151
|
Yin Z, Bai Y, Zhang H, Liu H, Hu W, Meng F, Yang A, Zhang J. An individual patient analysis of the efficacy of using GPi-DBS to treat Huntington's disease. Brain Stimul 2020; 13:1722-1731. [PMID: 33038596 DOI: 10.1016/j.brs.2020.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/02/2020] [Accepted: 09/29/2020] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The efficacy of globus pallidus internus-deep brain stimulation (GPi-DBS) for the treatment of Huntington's disease (HD) has not been validated in large-scale studies. We conducted an individual patient analysis to pool outcomes of all of the published HD-GPi-DBS studies. METHODS PubMed, Embase and the Cochrane Library were searched for relevant articles. The Unified Huntington's Disease Rating Scale (UHDRS)-motor and UHDRS-chorea improvements were analyzed during different follow-up periods. Secondary outcomes, including UHDRS-motor subitem scores and functional assessment results, were also analyzed. Correlation and regression analyses were conducted to find improvement predictors. This study was registered in PROSPERO (CRD42018105995). RESULTS Eighteen studies including 39 patients with 124 visits were analyzed. GPi-DBS significantly improved the UHDRS-motor score in <3 months (p = 0.001), 3-9 months (p < 0.001), and 9-12 months (p < 0.001), but did not continue in later follow-ups. UHDRS-chorea was significantly improved even in the >30-month follow-up (p = 0.003). Functional assessment was not improved 12 months postoperatively (p = 0.196). The Westphal variant of HD (W-HD) gained no motor benefits 6 months postoperatively (p = 0.178). The Westphal variant was the only risk factor for DBS efficacy (p = 0.044). The rate of stimulation-related adverse events was 87.2%. CONCLUSIONS GPi-DBS has a stable effect on chorea symptoms in HD patients. Chorea-dominant patients may be the best candidates for surgery, while attention should be paid to postoperative stimulation-related complications. Given that GPi-DBS has limited effects on other motor symptoms, W-HD patients are not surgical candidates.
Collapse
Affiliation(s)
- Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Hua Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Huanguang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Fangang Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
152
|
Thomsen BLC, Jensen SR, Clausen A, Karlsborg M, Jespersen B, Løkkegaard A. Deep Brain Stimulation in Parkinson's Disease: Still Effective After More Than 8 Years. Mov Disord Clin Pract 2020; 7:788-796. [PMID: 33033736 PMCID: PMC7534016 DOI: 10.1002/mdc3.13040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/26/2020] [Accepted: 05/27/2020] [Indexed: 11/09/2022] Open
Abstract
Background Deep brain stimulation of the subthalamic nucleus (STN-DBS) is well established and the most effective treatment for advanced Parkinson's disease (PD). However, little is known of the long-term effects. Objectives The aim of this study was to examine the long-term effects of STN-DBS in PD and evaluate the effect of reprogramming after more than 8 years of treatment. Methods A total of 82 patients underwent surgery in Copenhagen between 2001 and 2008. Before surgery and at 8 to 15 years follow-up, the patients were rated with the Unified Parkinson's Disease Rating Scale (UPDRS) with and without stimulation and medicine. Furthermore, at long-term follow-up, the patients were offered a systemic reprogramming of the stimulation settings. Data from patients' medical records were collected. The mean (range) age at surgery was 60 (42-78) years, and the duration of disease was 13 (5-25) years. A total of 30 patients completed the long-term follow-up. Results The mean reduction of the motor UPDRS by medication before surgery was 52%. The improvement of motor UPDRS with stimulation alone compared with motor UPDRS with neither stimulation nor medication was 61% at 1 year and 39% at 8 to 15 years after surgery (before reprogramming). Compared with before surgery, medication was reduced by 55% after 1 year and 44% after 8 to 15 years. After reprogramming, most patients improved. Conclusions STN-DBS remains effective in the long run, with a sustained reduction of medication in the 30 of 82 patients available for long-term follow-up. Reprogramming is effective even in the late stages of PD and after many years of treatment.
Collapse
Affiliation(s)
- Birgitte L C Thomsen
- Department of Neurology Bispebjerg and Frederiksberg University Hospital Copenhagen Denmark.,Faculty of Health and Medical Science University of Copenhagen Copenhagen Denmark
| | - Steen R Jensen
- Department of Neurology Bispebjerg and Frederiksberg University Hospital Copenhagen Denmark
| | - Anders Clausen
- Department of Neurology Bispebjerg and Frederiksberg University Hospital Copenhagen Denmark
| | - Merete Karlsborg
- Department of Neurology Bispebjerg and Frederiksberg University Hospital Copenhagen Denmark
| | - Bo Jespersen
- Department of Neurosurgery Rigshospitalet University Hospital Copenhagen Denmark
| | - Annemette Løkkegaard
- Department of Neurology Bispebjerg and Frederiksberg University Hospital Copenhagen Denmark.,Faculty of Health and Medical Science University of Copenhagen Copenhagen Denmark
| |
Collapse
|
153
|
Isaacs BR, Keuken MC, Alkemade A, Temel Y, Bazin PL, Forstmann BU. Methodological Considerations for Neuroimaging in Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson's Disease Patients. J Clin Med 2020; 9:E3124. [PMID: 32992558 PMCID: PMC7600568 DOI: 10.3390/jcm9103124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus is a neurosurgical intervention for Parkinson's disease patients who no longer appropriately respond to drug treatments. A small fraction of patients will fail to respond to DBS, develop psychiatric and cognitive side-effects, or incur surgery-related complications such as infections and hemorrhagic events. In these cases, DBS may require recalibration, reimplantation, or removal. These negative responses to treatment can partly be attributed to suboptimal pre-operative planning procedures via direct targeting through low-field and low-resolution magnetic resonance imaging (MRI). One solution for increasing the success and efficacy of DBS is to optimize preoperative planning procedures via sophisticated neuroimaging techniques such as high-resolution MRI and higher field strengths to improve visualization of DBS targets and vasculature. We discuss targeting approaches, MRI acquisition, parameters, and post-acquisition analyses. Additionally, we highlight a number of approaches including the use of ultra-high field (UHF) MRI to overcome limitations of standard settings. There is a trade-off between spatial resolution, motion artifacts, and acquisition time, which could potentially be dissolved through the use of UHF-MRI. Image registration, correction, and post-processing techniques may require combined expertise of traditional radiologists, clinicians, and fundamental researchers. The optimization of pre-operative planning with MRI can therefore be best achieved through direct collaboration between researchers and clinicians.
Collapse
Affiliation(s)
- Bethany R. Isaacs
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, 1018 WS Amsterdam, The Netherlands; (A.A.); (P.-L.B.); (B.U.F.)
- Department of Experimental Neurosurgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands;
| | - Max C. Keuken
- Municipality of Amsterdam, Services & Data, Cluster Social, 1000 AE Amsterdam, The Netherlands;
| | - Anneke Alkemade
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, 1018 WS Amsterdam, The Netherlands; (A.A.); (P.-L.B.); (B.U.F.)
| | - Yasin Temel
- Department of Experimental Neurosurgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands;
| | - Pierre-Louis Bazin
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, 1018 WS Amsterdam, The Netherlands; (A.A.); (P.-L.B.); (B.U.F.)
- Max Planck Institute for Human Cognitive and Brain Sciences, D-04103 Leipzig, Germany
| | - Birte U. Forstmann
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, 1018 WS Amsterdam, The Netherlands; (A.A.); (P.-L.B.); (B.U.F.)
| |
Collapse
|
154
|
Dayal V, De Roquemaurel A, Grover T, Ferreira F, Salazar M, Milabo C, Candelario‐McKeown J, Zrinzo L, Akram H, Limousin P, Foltynie T. Novel Programming Features Help Alleviate Subthalamic Nucleus Stimulation‐Induced Side Effects. Mov Disord 2020; 35:2261-2269. [DOI: 10.1002/mds.28252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/01/2020] [Accepted: 08/03/2020] [Indexed: 11/07/2022] Open
Affiliation(s)
- Viswas Dayal
- Department of Clinical and Movement Neurosciences University College London Institute of Neurology London United Kingdom
- Unit of Functional Neurosurgery National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Alexis De Roquemaurel
- Unit of Functional Neurosurgery National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Timothy Grover
- Department of Clinical and Movement Neurosciences University College London Institute of Neurology London United Kingdom
- Unit of Functional Neurosurgery National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Francisca Ferreira
- Department of Clinical and Movement Neurosciences University College London Institute of Neurology London United Kingdom
| | - Maricel Salazar
- Unit of Functional Neurosurgery National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Catherine Milabo
- Unit of Functional Neurosurgery National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Joseph Candelario‐McKeown
- Unit of Functional Neurosurgery National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences University College London Institute of Neurology London United Kingdom
- Unit of Functional Neurosurgery National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Harith Akram
- Department of Clinical and Movement Neurosciences University College London Institute of Neurology London United Kingdom
- Unit of Functional Neurosurgery National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences University College London Institute of Neurology London United Kingdom
- Unit of Functional Neurosurgery National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences University College London Institute of Neurology London United Kingdom
- Unit of Functional Neurosurgery National Hospital for Neurology and Neurosurgery London United Kingdom
| |
Collapse
|
155
|
Paff M, Loh A, Sarica C, Lozano AM, Fasano A. Update on Current Technologies for Deep Brain Stimulation in Parkinson's Disease. J Mov Disord 2020; 13:185-198. [PMID: 32854482 PMCID: PMC7502302 DOI: 10.14802/jmd.20052] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 01/19/2023] Open
Abstract
Deep brain stimulation (DBS) is becoming increasingly central in the treatment of patients with Parkinson's disease and other movement disorders. Recent developments in DBS lead and implantable pulse generator design provide increased flexibility for programming, potentially improving the therapeutic benefit of stimulation. Directional DBS leads may increase the therapeutic window of stimulation by providing a means of avoiding current spread to structures that might give rise to stimulation-related side effects. Similarly, control of current to individual contacts on a DBS lead allows for shaping of the electric field produced between multiple active contacts. The following review aims to describe the recent developments in DBS system technology and the features of each commercially available DBS system. The advantages of each system are reviewed, and general considerations for choosing the most appropriate system are discussed.
