151
|
Schwabe RF, Tabas I, Pajvani UB. Mechanisms of Fibrosis Development in Nonalcoholic Steatohepatitis. Gastroenterology 2020; 158:1913-1928. [PMID: 32044315 PMCID: PMC7682538 DOI: 10.1053/j.gastro.2019.11.311] [Citation(s) in RCA: 422] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease is the most prevalent liver disease worldwide, affecting 20%-25% of the adult population. In 25% of patients, nonalcoholic fatty liver disease progresses to nonalcoholic steatohepatitis (NASH), which increases the risk for the development of cirrhosis, liver failure, and hepatocellular carcinoma. In patients with NASH, liver fibrosis is the main determinant of mortality. Here, we review how interactions between different liver cells culminate in fibrosis development in NASH, focusing on triggers and consequences of hepatocyte-macrophage-hepatic stellate cell (HSC) crosstalk. We discuss pathways through which stressed and dead hepatocytes instigate the profibrogenic crosstalk with HSC and macrophages, including the reactivation of developmental pathways such as TAZ, Notch, and hedgehog; how clearance of dead cells in NASH via efferocytosis may affect inflammation and fibrogenesis; and insights into HSC and macrophage heterogeneity revealed by single-cell RNA sequencing. Finally, we summarize options to therapeutically interrupt this profibrogenic hepatocyte-macrophage-HSC network in NASH.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York.
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York; Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, Columbia University, New York, New York
| |
Collapse
|
152
|
Liu X, Xu J, Rosenthal S, Zhang LJ, McCubbin R, Meshgin N, Shang L, Koyama Y, Ma HY, Sharma S, Heinz S, Glass CK, Benner C, Brenner DA, Kisseleva T. Identification of Lineage-Specific Transcription Factors That Prevent Activation of Hepatic Stellate Cells and Promote Fibrosis Resolution. Gastroenterology 2020; 158:1728-1744.e14. [PMID: 31982409 PMCID: PMC7252905 DOI: 10.1053/j.gastro.2020.01.027] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Development of liver fibrosis is associated with activation of quiescent hepatic stellate cells (HSCs) into collagen type I-producing myofibroblasts (activated HSCs). Cessation of liver injury often results in fibrosis resolution and inactivation of activated HSCs/myofibroblasts into a quiescent-like state (inactivated HSCs). We aimed to identify molecular features of phenotypes of HSCs from mice and humans. METHODS We performed studies with LratCre, Ets1-floxed, Nf1-floxed, Pparγ-floxed, Gata6-floxed, Rag2-/-γc-/-, and C57/Bl6 (control) mice. Some mice were given carbon tetrachloride (CCl4) to induce liver fibrosis, with or without a peroxisome proliferator-activated receptor-γ (PPARγ) agonist. Livers from mice were analyzed by immunohistochemistry. Quiescent, activated, and inactivated HSCs were isolated from livers of Col1α1YFP mice and analyzed by chromatin immunoprecipitation and sequencing. Human HSCs were isolated from livers denied for transplantation. We compared changes in gene expression patterns and epigenetic modifications (histone H3 lysine 4 dimethylation and histone H3 lysine 27 acetylation) in primary mouse and human HSCs. Transcription factors were knocked down with small hairpin RNAs in mouse HSCs. RESULTS Motif enrichment identified E26 transcription-specific transcription factors (ETS) 1, ETS2, GATA4, GATA6, interferon regulatory factor (IRF) 1, and IRF2 transcription factors as regulators of the mouse and human HSC lineage. Small hairpin RNA-knockdown of these transcription factors resulted in increased expression of genes that promote fibrogenesis and inflammation, and loss of HSC phenotype. Disruption of Gata6 or Ets1, or Nf1 or Pparγ (which are regulated by ETS1), increased the severity of CCl4-induced liver fibrosis in mice compared to control mice. Only mice with disruption of Gata6 or Pparγ had defects in fibrosis resolution after CCl4 administration was stopped, associated with persistent activation of HSCs. Administration of a PPARγ agonist accelerated regression of liver fibrosis after CCl4 administration in control mice but not in mice with disruption of Pparγ. CONCLUSIONS Phenotypes of HSCs from humans and mice are regulated by transcription factors, including ETS1, ETS2, GATA4, GATA6, IRF1, and IRF2. Activated mouse and human HSCs can revert to a quiescent-like, inactivated phenotype. We found GATA6 and PPARγ to be required for inactivation of human HSCs and regression of liver fibrosis in mice.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Medicine University of California San Diego, La Jolla, California; Department of Surgery, University of California San Diego, La Jolla, California
| | - Jun Xu
- Department of Medicine University of California San Diego, La Jolla, California; Department of Surgery, University of California San Diego, La Jolla, California
| | - Sara Rosenthal
- Department of Medicine University of California San Diego, La Jolla, California; Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, California
| | - Ling-Juan Zhang
- Department of Dermatology, University of California San Diego, La Jolla, California; School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Ryan McCubbin
- Department of Medicine University of California San Diego, La Jolla, California
| | - Nairika Meshgin
- Department of Medicine University of California San Diego, La Jolla, California
| | - Linshan Shang
- Department of Surgery, University of California San Diego, La Jolla, California
| | - Yukinori Koyama
- Department of Medicine University of California San Diego, La Jolla, California; Department of Surgery, University of California San Diego, La Jolla, California
| | - Hsiao-Yen Ma
- Department of Medicine University of California San Diego, La Jolla, California
| | - Sonia Sharma
- La Jolla Institute for Immunology, La Jolla, California
| | - Sven Heinz
- Department of Medicine University of California San Diego, La Jolla, California
| | - Chris K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California
| | - Chris Benner
- Department of Medicine University of California San Diego, La Jolla, California
| | - David A Brenner
- Department of Medicine University of California San Diego, La Jolla, California
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, California.
| |
Collapse
|
153
|
Chan YT, Wang N, Tan HY, Li S, Feng Y. Targeting Hepatic Stellate Cells for the Treatment of Liver Fibrosis by Natural Products: Is It the Dawning of a New Era? Front Pharmacol 2020; 11:548. [PMID: 32425789 PMCID: PMC7212390 DOI: 10.3389/fphar.2020.00548] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a progressive liver damage condition that is worth studying widely. It is important to target and alleviate the disease at an early stage before turning into later cirrhosis or liver cancer. There are currently no direct medicines targeting the attenuation or reversal of liver fibrosis, and so there is an urgent need to look into this area. Traditional Chinese Medicine has a long history in using herbal medicines to treat liver diseases including fibrosis. It is time to integrate the ancient wisdom with modern science and technology to look for the best solution to the disease. In this review, the principal concept of the pathology of liver fibrosis will be described, and then some of the single compounds isolated from herbal medicines, including salvianolic acids, oxymatrine, curcumin, tetrandrine, etc. will be discussed from their effects to the molecular mechanism behind. Molecular targets of the compounds are analyzed by network pharmacology approach, and TGFβ/SMAD was identified as the most common pathway. This review serves to summarize the current findings of herbal medicines combining with modern medicines in the area of fibrosis. It hopefully provides insights in further pharmaceutical research directions.
Collapse
Affiliation(s)
| | | | | | | | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
154
|
Gandhi CR. Pro- and Anti-fibrogenic Functions of Gram-Negative Bacterial Lipopolysaccharide in the Liver. Front Med (Lausanne) 2020; 7:130. [PMID: 32373617 PMCID: PMC7186417 DOI: 10.3389/fmed.2020.00130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Extensive research performed over several decades has identified cells participating in the initiation and progression of fibrosis, and the numerous underlying inter- and intra-cellular signaling pathways. However, liver fibrosis continues to be a major clinical challenge as the precise targets of treatment are still elusive. Activation of physiologically quiescent perisinusoidal hepatic stellate cells (HSCs) to a myofibroblastic proliferating, contractile and fibrogenic phenotype is a critical event in the pathogenesis of chronic liver disease. Thus, elucidation of the mechanisms of the reversal to quiescence or inhibition of activated HSCs, and/or their elimination via apoptosis has been the focus of intense investigation. Lipopolysaccharide (LPS), a gut-resident Gram-negative bacterial endotoxin, is a powerful pro-inflammatory molecule implicated in hepatic injury, inflammation and fibrosis. In both acute and chronic liver injury, portal venous levels of LPS are elevated due to increased intestinal permeability. LPS, via CD14 and Toll-like receptor 4 (TLR4) and its adapter molecules, stimulates macrophages, neutrophils and several other cell types to produce inflammatory mediators as well as factors that can activate HSCs and stimulate their fibrogenic activity. LPS also stimulates synthesis of pro- and anti-inflammatory cytokines/chemokines, growth mediators and molecules of immune regulation by HSCs. However, LPS was found to arrest proliferation of activated HSCs and to convert them into non-fibrogenic phenotype. Interestingly, LPS can elicit responses in HSCs independent of CD14 and TLR4. Identifying and/or developing non-inflammatory but anti-fibrogenic mimetics of LPS could be relevant for treating liver fibrosis.
Collapse
Affiliation(s)
- Chandrashekhar R Gandhi
- Divisions of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Cincinnati VA Medical Center, Cincinnati, OH, United States
| |
Collapse
|
155
|
Lafoz E, Ruart M, Anton A, Oncins A, Hernández-Gea V. The Endothelium as a Driver of Liver Fibrosis and Regeneration. Cells 2020; 9:E929. [PMID: 32290100 PMCID: PMC7226820 DOI: 10.3390/cells9040929] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis is a common feature of sustained liver injury and represents a major public health problem worldwide. Fibrosis is an active research field and discoveries in the last years have contributed to the development of new antifibrotic drugs, although none of them have been approved yet. Liver sinusoidal endothelial cells (LSEC) are highly specialized endothelial cells localized at the interface between the blood and other liver cell types. They lack a basement membrane and display open channels (fenestrae), making them exceptionally permeable. LSEC are the first cells affected by any kind of liver injury orchestrating the liver response to damage. LSEC govern the regenerative process initiation, but aberrant LSEC activation in chronic liver injury induces fibrosis. LSEC are also main players in fibrosis resolution. They maintain liver homeostasis and keep hepatic stellate cell and Kupffer cell quiescence. After sustained hepatic injury, they lose their phenotype and protective properties, promoting angiogenesis and vasoconstriction and contributing to inflammation and fibrosis. Therefore, improving LSEC phenotype is a promising strategy to prevent liver injury progression and complications. This review focuses on changes occurring in LSEC after liver injury and their consequences on fibrosis progression, liver regeneration, and resolution. Finally, a synopsis of the available strategies for LSEC-specific targeting is provided.
Collapse
Affiliation(s)
- Erica Lafoz
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Maria Ruart
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Aina Anton
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Anna Oncins
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Virginia Hernández-Gea
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
156
|
Roehlen N, Crouchet E, Baumert TF. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020; 9:cells9040875. [PMID: 32260126 PMCID: PMC7226751 DOI: 10.3390/cells9040875] [Citation(s) in RCA: 700] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis due to viral or metabolic chronic liver diseases is a major challenge of global health. Correlating with liver disease progression, fibrosis is a key factor for liver disease outcome and risk of hepatocellular carcinoma (HCC). Despite different mechanism of primary liver injury and disease-specific cell responses, the progression of fibrotic liver disease follows shared patterns across the main liver disease etiologies. Scientific discoveries within the last decade have transformed the understanding of the mechanisms of liver fibrosis. Removal or elimination of the causative agent such as control or cure of viral infection has shown that liver fibrosis is reversible. However, reversal often occurs too slowly or too infrequent to avoid life-threatening complications particularly in advanced fibrosis. Thus, there is a huge unmet medical need for anti-fibrotic therapies to prevent liver disease progression and HCC development. However, while many anti-fibrotic candidate agents have shown robust effects in experimental animal models, their anti-fibrotic effects in clinical trials have been limited or absent. Thus, no approved therapy exists for liver fibrosis. In this review we summarize cellular drivers and molecular mechanisms of fibrogenesis in chronic liver diseases and discuss their impact for the development of urgently needed anti-fibrotic therapies.
Collapse
Affiliation(s)
- Natascha Roehlen
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
| | - Emilie Crouchet
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, 67000 Strasbourg, France; (N.R.); (E.C.)
