepted: 03/30/2012] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) acts as a signaling molecule in numerous physiological processes but excess production generates nitrosative stress in cells. The exact protective mechanism used by cells to combat nitrosative stress is unclear. In this study, the fission yeast Schizosaccharomyces pombe has been used as a model system to explore cell cycle regulation and stress responses under nitrosative stress. Exposure to an NO donor results in mitotic delay in cells through G2/M checkpoint activation and initiates rereplication. Western blot analysis of phosphorylated Cdc2 revealed that the G2/M block in the cell cycle was due to retention of its inactive phosphorylated form. Interestingly, nitrosative stress results in inactivation of Cdc25 through S-nitrosylation that actually leads to cell cycle delay. From differential display analysis, we identified plo1, spn4, and rga5, three cell cycle-related genes found to be differentially expressed under nitrosative stress. Exposure to nitrosative stress also results in abnormal septation and cytokinesis in S. pombe. In summary we propose a novel molecular mechanism of cell cycle control under nitrosative stress based on our experimental results and bioinformatics analysis.
Collapse
Affiliation(s)
- Uddalak Majumdar
- Department of Biochemistry, University College of Science, Calcutta University, Kolkata 700019, West Bengal, India
| | | | | | | | | |
Collapse
|
187
|
Grattagliano I, de Bari O, Bernardo TC, Oliveira PJ, Wang DQH, Portincasa P. Role of mitochondria in nonalcoholic fatty liver disease--from origin to propagation. Clin Biochem 2012; 45:610-618. [PMID: 22484459 DOI: 10.1016/j.clinbiochem.2012.03.024] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 02/02/2012] [Accepted: 03/12/2012] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Mitochondria play a major role in cell energy-generating processes and integrate several signalling pathways to control cellular life and death. DESIGN AND METHODS Several liver diseases are characterized by mitochondrial alterations which are directly or indirectly dependent on the activation of intracellular stress cascades or receptor-mediated pathways. This article examines the role of mitochondrial dysfunction in critical initiating or propagating events in fatty liver infiltration and nonalcoholic fatty liver disease (NAFLD). Genetic variants and the role of drug-induced toxicity have been considered. RESULTS Key alterations of mitochondrial physiology associated with hepatocyte fatty changes are described. The value of novel non-invasive diagnostic methods to detect mitochondrial metabolic alterations is also discussed. CONCLUSIONS Mitochondrial metabolic remodeling is a predominant factor in the appearance and perpetuation of hepatocyte fat accumulation. Non-invasive techniques to identify mitochondrial dysfunction and proper mitochondria protection are two necessary clinical steps for an efficient management of NAFLD.
Collapse
Affiliation(s)
- Ignazio Grattagliano
- Department of Interdisciplinary Medicine, Clinica Medica A. Murri, University of Bari Medical School, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
188
|
Yiannakopoulou EC. Does pharmacodynamic interaction of nonenzymatic antioxidants modify response to antioxidant therapy in the process of atherosclerosis? J Cardiovasc Pharmacol Ther 2012; 17:366-72. [PMID: 22649154 DOI: 10.1177/1074248412447109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A discrepancy exists between clinical trials and epidemiological studies on the effect of antioxidants on cardiovascular disease. This discrepancy could be attributed to the lack of knowledge on the effect of interaction of exogenous antioxidant supplementation with one another or on the effect of interaction of exogenously administered antioxidant vitamins with endogenous ones. This study attempts a systematic review of available data on possible synergistic, additive, or antagonistic action of nonenzymatic antioxidants in atherosclerosis. Electronic databases were searched with the available search terms up to and including February 2010. Eligibility criteria were full publications, clinical trials, epidemiological studies, or in vitro or in vivo studies that investigated the effect of pharmacodynamic interaction of 2 or more antioxidants in the process of atherosclerosis and /or the mechanism of interaction. Eligible clinical trials should have at least 4 arms, 1 arm for the study of each antioxidant alone, 1 for the effect of both antioxidants, and 1 arm for the effect of placebo. In vitro data as well as the limited number of identified randomized clinical trials suggested that coadministration of antioxidants results in synergistic or additive interaction in the process of atherosclerosis. No study demonstrated antagonistic interaction between antioxidants.