Collapse
Affiliation(s)
- Michelle Paff
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Canada
| | - Aaron Loh
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Canada
| | - Can Sarica
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Canada
| | - Andres M. Lozano
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson’s Disease, Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Canada
- Krembil Brain Institute, Toronto, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Canada
| |
Collapse
|
156
|
Valsky D, Heiman Grosberg S, Israel Z, Boraud T, Bergman H, Deffains M. What is the true discharge rate and pattern of the striatal projection neurons in Parkinson's disease and Dystonia? eLife 2020; 9:e57445. [PMID: 32812870 PMCID: PMC7462612 DOI: 10.7554/elife.57445] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Dopamine and striatal dysfunctions play a key role in the pathophysiology of Parkinson's disease (PD) and Dystonia, but our understanding of the changes in the discharge rate and pattern of striatal projection neurons (SPNs) remains limited. Here, we recorded and examined multi-unit signals from the striatum of PD and dystonic patients undergoing deep brain stimulation surgeries. Contrary to earlier human findings, we found no drastic changes in the spontaneous discharge of the well-isolated and stationary SPNs of the PD patients compared to the dystonic patients or to the normal levels of striatal activity reported in healthy animals. Moreover, cluster analysis using SPN discharge properties did not characterize two well-separated SPN subpopulations, indicating no SPN subpopulation-specific (D1 or D2 SPNs) discharge alterations in the pathological state. Our results imply that small to moderate changes in spontaneous SPN discharge related to PD and Dystonia are likely amplified by basal ganglia downstream structures.
Collapse
Affiliation(s)
- Dan Valsky
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada (IMRIC), The Hebrew University - Hadassah Medical SchoolJerusalemIsrael
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew UniversityJerusalemIsrael
| | - Shai Heiman Grosberg
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada (IMRIC), The Hebrew University - Hadassah Medical SchoolJerusalemIsrael
| | - Zvi Israel
- Department of Neurosurgery, Hadassah University HospitalJerusalemIsrael
| | - Thomas Boraud
- University of Bordeaux, UMR 5293, IMNBordeauxFrance
- CNRS, UMR 5293, IMNBordeauxFrance
- CHU de Bordeaux, IMN CliniqueBordeauxFrance
| | - Hagai Bergman
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada (IMRIC), The Hebrew University - Hadassah Medical SchoolJerusalemIsrael
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew UniversityJerusalemIsrael
- Department of Neurosurgery, Hadassah University HospitalJerusalemIsrael
| | - Marc Deffains
- University of Bordeaux, UMR 5293, IMNBordeauxFrance
- CNRS, UMR 5293, IMNBordeauxFrance
| |
Collapse
|
157
|
David FJ, Munoz MJ, Corcos DM. The effect of STN DBS on modulating brain oscillations: consequences for motor and cognitive behavior. Exp Brain Res 2020; 238:1659-1676. [PMID: 32494849 PMCID: PMC7415701 DOI: 10.1007/s00221-020-05834-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
In this review, we highlight Professor John Rothwell's contribution towards understanding basal ganglia function and dysfunction, as well as the effects of subthalamic nucleus deep brain stimulation (STN DBS). The first section summarizes the rate and oscillatory models of basal ganglia dysfunction with a focus on the oscillation model. The second section summarizes the motor, gait, and cognitive mechanisms of action of STN DBS. In the final section, we summarize the effects of STN DBS on motor and cognitive tasks. The studies reviewed in this section support the conclusion that high-frequency STN DBS improves the motor symptoms of Parkinson's disease. With respect to cognition, STN DBS can be detrimental to performance especially when the task is cognitively demanding. Consolidating findings from many studies, we find that while motor network oscillatory activity is primarily correlated to the beta-band, cognitive network oscillatory activity is not confined to one band but is subserved by activity in multiple frequency bands. Because of these findings, we propose a modified motor and associative/cognitive oscillatory model that can explain the consistent positive motor benefits and the negative and null cognitive effects of STN DBS. This is clinically relevant because STN DBS should enhance oscillatory activity that is related to both motor and cognitive networks to improve both motor and cognitive performance.
Collapse
Affiliation(s)
- Fabian J David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA.
| | - Miranda J Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA
| | - Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
158
|
Wu HK, Chen HR, Chen WY, Lu CF, Tsai MW, Yu CH. A novel instrumented walker for individualized visual cue setting for gait training in patients with Parkinson's disease. Assist Technol 2020; 32:203-213. [PMID: 30592441 DOI: 10.1080/10400435.2018.1525442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Patients with Parkinson's disease suffer from gait disturbances, such as a shuffling and festinating gait, which reduces their quality of life. To circumvent this problem, external visual cues may be applied in gait training to maintain the integrity of motor function. However, conventional training methods, such as transverse lines stuck on the ground, are difficult to adjust and adapt to personalized gait ability. This study proposes a convenient instrumented wheel walker that provides gap adjustable visual cues and selectable projection modes onto the ground with and without motion relative to the user. Ten subjects with Parkinson's disease were recruited, and the efficacy of the proposed device for their gait training was assessed. We demonstrated the applicability of our device to address personalized demands in gait guidance. With a personalized setting for patients with Parkinson's disease, a significantly lengthened stride length may be achieved.
Collapse
Affiliation(s)
- Hsiao-Kuan Wu
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University , Taipei, Taiwan, ROC
| | - Huang-Ren Chen
- Department of Computer Science and Information Engineering, National Central University , Taoyuan, Taiwan, ROC
| | - Wei-Ying Chen
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University , Taipei, Taiwan, ROC
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University , Taipei, Taiwan, ROC
| | - Mei-Wun Tsai
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University , Taipei, Taiwan, ROC
| | - Chung-Huang Yu
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University , Taipei, Taiwan, ROC
| |
Collapse
|
159
|
Ozturk M, Telkes I, Jimenez-Shahed J, Viswanathan A, Tarakad A, Kumar S, Sheth SA, Ince NF. Randomized, Double-Blind Assessment of LFP Versus SUA Guidance in STN-DBS Lead Implantation: A Pilot Study. Front Neurosci 2020; 14:611. [PMID: 32655356 PMCID: PMC7325925 DOI: 10.3389/fnins.2020.00611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The efficacy of deep brain stimulation (DBS) therapy in Parkinson's disease (PD) patients is highly dependent on the precise localization of the target structures such as subthalamic nucleus (STN). Most commonly, microelectrode single unit activity (SUA) recordings are performed to refine the target. This process is heavily experience based and can be technically challenging. Local field potentials (LFPs), representing the activity of a population of neurons, can be obtained from the same microelectrodes used for SUA recordings and allow flexible online processing with less computational complexity due to lower sampling rate requirements. Although LFPs have been shown to contain biomarkers capable of predicting patients' symptoms and differentiating various structures, their use in the localization of the STN in the clinical practice is not prevalent. Methods: Here we present, for the first time, a randomized and double-blinded pilot study with intraoperative online LFP processing in which we compare the clinical benefit from SUA- versus LFP-based implantation. Ten PD patients referred for bilateral STN-DBS were randomly implanted using either SUA or LFP guided targeting in each hemisphere. Although both SUA and LFP were recorded for each STN, the electrophysiologist was blinded to one at a time. Three months postoperatively, the patients were evaluated by a neurologist blinded to the intraoperative recordings to assess the performance of each modality. While SUA-based decisions relied on the visual and auditory inspection of the raw traces, LFP-based decisions were given through an online signal processing and machine learning pipeline. Results: We found a dramatic agreement between LFP- and SUA-based localization (16/20 STNs) providing adequate clinical improvement (51.8% decrease in 3-month contralateral motor assessment scores), with LFP-guided implantation resulting in greater average improvement in the discordant cases (74.9%, n = 3 STNs). The selected tracks were characterized by higher activity in beta (11-32 Hz) and high-frequency (200-400 Hz) bands (p < 0.01) of LFPs and stronger non-linear coupling between these bands (p < 0.05). Conclusion: Our pilot study shows equal or better clinical benefit with LFP-based targeting. Given the robustness of the electrode interface and lower computational cost, more centers can utilize LFP as a strategic feedback modality intraoperatively, in conjunction to the SUA-guided targeting.