- Institut de Recherche sur les Maladies Virales et Hépatiques U1110, 67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Correspondence: ; Tel.: +33-366853703
| |
Collapse
|
157
|
Wang S, Friedman SL. Taming the Savage Breast From Within: Transcription Factor 21, a Regulator of Stellate Cell Deactivation. Hepatology 2020; 71:1150-1153. [PMID: 32003004 DOI: 10.1002/hep.31151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
158
|
Nakano Y, Kamiya A, Sumiyoshi H, Tsuruya K, Kagawa T, Inagaki Y. A Deactivation Factor of Fibrogenic Hepatic Stellate Cells Induces Regression of Liver Fibrosis in Mice. Hepatology 2020; 71:1437-1452. [PMID: 31549421 DOI: 10.1002/hep.30965] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIMS Hepatic stellate cells (HSCs), a key player in the progression of liver fibrosis, are activated by various inflammatory stimuli and converted to myofibroblast-like cells with excessive collagen production. Despite many attempts to suppress activation of HSCs or inhibit collagen production in activated HSCs, their clinical applications have not been established yet. Recently, the deactivation of HSCs has been reported as a mechanism underlying the reversibility of experimental liver fibrosis. In the present study, we sought for deactivation factors of HSCs that induce regression of established liver fibrosis. APPROACH AND RESULTS We identified transcription factor 21 (Tcf21) as one of the transcription factors whose expression was up-regulated in parallel to the differentiation of fetal HSCs. Expression of Tcf21 in HSCs remarkably decreased during culture-induced activation in vitro and in murine and human fibrotic liver tissue in vivo. This reduced Tcf21 expression was recovered during the spontaneous regression of murine liver fibrosis. Tcf21 was also examined for its effects by adeno-associated virus serotype 6-mediated Tcf21 gene transfer into cultured activated HSCs and mice with carbon tetrachloride- or methionine-choline deficient diet-induced liver fibrosis. Overexpression of Tcf21 in activated HSCs not only suppressed fibrogenic gene expression but also restored cells, at least in part, to a quiescent phenotype both in vitro and in vivo. These phenotypic changes of HSCs were accompanied by the regression of steatohepatitis and fibrosis and improved hepatic architecture and function. CONCLUSIONS Tcf21 has been identified as a deactivation factor of fibrogenic HSCs, providing insight into a treatment strategy for the otherwise intractable liver fibrosis.
Collapse
Affiliation(s)
- Yasuhiro Nakano
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Akihide Kamiya
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Japan
| | - Hideaki Sumiyoshi
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Kota Tsuruya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
- Institute of Medical Sciences, Tokai University, Isehara, Japan
| |
Collapse
|
159
|
Design of a Gene Panel to Expose the Versatile Role of Hepatic Stellate Cells in Human Liver Fibrosis. Pharmaceutics 2020; 12:pharmaceutics12030278. [PMID: 32244897 PMCID: PMC7151042 DOI: 10.3390/pharmaceutics12030278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
The pivotal cell involved in the pathogenesis of liver fibrosis, i.e., the activated hepatic stellate cell (HSC), has a wide range of activities during the initiation, progression and even regression of the disease. These HSC-related activities encompass cellular activation, matrix synthesis and degradation, proliferation, contraction, chemotaxis and inflammatory signaling. When determining the in vitro and in vivo effectivity of novel antifibrotic therapies, the readout is currently mainly based on gene and protein levels of α-smooth muscle actin (α-SMA) and the fibrillar collagens (type I and III). We advocate for a more comprehensive approach in addition to these markers when screening potential antifibrotic drugs that interfere with HSCs. Therefore, we aimed to develop a gene panel for human in vitro and ex vivo drug screening models, addressing each of the HSC-activities with at least one gene, comprising, in total, 16 genes. We determined the gene expression in various human stellate cells, ranging from primary cells to cell lines with an HSC-origin, and human liver slices and stimulated them with two key profibrotic factors, i.e., transforming growth factor β (TGFβ) or platelet-derived growth factor BB (PDGF-BB). We demonstrated that freshly isolated HSCs showed the strongest and highest variety of responses to these profibrotic stimuli, in particular following PDGF-BB stimulation, while cell lines were limited in their responses. Moreover, we verified these gene expression profiles in human precision-cut liver slices and showed similarities with the TGFβ- and PDGF-BB-related fibrotic responses, as observed in the primary HSCs. With this study, we encourage researchers to get off the beaten track when testing antifibrotic compounds by including more HSC-related markers in their future work. This way, potential compounds will be screened more extensively, which might increase the likelihood of developing effective antifibrotic drugs.
Collapse
|
160
|
Tanwar S, Rhodes F, Srivastava A, Trembling PM, Rosenberg WM. Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World J Gastroenterol 2020; 26:109-133. [PMID: 31969775 PMCID: PMC6962431 DOI: 10.3748/wjg.v26.i2.109] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/18/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023] Open
Abstract
At present chronic liver disease (CLD), the third commonest cause of premature death in the United Kingdom is detected late, when interventions are ineffective, resulting in considerable morbidity and mortality. Injury to the liver, the largest solid organ in the body, leads to a cascade of inflammatory events. Chronic inflammation leads to the activation of hepatic stellate cells that undergo trans-differentiation to become myofibroblasts, the main extra-cellular matrix producing cells in the liver; over time increased extra-cellular matrix production results in the formation of liver fibrosis. Although fibrogenesis may be viewed as having evolved as a “wound healing” process that preserves tissue integrity, sustained chronic fibrosis can become pathogenic culminating in CLD, cirrhosis and its associated complications. As the reference standard for detecting liver fibrosis, liver biopsy, is invasive and has an associated morbidity, the diagnostic assessment of CLD by non-invasive testing is attractive. Accordingly, in this review the mechanisms by which liver inflammation and fibrosis develop in chronic liver diseases are explored to identify appropriate and meaningful diagnostic targets for clinical practice. Due to differing disease prevalence and treatment efficacy, disease specific diagnostic targets are required to optimally manage individual CLDs such as non-alcoholic fatty liver disease and chronic hepatitis C infection. To facilitate this, a review of the pathogenesis of both conditions is also conducted. Finally, the evidence for hepatic fibrosis regression and the mechanisms by which this occurs are discussed, including the current use of antifibrotic therapy.
Collapse
Affiliation(s)
- Sudeep Tanwar
- UCL Institute for Liver and Digestive Health, Division of Medicine, University College London, Royal Free Campus, Hampstead, London NW3 2PF United Kingdom
- Department of Gastroenterology, Whipps Cross University Hospital, Barts Health NHS Trust, Leytonstone, London E11 1NR, United Kingdom
| | - Freya Rhodes
- UCL Institute for Liver and Digestive Health, Division of Medicine, University College London, Royal Free Campus, Hampstead, London NW3 2PF United Kingdom
| | - Ankur Srivastava
- UCL Institute for Liver and Digestive Health, Division of Medicine, University College London, Royal Free Campus, Hampstead, London NW3 2PF United Kingdom
| | - Paul M Trembling
- UCL Institute for Liver and Digestive Health, Division of Medicine, University College London, Royal Free Campus, Hampstead, London NW3 2PF United Kingdom
| | - William M Rosenberg
- UCL Institute for Liver and Digestive Health, Division of Medicine, University College London, Royal Free Campus, Hampstead, London NW3 2PF United Kingdom
| |
Collapse
|
161
|
Devaraj E, Roy A, Royapuram Veeraragavan G, Magesh A, Varikalam Sleeba A, Arivarasu L, Marimuthu Parasuraman B. β-Sitosterol attenuates carbon tetrachloride-induced oxidative stress and chronic liver injury in rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1067-1075. [PMID: 31930431 DOI: 10.1007/s00210-020-01810-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/04/2020] [Indexed: 02/06/2023]
Abstract
Chronic liver diseases are clinically silent and responsible for significant morbidity and mortality worldwide. β-Sitosterol (BSS), major phytosterol in plants, has a wide spectrum of protective effect against various chronic ailments. We investigated the hepatoprotective effect of BSS against carbon tetrachloride (CCl4)-induced chronic liver injury in rats. Thirty rats were divided into five groups, with six animals in each group. Group I rats served as control while groups II, III, IV, and V rats were injected intraperitoneally with CCl4 (0.2 mL/100 g b.w. in olive oil (1:1)) for 7 consecutive weeks. After 7 weeks, group II rats were left without any treatments and served as CCl4 alone group, while groups III, IV, and V rats were treated with BSS 25 and 50 mg/kg b.w. and silymarin 100 mg/kg b.w. as oral post-treatments respectively, for the next 4 weeks. At the end of the experiment, hepatotoxicity marker enzymes in serum, oxidative stress, and fibrosis marker were analyzed. CCl4 administration caused significant elevation of marker enzymes of hepatotoxicity in serum and increased lipid peroxidation and fibrosis markers such as hydroxyproline, collagen, α-smooth muscle actin, vimentin, desmin, and matrix metalloproteinases 9 in liver tissue of rats. This treatment also caused a significant diminution of intracellular enyzmic antioxidants such as SOD and CAT in the liver tissue of rats. All the above adversities were significantly mitigated by the BSS post-treatments. The results suggest that BSS could have a hepatoprotective effect against oxidative stress-mediated CLD induced by CCl4.
Collapse
Affiliation(s)
- Ezhilarasan Devaraj
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600 077, India.
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600 077, India
| | - Geetha Royapuram Veeraragavan
- Department of Microbiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600 077, India
| | - Anitha Magesh
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai, 602 105, India
| | | | - Lakshminarayanan Arivarasu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600 077, India
| | - Brundha Marimuthu Parasuraman
- Department of Pathology, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600 077, India
| |
Collapse
|
162
|
Dhar D, Baglieri J, Kisseleva T, Brenner DA. Mechanisms of liver fibrosis and its role in liver cancer. Exp Biol Med (Maywood) 2020; 245:96-108. [PMID: 31924111 PMCID: PMC7016420 DOI: 10.1177/1535370219898141] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatic fibrogenesis is a pathophysiological outcome of chronic liver injury hallmarked by excessive accumulation of extracellular matrix proteins. Fibrosis is a dynamic process that involves cross-talk between parenchymal cells (hepatocytes), hepatic stellate cells, sinusoidal endothelial cells and both resident and infiltrating immune cells. In this review, we focus on key cell-types that contribute to liver fibrosis, cytokines, and chemokines influencing this process and what it takes for fibrosis to regress. We discuss how mitochondria and metabolic changes in hepatic stellate cells modulate the fibrogenic process. We also briefly review how the presence of fibrosis affects development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Debanjan Dhar
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jacopo Baglieri
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - David A Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
163
|
Zhou M, Yoshikawa K, Akashi H, Miura M, Suzuki R, Li TS, Abe H, Bando Y. Localization of ATP-sensitive K + channel subunits in rat liver. World J Exp Med 2019; 9:14-31. [PMID: 31938690 PMCID: PMC6955576 DOI: 10.5493/wjem.v9.i2.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/05/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND ATP-sensitive K+ (KATP) channels were originally found in cardiac myocytes by Noma in 1983. KATP channels were formed by potassium ion-passing pore-forming subunits (Kir6.1, Kir6.2) and regulatory subunits SUR1, SU2A and SUR2B. A number of cells and tissues have been revealed to contain these channels including hepatocytes, but detailed localization of these subunits in different types of liver cells was still uncertain.
AIM To investigate the expression of KATP channel subunits in rat liver and their localization in different cells of the liver.
METHODS Rabbit anti-rat SUR1 peptide antibody was raised and purified by antigen immunoaffinity column chromatography. Four of Sprague-Dawley rats were used for liver protein extraction for immunoblot analysis, seven of them were used for immunohistochemistry both for the ABC method and immunofluorescence staining. Four of Wistar rats were used for the isolation of hepatic stellate cells (HSCs) and Kupffer cells for both primary culture and immunocytochemistry.
RESULTS Immunoblot analysis showed that the five kinds of KATP channel subunits, i.e. Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B, were detected in liver. Immunohistochemical staining showed that Kir6.1 and Kir6.2 were weakly to moderately expressed in parenchymal cells and sinusoidal lining cells, while SUR1, SUR2A, and SUR2B were mainly localized to sinusoidal lining cells, such as HSCs, Kupffer cells, and sinusoidal endothelial cells. Immunoreactivity for SUR2A and SUR2B was expressed in the hepatocyte membrane. Double immunofluorescence staining further showed that the pore-forming subunits Kir6.1 and/or Kir6.2 colocalized with GFAP in rat liver sections and primary cultured HSCs. These KATP channel subunits also colocalized with CD68 in liver sections and primary cultured Kupffer cells. The SUR subunits colocalized with GFAP in liver sections and colocalized with CD68 both in liver sections and primary cultured Kupffer cells. In addition, five KATP channel subunits colocalized with SE-1 in sinusoidal endothelial cells.