Collapse
Affiliation(s)
- Eugenia Ch Yiannakopoulou
- Department of Basic Medical Lessons, Faculty of Health and Caring Professions, Technological Educational Institute of Athens, Greece.
| |
Collapse
|
189
|
Schisandrin B as a hormetic agent for preventing age-related neurodegenerative diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:250825. [PMID: 22666518 PMCID: PMC3359732 DOI: 10.1155/2012/250825] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/24/2012] [Accepted: 03/06/2012] [Indexed: 11/17/2022]
Abstract
Oxidative stress and mitochondrial dysfunction have been implicated in the pathogenesis of neurodegenerative diseases, with the latter preceding the appearance of clinical symptoms. The energy failure resulting from mitochondrial dysfunction further impedes brain function, which demands large amounts of energy. Schisandrin B (Sch B), an active ingredient isolated from Fructus Schisandrae, has been shown to afford generalized tissue protection against oxidative damage in various organs, including the brain, of experimental animals. Recent experimental findings have further demonstrated that Sch B can protect neuronal cells against oxidative challenge, presumably by functioning as a hormetic agent to sustain cellular redox homeostasis and mitoenergetic capacity in neuronal cells. The combined actions of Sch B offer a promising prospect for preventing or possibly delaying the onset of neurodegenerative diseases, as well as enhancing brain health.
Collapse
|
190
|
von Bernhardi R, Eugenín J. Alzheimer's disease: redox dysregulation as a common denominator for diverse pathogenic mechanisms. Antioxid Redox Signal 2012; 16:974-1031. [PMID: 22122400 DOI: 10.1089/ars.2011.4082] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and a progressive neurodegeneration that appears to result from multiple pathogenic mechanisms (including protein misfolding/aggregation, involved in both amyloid β-dependent senile plaques and tau-dependent neurofibrillary tangles), metabolic and mitochondrial dysfunction, excitoxicity, calcium handling impairment, glial cell dysfunction, neuroinflammation, and oxidative stress. Oxidative stress, which could be secondary to several of the other pathophysiological mechanisms, appears to be a major determinant of the pathogenesis and progression of AD. The identification of oxidized proteins common for mild cognitive impairment and AD suggests that key oxidation pathways are triggered early and are involved in the initial progression of the neurodegenerative process. Abundant data support that oxidative stress, also considered as a main factor for aging, the major risk factor for AD, can be a common key element capable of articulating the divergent nature of the proposed pathogenic factors. Pathogenic mechanisms influence each other at different levels. Evidence suggests that it will be difficult to define a single-target therapy resulting in the arrest of progression or the improvement of AD deterioration. Since oxidative stress is present from early stages of disease, it appears as one of the main targets to be included in a clinical trial. Exploring the articulation of AD pathogenic mechanisms by oxidative stress will provide clues for better understanding the pathogenesis and progression of this dementing disorder and for the development of effective therapies to treat this disease.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Department of Neurology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | |
Collapse
|
191
|
Zhang J, Li Y, Chen W, Du GC, Chen J. Glutathione improves the cold resistance of Lactobacillus sanfranciscensis by physiological regulation. Food Microbiol 2012; 31:285-92. [PMID: 22608235 DOI: 10.1016/j.fm.2012.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/01/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
Abstract
The microenvironmental manipulation of glutathione (GSH) on improving cold resistance of Lactobacillus sanfranciscensis DSM 20451(T) was investigated in this study. It was proved that GSH relieves the metabolic disorder of cells under cold stress, and prevents the decreased activities of related key enzymes such as pyruvate kinase (PK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH) upon cold challenges. Higher intracellular ATP level was also found in cells with GSH under cold stress. Moreover, cells with imported GSH had significantly higher intracellular than the control during cold treatment. In addition, proteomics analysis showed more exciting findings that the protective function of GSH under cold stress was related to metabolic regulation and the multi-control against induced cross-stresses. These results broaden the knowledge about the physiological function of GSH, and suggest a practicable approach to improve the cold resistance of L. sanfranciscensis, a starter culture for sourdough, by the addition of GSH.