Collapse
Affiliation(s)
- Musa Ozturk
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Ilknur Telkes
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Joohi Jimenez-Shahed
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ashwin Viswanathan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Arjun Tarakad
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Suneel Kumar
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Nuri F. Ince
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
160
|
Sabourin S, Khazen O, DiMarzio M, Staudt MD, Williams L, Gillogly M, Durphy J, Hanspal EK, Adam OR, Pilitsis JG. Effect of Directional Deep Brain Stimulation on Sensory Thresholds in Parkinson's Disease. Front Hum Neurosci 2020; 14:217. [PMID: 32581755 PMCID: PMC7296062 DOI: 10.3389/fnhum.2020.00217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/14/2020] [Indexed: 11/17/2022] Open
Abstract
Objective Previous studies showed that deep brain stimulation (DBS) relieves pain symptoms in Parkinson disease (PD) patients when programmed for motor-symptom relief. One factor involved in pain processing is sensory perception of stimuli. With the advent of directional leads, we explore whether directional DBS affects quantitative sensory testing (QST) metrics acutely. Methods PD patients with subthalamic (STN) DBS and directional leads were tested in 5 settings (DBS-OFF, DBS-ON with omnidirectional stimulation, and DBS-ON) for each of three directional segments of contact used for clinical programming. The Unified Parkinson’s Disease Rating Scale (UPDRS-III) assessed patient’s motor skills at time of study visit at clinical contact and at contact which produced optimal sensory threshold (defined by the greatest tolerance to mechanical stimuli). Correlation analyses were performed between stimulation parameters [amplitude, frequency, pulse width (PW), total electrical energy delivered (TEED)] and outcome metrics. Results Sensory thresholds were obtained in nine patients. Directional stimulation did not significantly alter patient perceptions of sensory stimulus [cold pain (p = 0.69), warm pain (p = 0.99), Von frey fibers (p = 0.09), pin-prick (p = 0.88), vibration (p = 0.40), pressure (p = 0.98)]. With correlation analysis, increasing PW at the posterior contact increased pin prick and vibration sensitivity (p < 0.001). Additionally, an increase in TEED caused a decrease in sensitivity to warm detection when using the anterior (p = 0.04), lateral (p = 0.02), and medial contacts (p = 0.03), and also caused a decrease in sensitivity to cold detection when using the medial contact (p = 0.03). UPDRS-III remained stable during testing. Conclusion Motor benefit can be acutely maintained at directional contacts, whereas directional stimulation can modulate thermal and mechanical sensitivity. Further investigation will determine whether these changes are maintained chronically or can be improved with optimized programming.
Collapse
Affiliation(s)
- Shelby Sabourin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Olga Khazen
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Marisa DiMarzio
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Michael D Staudt
- Department of Neurosurgery, Albany Medical College, Albany, NY, United States
| | - Lucian Williams
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Michael Gillogly
- Department of Neurosurgery, Albany Medical College, Albany, NY, United States
| | - Jennifer Durphy
- Department of Neurology, Albany Medical College, Albany, NY, United States
| | - Era K Hanspal
- Department of Neurology, Albany Medical College, Albany, NY, United States
| | - Octavian R Adam
- Department of Neurology, Albany Medical College, Albany, NY, United States
| | - Julie G Pilitsis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States.,Department of Neurosurgery, Albany Medical College, Albany, NY, United States
| |
Collapse
|
161
|
Kahan J, Mancini L, Flandin G, White M, Papadaki A, Thornton J, Yousry T, Zrinzo L, Hariz M, Limousin P, Friston K, Foltynie T. Deep brain stimulation has state-dependent effects on motor connectivity in Parkinson's disease. Brain 2020; 142:2417-2431. [PMID: 31219504 DOI: 10.1093/brain/awz164] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/12/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022] Open
Abstract
Subthalamic nucleus deep brain stimulation is an effective treatment for advanced Parkinson's disease; however, its therapeutic mechanism is unclear. Previous modelling of functional MRI data has suggested that deep brain stimulation has modulatory effects on a number of basal ganglia pathways. This work uses an enhanced data collection protocol to collect rare functional MRI data in patients with subthalamic nucleus deep brain stimulation. Eleven patients with Parkinson's disease and subthalamic nucleus deep brain stimulation underwent functional MRI at rest and during a movement task; once with active deep brain stimulation, and once with deep brain stimulation switched off. Dynamic causal modelling and Bayesian model selection were first used to compare a series of plausible biophysical models of the cortico-basal ganglia circuit that could explain the functional MRI activity at rest in an attempt to reproduce and extend the findings from our previous work. General linear modelling of the movement task functional MRI data revealed deep brain stimulation-associated signal increases in the primary motor and cerebellar cortices. Given the significance of the cerebellum in voluntary movement, we then built a more complete model of the motor system by including cerebellar-basal ganglia interactions, and compared the modulatory effects deep brain stimulation had on different circuit components during the movement task and again using the resting state data. Consistent with previous results from our independent cohort, model comparison found that the rest data were best explained by deep brain stimulation-induced increased (effective) connectivity of the cortico-striatal, thalamo-cortical and direct pathway and reduced coupling of subthalamic nucleus afferent and efferent connections. No changes in cerebellar connectivity were identified at rest. In contrast, during the movement task, there was functional recruitment of subcortical-cerebellar pathways, which were additionally modulated by deep brain stimulation, as well as modulation of local (intrinsic) cortical and cerebellar circuits. This work provides in vivo evidence for the modulatory effects of subthalamic nucleus deep brain stimulation on effective connectivity within the cortico-basal ganglia loops at rest, as well as further modulations in the cortico-cerebellar motor system during voluntary movement. We propose that deep brain stimulation has both behaviour-independent effects on basal ganglia connectivity, as well as behaviour-dependent modulatory effects.
Collapse
Affiliation(s)
- Joshua Kahan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Laura Mancini
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, WC1N 3BG, UK.,Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Guillaume Flandin
- The Wellcome Centre for Human Neuroimaging, UCL, London, WC1N 3AR, UK
| | - Mark White
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, WC1N 3BG, UK.,Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Anastasia Papadaki
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, WC1N 3BG, UK.,Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - John Thornton
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, WC1N 3BG, UK.,Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Tarek Yousry
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, WC1N 3BG, UK.,Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Marwan Hariz
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL, London, WC1N 3AR, UK
| | - Tom Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
162
|
Hyperpolarization of the subthalamic nucleus alleviates hyperkinetic movement disorders. Sci Rep 2020; 10:8278. [PMID: 32427942 PMCID: PMC7237462 DOI: 10.1038/s41598-020-65211-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/20/2020] [Indexed: 11/08/2022] Open
Abstract
Modulation of subthalamic nucleus (STN) firing patterns with injections of depolarizing currents into the STN is an important advance for the treatment of hypokinetic movement disorders, especially Parkinson’s disease (PD). Chorea, ballism and dystonia are prototypical examples of hyperkinetic movement disorders. In our previous study, normal rats without nigro-striatal lesion were rendered hypokinetic with hyperpolarizing currents injected into the STN. Therefore, modulation of the firing pattern by injection of a hyperpolarizing current into the STN could be an effective treatment for hyperkinetic movement disorders. We investigated the effect of injecting a hyperpolarizing current into the STNs of two different types of hyperkinetic animal models and a patient with an otherwise uncontrollable hyperkinetic disorder. The two animal models included levodopa-induced hyperkinetic movement in parkinsonian rats (L-DOPA-induced dyskinesia model) and hyperkinesia induced by an intrastriatal injection of 3-nitropropionic acid (Huntington disease model), covering neurodegeneration-related as well as neurotoxin-induced derangement in the cortico-subcortical re-entrant loops. Delivering hyperpolarizing currents into the STN readily alleviated the hyperkinetic behaviors in the two animal models and in the clinical case, with an evident increase in subthalamic burst discharges in electrophysiological recordings. Application of a hyperpolarizing current into the STN via a Deep brain stimulation (DBS) electrode could be an effective general therapy for a wide spectrum of hyperkinetic movement disorders.