CONCLUSION Observations from the present study indicated that KATP channel subunits expressed in rat liver and the diversity of KATP channel subunit composition might form different types of KATP channels. This is applicable to hepatocytes, HSCs, various types of Kupffer cells and sinusoidal endothelial cells.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Kiwamu Yoshikawa
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Hideo Akashi
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Mitsutaka Miura
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Ryoji Suzuki
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hiroshi Abe
- TRUST, A Long-Term Care Health Facility, Sendai 980-0011, Japan
| | - Yoshio Bando
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| |
Collapse
|
164
|
Synergy of Phospholipid-Drug Formulations Significantly Deactivates Profibrogenic Human Hepatic Stellate Cells. Pharmaceutics 2019; 11:pharmaceutics11120676. [PMID: 31842373 PMCID: PMC6969915 DOI: 10.3390/pharmaceutics11120676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023] Open
Abstract
The pivotal role of hepatic stellate cells (HSCs) in orchestrating the bidirectional process of progression and regression of liver fibrosis makes them an ideal target for exploring new antifibrotic therapies. Essential phospholipids (EPLs), with their polyenylphosphatidylcholine (PPC) fraction, either alone or combined with other hepatoprotective substances such as silymarin, are recommended in hepatic impairment, but a scientific rationale for their use is still lacking. Herein, we compared the ability of EPLs to restore quiescent-like features in HSCs with that of dilinoleoylphosphatidylcholine (DLPC), PPC fraction’s main component. Specifically, we screened at the cellular level the antifibrotic effects of PPC formulations in the presence and absence of silymarin, by using LX-2 cells (pro-fibrogenic HSCs) and by assessing the main biochemical hallmarks of the activated and deactivated states of this cell line. We also proved the formulations’ direct effect on the motional order of cell membranes of adherent cells. LX-2 cells, examined for lipid droplets as a quiescence marker, showed that PPCs led to a more prominent deactivation than DLPC. This result was confirmed by a reduction of collagen and α-SMA expression, and by a profound alteration in the cell membrane fluidity. PPC–silymarin formulations deactivated HSCs with a significant synergistic effect. The remarkable bioactivity of PPCs in deactivating fibrogenic HSCs paves the way for the rational design of new therapeutics aimed at managing hepatic fibrosis.
Collapse
|
165
|
El-Maadawy WH, Hammam OA, Seif el-Din SH, El-Lakkany NM. α-Lipoic acid modulates liver fibrosis: A cross talk between TGF-β1, autophagy, and apoptosis. Hum Exp Toxicol 2019; 39:440-450. [DOI: 10.1177/0960327119891212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are important players in the progression of hepatic fibrosis via activation of hepatic stellate cells (HSCs). Despite the recently depicted antifibrotic effects of alpha-lipoic acid (ALA), however, its modulatory effects on HSCs autophagy remain unverified. Our study aimed to elucidate the underlying antifibrotic mechanisms through which ALA mediates HSC autophagy and apoptosis. Liver fibrosis was induced via thioacetamide (TAA) intoxication in rats; TAA-intoxicated rats were treated with either silymarin or ALA. Effect of ALA on biochemical parameters and immunohistopathological examinations was measured and compared to silymarin. ALA restored normal hepatic architecture (S1 vs. S4), liver functions, hepatic glutathione, and transforming growth factor-β1 levels. ALA ameliorated hepatic levels of malondialdehyde, platelet-derived growth factor, tissue inhibitor metalloproteinases-1, hydroxyproline, and expression of alpha-smooth muscle actin. Moreover, ALA significantly reduced messenger RNA expression of LC3-II genes and triggered caspase-3 expression. Interestingly, ALA exhibited superior activities over silymarin regarding suppression of proliferation, activation and autophagy of HSCs, collagen deposition, and induction of HSCs apoptosis. In conclusion, treatment of TAA-intoxicated rats with ALA inhibited autophagy and induced apoptotic clearance of activated HSCs. Accordingly, this study provides mechanistic insights into the possible applicability of ALA in the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- WH El-Maadawy
- Department of Pharmacology, Theodor Bilharz Research Institute, Giza, Egypt
| | - OA Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Giza, Egypt
| | - SH Seif el-Din
- Department of Pharmacology, Theodor Bilharz Research Institute, Giza, Egypt
| | - NM El-Lakkany
- Department of Pharmacology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
166
|
Huang YH, Chen MH, Guo QL, Chen ZX, Chen QD, Wang XZ. Interleukin-10 induces senescence of activated hepatic stellate cells via STAT3-p53 pathway to attenuate liver fibrosis. Cell Signal 2019; 66:109445. [PMID: 31730896 DOI: 10.1016/j.cellsig.2019.109445] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 01/15/2023]
Abstract
Hepatic fibrosis is a wound healing process which results in deposition of excessive abnormal extracellular matrix (ECM) in response to various liver injuries. Activated hepatic stellate cells (HSCs) are the major sources of ECM and induction of senescence of activated HSCs is an attractive therapeutic strategy for liver fibrosis. Our previous studies have shown that interleukin-10 (IL-10) attenuates the carbon tetrachloride (CCL4) - and porcine serum-induced liver fibrosis in rats. However, little is known about the mechanisms of IL-10 regulating the senescence of activated HSCs. The aim of this study is to uncover the underlying pathway by which IL-10 mediates activated HSCs senescence to attenuate liver fibrosis. In vivo, we found that IL-10 gene by hydrodynamics-based transfection attenuated CCL4-induced liver fibrosis associated with senescence of activated HSCs in rats. In vitro experiment confirmed that IL-10 could induce senescence of activated HSCs via inhibiting cell proliferation, inducing cell cycle arrest, increasing the SA-β-Gal activity and enhancing expression of senescence marker protein p53 and p21. Treatment with Pifithrin-α, a specific inhibitor of p53, could abrogate IL-10-increased SA-β-Gal activity and expression of P53 and P21in activated HSCs. Lastly, IL-10 also increased the expression of total and phosphorylated signal transducers and activators of transcription 3(STAT3) and promoted phosphorylated STAT3 translocation from cytoplasm to nucleus. Treatment with cryptotanshinone, a specific inhibitor of STAT3, could inhibit the phosphorylation of STAT3 and its downstream proteins p53 and p21 expression and decrease the activity of SA-β-Gal in activated HSCs induced by IL-10. Taken together, IL-10 induced senescence of activated HSCs via STAT3-p53 pathway to attenuate liver fibrosis in rats and present study will provide a new mechanism of antifibrotic effects of IL-10.
Collapse
Affiliation(s)
- Yue-Hong Huang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China.
| | - Ming-Hua Chen
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China.
| | - Qi-Lan Guo
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China.
| | - Zhi-Xin Chen
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China.
| | - Qing-Duo Chen
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China.
| | - Xiao-Zhong Wang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
167
|
Evaluation of NV556, a Novel Cyclophilin Inhibitor, as a Potential Antifibrotic Compound for Liver Fibrosis. Cells 2019; 8:cells8111409. [PMID: 31717385 PMCID: PMC6912624 DOI: 10.3390/cells8111409] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis can result as a pathological response to nonalcoholic steatohepatitis (NASH). Cirrhosis, the late stage of fibrosis, has been linked to poor survival and an increased risk of developing hepatocellular carcinoma, with limited treatment options available. Therefore, there is an unmet need for novel effective antifibrotic compounds. Cyclophilins are peptidyl-prolyl cis-trans isomerases that facilitate protein folding and conformational changes affecting the function of the targeted proteins. Due to their activity, cyclophilins have been presented as key factors in several stages of the fibrotic process. In this study, we investigated the antifibrotic effects of NV556, a novel potent sanglifehrin-based cyclophilin inhibitor, in vitro and in vivo. NV556 potential antifibrotic effect was evaluated in two well-established animal models of NASH, STAM, and methionine-choline-deficient (MCD) mice, as well as in an in vitro 3D human liver ECM culture of LX2 cells, a human hepatic stellate cell line. We demonstrate that NV556 decreased liver fibrosis in both STAM and MCD in vivo models and decreased collagen production in TGFβ1-activated hepatic stellate cells in vitro. Taken together, these results present NV556 as a potential candidate for the treatment of liver fibrosis.
Collapse
|
168
|
Moran-Salvador E, Garcia-Macia M, Sivaharan A, Sabater L, Zaki MY, Oakley F, Knox A, Page A, Luli S, Mann J, Mann DA. Fibrogenic Activity of MECP2 Is Regulated by Phosphorylation in Hepatic Stellate Cells. Gastroenterology 2019; 157:1398-1412.e9. [PMID: 31352003 PMCID: PMC6853276 DOI: 10.1053/j.gastro.2019.07.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Methyl-CpG binding protein 2, MECP2, which binds to methylated regions of DNA to regulate transcription, is expressed by hepatic stellate cells (HSCs) and is required for development of liver fibrosis in mice. We investigated the effects of MECP2 deletion from HSCs on their transcriptome and of phosphorylation of MECP2 on HSC phenotype and liver fibrosis. METHODS We isolated HSCs from Mecp2-/y mice and wild-type (control) mice. HSCs were activated in culture and used in array analyses of messenger RNAs and long noncoding RNAs. Kyoto Encyclopedia of Genes and Genomes pathway analyses identified pathways regulated by MECP2. We studied mice that expressed a mutated form of Mecp2 that encodes the S80A substitution, MECP2S80, causing loss of MECP2 phosphorylation at serine 80. Liver fibrosis was induced in these mice by administration of carbon tetrachloride, and liver tissues and HSCs were collected and analyzed. RESULTS MECP2 deletion altered expression of 284 messenger RNAs and 244 long noncoding RNAs, including those that regulate DNA replication; are members of the minichromosome maintenance protein complex family; or encode CDC7, HAS2, DNA2 (a DNA helicase), or RPA2 (a protein that binds single-stranded DNA). We found that MECP2 regulates the DNA repair Fanconi anemia pathway in HSCs. Phosphorylation of MECP2S80 and its putative kinase, HAS2, were induced during transdifferentiation of HSCs. HSCs from MECP2S80 mice had reduced proliferation, and livers from these mice had reduced fibrosis after carbon tetrachloride administration. CONCLUSIONS In studies of mice with disruption of Mecp2 or that expressed a form of MECP2 that is not phosphorylated at S80, we found phosphorylation of MECP2 to be required for HSC proliferation and induction of fibrosis. In HSCs, MECP2 regulates expression of genes required for DNA replication and repair. Strategies to inhibit MECP2 phosphorylation at S80 might be developed for treatment of liver fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jelena Mann
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | |
Collapse
|
169
|
Lemos DR, Duffield JS. Tissue-resident mesenchymal stromal cells: Implications for tissue-specific antifibrotic therapies. Sci Transl Med 2019; 10:10/426/eaan5174. [PMID: 29386358 DOI: 10.1126/scitranslmed.aan5174] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 01/08/2018] [Indexed: 11/02/2022]
Abstract
Recent scientific findings support the notion that fibrosis is driven by tissue-specific cellular and molecular mechanisms. Analysis of seemingly equivalent mesenchymal stromal cell (MSC) populations residing in different organs revealed unique properties and lineage capabilities that vary from one anatomical location to another. We review recently characterized tissue-resident MSC populations with a prominent role in fibrosis and highlight therapeutically relevant molecular pathways regulating their activity in chronic disease.