Collapse
Affiliation(s)
- Juan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, China
| | | | | | | | | |
Collapse
|
192
|
Mieyal JJ, Chock PB. Posttranslational modification of cysteine in redox signaling and oxidative stress: Focus on s-glutathionylation. Antioxid Redox Signal 2012; 16:471-5. [PMID: 22136616 PMCID: PMC3270050 DOI: 10.1089/ars.2011.4454] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have become recognized as second messengers for initiating and/or regulating vital cellular signaling pathways, and they are known also as deleterious mediators of cellular stress and cell death. ROS and RNS, and their cross products like peroxynitrite, react primarily with cysteine residues whose oxidative modification leads to functional alterations in the proteins. In this Forum, the collection of six review articles presents a perspective on the broad biological impact of cysteine modifications in health and disease from the molecular to the cellular and organismal levels, focusing in particular on reversible protein-S-glutathionylation and its central role in transducing redox signals as well as protecting proteins from irreversible cysteine oxidation. The Forum review articles consider the role of S-glutationylation in regulation of the peroxiredoxin enzymes, the special redox environment of the mitochondria, redox regulation pertinent to the function of the cardiovascular system, mechanisms of redox-activated apoptosis in the pulmonary system, and the role of glutathionylation in the initiation, propagation, and treatment of neurodegenerative diseases. Several common themes emerge from these reviews; notably, the probability of crosstalk between signaling/regulation mechanisms involving protein-S-nitrosylation and protein-S-glutathionylation, and the need for quantitative analysis of the relationship between specific cysteine modifications and corresponding functional changes in various cellular contexts.
Collapse
Affiliation(s)
- John J. Mieyal
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Louis B. Stokes Veterans Affairs Medical Research Center, Cleveland, Ohio
| | - P. Boon Chock
- Laboratory of Biochemistry, BBC, NHLBI, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
193
|
Murphy MP. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 2012; 16:476-95. [PMID: 21954972 DOI: 10.1089/ars.2011.4289] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE The mitochondrial matrix contains much of the machinery at the heart of metabolism. This compartment is also exposed to a high and continual flux of superoxide, hydrogen peroxide, and related reactive species. To protect mitochondria from these sources of oxidative damage, there is an integrated set of thiol systems within the matrix comprising the thioredoxin/peroxiredoxin/methionine sulfoxide reductase pathways and the glutathione/glutathione peroxidase/glutathione-S-transferase/glutaredoxin pathways that in conjunction with protein thiols prevent much of this oxidative damage. In addition, the changes in the redox state of many components of these mitochondrial thiol systems may transduce and relay redox signals within and through the mitochondrial matrix to modulate the activity of biochemical processes. RECENT ADVANCES Here, mitochondrial thiol systems are reviewed, and areas of uncertainty are pointed out, focusing on recent developments in our understanding of their roles. CRITICAL ISSUES The areas of particular focus are on the multiple, overlapping roles of mitochondrial thiols and on understanding how these thiols contribute to both antioxidant defenses and redox signaling. FUTURE DIRECTIONS Recent technical progress in the identification and quantification of thiol modifications by redox proteomics means that many of the questions raised about the multiple roles of mitochondrial thiols can now be addressed.
Collapse
|
194
|
Zaffagnini M, Bedhomme M, Marchand CH, Morisse S, Trost P, Lemaire SD. Redox regulation in photosynthetic organisms: focus on glutathionylation. Antioxid Redox Signal 2012; 16:567-86. [PMID: 22053845 DOI: 10.1089/ars.2011.4255] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE In photosynthetic organisms, besides the well-established disulfide/dithiol exchange reactions specifically controlled by thioredoxins (TRXs), protein S-glutathionylation is emerging as an alternative redox modification occurring under stress conditions. This modification, consisting of the formation of a mixed disulfide between glutathione and a protein cysteine residue, can not only protect specific cysteines from irreversible oxidation but also modulate protein activities and appears to be specifically controlled by small disulfide oxidoreductases of the TRX superfamily named glutaredoxins (GRXs). RECENT STUDIES In recent times, several studies allowed significant progress in this area, mostly due to the identification of several plant proteins undergoing S-glutathionylation and to the characterization of the molecular mechanisms and the proteins involved in the control of this modification. CRITICAL