Collapse
|
163
|
Milosevic L, Scherer M, Cebi I, Guggenberger R, Machetanz K, Naros G, Weiss D, Gharabaghi A. Online Mapping With the Deep Brain Stimulation Lead: A Novel Targeting Tool in Parkinson's Disease. Mov Disord 2020; 35:1574-1586. [PMID: 32424887 DOI: 10.1002/mds.28093] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Beta-frequency oscillations (13-30 Hz) are a subthalamic hallmark in patients with Parkinson's disease, and there is increased interest in their utility as an intraoperative marker. OBJECTIVES The objectives of this study were to assess whether beta activity measured directly from macrocontacts of deep brain stimulation leads could be used (a) as an intraoperative electrophysiological approach for guiding lead placements and (b) for physiologically informed stimulation delivery. METHODS Every millimeter along the surgical trajectory, local field-potential data were collected from each macrocontact, and power spectral densities were calculated and visualized (n = 39 patients). This was done for online intraoperative functional mapping and post hoc statistical analyses using 2 methods: generating distributions of spectral activity along surgical trajectories and direct delineation (presence versus lack) of beta peaks. In a subset of patients, this approach was corroborated by microelectrode recordings. Furthermore, the match rate between beta peaks at the final target position and the clinically determined best stimulation site were assessed. RESULTS Subthalamic recording sites were delineated by both methods of reconstructing functional topographies of spectral activity along surgical trajectories at the group level (P < 0.0001). Beta peaks were detected when any portion of the 1.5 mm macrocontact was within the microelectrode-defined subthalamic border. The highest beta peak at the final implantation site corresponded to the site of active stimulation in 73.3% of hemispheres (P < 0.0001). In 93.3% of hemispheres, active stimulation corresponded to the first-highest or second-highest beta peak. CONCLUSIONS Online measures of beta activity with the deep brain stimulation macroelectrode can be used to inform surgical lead placement and contribute to optimization of stimulation programming procedures. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Luka Milosevic
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Tübingen NeuroCampus, University of Tübingen, Tübingen, Germany
| | - Maximilian Scherer
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Tübingen NeuroCampus, University of Tübingen, Tübingen, Germany
| | - Idil Cebi
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Tübingen NeuroCampus, University of Tübingen, Tübingen, Germany.,Centre for Neurology, Department for Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Robert Guggenberger
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Tübingen NeuroCampus, University of Tübingen, Tübingen, Germany
| | - Kathrin Machetanz
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Tübingen NeuroCampus, University of Tübingen, Tübingen, Germany
| | - Georgios Naros
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Tübingen NeuroCampus, University of Tübingen, Tübingen, Germany
| | - Daniel Weiss
- Centre for Neurology, Department for Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Tübingen NeuroCampus, University of Tübingen, Tübingen, Germany
| |
Collapse
|
164
|
Deuschl G, Follett KA, Luo P, Rau J, Weaver FM, Paschen S, Steigerwald F, Tonder L, Stoker V, Reda DJ. Comparing two randomized deep brain stimulation trials for Parkinson's disease. J Neurosurg 2020; 132:1376-1384. [PMID: 30952118 DOI: 10.3171/2018.12.jns182042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/18/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Several randomized studies have compared the effect of deep brain stimulation (DBS) of the subthalamic nucleus with the best medical treatment in large groups of patients. Important outcome measures differ between studies. Two such major studies, the life-quality study of the German Competence Network for Parkinson's disease (LQ study) and the US Veterans Affairs/National Institute of Neurological Disorders and Stroke trial (VA/NINDS trial), were compared here in order to understand their differences in outcomes. METHODS Unless otherwise noted, analyses were based on those subjects in each study who received a DBS implant (LQ study 76 patients, VA/NINDS trial 140 patients) and who had data for the measurement under consideration (i.e., no imputations for missing data), referred to hereafter as the "as-treated completers" (LQ 69 patients, VA/NINDS 125 patients). Data were prepared and analyzed by biostatisticians at the US Department of Veterans Affairs Cooperative Studies Program Coordinating Center, the Coordinating Center for Clinical Trials Marburg, and Medtronic, under the direction of two authors (G.D. and K.A.F.). Data were extracted from the respective databases into SAS data sets and analyzed using SAS software. Analyses were based on the 6-month follow-up data from both studies because this was the endpoint for the LQ study. RESULTS Pre-DBS baseline demographics differed significantly between the studies, including greater levodopa responsiveness (LDR) in the LQ study population than in the VA/NINDS group. After DBS, LQ subjects demonstrated greater improvement in motor function (Unified Parkinson's Disease Rating Scale, Motor Examination [UPDRS-III]), activities of daily living (ADLs), and complications of therapy. Medication reduction and improvements in life quality other than ADLs were not significantly different between LQ and VA/NINDS subjects. When the two populations were compared according to pre-DBS LDR, the "full responders" to levodopa (≥ 50% improvement on UPDRS-III with medication) in the two studies showed no significant difference in motor improvement with DBS (LQ 18.5 ± 12.0-point improvement on UPDRS-III vs VA/NINDS 17.7 ± 15.6-point improvement, p = 0.755). Among levodopa full responders, ADLs improved slightly more in the LQ group, but scores on other UPDRS subscales and the Parkinson's Disease Questionnaire-39 were not significantly different between the two studies. CONCLUSIONS This comparison suggests that patient selection criteria, especially preoperative LDR, are the most important source of differences in motor outcomes and quality of life between the two studies.
Collapse
Affiliation(s)
- Günther Deuschl
- 1Department of Neurology, Universitätsklinikum Schleswig-Holstein, Kiel Campus, Christian-Albrechts-University Kiel, Germany
| | - Kenneth A Follett
- 2Division of Neurosurgery, University of Nebraska Medical Center
- 3VA Medical Center, Omaha, Nebraska
| | - Ping Luo
- 4Department of Veterans Affairs Cooperative Studies Program Coordinating Center, Edward Hines Jr. VA Hospital, Hines, Illinois
| | - Joern Rau
- 5The Coordinating Center for Clinical Trials, Philipps University, Marburg, Germany
| | - Frances M Weaver
- 6Center of Innovation for Complex Chronic Health Care, Edward Hines Jr. VA Hospital, Hines, Illinois
| | - Steffen Paschen
- 1Department of Neurology, Universitätsklinikum Schleswig-Holstein, Kiel Campus, Christian-Albrechts-University Kiel, Germany
| | - Frank Steigerwald
- 7Department of Neurology, University Hospital and Julius-Maximilian-University, Wuerzburg, Germany; and
| | | | - Valerie Stoker
- 7Department of Neurology, University Hospital and Julius-Maximilian-University, Wuerzburg, Germany; and
| | - Domenic J Reda
- 4Department of Veterans Affairs Cooperative Studies Program Coordinating Center, Edward Hines Jr. VA Hospital, Hines, Illinois
| |
Collapse
|
165
|
Milosevic L, De Vloo P, Gramer R, Kalia SK, Fasano A, Popovic MR, Hutchison WD. Neuronal Activity and Synaptic Plasticity in a Reimplanted STN-DBS Patient with Parkinson's Disease: Recordings from Two Surgeries. Stereotact Funct Neurosurg 2020; 98:206-212. [PMID: 32294659 DOI: 10.1159/000505705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 12/31/2019] [Indexed: 11/19/2022]
Abstract
The authors report the case of an elderly male in his 60s who, after 5 months of efficacious treatment with chronic deep brain stimulation of the subthalamic nucleus (STN-DBS), developed a hardware-related erosion necessitating removal of the complete DBS system. One and a half years following the first implantation, a new STN-DBS system was implanted along an immediately adjacent trajectory, and reproduction of clinical efficacy was reported. Additionally, 2 microstimulation protocols were compared between the 2 surgeries, i.e., one to assess the stimulation frequency response of STN neurons and another to assess inhibitory synaptic plasticity in the substantia nigra pars reticulata (SNr). The spontaneous neuronal firing rates of STN neurons in each hemisphere were also compared between the 2 surgeries. The results suggest that the frequency-sensitivity of STN neurons may have been reduced (i.e., more resistant to neuronal suppression), while the spontaneous baseline firing rates of STN neurons and the plasticity measured in the SNr remained unchanged (2 factors that may be indicative of neurodegenerative processes).
Collapse
Affiliation(s)
- Luka Milosevic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada.,CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Philippe De Vloo
- Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, Ontario, Canada
| | - Robert Gramer
- Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, Ontario, Canada
| | - Suneil K Kalia
- KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada.,CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Alfonso Fasano
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute - University Health Network, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Center, Toronto Western Hospital - University Health Network, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Milos R Popovic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada.,CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - William D Hutchison
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada, .,Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, Ontario, Canada, .,Department of Surgery, University of Toronto, Toronto, Ontario, Canada, .,Division of Neurology, University of Toronto, Toronto, Ontario, Canada, .,Department of Physiology, University of Toronto, Toronto, Ontario, Canada,
| |
Collapse
|
166
|
Macerollo A, Zrinzo L, Akram H, Foltynie T, Limousin P. Subthalamic nucleus deep brain stimulation for Parkinson’s disease: current trends and future directions. Expert Rev Med Devices 2020; 17:1063-1074. [DOI: 10.1080/17434440.2020.1747433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Antonella Macerollo
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
- School of Psychology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Harith Akram
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Patricia Limousin
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| |
Collapse
|
167
|
Abstract
Deep brain stimulation (DBS) has become an established therapeutic tool for treating patients with Parkinson's disease (PD) who have troublesome motor fluctuations and dyskinesias refractory to best medical therapy. In addition to its proven efficacy in patients with late PD, the EARLYSTIM trial not only demonstrated the efficacy of DBS in patients with early motor complications but also showed that it did not lose its therapeutic efficacy as the years passed by. However, like all other therapies for PD, DBS is not offered to patients either as a cure for this disease nor is it expected to stop the progression of the neurodegenerative process underlying PD; these important issues need to be highlighted to patients who are considering this therapy. This article aims to provide an introduction to residents or trainees starting a career in movement disorders of the technical aspects of this therapy and the evidence base for its use. For the latter objective, PUBMED was searched from 1946 to 2017 combining the search terms "deep brain stimulation" and "Parkinson's disease" looking for studies demonstrating the efficacy of this therapy in PD. Inclusion criteria included studies that involved more than 20 patients with a physician confirmed diagnosis of PD and a follow-up of greater than or equal to at least 12 months. The findings from those studies on motor symptoms, medication requirements, quality of life, and independence in activities of daily living in PD patients are summarized and presented in tabulated form in this paper at the end.