Collapse
Affiliation(s)
- Dario R Lemos
- Renal Division, Brigham and Women's Hospital, Boston, MA 02115, USA. .,Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy S Duffield
- Department of Medicine, University of Washington, Seattle, WA 98195, USA. .,Research and Development, Vertex Pharmaceuticals, Boston, MA 02210, USA
| |
Collapse
|
170
|
Gas6/TAM Signaling Components as Novel Biomarkers of Liver Fibrosis. DISEASE MARKERS 2019; 2019:2304931. [PMID: 31583026 PMCID: PMC6754881 DOI: 10.1155/2019/2304931] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/20/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
Liver fibrosis consists in the accumulation of extracellular matrix components mainly derived from activated hepatic stellate cells. This is commonly the result of chronic liver injury repair and represents an important health concern. As liver biopsy is burdened with many drawbacks, not surprisingly there is great interest to find new reliable noninvasive methods. Among the many are new potential fibrosis biomarkers under study, some of the most promising represented by the growth arrest-specific gene 6 (Gas6) serum protein and its family of tyrosine kinase receptors, namely, Tyro3, Axl, and MERTK (TAM). Gas6/TAM system (mainly, Axl and MERTK) has in fact recently emerged as an important player in the progression of liver fibrosis. This review is aimed at giving an overall perspective of the roles played by these molecules in major chronic liver diseases. The most promising findings up to date acknowledge that both Gas6 and its receptor serum levels (such as sAxl and, probably, sMERTK) have been shown to potentially allow for easy and accurate measurement of hepatic fibrosis progression, also providing indicative parameters of hepatic dysfunction. Although most of the current scientific evidence is still preliminary and there are no in vivo validation studies on large patient series, it still looks very promising to imagine a possible future prognostic role for these biomarkers in the multidimensional assessment of a liver patient. One may also speculate on a potential role for this system targeting (e.g., with small molecule inhibitors against Axl) as a therapeutic strategy for liver fibrosis management, always bearing in mind that any such therapeutic approach might face toxicity.
Collapse
|
171
|
Elchaninov AV, Fatkhudinov TK, Vishnyakova PA, Lokhonina AV, Sukhikh GT. Phenotypical and Functional Polymorphism of Liver Resident Macrophages. Cells 2019; 8:1032. [PMID: 31491903 PMCID: PMC6769646 DOI: 10.3390/cells8091032] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Liver diseases are one of the main causes of mortality. In this regard, the development of new ways of reparative processes stimulation is relevant. Macrophages play a leading role in the regulation of liver homeostasis in physiological conditions and in pathology. In this regard, the development of new liver treatment methods is impossible without taking into account this cell population. Resident macrophages of the liver, Kupffer cells, represent a unique cell population, first of all, due to their development. Most of the liver macrophages belong to the self-sustaining macrophage cell population, whose origin is not bone marrow. In addition, Kupffer cells are involved in such processes as regulation of hepatocyte proliferation and apoptosis, remodeling of the intercellular matrix, lipid metabolism, protective function, etc. Such a broad spectrum of liver macrophage functions indicates their high functional plasticity. The review summarizes recent data on the development, phenotypic and functional plasticity, and participation in the reparative processes of liver macrophages: resident macrophages (Kupffer cells) and bone marrow-derived macrophages.
Collapse
Affiliation(s)
- Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Histology, Embryology and Cytology Department, Ministry of Healthcare of The Russian Federation, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997, Russia.
| | - Timur Kh Fatkhudinov
- Histology, Embryology and Cytology Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia.
| | - Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| | - Anastasia V Lokhonina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Histology, Embryology and Cytology Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| |
Collapse
|
172
|
Moscoso CG, Steer CJ. "Let my liver rather heat with wine" - a review of hepatic fibrosis pathophysiology and emerging therapeutics. Hepat Med 2019; 11:109-129. [PMID: 31565001 PMCID: PMC6731525 DOI: 10.2147/hmer.s213397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022] Open
Abstract
Cirrhosis is characterized by extensive hepatic fibrosis, and it is the 14th leading cause of death worldwide. Numerous contributing conditions have been implicated in its development, including infectious etiologies, medication overdose or adverse effects, ingestible toxins, autoimmunity, hemochromatosis, Wilson’s disease and primary biliary cholangitis to list a few. It is associated with portal hypertension and its stigmata (varices, ascites, hepatic encephalopathy, combined coagulopathy and thrombophilia), and it is a major risk factor for hepatocellular carcinoma. Currently, orthotopic liver transplantation has been the only curative modality to treat cirrhosis, and the scarcity of donors results in many people waiting years for a transplant. Identification of novel targets for pharmacologic therapy through elucidation of key mechanistic components to induce fibrosis reversal is the subject of intense research. Development of robust models of hepatic fibrosis to faithfully characterize the interplay between activated hepatic stellate cells (the principal fibrogenic contributor to fibrosis initiation and perpetuation), hepatocytes and extracellular matrix components has the potential to identify critical components and mechanisms that can be exploited for targeted treatment. In this review, we will highlight key cellular pathways involved in the pathophysiology of fibrosis from extracellular ligands, effectors and receptors, to nuclear receptors, epigenetic mechanisms, energy homeostasis and cytokines. Further, molecular pathways of hepatic stellate cell deactivation are discussed, including apoptosis, senescence and reversal or transdifferentiation to an inactivated state resembling quiescence. Lastly, clinical evidence of fibrosis reversal induced by biologics and small molecules is summarized, current compounds under clinical trials are described and efforts for treatment of hepatic fibrosis with mesenchymal stem cells are highlighted. An enhanced understanding of the rich tapestry of cellular processes identified in the initiation, perpetuation and resolution of hepatic fibrosis, driven principally through phenotypic switching of hepatic stellate cells, should lead to a breakthrough in potential therapeutic modalities.
Collapse
Affiliation(s)
- Carlos G Moscoso
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition
| | - Clifford J Steer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition.,Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
173
|
Pham TX, Bae M, Kim MB, Lee Y, Hu S, Kang H, Park YK, Lee JY. Nicotinamide riboside, an NAD+ precursor, attenuates the development of liver fibrosis in a diet-induced mouse model of liver fibrosis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2451-2463. [PMID: 31195117 PMCID: PMC6614025 DOI: 10.1016/j.bbadis.2019.06.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Liver fibrosis is part of the non-alcoholic fatty liver disease (NAFLD) spectrum, which currently has no approved pharmacological treatment. In this study, we investigated whether supplementation of nicotinamide riboside (NR), a nicotinamide adenine dinucleotide (NAD+) precursor, can reduce the development of liver fibrosis in a diet-induced mouse model of liver fibrosis. METHODS Male C57BL/6 J mice were fed a low-fat control (LF), a high-fat/high-sucrose/high-cholesterol control (HF) or a HF diet supplemented with NR at 400 mg/kg/day (HF-NR) for 20 weeks. Features of liver fibrosis were assessed by histological and biochemical analyses. Whole-body energy metabolism was also assessed using indirect calorimetry. Primary mouse and human hepatic stellate cells were used to determine the anti-fibrogenic effects of NR in vitro. RESULTS NR supplementation significantly reduced body weight of mice only 7 weeks after mice were on the supplementation, but did not attenuate serum alanine aminotransferase levels, liver steatosis, or liver inflammation. However, NR markedly reduced collagen accumulation in the liver. RNA-Seq analysis suggested that the expression of genes involved in NAD+ metabolism is altered in activated hepatic stellate cells (HSCs) compared to quiescent HSCs. NR inhibited the activation of HSCs in primary mouse and human HSCs. Indirect calorimetry showed that NR increased energy expenditure, likely by upregulation of β-oxidation in skeletal muscle and brown adipose tissue. CONCLUSION NR attenuated HSC activation, leading to reduced liver fibrosis in a diet-induced mouse model of liver fibrosis. The data suggest that NR may be developed as a potential preventative for human liver fibrosis.
Collapse
Affiliation(s)
- Tho X Pham
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yoojin Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Siqi Hu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Hyunju Kang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
174
|
Zhang Z, Wen H, Weng J, Feng L, Liu H, Hu X, Zeng F. Silencing of EPCAM suppresses hepatic fibrosis and hepatic stellate cell proliferation in mice with alcoholic hepatitis via the PI3K/Akt/mTOR signaling pathway. Cell Cycle 2019; 18:2239-2254. [PMID: 31378124 PMCID: PMC6738525 DOI: 10.1080/15384101.2019.1642067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Alcoholic hepatitis (AH) is a severe condition developed in patients with underlying alcoholic liver disease. Epithelial cell adhesion molecule (EPCAM) plays a role in hepatitis. Therefore, the current study aimed to explore the effect of EPCAM and its potential mechanism in AH. Bioinformatic analysis was performed to screen differentially expressed genes associated with AH. AH mouse models were established through a Lieber-DeCarli liquid diet containing 4% ethanol, which were co-treated with siRNA against EPCAM or the PI3K/Akt/mTOR signaling pathway inhibitor in order to investigate the effects of EPCAM and the PI3K/Akt/mTOR signaling pathway on hepatic fibrosis, hepatic stellate cell (HSC) proliferation and apoptosis. The relationship between EPCAM and the PI3K/Akt/mTOR signaling pathway was investigated for the purposes of elucidating the potential mechanism of EPCAM in AH. EPCAM was predicted to regulate AH progression through the PI3K/Akt/mTOR signaling pathway. Silencing EPCAM or inhibition of the PI3K/Akt/mTOR signaling pathway inhibited the hepatic fibrosis and HSC proliferation yet induced HSC apoptosis. Moreover, silencing EPCAM was found to repress the PI3K/Akt/mTOR signaling pathway as evidenced by decreased levels of Bcl2 yet increased levels of caspase-3. Collectively, silencing EPCAM could hinder AH progression by inhibiting the PI3K/Akt/mTOR signaling pathway, which might serve as a potential therapeutic target for AH treatment.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, P. R. China,CONTACT Zhi Zhang
| | - Huiqing Wen
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Jun Weng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Lei Feng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Hongya Liu
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Xiaojun Hu
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Fanhong Zeng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
175
|
Strowitzki MJ, Ritter AS, Kimmer G, Schneider M. Hypoxia-adaptive pathways: A pharmacological target in fibrotic disease? Pharmacol Res 2019; 147:104364. [PMID: 31376431 DOI: 10.1016/j.phrs.2019.104364] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
Wound healing responses are physiological reactions to injuries and share common characteristics and phases independently of the injured organ or tissue. A major hallmark of wound healing responses is the formation of extra-cellular matrix (ECM), mainly consisting of collagen fibers, to restore the initial organ architecture and function. Overshooting wound healing responses result in unphysiological accumulation of ECM and collagen deposition, a process called fibrosis. Importantly, hypoxia (oxygen demand exceeds supply) plays a significant role during wound healing responses and fibrotic diseases. Under hypoxic conditions, cells activate a gene program, including the stabilization of hypoxia-inducible factors (HIFs), which induces the expression of HIF target genes counteracting hypoxia. In contrast, in normoxia, so-called HIF-prolyl hydroxylases (PHDs) oxygen-dependently hydroxylate HIF-α, which marks it for proteasomal degradation. Importantly, PHDs can be pharmacologically inhibited (PHI) by so-called PHD inhibitors. There is mounting evidence that the HIF-pathway is continuously up-regulated during the development of tissue fibrosis, and that pharmacological (HIFI) or genetic inhibition of HIF can prevent organ fibrosis. By contrast, initial (short-term) activation of the HIF pathway via PHI during wound healing seems to be beneficial in several models of inflammation or acute organ injury. Thus, timing and duration of PHI and HIFI treatment seem to be crucial. In this review, we will highlight the role of hypoxia-adaptive pathways during wound healing responses and development of fibrotic disease. Moreover, we will discuss whether PHI and HIFI might be a promising treatment option in fibrotic disease, and consider putative pitfalls that might result from this approach.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alina S Ritter
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gwendolyn Kimmer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
176
|
Nithyananthan S, Thirunavukkarasu C. Arsenic trioxide, a cancer chemo drug hampers fibrotic liver regeneration by interrupting oxidative stress rekindling and stellate cell rejuvenation. J Cell Physiol 2019; 235:1222-1234. [PMID: 31270803 DOI: 10.1002/jcp.29037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
After withdrawal of liver toxic insult, the spontaneous regenerative potential of the liver is well reported in the literature. On the other hand, various molecules have been reported to promote as well as delay such natural regeneration. This current study investigates the involvement of arsenic trioxide (ATO) medication at chemotherapeutic dose on the spontaneous regeneration of the CCl4 induced fibrotic liver. Liver injury markers, such as albumin and SGOT, SGPT, and ALP activities, in serum indicated that ATO supplementation during liver regeneration hampers the rejuvenation process. The hepatic architecture as well as the degree of fibrosis by hematoxylin and eosin and Sirius red staining confirms the above findings. The reduced hepatic antioxidant system and elevated oxidative stress markers, such as lipid peroxidation and 8-hydroxy deoxy-guanosine-positive hepatocytes in ATO supplied rats, display the persistence of oxidative stress when compared with healthy controls and the normal regeneration model. Immuno-histochemical localization of Ki-67 indicates that mitotically active hepatocytes were fewer in the ATO given rats when compared with normal regeneration rats. Further delay in hepatic fibrinolysis was monitored by matrix metalloproteinase zymography assay in the ATO-given animals. Poly(ADP-ribose) polymerase 1 expression demonstrates elevated hepatocyte apoptosis with ATO. Furthermore, increased α-smooth muscle actin indicates that the stellate cells are in an activated state in ATO supplemented fibrotic animals. In conclusion, it's observed that ATO supplementation to the fibrotic liver delays oxidative stress revitalization and maintains stellate cells in the active form, thereby delaying liver regeneration, and the health status of the liver must be taken into account before administering drugs like ATO.