ISSUES This article provides a global overview of protein glutathionylation in photosynthetic organisms with particular emphasis on the mechanisms of protein glutathionylation and deglutathionylation and a focus on the role of GRXs. Then, we describe the methods employed for identification of glutathionylated proteins in photosynthetic organisms and review the targets and the possible physiological functions of protein glutathionylation. FUTURE DIRECTIONS In order to establish the importance of protein S-glutathionylation in photosynthetic organisms, future studies should be aimed at delineating more accurately the molecular mechanisms of glutathionylation and deglutathionylation reactions, at identifying proteins undergoing S-glutathionylation in vivo under diverse conditions, and at investigating the importance of redoxins, GRX, and TRX, in the control of this redox modification in vivo.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | | | | | |
Collapse
|
195
|
Anathy V, Roberson EC, Guala AS, Godburn KE, Budd RC, Janssen-Heininger YMW. Redox-based regulation of apoptosis: S-glutathionylation as a regulatory mechanism to control cell death. Antioxid Redox Signal 2012; 16:496-505. [PMID: 21929356 PMCID: PMC3304251 DOI: 10.1089/ars.2011.4281] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Redox-based signaling governs a number of important pathways in tissue homeostasis. Consequently, deregulation of redox-controlled processes has been linked to a number of human diseases. Among the biological processes regulated by redox signaling, apoptosis or programmed cell death is a highly conserved process important for tissue homeostasis. Apoptosis can be triggered by a wide variety of stimuli, including death receptor ligands, environmental agents, and cytotoxic drugs. Apoptosis has also been implicated in the etiology of many human diseases. RECENT ADVANCES Recent discoveries demonstrate that redox-based changes are required for efficient activation of apoptosis. Among these redox changes, alterations in the abundant thiol, glutathione (GSH), and the oxidative post-translational modification, protein S-glutathionylation (PSSG) have come to the forefront as critical regulators of apoptosis. CRITICAL ISSUES Although redox-based changes have been documented in apoptosis and disease pathogenesis, the mechanistic details, whereby redox perturbations intersect with pathogenic processes, remain obscure. FUTURE DIRECTIONS Further research will be needed to understand the context in which of the members of the death receptor pathways undergo ligand dependent oxidative modifications. Additional investigation into the interplay between oxidative modifications, redox enzymes, and apoptosis pathway members are also critically needed to improve our understanding how redox-based control is achieved. Such analyses will be important in understanding the diverse chronic diseases. In this review we will discuss the emerging paradigms in our current understanding of redox-based regulation of apoptosis with an emphasis on S-glutathionylation of proteins and the enzymes involved in this important post-translational modification.
Collapse
Affiliation(s)
- Vikas Anathy
- Department of Pathology, University of Vermont College of Medicine, Burlington, 05405, USA
| | | | | | | | | | | |
Collapse
|
196
|
Jozefczak M, Remans T, Vangronsveld J, Cuypers A. Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 2012; 13:3145-3175. [PMID: 22489146 PMCID: PMC3317707 DOI: 10.3390/ijms13033145] [Citation(s) in RCA: 468] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/10/2012] [Accepted: 02/23/2012] [Indexed: 01/15/2023] Open
Abstract
Since the industrial revolution, the production, and consequently the emission of metals, has increased exponentially, overwhelming the natural cycles of metals in many ecosystems. Metals display a diverse array of physico-chemical properties such as essential versus non-essential and redox-active versus non-redox-active. In general, all metals can lead to toxicity and oxidative stress when taken up in excessive amounts, imposing a serious threat to the environment and human health. In order to cope with different kinds of metals, plants possess defense strategies in which glutathione (GSH; γ-glu-cys-gly) plays a central role as chelating agent, antioxidant and signaling component. Therefore, this review highlights the role of GSH in: (1) metal homeostasis; (2) antioxidative defense; and (3) signal transduction under metal stress. The diverse functions of GSH originate from the sulfhydryl group in cysteine, enabling GSH to chelate metals and participate in redox cycling.
Collapse
Affiliation(s)
- Marijke Jozefczak
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; E-Mails: (M.J.); (T.R.); (J.V.)
| | - Tony Remans
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; E-Mails: (M.J.); (T.R.); (J.V.)
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; E-Mails: (M.J.); (T.R.); (J.V.)
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; E-Mails: (M.J.); (T.R.); (J.V.)