Collapse
Affiliation(s)
- Naveed Malek
- Department of Neurology, Ipswich Hospital NHS Trust, United Kingdom
| |
Collapse
|
168
|
Szlufik S, Duszynska-Lysak K, Przybyszewski A, Laskowska-Levy I, Drzewinska A, Dutkiewicz J, Mandat T, Habela P, Koziorowski D. The potential neuromodulatory impact of subthalamic nucleus deep brain stimulation on Parkinson's disease progression. J Clin Neurosci 2020; 73:150-154. [PMID: 32001113 DOI: 10.1016/j.jocn.2019.12.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022]
Abstract
INTRODUCTION STN-DBS has been claimed to change progressionsymptomsin animal models of PD, but information is lacking about the possible neuromodulatory role of STN-DBS in humans. The aim of this prospective controlled study was to evaluate the long-term impact of STN-DBS on motor disabilities and cognitive impairment in PD patients in comparison to Best-Medical-Therapy (BMT) and Long-term-Post-Operative (POP) groups. MATERIAL AND METHODS Patients were divided into 3 groups: the BMT-group consisted of 20 patients treated only with pharmacotherapy, the DBS-group consisted of 20 PD patients who underwent bilateral STN-DBS (examined pre- and postoperatively) and the POP-group consisted of 14 long-term postoperative patients in median 30 month-time after DBS. UPDRS III scale was measured during 3 visits in 9 ± 2 months periods (V1, V2, V3) in total-OFF phase. Cognitive assessment was performed during each visit in total-ON phase. RESULTS The comparable UPDRS III OFF gain was observed in both BMT-group and POP-group evaluations (p < 0.05). UPDRS III OFF results in DBS-group revealed significant UPDRS III OFF increase in ΔV2-V1 assessment (p < 0.05) with no significant UPDRS III OFF alteration in ΔV3-V2 DBS-group evaluation (p > 0.05). Cognitive assessment revealed significant alterations between DBS-group and BMT-group in working memory, executive functions and learning abilities (p < 0.05). CONCLUSIONS The impact of STN-DBS on UPDRS III OFF score and cognitive alterations suggest its neuromodulatory role, mainly during the first 9-18 months after surgery.
Collapse
Affiliation(s)
- Stanislaw Szlufik
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Poland.
| | | | - Andrzej Przybyszewski
- Faculty of Information Technology, Polish Japanese Academy of Information Technology, Poland
| | - Ilona Laskowska-Levy
- Music Performance and Brain Laboratory, Department of Cognitive Psychology, University of Economics and Human Sciences, Warsaw, Poland; Psychotherapy Center, XIIIth Daily Department of Neurotic Disorders, Nowowiejski Hospital, Warsaw, Poland
| | - Agnieszka Drzewinska
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Poland
| | - Justyna Dutkiewicz
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Poland
| | - Tomasz Mandat
- Department of Neurosurgery, Maria Sklodowska Curie Memorial Oncology Center, Warsaw, Poland
| | - Piotr Habela
- Faculty of Information Technology, Polish Japanese Academy of Information Technology, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Poland
| |
Collapse
|
169
|
Harmsen IE, Elias GJ, Beyn ME, Boutet A, Pancholi A, Germann J, Mansouri A, Lozano CS, Lozano AM. Clinical trials for deep brain stimulation: Current state of affairs. Brain Stimul 2020; 13:378-385. [DOI: 10.1016/j.brs.2019.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/07/2019] [Accepted: 11/17/2019] [Indexed: 12/20/2022] Open
|
170
|
In vivo validation of a new portable stimulator for chronic deep brain stimulation in freely moving rats. J Neurosci Methods 2020; 333:108577. [PMID: 31899208 DOI: 10.1016/j.jneumeth.2019.108577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is considered as a gold standard therapy for the alleviation of motor symptoms in Parkinson's disease (PD). This success paved the way to its application for other neurological and psychiatric disorders. In this context, we aimed to develop a rodent-specific stimulator with characteristics similar to those used in patients. NEW METHOD We designed a stimulator that can be connected to an electrode container with options for bilateral or unilateral stimulation selection and offers a wide range of frequencies, pulse widths and intensities, constant current, biphasic current-control and charge balancing. Dedicated software was developed to program these parameters and the device was tested on a bilateral 6-hydroxydopamine (6-OHDA) rat model of PD. RESULTS The equipment was well tolerated by the animals with a good general welfare. STN stimulation (130 Hz frequency, 0.06 ms pulse width, 150 μA average intensity) improved the motor deficits induced by 6-OHDA as it significantly increased the number of movements compared to the values obtained in the same animals without STN stimulation. Furthermore, it restored motor coordination by significantly increasing the time spent on the rotarod bar. CONCLUSION We successfully developed and validated a new portable and programmable stimulator for freely moving rats that delivers a large range of stimulation parameters using bilateral biphasic current-control and charge balancing to maximize tissue safety. This device can be used to test deep brain stimulation in different animal models of human brain diseases.
Collapse
|
171
|
Steinhardt J, Münte TF, Schmid SM, Wilms B, Brüggemann N. A systematic review of body mass gain after deep brain stimulation of the subthalamic nucleus in patients with Parkinson's disease. Obes Rev 2020; 21:e12955. [PMID: 31823457 DOI: 10.1111/obr.12955] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022]
Abstract
This systematic review investigated the effects of deep brain stimulation of the subthalamic nucleus on extent and time course of body mass changes in patients with Parkinson's disease. A computerized search identified relevant articles using a priori defined inclusion and exclusion criteria. A descriptive analysis was calculated for the main outcome parameters body mass and BMI. Thirty-eight out of 206 studies fulfilled the inclusion criteria (979 patients aged 59.0±7.5 years). Considering the longest follow-up time for each study, body mass and BMI showed a mean increase across studies of +5.71kg (p < .0001; d = 0.64) and +1.8kg/m2 (p < .0001; d = 1.61). The time course of body mass gain revealed a continuous increase ranging from +3.25kg (d = 0.69) at 3 months, +3.88kg (d = 0.21) at 6 months, +6.35kg (d = 0.72) at 12 months, and +6.11kg (d = 1.02) greater than 12 months. Changes in BMI were associated with changes in disease severity (r = 0.502, p = .010) and pharmacological treatment (r = 0.440, p = .0231). Data suggest that body mass gain is one of the most common side effects of deep brain stimulation going beyond normalization of preoperative weight loss. Considering the negative health implications of overweight, we recommend the development of tailored therapies to prevent overweight and associated metabolic disorders following this treatment.
Collapse
Affiliation(s)
- Julia Steinhardt
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Department of Internal Medicine, University of Lübeck, Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Sebastian M Schmid
- Institute of Psychology II, University of Lübeck, Lübeck, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Britta Wilms
- Institute of Psychology II, University of Lübeck, Lübeck, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
172
|
The effects of chronic subthalamic stimulation on nonmotor symptoms in advanced Parkinson's disease, revealed by an online questionnaire program. Acta Neurochir (Wien) 2020; 162:247-255. [PMID: 31897728 DOI: 10.1007/s00701-019-04182-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND This study was designed to detect and assess the frequency and severity of nonmotor symptoms (NMSs) in advanced Parkinson's disease (PD) and to investigate the effects of subthalamic nucleus deep brain stimulation (STN-DBS) on NMSs. METHODS We developed an online PC-based questionnaire program to assess NMSs in PD. Twenty-six PD patients who underwent bilateral STN-DBS were assessed. The NMS questionnaire consisted of 54 NMSs in three categories, based on Witjas et al. (2002). For each NMS, the patients were asked whether or not it was present, whether or not the fluctuating manifestations correlated with the timing of levodopa-induced motor fluctuations, and how severe the NMS was. Patients were assessed by this system before surgery and at the follow-up visit, 3 to 6 months after surgery. At the postoperative assessment, patients were also assessed on preoperative NMSs using recall. RESULTS The most frequent preoperative NMSs were constipation and visual disorders, while the most frequent postoperative NMSs were difficulty in memorizing and pollakiuria. The ranking of most frequent NMSs changed from before to after surgery. NMSs of drenching sweats, dysphagia, and constipation were significantly ameliorated, while NMSs of dyspnea and slowness of thinking were significantly deteriorated after surgery. The preoperative assessment by postoperative recall gave very different results from that of the preoperative assessment. CONCLUSION An online questionnaire system to assess NMSs in patients with advanced PD suggested that STN-DBS might influence the frequencies of some kinds of NMSs.
Collapse
|
173
|
Simmnacher K, Lanfer J, Rizo T, Kaindl J, Winner B. Modeling Cell-Cell Interactions in Parkinson's Disease Using Human Stem Cell-Based Models. Front Cell Neurosci 2020; 13:571. [PMID: 32009903 PMCID: PMC6978672 DOI: 10.3389/fncel.2019.00571] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022] Open
Abstract
Parkinson’s disease (PD) is the most frequently occurring movement disorder, with an increasing incidence due to an aging population. For many years, the post-mortem brain was regarded as the gold standard for the analysis of the human pathology of this disease. However, modern stem cell technologies, including the analysis of patient-specific neurons and glial cells, have opened up new avenues for dissecting the pathologic mechanisms of PD. Most data on morphological changes, such as cell death or changes in neurite complexity, or functional deficits were acquired in 2D and few in 3D models. This review will examine the prerequisites for human disease modeling in PD, covering the generation of midbrain neurons, 3D organoid midbrain models, the selection of controls including genetically engineered lines, and the study of cell-cell interactions. We will present major disease phenotypes in human in vitro models of PD, focusing on those phenotypes that have been detected in genetic and sporadic PD models. An additional point covered in this review will be the use of induced pluripotent stem cell (iPSC)-derived technologies to model cell-cell interactions in PD.