Collapse
|
177
|
Expression of neuropeptide Y is increased in an activated human HSC cell line. Sci Rep 2019; 9:9500. [PMID: 31263154 PMCID: PMC6602956 DOI: 10.1038/s41598-019-45932-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/20/2019] [Indexed: 01/20/2023] Open
Abstract
Neuropeptide Y (NPY) is an abundant neuropeptide in the mammalian central and peripheral nervous systems. Transgenic mice overexpressing NPY in noradrenergic neurons have increased level of hepatic triglycerides, fatty acids and cholesterol, which contributed to the development of hepatosteatosis. However, the roles of NPY in the activation of hepatic stellate cells (HSCs) and the underlying mechanisms remain unclear. This study aimed to investigate the expression and secretion of NPY in human immortalized HSC LX-2 cells and the regulatory function of NPY on the fibrogenic response in LX-2 cells, to explore the potential association between NPY and LX-2 activation. The results showed an increase in the expression and secretion of NPY(1–36) in activated LX-2 cells. Both endogenous and exogenous NPY(1–36) induced the phosphorylation of mTOR, p70S6K, and 4EBP1 and promoted the fibrogenic response via NPY Y1 receptor subtype (NPY1R), as these responses were blocked by either an NPY1R antagonist (BIBP3226) or NPY1R knockdown. Moreover, NPY(1–36) serum levels were increased in patients with liver cirrhosis (LC) and hepatocellular carcinoma (HCC) and presented a positive relationship with MELD scores in LC patients. These findings suggest that immortalized HSCs LX-2 have the potential to produce NPY(1–36). High serum levels of NPY(1–36) is correlated with hepatic dysfunction in cirrhotic patients.
Collapse
|
178
|
Regeneration of Dermis: Scarring and Cells Involved. Cells 2019; 8:cells8060607. [PMID: 31216669 PMCID: PMC6627856 DOI: 10.3390/cells8060607] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022] Open
Abstract
There are many studies on certain skin cell specifications and their contribution to wound healing. In this review, we provide an overview of dermal cell heterogeneity and their participation in skin repair, scar formation, and in the composition of skin substitutes. The papillary, reticular, and hair follicle associated fibroblasts differ not only topographically, but also functionally. Human skin has a number of particular characteristics that are different from murine skin. This should be taken into account in experimental procedures. Dermal cells react differently to skin wounding, remodel the extracellular matrix in their own manner, and convert to myofibroblasts to different extents. Recent studies indicate a special role of papillary fibroblasts in the favorable outcome of wound healing and epithelial-mesenchyme interactions. Neofolliculogenesis can substantially reduce scarring. The role of hair follicle mesenchyme cells in skin repair and possible therapeutic applications is discussed. Participation of dermal cell types in wound healing is described, with the addition of possible mechanisms underlying different outcomes in embryonic and adult tissues in the context of cell population characteristics and extracellular matrix composition and properties. Dermal white adipose tissue involvement in wound healing is also overviewed. Characteristics of myofibroblasts and their activity in scar formation is extensively discussed. Cellular mechanisms of scarring and possible ways for its prevention are highlighted. Data on keloid cells are provided with emphasis on their specific characteristics. We also discuss the contribution of tissue tension to the scar formation as well as the criteria and effectiveness of skin substitutes in skin reconstruction. Special attention is given to the properties of skin substitutes in terms of cell composition and the ability to prevent scarring.
Collapse
|
179
|
Pan XY, You HM, Wang L, Bi YH, Yang Y, Meng HW, Meng XM, Ma TT, Huang C, Li J. Methylation of RCAN1.4 mediated by DNMT1 and DNMT3b enhances hepatic stellate cell activation and liver fibrogenesis through Calcineurin/NFAT3 signaling. Theranostics 2019; 9:4308-4323. [PMID: 31285763 PMCID: PMC6599664 DOI: 10.7150/thno.32710] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 05/20/2019] [Indexed: 01/20/2023] Open
Abstract
Background: Liver fibrosis is characterized by extensive deposition of extracellular matrix (ECM) components in the liver. RCAN1 (regulator of calcineurin 1), an endogenous inhibitor of calcineurin (CaN), is required for ECM synthesis during hypertrophy of various organs. However, the functional role of RCAN1 in liver fibrogenesis has not yet been addressed. Methods: We induced experimental liver fibrosis in mice by intraperitoneal injection of 10 % CCl4 twice a week. To investigate the functional role of RCAN1.4 in the progression of liver fibrosis, we specifically over-expressed RCAN1.4 in mice liver using rAAV8-packaged RCAN1.4 over-expression plasmid. Following the establishment of the fibrotic mouse model, primary hepatic stellate cells were isolated. Subsequently, we evaluated the effect of RCAN1.4 on hepatic fibrogenesis, hepatic stellate cell activation, and cell survival. The biological role and signaling events for RCAN1 were analyzed by protein-protein interaction (PPI) network. Bisulfite sequencing PCR (BSP) was used to predict the methylated CpG islands in the RCAN1.4 gene promoter. We used the chromatin immunoprecipitation (ChIP assay) to investigate DNA methyltransferases which induced decreased expression of RCAN1.4 in liver fibrosis. Results: Two isoforms of RCAN1 protein were expressed in CCl4-induced liver fibrosis mouse model and HSC-T6 cells cultured with transforming growth factor-beta 1 (TGF-β1). RCAN1 isoform 4 (RCAN1.4) was selectively down-regulated in vivo and in vitro. The BSP analysis indicated the presence of two methylated sites in RCAN1.4 promoter and the downregulated RCAN1.4 expression levels could be restored by 5-aza-2'-deoxycytidine (5-azadC) and DNMTs-RNAi transfection in vitro. ChIP assay was used to demonstrate that the decreased RCAN1.4 expression was associated with DNMT1 and DNMT3b. Furthermore, we established a CCl4-induced liver fibrosis mouse model by injecting the recombinant adeno-associated virus-packaged RCAN1.4 (rAAV8-RCAN1.4) over-expression plasmid through the tail vein. Liver- specific-over-expression of RAN1.4 led to liver function recovery and alleviated ECM deposition. The key protein (a member of the NFAT family of proteins) identified on PPI network data was analyzed in vivo and in vitro. Our results demonstrated that RCAN1.4 over-expression alleviates, whereas its knockdown exacerbates, TGF-β1-induced liver fibrosis in vitro in a CaN/NFAT3 signaling-dependent manner. Conclusions: RCAN1.4 could alleviate liver fibrosis through inhibition of CaN/NFAT3 signaling, and the anti-fibrosis function of RCAN1.4 could be blocked by DNA methylation mediated by DNMT1 and DNMT3b. Thus, RCAN1.4 may serve as a potential therapeutic target in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xue-yin Pan
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Hong-mei You
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Ling Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Yi-hui Bi
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Yang Yang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Hong-wu Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Xiao-ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Tao-tao Ma
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University
- The key laboratory of Anti-inflammatory of Immune medicines, Ministry of Education
- Institute for Liver Diseases of Anhui Medical University
| |
Collapse
|
180
|
Zhi SC, Chen SZ, Li YY, Li JJ, Zheng YH, Yu FX. Rosiglitazone Inhibits Activation of Hepatic Stellate Cells via Up-Regulating Micro-RNA-124-3p to Alleviate Hepatic Fibrosis. Dig Dis Sci 2019; 64:1560-1570. [PMID: 30673982 DOI: 10.1007/s10620-019-5462-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The activation of hepatic stellate cells (HSCs) is involved in hepatic fibrogenesis and is regulated by the decreased expression of peroxisome proliferator-activated receptor γ (PPARγ). Rosiglitazone (RGZ) is a highly potent agonist of PPARγ. AIMS To clarify molecular regulatory mechanism of RGZ in the activation of HSCs in hepatic fibrosis. METHODS A mouse model of hepatic fibrosis was established by carbon tetrachloride with or without RGZ intervention. A vector carrying pcDNA-HOTAIR was constructed and injected into a mouse model. HSCs were isolated from liver tissue and activated by transforming growth factor-β. The expression of miR-124-3p, HOTAIR, Col1A1, α-SMA, and PPARγ mRNAs was measured by quantitative real-time PCR. The level of PPARγ was measured by Western blotting. The interaction between HOTAIR and PPARγ was assessed by RNA immunoprecipitation (RIP) and RNA pull-down. The target gene of miR-124-3p was determined by luciferase reporter assay and RNA interference approaches. RESULTS The expression of Col1A1 and α-SMA was reduced after RGZ intervention. Different expressions of HOTAIR and miR-124-3p were observed in liver tissue and HSCs. The luciferase reporter assay and RNA interference approaches indicated that miR-124-3p negatively regulated HOTAIR expression. RIP and RNA pull-down results revealed that PPARγ was interacted by HOTAIR. The therapeutic effect of RGZ on hepatic fibrosis was reversed by overexpression of HOTAIR. CONCLUSIONS RGZ inhibits the activation of HSCs by up-regulating miR-124-3p. The silencing of HOTAIR by miR-124-3p in HSC activation provided the foundation to understand interactions of ncRNAs and potential treatment target in hepatic fibrosis.
Collapse
Affiliation(s)
- Shao-Ce Zhi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical University, 205 Wenrui Avenue, Wenzhou, 325000, People's Republic of China
| | - Shi-Zuan Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical University, 205 Wenrui Avenue, Wenzhou, 325000, People's Republic of China
| | - Yan-Yan Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical University, 205 Wenrui Avenue, Wenzhou, 325000, People's Republic of China
| | - Jun-Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical University, 205 Wenrui Avenue, Wenzhou, 325000, People's Republic of China
| | - Yi-Hu Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical University, 205 Wenrui Avenue, Wenzhou, 325000, People's Republic of China.
| | - Fu-Xiang Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical University, 205 Wenrui Avenue, Wenzhou, 325000, People's Republic of China.
| |
Collapse
|
181
|
Cui G, Chen J, Wu Z, Huang H, Wang L, Liang Y, Zeng P, Yang J, Uede T, Diao H. Thrombin cleavage of osteopontin controls activation of hepatic stellate cells and is essential for liver fibrogenesis. J Cell Physiol 2019; 234:8988-8997. [PMID: 30350863 PMCID: PMC6588095 DOI: 10.1002/jcp.27571] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/17/2018] [Indexed: 02/05/2023]
Abstract
Liver biopsy is the current reliable way of evaluating liver fibrosis. However, no specific sera biomarker could be applied in clinical diagnosis. As the pivotal role of osteopontin (OPN) reported in numerous liver diseases, thrombin-cleaved OPN (Thr-OPN) exposes an integrin-binding motif that promoted biological functions. Herein, we investigated the potential of Thr-OPN in liver fibrosis. Using patient samples, mouse models and hepatic stellate cells (HSCs), we analyzed the involvement of Thr-OPN in liver fibrosis. The result showed that, first, Thr-OPN level was significantly higher in patients with liver cirrhosis than that in patients with chronic hepatitis B and healthy controls. Thr-OPN level was positively correlated with liver fibrosis degree in clinical samples. Then in mouse models, it showed a similar correlation between hepatic Thr-OPN levels and liver fibrosis degree. Thr-OPN peptides exacerbated liver fibrosis in OPN-deficient mice, whereas the neutralization of Thr-OPN alleviated liver fibrosis in wild-type mice. Furthermore, when compared with full-length OPN (FL-OPN), Thr-OPN exhibited a greater ability to promote HSC activation, proliferation, and migration via mitogen-activated protein (MAP) kinase and nuclear factor (NF)-κB pathways. In conclusion, Thr-OPN, not FL-OPN, was critically involved in the exacerbation of liver fibrosis by α9 and α4 integrins via MAP kinase and NF-κB signaling pathway, thus representing a novel diagnostic biomarker and treatment target for liver cirrhosis.