| |
Collapse
|
197
|
Cerioni L, Fiorani M, Azzolini C, Cantoni O. A moderate decline in U937 cell GSH levels triggers PI3 kinase/Akt-dependent Bad phosphorylation, thereby preventing an otherwise prompt apoptotic response. Pharmacol Res 2012; 65:379-86. [DOI: 10.1016/j.phrs.2011.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/26/2022]
|
198
|
Abstract
The liver is necessary for survival. Its strategic localisation, blood flow and prominent role in the metabolism of xenobiotics render this organ particularly susceptible to injury by chemicals to which we are ubiquitously exposed. The pathogenesis of most chemical-induced liver injuries is initiated by the metabolic conversion of chemicals into reactive intermediate species, such as electrophilic compounds or free radicals, which can potentially alter the structure and function of cellular macromolecules. Many reactive intermediate species can produce oxidative stress, which can be equally detrimental to the cell. When protective defences are overwhelmed by excess toxicant insult, the effects of reactive intermediate species lead to deregulation of cell signalling pathways and dysfunction of biomolecules, leading to failure of target organelles and eventual cell death. A myriad of genetic factors determine the susceptibility of specific individuals to chemical-induced liver injury. Environmental factors, lifestyle choices and pre-existing pathological conditions also have roles in the pathogenesis of chemical liver injury. Research aimed at elucidating the molecular mechanism of the pathogenesis of chemical-induced liver diseases is fundamental for preventing or devising new modalities of treatment for liver injury by chemicals.
Collapse
Affiliation(s)
- Xinsheng Gu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Jose E. Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
199
|
Abstract
The main objective of this review is to examine the role of endogenous reactive oxygen/nitrogen species (ROS) in the aging process. Until relatively recently, ROS were considered to be potentially toxic by-products of aerobic metabolism, which, if not eliminated, may inflict structural damage on various macromolecules. Accrual of such damage over time was postulated to be responsible for the physiological deterioration in the postreproductive phase of life and eventually the death of the organism. This "structural damage-based oxidative stress" hypothesis has received support from the age-associated increases in the rate of ROS production and the steady-state amounts of oxidized macromolecules; however, there are increasing indications that structural damage alone is insufficient to satisfactorily explain the age-associated functional losses. The level of oxidative damage accrued during aging often does not match the magnitude of functional losses. Although experimental augmentation of antioxidant defenses tends to enhance resistance to induced oxidative stress, such manipulations are generally ineffective in the extension of life span of long-lived strains of animals. More recently, in a major conceptual shift, ROS have been found to be physiologically vital for signal transduction, gene regulation, and redox regulation, among others, implying that their complete elimination would be harmful. An alternative notion, advocated here, termed the "redox stress hypothesis," proposes that aging-associated functional losses are primarily caused by a progressive pro-oxidizing shift in the redox state of the cells, which leads to the overoxidation of redox-sensitive protein thiols and the consequent disruption of the redox-regulated signaling mechanisms.
Collapse
Affiliation(s)
- Rajindar S Sohal
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - William C Orr
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
200
|
Rocha BS, Gago B, Barbosa RM, Lundberg JO, Radi R, Laranjinha J. Intragastric nitration by dietary nitrite: implications for modulation of protein and lipid signaling. Free Radic Biol Med 2012; 52:693-698. [PMID: 22154654 DOI: 10.1016/j.freeradbiomed.2011.11.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/01/2011] [Accepted: 11/10/2011] [Indexed: 12/19/2022]
Abstract
Inorganic nitrite, derived from the reduction of nitrate in saliva, has recently emerged as a protagonist in nitric oxide ((•)NO) biology as it can be univalently reduced to (•)NO, in the healthy human stomach. Important physiological implications have been attributed to nitrite-derived (•)NO in the gastrointestinal tract, namely modulation of host defense, blood flow, mucus formation and motility. At acidic pH, nitrite generates different nitrogen oxides depending on the local microenvironment (redox status, gastric content, pH, inflammatory conditions), including (•)NO, nitrogen dioxide ((•)NO(2)), dinitrogen trioxide (N(2)O(3)), and peroxynitrite. Thus, the gastric environment is a significant source of nitrating and nitrosating agents, especially in individuals consuming a nitrate/nitrite-rich diet on a daily basis. Both, the gastric lumen and mucosa contain putative targets for nitration, not only proteins and lipids from ingested aliments but also endogenous proteins secreted by the oxyntic glands. The physiological and functional consequences of nitration of gastric mediators will impact on local processes including food digestion and ulcerogenesis. Additionally, gastric nitration products (such as nitrated lipids) may be absorbed and affect systemic pathways. Thus, dietary ingestion of nitrate will have direct consequences for endogenous protein nitration, as indicated by our preliminary data.
Collapse
Affiliation(s)
- Bárbara S Rocha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus. Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Bruno Gago
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus. Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Health Science Department, University of Aveiro
| | - Rui M Barbosa
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus. Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - João Laranjinha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus. Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|