Collapse
Affiliation(s)
- Katrin Simmnacher
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jonas Lanfer
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tania Rizo
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johanna Kaindl
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
174
|
Beggio G, Raneri F, Rustemi O, Scerrati A, Zambon G, Piacentino M. Techniques for pneumocephalus and brain shift reduction in DBS surgery: a review of the literature. Neurosurg Rev 2020; 43:95-99. [PMID: 31897886 DOI: 10.1007/s10143-019-01220-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023]
Abstract
Deep brain stimulation has become an established therapeutic choice to manage the symptoms of medically refractory Parkinson's disease. Its efficacy is highly dependent on the accuracy of electrodes' positioning in the correct anatomical target. During DBS procedure, the opening of the dura mater induces the displacement of neural structures. This effect mainly depends on the loss of the physiological negative intracranial pressure, air inflow, and loss of cerebrospinal fluid. Several studies concentrated on correcting surgical techniques for DBS electrodes' positioning in order to reduce pneumocephalus which may result in therapeutic failure. The authors focused in particular on reducing the brain air window and maintaining the pressure gradient between intra- and extracranial compartments. A significant reduction of pneumocephalus and brain shift was obtained by excluding the opening of the subarachnoid space, by covering the dura mater opening with tissue sealant and by reducing the intracranial pressure in general anesthesia. Smaller burr hole diameters were not statistically relevant for reducing air inflow and displacement of anatomical targets. The review of the literature showed that conserving a physiological intra-extracranial pressure gradient plays a fundamental role in avoiding pneumocephalus and consequent displacement of brain structures, which improves surgical accuracy and DBS long-term results.
Collapse
Affiliation(s)
- Giacomo Beggio
- Department of Neurosurgery, San Bortolo Hospital AULSS 8 Berica, Viale Rodolfi, 37 36100, Vicenza, VI, Italy.
| | - Fabio Raneri
- Department of Neurosurgery, San Bortolo Hospital AULSS 8 Berica, Viale Rodolfi, 37 36100, Vicenza, VI, Italy
| | - Oriela Rustemi
- Department of Neurosurgery, San Bortolo Hospital AULSS 8 Berica, Viale Rodolfi, 37 36100, Vicenza, VI, Italy
| | - Alba Scerrati
- Department of Neurosurgery, San Bortolo Hospital AULSS 8 Berica, Viale Rodolfi, 37 36100, Vicenza, VI, Italy
| | - Giampaolo Zambon
- Department of Neurosurgery, San Bortolo Hospital AULSS 8 Berica, Viale Rodolfi, 37 36100, Vicenza, VI, Italy
| | - Massimo Piacentino
- Department of Neurosurgery, San Bortolo Hospital AULSS 8 Berica, Viale Rodolfi, 37 36100, Vicenza, VI, Italy
| |
Collapse
|
175
|
Dimov A, Patel W, Yao Y, Wang Y, O'Halloran R, Kopell BH. Iron concentration linked to structural connectivity in the subthalamic nucleus: implications for deep brain stimulation. J Neurosurg 2020; 132:197-204. [PMID: 30660115 DOI: 10.3171/2018.8.jns18531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/31/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the relationship between iron and white matter connectivity in the subthalamic nucleus (STN) in patients undergoing deep brain stimulation (DBS) of the STN for treatment of Parkinson's disease. METHODS Nine Parkinson's disease patients underwent preoperative 3T MRI imaging which included acquisition of T1-weighted anatomical images along with diffusion tensor imaging (DTI) and quantitative susceptibility mapping (QSM). MR tractography was performed for the seed voxels located within the STN, and the correlations between normalized QSM values and the STN's connectivity to a set of a priori chosen regions of interest were assessed. RESULTS A strong negative correlation was found between STN connectivity and QSM intensity for the thalamus, premotor, motor, and sensory regions, while a strong positive correlation was found for frontal, putamen, and brain stem areas. CONCLUSIONS Quantitative susceptibility mapping not only accurately delineates the STN borders but is also able to provide functional information about the STN functional subdivisions. The observed iron-to-connectivity correlation patterns may aid in planning DBS surgery to avoid unwanted side effects associated with DBS.
Collapse
Affiliation(s)
- Alexey Dimov
- 1Weill Medical College of Cornell University, New York
- 2Meinig School of Biomedical Engineering, Cornell University, Ithaca
| | - Wahaj Patel
- 3Department of Radiology, Icahn School of Medicine at Mount Sinai, New York
- 4The City College of the City University of New York, New York
| | - Yihao Yao
- 5Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- 1Weill Medical College of Cornell University, New York
- 2Meinig School of Biomedical Engineering, Cornell University, Ithaca
| | - Rafael O'Halloran
- 3Department of Radiology, Icahn School of Medicine at Mount Sinai, New York
- 6Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York; and
| | - Brian H Kopell
- 7Departments of Neurosurgery, Neurology, Psychiatry, and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
176
|
|
177
|
Serranová T, Sieger T, Růžička F, Bakštein E, Dušek P, Vostatek P, Novák D, Růžička E, Urgošík D, Jech R. Topography of emotional valence and arousal within the motor part of the subthalamic nucleus in Parkinson's disease. Sci Rep 2019; 9:19924. [PMID: 31882633 PMCID: PMC6934686 DOI: 10.1038/s41598-019-56260-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 12/02/2019] [Indexed: 01/24/2023] Open
Abstract
Clinical motor and non-motor effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson's disease (PD) seem to depend on the stimulation site within the STN. We analysed the effects of the position of the stimulation electrode within the motor STN on subjective emotional experience, expressed as emotional valence and arousal ratings to pictures representing primary rewards and aversive fearful stimuli in 20 PD patients. Patients' ratings from both aversive and erotic stimuli matched the mean ratings from a group of 20 control subjects at similar position within the STN. Patients with electrodes located more posteriorly reported both valence and arousal ratings from both the rewarding and aversive pictures as more extreme. Moreover, posterior electrode positions were associated with a higher occurrence of depression at a long-term follow-up. This brain-behavior relationship suggests a complex emotion topography in the motor part of the STN. Both valence and arousal representations overlapped and were uniformly arranged anterior-posteriorly in a gradient-like manner, suggesting a specific spatial organization needed for the coding of the motivational salience of the stimuli. This finding is relevant for our understanding of neuropsychiatric side effects in STN DBS and potentially for optimal electrode placement.
Collapse
Affiliation(s)
- Tereza Serranová
- Department of Neurology and Center of Clinical Neuroscience, Charles University, 1st Faculty of Medicine and General University Hospital, Kateřinská 30, 128 08, Prague, Czech Republic.
| | - Tomáš Sieger
- Department of Neurology and Center of Clinical Neuroscience, Charles University, 1st Faculty of Medicine and General University Hospital, Kateřinská 30, 128 08, Prague, Czech Republic.,Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27, Prague, Czech Republic
| | - Filip Růžička
- Department of Neurology and Center of Clinical Neuroscience, Charles University, 1st Faculty of Medicine and General University Hospital, Kateřinská 30, 128 08, Prague, Czech Republic.,Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Roentgenova 2, 150 30, Prague, Czech Republic
| | - Eduard Bakštein
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27, Prague, Czech Republic.,National Institute of Mental Health, Klecany, Topolová 748, 250 67, Czech Republic
| | - Petr Dušek
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27, Prague, Czech Republic
| | - Pavel Vostatek
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27, Prague, Czech Republic
| | - Daniel Novák
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology and Center of Clinical Neuroscience, Charles University, 1st Faculty of Medicine and General University Hospital, Kateřinská 30, 128 08, Prague, Czech Republic
| | - Dušan Urgošík
- Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Roentgenova 2, 150 30, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, Charles University, 1st Faculty of Medicine and General University Hospital, Kateřinská 30, 128 08, Prague, Czech Republic.,Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Roentgenova 2, 150 30, Prague, Czech Republic
| |
Collapse
|
178
|
The anatomo-functional organization of the hyperdirect cortical pathway to the subthalamic area using in vivo structural connectivity imaging in humans. Brain Struct Funct 2019; 225:551-565. [DOI: 10.1007/s00429-019-02012-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
|
179
|
Wagenbreth C, Kuehne M, Heinze HJ, Zaehle T. Deep Brain Stimulation of the Subthalamic Nucleus Influences Facial Emotion Recognition in Patients With Parkinson's Disease: A Review. Front Psychol 2019; 10:2638. [PMID: 31849760 PMCID: PMC6901782 DOI: 10.3389/fpsyg.2019.02638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor symptoms following dopaminergic depletion in the substantia nigra. Besides motor impairments, however, several non-motor detriments can have the potential to considerably impact subjectively perceived quality of life in patients. Particularly emotion recognition of facial expressions has been shown to be affected in PD, and especially the perception of negative emotions like fear, anger, or disgust is impaired. While emotion processing generally refers to automatic implicit as well as conscious explicit processing, the focus of most previous studies in PD was on explicit recognition of emotions only, while largely ignoring implicit processing deficits. Deep brain stimulation of the subthalamic nucleus (STN-DBS) is widely accepted as a therapeutic measure in the treatment of PD and has been shown to advantageously influence motor problems. Among various concomitant non-motor effects of STN-DBS, modulation of facial emotion recognition under subthalamic stimulation has been investigated in previous studies with rather heterogeneous results. Although there seems to be a consensus regarding the processing of disgust, which significantly deteriorates under STN stimulation, findings concerning emotions like fear or happiness report heterogeneous data and seem to depend on various experimental settings and measurements. In the present review, we summarized previous investigations focusing on STN-DBS influence on recognition of facial emotional expressions in patients suffering from PD. In a first step, we provide a synopsis of disturbances and problems in facial emotion processing observed in patients with PD. Second, we present findings of STN-DBS influence on facial emotion recognition and especially highlight different impacts of stimulation on implicit and explicit emotional processing.