Collapse
Affiliation(s)
- Guangying Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Zhongwen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Haijun Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Lin Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Yan Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Ping Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Toshimitsu Uede
- Department of Molecular ImmunologyInstitute for Genetic Medicine, Hokkaido UniversitySapporoJapan
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| |
Collapse
|
182
|
Wang R, Song F, Li S, Wu B, Gu Y, Yuan Y. Salvianolic acid A attenuates CCl 4-induced liver fibrosis by regulating the PI3K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1889-1900. [PMID: 31213776 PMCID: PMC6549412 DOI: 10.2147/dddt.s194787] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022]
Abstract
Background: Liver fibrosis occurs due to chronic liver disease due to multiple pathophysiological causes. The main causes for this condition are chronic alcohol abuse, nonalcoholic steatohepatitis, and infection due to hepatitis C virus. Currently, there is more and more information available about the molecular as well as cellular mechanisms, which play a role in the advancement of liver fibrosis. However, there is still no effective therapy against it. Purpose: In order to find an effective treatment against liver fibrosis, our study explored whether salvianolic acid A (SA-A), a traditional Chinese medicine extracted from the plant Danshen, could effectively inhibit the liver fibrosis, which is induced by CCl4 in vivo. Methods: The effects of SA-A were evaluated by assessing the parameters related to liver fibrosis such as body weight, histological changes, and biochemical parameters. Thereafter, the related protein or gene levels of P13K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways were determined by western blotting, real-time PCR or immunohistochemistry staining. Results: According to the results of our study, SA-A could reduce liver fibrosis by inhibiting liver function, liver fibrosis index, collagen deposition, and improving the degree of liver fibrosis in rats. Mechanistically, the PI3K/AKT/mTOR signaling cascade was inhibited by SA-A to prevent the stimulation of hepatic stellate cell, as well as the synthesis of extracellular matrix, and regulated Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways to prevent hepatocyte apoptosis. Conclusion: The novel findings of this study suggested that SA-A could reduce liver fibrosis and the molecular mechanisms behind it are closely associated with the regulation of PI3K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, People's Republic of China
| | - Fuxing Song
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, People's Republic of China
| | - Shengnan Li
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, People's Republic of China
| | - Bin Wu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, People's Republic of China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, People's Republic of China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, People's Republic of China
| |
Collapse
|
183
|
Barcena-Varela M, Colyn L, Fernandez-Barrena MG. Epigenetic Mechanisms in Hepatic Stellate Cell Activation During Liver Fibrosis and Carcinogenesis. Int J Mol Sci 2019; 20:E2507. [PMID: 31117267 PMCID: PMC6566358 DOI: 10.3390/ijms20102507] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is an essential component of chronic liver disease (CLD) and hepatocarcinogenesis. The fibrotic stroma is a consequence of sustained liver damage combined with exacerbated extracellular matrix (ECM) accumulation. In this context, activation of hepatic stellate cells (HSCs) plays a key role in both initiation and perpetuation of fibrogenesis. These cells suffer profound remodeling of gene expression in this process. This review is focused on the epigenetic alterations participating in the transdifferentiation of HSCs from the quiescent to activated state. Recent advances in the field of DNA methylation and post-translational modifications (PTM) of histones (acetylation and methylation) patterns are discussed here, together with altered expression and activity of epigenetic remodelers. We also consider recent advances in translational approaches, including the use of epigenetic marks as biomarkers and the promising antifibrotic properties of epigenetic drugs that are currently being used in patients.
Collapse
Affiliation(s)
| | - Leticia Colyn
- Hepatology Program, CIMA, University of Navarra, 31180 Pamplona, Spain.
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, University of Navarra, 31180 Pamplona, Spain.
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, 31180 Pamplona, Spain.
| |
Collapse
|
184
|
Abstract
PURPOSE OF REVIEW Hepatitis C virus (HCV) infection has been the leading cause of cirrhosis in the United States now for the last several decades. With the introduction of highly effective direct acting antiviral (DAA) drugs, cure rates are now almost 100%. With this explosion of effective therapy, it is possible that many patients with HCV may have reversion in fibrosis. The purpose of this review is, therefore, to report on recent findings in this field. RECENT FINDINGS Older data that examined the effect of interferon-based HCV therapy indicate that fibrosis reverses after HCV eradication. More recent work in the DAA era similarly indicates that fibrosis is reversible. A caveat is that DAA therapy causes rapid viral clearance, and appears to lead to rapid reductions in inflammation. Some tools (such as transient elastography), which may also reflect the inflammatory response, and thus may 'overestimate' of fibrosis reversal. However, emerging data suggesting improved outcomes in patients with cirrhosis after HCV clearance support the concept that even cirrhosis reverses in some patients. SUMMARY Fibrosis (and cirrhosis) reversion, to some extent, occurs after HCV clearance. This topic is vitally important and information continues to emerge; more data on this subject are expected and needed.
Collapse
|
185
|
Yeh Y, Liang C, Chen M, Tsai F, Lin Y, Lee M, Wu J, Kuo C. Apoptotic effects of hsian-tsao ( Mesona procumbens Hemsley) on hepatic stellate cells mediated by reactive oxygen species and ERK, JNK, and caspase-3 pathways. Food Sci Nutr 2019; 7:1891-1898. [PMID: 31139404 PMCID: PMC6526671 DOI: 10.1002/fsn3.1046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/31/2019] [Accepted: 04/07/2019] [Indexed: 12/20/2022] Open
Abstract
The activation of hepatic stellate cells (HSCs) is an important step in the progress of liver fibrosis. Fibrosis can be impeded by HSC reversion to a quiescent state or HSC clearance through apoptosis. To investigate the apoptotic effects of hsian-tsao (Mesona procumbens Hemsl) on human HSCs, the expression levels of cleaved caspase-3, p38, and c-Jun N-terminal kinase (JNK) were assessed using Western blotting, and the caspase-3 activity was measured using caspase-3/CPP32 colorimetric assay kit. Hsian-tsao extract (HTE) increased the activity of caspase-3 and the level of activated caspase-3, indicating the activation of apoptosis. The intracellular reactive oxygen species (ROS) level increased in a dose-dependent manner. This increase was prevented by an antioxidant, suggesting that HTE induces ROS accumulation. In addition, we found that HTE induced the phosphorylation of the mitogen-activated protein kinases JNK and p38. These collective data indicate that HTE induces apoptosis via ROS production through the p38, JNK, and caspase-3-dependent pathways. HTE may decrease HSC activation in liver fibrosis and may have a therapeutic potential.
Collapse
Affiliation(s)
- Yung‐Hsiang Yeh
- Division of GastroenterologyChang Bing Show Chwan Memorial HospitalChanghuaTaiwan
| | - Chun‐Ya Liang
- Department of Medical Research and DevelopmentChang Bing Show Chwan Memorial HospitalChanghuaTaiwan
| | - Mao‐Liang Chen
- Department of Research, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Fu‐Ming Tsai
- Department of Research, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Yi‐Ying Lin
- Department of Research, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Ming‐Cheng Lee
- Department of Research, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Jiunn‐Sheng Wu
- Division of Infectious DiseasesTaipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Chan‐Yen Kuo
- Department of Research, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| |
Collapse
|
186
|
Lai SS, Fu X, Cheng Q, Yu ZH, Jiang EZ, Zhao DD, Yu DC, Qiu YD, Gao X, Ju HX, Wang W, Jiang Q, Zhu MS, Li CJ, Xue B. HSC-specific knockdown of GGPPS alleviated CCl 4-induced chronic liver fibrosis through mediating RhoA/Rock pathway. Am J Transl Res 2019; 11:2382-2392. [PMID: 31105844 PMCID: PMC6511779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Hepatic stellate cells (HSCs) play a critical role in the pathogenesis and reversal of liver fibrosis. Targeting HSCs is of great significance in the treatment of hepatic fibrosis, and has attracted wide attention of scholars. Here we demonstrated that expression of geranylgeranyldiphosphate synthase (GGPPS) predominantly increased in HSCs in murine fibrotic liver. HSC-specific knockdown of GGPPS using vitamin A-coupled liposome carrying siRNA-ggpps decreased activation of HSCs and alleviated fiber accumulation in vivo. Furthermore, our in vitro studies showed that GGPPS was up-regulated during HSCs activation in TGF-β1-dependent manner. Inhibition of GGPPS suppressed TGF-β1 induced F-actin reorganization and HSCs activation in LX-2 cells. Further, we found that GGPPS regulated HSCs activation and liver fibrosis possibly by enhancing RhoA/Rock kinase signaling. So its concluded that GGPPS promotes liver fibrosis by activating HSCs, which may represent a potential target for anti-fibrosis therapies.
Collapse
Affiliation(s)
- Shan-Shan Lai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210023, China
- Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing UniversityNanjing 210093, China
| | - Xiao Fu
- Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing UniversityNanjing 210093, China
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing UniversityNanjing 210093, China
| | - Qi Cheng
- Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing UniversityNanjing 210093, China
| | - Zi-Han Yu
- Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing UniversityNanjing 210093, China
| | - En-Ze Jiang
- Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing UniversityNanjing 210093, China
| | - Dan-Dan Zhao
- Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing UniversityNanjing 210093, China
- Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai 200030, China
| | - De-Cai Yu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing UniversityNanjing 210093, China
| | - Yu-Dong Qiu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing UniversityNanjing 210093, China
| | - Xiang Gao
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing UniversityNanjing 210093, China
| | - Huang-Xian Ju
- MOE Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210093, China
| | - Wei Wang
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing UniversityNanjing 210093, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing UniversityNanjing 210008, China
- Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing UniversityNanjing 210093, China
| | - Min-Sheng Zhu
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing UniversityNanjing 210093, China
| | - Chao-Jun Li
- Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing UniversityNanjing 210093, China
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical UniversityNanjing 211166, China
- Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing UniversityNanjing 210093, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing UniversityNanjing 210093, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing 210009, China
| |
Collapse
|
187
|
Personnaz J, Piccolo E, Branchereau M, Filliol A, Paccoud R, Moreau E, Calise D, Riant E, Gourdy P, Heymes C, Schwabe RF, Dray C, Valet P, Pradère J. Macrophage-derived HMGB1 is dispensable for tissue fibrogenesis. FASEB Bioadv 2019; 1:227-245. [PMID: 32123829 PMCID: PMC6996376 DOI: 10.1096/fba.2018-00035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/11/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
Alarmins and damage-associated molecular patterns (DAMPs) are powerful inflammatory mediators, capable of initiating and maintaining sterile inflammation during acute or chronic tissue injury. Recent evidence suggests that alarmins/DAMPs may also trigger tissue regeneration and repair, suggesting a potential contribution to tissue fibrogenesis. High mobility group B1 (HMGB1), a bona fide alarmin/DAMP, may be released passively by necrotic cells or actively secreted by innate immune cells. Macrophages can release large amounts of HMGB1 and play a key role in wound healing and regeneration processes. Here, we hypothesized that macrophages may be a key source of HMGB1 and thereby contribute to wound healing and fibrogenesis. Surprisingly, cell-specific deletion approaches, demonstrated that macrophage-derived HMGB1 is not involved in tissue fibrogenesis in multiple organs with different underlying pathologies. Compared to control HMGB1Flox mice, mice with macrophage-specific HMGB1 deletion (HMGB1ΔMac) do not display any modification of fibrogenesis in the liver after CCL4 or thioacetamide treatment and bile duct ligation; in the kidney following unilateral ureter obstruction; and in the heart after transverse aortic constriction. Of note, even under thermoneutral housing, known to exacerbate inflammation and fibrosis features, HMGB1ΔMac mice do not show impairment of fibrogenesis. In conclusion, our study clearly establishes that macrophage-derived HMGB1 does not contribute to tissue repair and fibrogenesis.