Collapse
Affiliation(s)
- Caroline Wagenbreth
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Maria Kuehne
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
180
|
Lyons MK, Neal MT, Patel NP. Intraoperative High Impedance Levels During Placement of Deep Brain Stimulating Electrode. Oper Neurosurg (Hagerstown) 2019; 17:E264-E266. [PMID: 30860268 DOI: 10.1093/ons/opz035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/12/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND AND IMPORTANCE Deep brain stimulation (DBS) is a well-established treatment for medically refractory Parkinson's disease (PD), essential tremor (ET), and dystonia. The field of DBS is expanding and techniques are under investigation for the treatment of several neurological disorders. A critical component of the success of these procedures depends significantly on the reliability and durability of devices implanted. Immediate feedback during surgery often gives the surgeon and patient a sense of confidence of long term success. When impedances are found to be elevated during the implantation of the DBS leads, appropriate trouble shooting measures are critical. CLINICAL PRESENTATION We present a 73-yr-old male undergoing awake subthalamic DBS with microelectrode recordings for severe PD. Once the optimal trajectory and depth were ascertained, the permanent DBS electrode was placed. High impedances were recorded. Troubleshooting procedures were performed and were all negative as to the cause of the values. Correct impedance levels of the DBS electrode was confirmed with extracranial testing, but continued high values were found again with intracranial positioning of the electrode. A postoperative computerized tomography (CT) scan confirmed intracranial air surrounding all of the contacts. The patient went on to outpatient programming with excellent clinical results. CONCLUSION The presence of pneumocephalus surrounding the DBS lead contacts at the target nucleus may have accounted for the intraoperative impedance findings. When all troubleshooting checks have not identified an explanation for the high impedances, intraoperative imaging may demonstrate pneumocephalus around the lead contacts, which should resolve and impedances return to normal values.
Collapse
Affiliation(s)
- Mark K Lyons
- Department of Neurological Surgery Mayo Clinic Arizona Phoenix, Arizona
| | - Matthew T Neal
- Department of Neurological Surgery Mayo Clinic Arizona Phoenix, Arizona
| | - Naresh P Patel
- Department of Neurological Surgery Mayo Clinic Arizona Phoenix, Arizona
| |
Collapse
|
181
|
Kim R, Kim HJ, Shin C, Park H, Kim A, Paek SH, Jeon B. Long-term effect of subthalamic nucleus deep brain stimulation on freezing of gait in Parkinson's disease. J Neurosurg 2019; 131:1797-1804. [PMID: 30641837 DOI: 10.3171/2018.8.jns18350] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/24/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Subthalamic nucleus deep brain stimulation (STN DBS) is effective against freezing of gait (FOG) in Parkinson's disease (PD); however, whether this effect persists over the long term is debated. The aim of the current study was to investigate the long-term effect of STN DBS on FOG in patients with PD. METHODS Data on 52 cases in which PD patients received bilateral STN DBS were obtained from a prospective registry. The authors blindly analyzed FOG incidence and its severity from the videotapes of a 5-m walking task at the baseline and at the 1-, 2-, and 5- or 7-year follow-up visits. They also compared the axial score from the Unified Parkinson's Disease Rating Scale (UPDRS) part III, UPDRS part II (UPDRS-II) item 14, and the FOG questionnaire (FOG-Q). Postoperatively, video-based FOG analysis and the axial score were evaluated under 4 conditions (off-medication/off-stimulation, off-medication/on-stimulation, on-medication/off-stimulation, and on-medication/on-stimulation), and UPDRS-II item 14 and the FOG-Q score were evaluated under 2 conditions (off-medication/on-stimulation and on-medication/on-stimulation). RESULTS During the off-medication state, the on-stimulation condition improved FOG outcomes, except for video-based FOG severity, up to the last follow-up compared with the baseline. Video-based FOG outcomes and the axial score during the off-medication state were improved with the on-stimulation condition up to the last follow-up compared with the off-stimulation condition. During the on-medication state, the on-stimulation condition did not improve any FOG outcome compared with the baseline; however, it improved video-based FOG outcomes up to the 2-year follow-up and the axial score up to the last follow-up compared with the off-stimulation condition. CONCLUSIONS Our findings suggest that STN DBS has a long-term effect on FOG in the off-medication state. However, STN DBS did not show a long-term effect on FOG in the on-medication state, although it had a short-term effect until the 2-year follow-up.
Collapse
Affiliation(s)
- Ryul Kim
- Departments of1Neurology and
- 2Department of Neurology, Aerospace Medical Center, Republic of Korea Air Force, Cheongju, Chungcheongbuk-do, Korea
| | | | - Chaewon Shin
- 3Department of Neurology, Kyung Hee University Hospital, Seoul; and
| | | | | | - Sun Ha Paek
- 4Neurosurgery, Seoul National University Hospital, College of Medicine
| | | |
Collapse
|
182
|
Brandmeir NJ, Murray A, Cheyuo C, Ferari C, Rezai AR. Deep Brain Stimulation for Multiple Sclerosis Tremor: A Meta-Analysis. Neuromodulation 2019; 23:463-468. [PMID: 31755637 DOI: 10.1111/ner.13063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To examine the effect of deep brain stimulation (DBS) on multiple sclerosis (MS)-tremor, as measured by a normalized scale of tremor severity, with a meta-analysis of the published literature. METHODS Medline and EBSCO Host (January, 1998 to June, 2018) were systematically reviewed with librarian guidance, using the keywords "Deep brain stimulation" and "multiple sclerosis." Bibliographies and experts in the field were also consulted to identify missed articles. All therapeutic studies on DBS for MS-tremor, reported in the English language, within the study period were included. Papers that reported outcomes without a measure of central tendency and/or distribution were excluded. The papers were read in their entirety and graded for risk of bias according to the American Academy of Neurology (AAN) standards. To maximize statistical power, papers using different stimulation targets were grouped together. Outcomes were reported with the Fahn-Tolosa-Marin scale (FTM), the Bain-Finchley scale (CRS) and 3- and 4-point tremor severity scales and normalized with a Hedges g. RESULTS The search produced 13 studies suitable for meta-analysis. The random-effects meta-analysis showed that DBS improved the Hedges standardized mean tremor score by 2.86 (95%CI 2.03-3.70, p < .00001). Heterogeneity was high, with an I2 of 84%, suggesting that random effects model is more appropriate. Adverse event rates varied from 8% to 50%. CONCLUSIONS This meta-analysis provides level III evidence that DBS may improve MS-related tremor as measured by standardized tremor severity scales.
Collapse
Affiliation(s)
- Nicholas J Brandmeir
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia.,Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Ann Murray
- Department of Neurology, West Virginia University, Morgantown, West Virginia.,Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Cletus Cheyuo
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia.,Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Christopher Ferari
- West Virginia School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Ali R Rezai
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia.,Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
183
|
Biophysical reconstruction of the signal conduction underlying short-latency cortical evoked potentials generated by subthalamic deep brain stimulation. Clin Neurophysiol 2019; 131:542-547. [PMID: 31757636 DOI: 10.1016/j.clinph.2019.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/05/2019] [Accepted: 09/10/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Direct activation of the hyperdirect (HD) pathway has been linked to therapeutic benefit from subthalamic deep brain stimulation (DBS) for the treatment of Parkinson's disease (PD). We sought to quantify the axonal conduction biophysics of corticofugal axons directly stimulated by subthalamic DBS and reconcile those findings with short-latency cortical evoked potential (EP) results. METHODS We used a detailed computational model of human subthalamic DBS to quantify axonal activation and conduction. Signal propagation to cortex was evaluated for medium (5.7 µm), large (10.0 µm), and exceptionally large (15.0 µm) diameter corticofugal axons associated with either internal capsule (IC) fibers of passage or the HD pathway. We then compared the modeling results to human cortical EP measurements that have described an exceptionally fast component (EP0) occurring ~1 ms after the stimulus pulse, a fast component (EP1) at ~3 ms, and a slower component (EP2) at ~5 ms. RESULTS Subthalamic stimulation of the HD pathway with large and medium diameter axons propagated action potentials to cortex with timings that coincide with the EP1 and EP2 signals, respectively. Only direct activation of exceptionally large diameter fibers in the IC generated signals that could approach the EP0 timing. However, the action potential biophysics do not generally support the existence of a cortical EP less than 1.5 ms after DBS onset. CONCLUSIONS The EP1 and EP2 signals can be biophysically linked to antidromic activation of the HD pathway. SIGNIFICANCE Theoretical reconstruction of cortical EPs from subthalamic DBS demonstrate a convergence of anatomical, biophysical, and electrophysiological results.