Collapse
Affiliation(s)
- Jean Personnaz
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| | - Enzo Piccolo
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| | - Maxime Branchereau
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| | | | - Romain Paccoud
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| | - Elsa Moreau
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| | - Denis Calise
- UMS006, Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM) U1048, Institute of Cardiovascular and Metabolic DiseaseToulouseFrance
| | - Elodie Riant
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| | - Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
- Service de Diabétologie, Maladies Métaboliques et Nutrition, CHU de ToulouseToulouseFrance
| | - Christophe Heymes
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| | | | - Cédric Dray
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| | - Philippe Valet
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| | - Jean‐Philippe Pradère
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de ToulouseToulouseFrance
| |
Collapse
|
188
|
Wu J, Huang J, Kuang S, Chen J, Li X, Chen B, Wang J, Cheng D, Shuai X. Synergistic MicroRNA Therapy in Liver Fibrotic Rat Using MRI-Visible Nanocarrier Targeting Hepatic Stellate Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801809. [PMID: 30886803 PMCID: PMC6402399 DOI: 10.1002/advs.201801809] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/10/2018] [Indexed: 05/02/2023]
Abstract
Liver fibrosis, as one of the leading causes of liver-related morbidity and mortality, has no Food and Drug Administration (FDA)-approved antifibrotic therapy yet. Although microRNA-29b (miRNA-29b) and microRNA-122 (miRNA-122) have great potential in treating liver fibrosis via regulating profibrotic genes in hepatic stellate cells (HSCs), it is still a challenge to achieve a HSC-targeted and meanwhile noninvasively trackable delivery of miRNAs in vivo. Herein, a pH-sensitive and vitamin A (VA)-conjugated copolymer VA-polyethylene glycol-polyethyleneimine-poly(N-(N',N'-diisopropylaminoethyl)-co-benzylamino) aspartamide (T-PBP) is synthesized and assembled into superparamagnetic iron oxide (SPIO)-decorated cationic micelle for miRNA delivery. The T-PBP micelle efficiently transports the miRNA-29b and miRNA-122 to HSC in a magnetic resonance imaging-visible manner, resulting in a synergistic antifibrosis effect via downregulating the expression of fibrosis-related genes, including collagen type I alpha 1, α-smooth muscle actin, and tissue inhibitor of metalloproteinase 1. Consequently, the HSC-targeted combination therapy with miRNA-29b and miRNA-122 demonstrates a prominent antifibrotic efficacy in terms of improving liver function and relieving hepatic fibrosis.
Collapse
Affiliation(s)
- Jun Wu
- The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Jinsheng Huang
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Sichi Kuang
- The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Jingbiao Chen
- The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Xiaoxia Li
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Bin Chen
- Department of Orthopaedics and TraumatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jin Wang
- The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Du Cheng
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Xintao Shuai
- The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
189
|
Jing F, Geng Y, Xu XY, Xu HY, Shi JS, Xu ZH. MicroRNA29a Reverts the Activated Hepatic Stellate Cells in the Regression of Hepatic Fibrosis through Regulation of ATPase H⁺ Transporting V1 Subunit C1. Int J Mol Sci 2019; 20:ijms20040796. [PMID: 30781750 PMCID: PMC6412626 DOI: 10.3390/ijms20040796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Activated hepatic stellate cells (aHSCs) play a key role in liver fibrosis. During the regression of fibrosis, aHSCs are transformed into inactivated cells (iHSCs), which are quiescent lipid-containing cells and express higher levels of lipid-related genes, such as peroxisome proliferators-activated receptors gamma (PPARγ). Here, we investigated the role of MicroRNA29a (Mir29a) in the resolution of liver fibrosis. Mir29a and lipid-related genes were up-regulated after the recovery of CCl4-induced liver fibrosis in mice. PPARγ agonist rosiglitazone (RSG) promoted de-differentiation of aHSCs to iHSCs and up-regulated MIR29a expression in a human HSC cell line LX-2. MIR29a mimics in vitro promoted the expression of lipid-related genes, while decreased the expression of fibrosis-related genes. MIR29a inhibitor showed the reverse effects. ATPase H+ transporting V1 subunit C1 (Atp6v1c1) was increased in liver fibrosis, while down-regulated after the recovery in mice, and negatively regulated by MIR29a in LX-2 cells. Knockdown of ATP6V1C1 by siRNA decreased alpha-smooth muscle actin (α-SMA) and increased lipid-related genes expression. Simultaneous addition of MIR29a mimics and ATP6V1C1 siRNA further increased RSG promoted expression of lipid-related proteins in vitro. Collectively, MIR29a plays an important role during the trans-differentiation of aHSCs in the resolution of liver fibrosis, in part, through regulation of ATP6V1C1.
Collapse
Affiliation(s)
- Fei Jing
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China.
| | - Yan Geng
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China.
| | - Xin-Yi Xu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China.
| | - Hong-Yu Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China.
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
190
|
Inzaugarat ME, Johnson CD, Holtmann TM, McGeough MD, Trautwein C, Papouchado BG, Schwabe R, Hoffman HM, Wree A, Feldstein AE. NLR Family Pyrin Domain-Containing 3 Inflammasome Activation in Hepatic Stellate Cells Induces Liver Fibrosis in Mice. Hepatology 2019; 69:845-859. [PMID: 30180270 PMCID: PMC6351190 DOI: 10.1002/hep.30252] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/14/2018] [Indexed: 12/25/2022]
Abstract
The NLR family pyrin domain-containing 3 (NLRP3) inflammasome plays an important role in liver fibrosis (LF) development. However, the mechanisms involved in NLRP3-induced fibrosis are unclear. Our aim was to test the hypothesis that the NLRP3 inflammasome in hepatic stellate cells (HSCs) can directly regulate their activation and contribute to LF. Primary HSCs isolated from wild-type (WT), Nlrp3-/- , or Nlrp3L351PneoR knock-in crossed to inducible (estrogen receptor Cre-CreT) mice were incubated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP), or 4OH-tamoxifen, respectively. HSC-specific Nlrp3L351P knock-in mice were generated by crossing transgenic mice expressing lecithin retinol acyltransferase (Lrat)-driven Cre and maintained on standard rodent chow for 6 months. Mice were then sacrificed; liver tissue and serum were harvested. Nlrp3 inflammasome activation along with HSC phenotype and fibrosis were assessed by RT-PCR, western blotting, fluorescence-activated cell sorting (FACS), enzyme-linked immunosorbent assay, immunofluorescence (IF), and immunohistochemistry (IHC). Stimulated WT HSCs displayed increased levels of NLRP3 inflammasome-induced reactive oxygen species (ROS) production and cathepsin B activity, accompanied by an up-regulation of mRNA and protein levels of fibrotic makers, an effect abrogated in Nlrp3-/- HSCs. Nlrp3L351P CreT HSCs also showed elevated mRNA and protein expression of fibrotic markers 24 hours after inflammasome activation induced with 4-hydroxytamoxifen (4OHT). Protein and mRNA expression levels of fibrotic markers were also found to be increased in isolated HSCs and whole liver tissue from Nlrp3L351P Lrat Cre mice compared to WT. Liver sections from 24-week-old NlrpL351P Lrat Cre mice showed fibrotic changes with increased alpha smooth muscle actin (αSMA) and desmin-positive cells and collagen deposition, independent of inflammatory infiltrates; these changes were also observed after LPS challenge in 8-week-old NlrpL351P Lrat Cre mice. Conclusion: Our results highlight a direct role for the NLRP3 inflammasome in the activation of HSCs directly triggering LF.
Collapse
Affiliation(s)
| | - Casey D. Johnson
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | | | | | - Christian Trautwein
- Department of Internal Medicine III, RWTH University Hospital Aachen, Germany
| | | | - Robert Schwabe
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, USA
| | - Hal M. Hoffman
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Alexander Wree
- Department of Internal Medicine III, RWTH University Hospital Aachen, Germany,,Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Ariel E. Feldstein
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| |
Collapse
|
191
|
Melis M, Tang XH, Trasino SE, Patel VM, Stummer DJ, Jessurun J, Gudas LJ. Effects of AM80 compared to AC261066 in a high fat diet mouse model of liver disease. PLoS One 2019; 14:e0211071. [PMID: 30677086 PMCID: PMC6345457 DOI: 10.1371/journal.pone.0211071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
The roles of retinoids in nonalcoholic fatty liver disease (NAFLD) remain unclear and a better understanding may lead to therapies that prevent or limit NAFLD progression. We examined the actions of retinoic acid receptor (RAR) agonists- AM80 for RARα and AC261066 for RARβ2- in a murine model of NAFLD. We fed wild type C57Bl/6 mice a chow or a 45% high fat diet (HFD) for 12 weeks, followed by 4 additional weeks with the HFD+AM80; HFD+AC261066; or HFD. The HFD+AM80 group showed greater hyperglycemia and glucose intolerance compared to other groups. Histopathological evaluation of the livers showed the highest degree of steatosis, triglycerides levels, and inflammation, assessed by F4/80 staining, in the HFD+AM80-treated compared to the HFD, the HFD+AC261066, and chow-fed mice. Liver vitamin A (retinol (ROL)) and retinyl palmitate levels were markedly lower in all HFD groups compared to chow-fed controls. HFD+AC261066-treated mice showed higher levels of a key intracellular ROL transporter, retinol-binding protein-1 (RBP1) compared to the HFD and HFD+AM80 groups. In conclusion, these data demonstrate that the selective RARα agonist AM80 exacerbates HFD-induced NAFLD and hyperglycemia. These findings should inform future studies examining the therapeutic potential of RAR agonists in HFD-related disorders.
Collapse
Affiliation(s)
- Marta Melis
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States of America
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States of America
| | - Steven E Trasino
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States of America
- School of Urban Public Health, Hunter College, City University of New York, New York, NY, United States of America
| | - Viral M Patel
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States of America
| | - Daniel J Stummer
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States of America
| | - Jose Jessurun
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States of America
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States of America
- Weill Cornell Graduate School of Biomedical Sciences, New York, NY, United States of America
| |
Collapse
|
192
|
Kim JH, Lee CH, Lee SW. Exosomal Transmission of MicroRNA from HCV Replicating Cells Stimulates Transdifferentiation in Hepatic Stellate Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 14:483-497. [PMID: 30753992 PMCID: PMC6369229 DOI: 10.1016/j.omtn.2019.01.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/12/2022]
Abstract
The mechanism by which hepatitis C virus (HCV) causes fibrosis and other chronic liver diseases remains poorly understood. Previously, we observed that HCV infection induces microRNA-192 (miR-192) expression, which in turn upregulates transforming growth factor β1 (TGF-β1) in hepatocytes. In this study, we aimed to determine the roles and mechanisms of HCV-induced miR-192 expression during chronic liver injury and fibrosis and to identify potential target of the liver disease. Noticeably, miR-192 is secreted and transmitted through exosomes from HCV-replicating hepatocytes into hepatic stellate cells (HSCs). Exosomal transferred miR-192 upregulated fibrogenic markers in HSCs through TGF-β1 upregulation, resulting in the activation and transdifferentiation of HSCs into myofibroblasts. Anti-miR-192 treatment of HCV-replicating hepatocytes efficiently reduced miR-192 levels in exosomes, downregulated miR-192 and fibrogenic marker levels in HSCs, and impeded transdifferentiation of the cells. In contrast, miR-192 mimic RNA treatment significantly increased miR-192 levels in exosomes from naive hepatocytes, increased miR-192 and fibrogenic marker expression in HSCs, and induced transdifferentiation of the cells. Notably, transdifferentiation of exosome-exposed HSCs was reversed following treatment with anti-miR-192 into the HSCs. This study revealed a novel mechanism of HCV-induced liver fibrosis and identified exosomal miR-192 as a major regulator and potential treatment target for HCV-mediated hepatic fibrosis.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Integrated Life Sciences, Research Institute of Advanced Omics, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin 16890, Republic of Korea; Department of Molecular Biology, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Chang Ho Lee
- Department of Integrated Life Sciences, Research Institute of Advanced Omics, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin 16890, Republic of Korea
| | - Seong-Wook Lee
- Department of Integrated Life Sciences, Research Institute of Advanced Omics, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin 16890, Republic of Korea.
| |
Collapse
|
193
|
SATO Y, YANAGITA M. Functional heterogeneity of resident fibroblasts in the kidney. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:468-478. [PMID: 31611502 PMCID: PMC6819150 DOI: 10.2183/pjab.95.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chronic kidney disease (CKD) is a global public health problem, affecting over 10% of the world's population and more than half of the population aged over 70 years, imposing major costs on healthcare systems. Although the primary causes of CKD include various diseases such as diabetes, glomerulonephritis, and acute kidney injury (AKI), the progression of CKD is mediated by a common pathological pathway, which is mainly characterized by fibrosis and chronic inflammation. In this process, resident fibroblasts in the kidney play crucial roles. Accumulating evidence highlights the existence of functional heterogeneity and plasticity of fibroblasts and their diverse roles in kidney disease progression and resolution. In addition to renal fibrosis, renal anemia and peritubular capillary loss, two major complications of progressive CKD, are also caused by dysfunction of resident fibroblasts. Furthermore, age-dependent alterations in fibroblast behavior also contribute to age-dependent unique pathological conditions. In this article, we describe the current understanding regarding the behaviors of fibroblasts in the kidney in health, disease, and aging.
Collapse
Affiliation(s)
- Yuki SATO
- Medical Innovation Center TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko YANAGITA
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Correspondence should be addressed: M. Yanagita, Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan (e-mail: )
| |
Collapse
|
194
|
Thuy LTT, Hai H, Hieu VN, Dat NQ, Hoang DV, Kawada N. Antifibrotic Therapy for Liver Cirrhosis. THE EVOLVING LANDSCAPE OF LIVER CIRRHOSIS MANAGEMENT 2019:167-189. [DOI: 10.1007/978-981-13-7979-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
195
|
Tsuchida T. [Mechanisms of hepatic stellate cell activation as a therapeutic target for the treatment of non-alcoholic steatohepatitis]. Nihon Yakurigaku Zasshi 2019; 154:203-209. [PMID: 31597900 DOI: 10.1254/fpj.154.203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a rising cause of chronic liver disease worldwide. Although majority of patients with NAFLD are benign and non-progressive, having only steatosis, some fraction of patients develop non-alcoholic steatohepatitis (NASH), which can lead to cirrhosis, hepatocellular carcinoma, and eventually increased liver-related mortality. Among histological features of NAFLD, it has been reported that liver fibrosis is the most important predictor of long-term outcomes. Liver fibrosis is a dynamic process characterized by the over-accumulation of extracellular matrix due to chronic liver injury resulting from any etiology including not only NASH, but also viral infection and alcoholic liver disease. Activation of hepatic stellate cells (HSCs) has been well established as a central driver of fibrosis in experimental animal models and human liver injury. It is a transdifferentiation of quiescent, vitamin-A‑storing cells into proliferative and fibrogenic myofibroblasts. However, the discovery of novel pathways and mediators reveals the complexity of HSC activation. These emerging pathways include hedgehog, autophagy, free cholesterol, YAP1, hepcidin, and nuclear/G-protein coupled receptor-mediated signals. In addition, pathways of HSC clearance have been uncovered such as apoptosis, senescence, and reversion to an inactivated state. Thus, clarifying the underlying mechanisms of HSC activation could lead to the identification of novel therapeutic targets for NASH, and several drug candidates are currently being developed in clinical trials.
Collapse
Affiliation(s)
- Takuma Tsuchida
- Research Unit/Frontier Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation
| |
Collapse
|
196
|
SOX9 regulated matrix proteins are increased in patients serum and correlate with severity of liver fibrosis. Sci Rep 2018; 8:17905. [PMID: 30559459 PMCID: PMC6297163 DOI: 10.1038/s41598-018-36037-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/27/2018] [Indexed: 02/07/2023] Open
Abstract
Extracellular matrix (ECM) deposition and resultant scar play a major role in the pathogenesis and progression of liver fibrosis. Identifying core regulators of ECM deposition may lead to urgently needed diagnostic and therapetic strategies for the disease. The transcription factor Sex determining region Y box 9 (SOX9) is actively involved in scar formation and its prevalence in patients with liver fibrosis predicts progression. In this study, transcriptomic approaches of Sox9-abrogated myofibroblasts identified >30% of genes regulated by SOX9 relate to the ECM. Further scrutiny of these data identified a panel of highly expressed ECM proteins, including Osteopontin (OPN), Osteoactivin (GPNMB), Fibronectin (FN1), Osteonectin (SPARC) and Vimentin (VIM) as SOX9 targets amenable to assay in patient serum. In vivo all SOX-regulated targets were increased in human disease and mouse models of fibrosis and decreased following Sox9-loss in mice with parenchymal and biliary fibrosis. In patient serum samples, SOX9-regulated ECM proteins were altered in response to fibrosis severity, whereas comparison with established clinical biomarkers demonstrated superiority for OPN and VIM at detecting early stages of fibrosis. These data support SOX9 in the mechanisms underlying fibrosis and highlight SOX9 and its downstream targets as new measures to stratify patients with liver fibrosis.
Collapse
|
197
|
Thi Thanh Hai N, Thuy LTT, Shiota A, Kadono C, Daikoku A, Hoang DV, Dat NQ, Sato-Matsubara M, Yoshizato K, Kawada N. Selective overexpression of cytoglobin in stellate cells attenuates thioacetamide-induced liver fibrosis in mice. Sci Rep 2018; 8:17860. [PMID: 30552362 PMCID: PMC6294752 DOI: 10.1038/s41598-018-36215-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Cytoglobin (CYGB), discovered in hepatic stellate cells (HSCs), is known to possess a radical scavenger function, but its pathophysiological roles remain unclear. Here, for the first time, we generated a new transgenic (TG) mouse line in which both Cygb and mCherry reporter gene expression were under the control of the native Cygb gene promoter. We demonstrated that the expression of Cygb-mCherry was related to endogenous Cygb in adult tissues by tracing mCherry fluorescence together with DNA, mRNA, and protein analyses. Administration of a single dose (50 mg/kg) of thioacetamide (TAA) in Cygb-TG mice resulted in lower levels of alanine transaminase and oxidative stress than those in WT mice. After 10 weeks of TAA administration, Cygb-TG livers exhibited reduced neutrophil accumulation, cytokine expression and fibrosis but high levels of quiescent HSCs. Primary HSCs isolated from Cygb-TG mice (HSCCygb-TG) exhibited significantly decreased mRNA levels of α-smooth muscle actin (αSMA), collagen 1α1, and transforming growth factor β-3 after 4 days in culture relative to WT cells. HSCsCygb-TG were resistant to H2O2-induced αSMA expression. Thus, cell-specific overexpression of Cygb attenuates HSC activation and protects mice against TAA-induced liver fibrosis presumably by maintaining HSC quiescence. Cygb is a potential new target for antifibrotic approaches.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Hai
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Biochemistry, Hanoi Medical University, Hanoi, Vietnam
| | - Le Thi Thanh Thuy
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | - Chiho Kadono
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Atsuko Daikoku
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Dinh Viet Hoang
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Ninh Quoc Dat
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Misako Sato-Matsubara
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Katsutoshi Yoshizato
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- PhoenixBio Co. Ltd., Hiroshima, Japan
- Endowed Laboratory of Synthetic Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Norifumi Kawada
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
| |
Collapse
|
198
|
Wang A, Zhou F, Li D, Lu JJ, Wang Y, Lin L. γ-Mangostin alleviates liver fibrosis through Sirtuin 3-superoxide-high mobility group box 1 signaling axis. Toxicol Appl Pharmacol 2018; 363:142-153. [PMID: 30502394 DOI: 10.1016/j.taap.2018.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022]
Abstract
The activation of hepatic stellate cells (HSCs) plays a critical role in liver fibrosis. In the current study, γ-mangostin (γ-man), one of the major xanthones from mangosteen (Garcinia mangostana), was found to alleviate fibrogenesis in human immortalized HSCs (LX-2 cells) and in liver from chronic carbon tetrachloride (CCl4) injured mice. γ-Man suppressed the expression levels of collagen I and α-smooth muscle actin (α-SMA) in LX-2 cells in both dose and time dependent manners. Furthermore, γ-man inhibited NAD(P)H oxidase activity through induction of sirtuin 3 (SIRT3), resulting in reduced intracellular oxidative stress in LX-2 cells. Moreover, γ-man stimulated the expression of histone deacetylase 1, which in turn decreased the acetylation and cytoplasmic shuttling of high mobility group box 1 (HMGB1), to impair autocrine HMGB1-induced HSC activation. In CCl4-injured mice, γ-man enhanced the expression of SIRT3 and decreased the expression of HMGB1, resulting in decreased accumulation of collagen I and α-SMA in liver. Consequently, γ-man might be a potent candidate to treat oxidative stress induced liver fibrosis.
Collapse
Affiliation(s)
- Anqi Wang
- Guangdong-Macau Traditional Chinese Medicine Technology Industrial Park Development Co., Ltd, Hengqin New Area, Zhuhai, Guangdong 519031, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Fayang Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Dan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
199
|
Yang J, Lu Y, Yang P, Chen Q, Wang Y, Ding Q, Xu T, Li X, Li C, Huang C, Meng X, Li J, Zhang L, Wang X. MicroRNA-145 induces the senescence of activated hepatic stellate cells through the activation of p53 pathway by ZEB2. J Cell Physiol 2018; 234:7587-7599. [PMID: 30479019 DOI: 10.1002/jcp.27521] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Activation of quiescent hepatic stellate cells (HSCs) is the major event in liver fibrosis, along with enhancement of cell proliferation and overproduction of extracellular matrix. Recent findings suggest that senescence of activated HSCs might limit the development of liver fibrosis. The p53, a guardian of the genome is associated with liver fibrosis, has been shown to regulate HSCs senescence. In this study, we report that microRNA-145 (miR-145) and p53 were downregulated in vivo and in vitro, concomitant with the enhanced expression of zinc finger E-box binding homeobox 2 (ZEB2). In addition, overexpression of miR-145 and p53 led to upregulation of the number of senescence-associated β-galactosidase-positive HSCs and the expression of senescence markers p16 and p21, along with the reduced abundance of HSC activation markers α-smooth muscle actin and type I collagen in activated HSCs. Furthermore, silencing of ZEB2 promoted senescence of activated HSCs. Moreover, we also demonstrated that miR-145 specifically targeted the 3'-untranslated regions of ZEB2. In vitro promoter regulation studies show that ZEB2 could bind to the E-box of the p53 promoter as well as inhibit its promoter activity and thus suppress the expression of p53, which in turn repressed activated HSCs senescence. Taken together, our results describe a novel miR-145-ZEB2-p53 regulatory line might participate in the senescence of activated HSCs and might carry potential therapeutic targets for restraining liver fibrosis.
Collapse
Affiliation(s)
- Junfa Yang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China
| | - Yuchen Lu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China
| | - Peipei Yang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China
| | - Qingfeng Chen
- Department of Clinical Medicine, Clinic Medical College of Anhui Medical University, Hefei, China
| | - Yang Wang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China
| | - Qi Ding
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China
| | - Tao Xu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China
| | - Xiaofeng Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China
| | - Changyao Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China
| | - Xiaoming Meng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China
| | - Lei Zhang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China
| | - Xiao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
200
|
Jiang ZJ, Shen QH, Chen HY, Yang Z, Shuai MQ, Zheng SS. Galectin-1 gene silencing inhibits the activation and proliferation but induces the apoptosis of hepatic stellate cells from mice with liver fibrosis. Int J Mol Med 2018; 43:103-116. [PMID: 30365068 PMCID: PMC6257862 DOI: 10.3892/ijmm.2018.3950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
Liver fibrosis is a serious threat to human health, and there is currently no effective clinical drug for treatment of the disease. Although Galectin-1 is effective, its role in liver function, inflammation, matrix metalloproteinases and the activation of hepatic stellate cells (HSCs) remains to be elucidated. The aim of the present study was to elucidate the effect of Galectin-1 on the activation, proliferation and apoptosis of HSCs in a mouse model of liver fibrosis. Following successful model establishment and tissue collection, mouse HSCs (mHSCs) were identified and an mHSC line was constructed. Subsequently, to determine the role of Galectin-1 in liver fibrosis, the expression levels of transforming growth factor (TGF)-β1, connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA) pre- and post-transfection were evaluated by reverse transcription-quantitative polymerase chain reaction and western blot analyses. In addition, the effects of Galectin-1 on the biological behavior and mitochondrial function of mHSCs were determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry and a scratch test. It was first observed that the expression levels of Galectin-1, TGF-β1, CTGF and α-SMA were downregulated by silencing the gene expression of Galectin-1. Additionally, silencing the gene expression of Galectin-1 inhibited cell cycle progression, proliferation and migration but induced the apoptosis of mHSCs from mice with liver fibrosis. Furthermore, the in vivo experimental results suggested that silencing the gene expression of Galectin-1 improved liver fibrosis. Collectively, it was concluded that silencing the gene expression of Galectin-1 ameliorates liver fibrosis and that functionally suppressing Galectin-1 may be a future therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Zhi-Jun Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Qing-Hua Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine (Jinyun Branch), Jinyun, Zhejiang 321400, P.R. China
| | - Hai-Yong Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhe Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Ming-Qi Shuai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|