Collapse
|
184
|
Aquino CC, Duffley G, Hedges DM, Vorwerk J, House PA, Ferraz HB, Rolston JD, Butson CR, Schrock LE. Interleaved deep brain stimulation for dyskinesia management in Parkinson's disease. Mov Disord 2019; 34:1722-1727. [PMID: 31483534 PMCID: PMC10957149 DOI: 10.1002/mds.27839] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In patients with Parkinson's disease, stimulation above the subthalamic nucleus (STN) may engage the pallidofugal fibers and directly suppress dyskinesia. OBJECTIVES The objective of this study was to evaluate the effect of interleaving stimulation through a dorsal deep brain stimulation contact above the STN in a cohort of PD patients and to define the volume of tissue activated with antidyskinesia effects. METHODS We analyzed the Core Assessment Program for Surgical Interventional Therapies dyskinesia scale, Unified Parkinson's Disease Rating Scale parts III and IV, and other endpoints in 20 patients with interleaving stimulation for management of dyskinesia. Individual models of volume of tissue activated and heat maps were used to identify stimulation sites with antidyskinesia effects. RESULTS The Core Assessment Program for Surgical Interventional Therapies dyskinesia score in the on medication phase improved 70.9 ± 20.6% from baseline with noninterleaved settings (P < 0.003). With interleaved settings, dyskinesia improved 82.0 ± 27.3% from baseline (P < 0.001) and 61.6 ± 39.3% from the noninterleaved phase (P = 0.006). The heat map showed a concentration of volume of tissue activated dorsally to the STN during the interleaved setting with an antidyskinesia effect. CONCLUSION Interleaved deep brain stimulation using the dorsal contacts can directly suppress dyskinesia, probably because of the involvement of the pallidofugal tract, allowing more conservative medication reduction. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Camila C Aquino
- Sleep and Movement Disorder Division, University of Utah, Salt Lake City, Utah, USA
- Department of Neurology and Neurosurgery, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
- Department of Health, Evidence and Impact, McMaster University, Hamilton, Minnesota, Canada
| | - Gordon Duffley
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA
| | - David M Hedges
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA
| | - Johannes Vorwerk
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA
| | | | - Henrique B Ferraz
- Department of Neurology and Neurosurgery, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - John D Rolston
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Christopher R Butson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
- Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA
| | - Lauren E Schrock
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
185
|
Katlowitz K, Ko M, Mogilner AY, Pourfar M. Effect of deep brain simulation on arm, leg, and chin tremor in Parkinson disease. J Neurosurg 2019; 131:1514-1519. [PMID: 30544332 DOI: 10.3171/2018.7.jns18784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/03/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The efficacy of deep brain stimulation (DBS) of the subthalamic nucleus (STN) in the treatment of Parkinson disease (PD)-related tremor has been well established. However, the relative impact on arm, leg, and chin tremor has been less clearly elucidated. The authors evaluated the distribution of tremors in a PD cohort undergoing STN DBS and sought to evaluate the differential impact of DBS as a function of tremor location. METHODS A retrospective study of patients with PD with tremor who underwent DBS surgery between 2012 and 2016 was performed to evaluate the impact of STN stimulation on overall and regional tremor scores. RESULTS Across 66 patients the authors found an average of 78% overall reduction in tremor after 6 months. In this cohort, the authors found that tremor reduction was somewhat better for arm than for leg tremors, especially in instances of higher preoperative tremor (84% vs 71% reduction, respectively, for initial tremor scores ≥ 2). No significant difference in response was found between patients with medication-responsive versus medication-nonresponsive tremors. CONCLUSIONS The authors found that although DBS improved tremor in all regions, the improvement was not uniform between chin, arm, and leg-even within the same patient. The reasons behind these differing responses are speculative but suggest that STN DBS may more reliably reduce arm tremors than leg tremors.
Collapse
|
186
|
Sultanova SG, Fedorova NV, Bril EV, Gamaleya AA, Tomskiy AA. [Deep brain stimulation effect on postural instability and gait disorders in Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:123-130. [PMID: 31626229 DOI: 10.17116/jnevro2019119091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An effect of deep brain stimulation on postural instability and gait disorders in Parkinson's disease S.G. Sultanova, N.V. Fedorova, E.V. Bril, A.A. Gamaleya, A.A. Tomskiy During the last time, surgical treatment of patients with Parkinson's disease has firmly taken its place in the general algorithm for managing patients with this pathology. Deep brain electrostimulation is the most advanced and promising method, which allows the reduction in the severity of main clinical manifestations of the disease, including axial symptoms. It is noted that certain temporal aspects of parkinsonian gait disorder remain therapeutically resistant. Subthalamic nucleus stimulation was also reported to improve levodopa-responsive freezing of gait. In this review, the authors summarize the effects of deep brain stimulation on gait and postural symptoms.
Collapse
Affiliation(s)
- S G Sultanova
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - N V Fedorova
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - E V Bril
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - A A Gamaleya
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - A A Tomskiy
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| |
Collapse
|
187
|
Krack P, Volkmann J, Tinkhauser G, Deuschl G. Deep Brain Stimulation in Movement Disorders: From Experimental Surgery to Evidence‐Based Therapy. Mov Disord 2019; 34:1795-1810. [DOI: 10.1002/mds.27860] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Paul Krack
- Department of Neurology Bern University Hospital and University of Bern Bern Switzerland
| | - Jens Volkmann
- Department of Neurology University Hospital and Julius‐Maximilian‐University Wuerzburg Germany
| | - Gerd Tinkhauser
- Department of Neurology Bern University Hospital and University of Bern Bern Switzerland
| | - Günther Deuschl
- Department of Neurology University Hospital Schleswig Holstein (UKSH), Kiel Campus; Christian‐Albrechts‐University Kiel Germany
| |
Collapse
|
188
|
Broadfoot CK, Abur D, Hoffmeister JD, Stepp CE, Ciucci MR. Research-based Updates in Swallowing and Communication Dysfunction in Parkinson Disease: Implications for Evaluation and Management. PERSPECTIVES OF THE ASHA SPECIAL INTEREST GROUPS 2019; 4:825-841. [PMID: 32104723 PMCID: PMC7043100 DOI: 10.1044/2019_pers-sig3-2019-0001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Individuals with Parkinson disease (PD) present with complex and variable symptoms, with recent findings suggesting that the etiology of PD extends beyond the involvement of just the basal ganglia. These symptoms include significant impairments in the speech and swallowing domains, which can greatly affect quality of life and therefore require therapeutic attention. This research-based update reviews the neurophysiological basis for swallowing and speech changes in PD, the effectiveness of various types of treatments, and implications for symptom evaluation and management. CONCLUSION The mechanisms responsible for swallowing and speech symptoms in PD remain largely unknown. Dopaminergic medication and deep-brain-stimulation do not provide consistent benefits for these symptoms suggesting a non-dopaminergic network is involved. Importantly, evidence suggests that symptoms of dysphagia and hypokinetic dysarthria may be early indications of PD, so it is critical to investigate the cause of these changes.
Collapse
Affiliation(s)
- C K Broadfoot
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI
| | - D Abur
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA
| | - J D Hoffmeister
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI
| | - C E Stepp
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA
- Department of Biomedical Engineering, Boston University, Boston, MA
- Department of Otolaryngology, Boston University, Boston, MA
| | - M R Ciucci
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI
- Department of Surgery-Division of Otolaryngology Head & Neck Surgery, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
189
|
Anderson DN, Osting B, Vorwerk J, Dorval AD, Butson CR. Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes. J Neural Eng 2019; 15:026005. [PMID: 29235446 DOI: 10.1088/1741-2552/aaa14b] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with increased numbers of smaller electrode contacts, trial-and-error methods of manual DBS programming are becoming too time-consuming for clinical feasibility. We propose an algorithm to automate DBS programming in near real-time for a wide range of DBS lead designs. APPROACH Magnetic resonance imaging and diffusion tensor imaging are used to build finite element models that include anisotropic conductivity. The algorithm maximizes activation of target tissue and utilizes the Hessian matrix of the electric potential to approximate activation of neurons in all directions. We demonstrate our algorithm's ability in an example programming case that targets the subthalamic nucleus (STN) for the treatment of Parkinson's disease for three lead designs: the Medtronic 3389 (four cylindrical contacts), the direct STNAcute (two cylindrical contacts, six directional contacts), and the Medtronic-Sapiens lead (40 directional contacts). MAIN RESULTS The optimization algorithm returns patient-specific contact configurations in near real-time-less than 10 s for even the most complex leads. When the lead was placed centrally in the target STN, the directional leads were able to activate over 50% of the region, whereas the Medtronic 3389 could activate only 40%. When the lead was placed 2 mm lateral to the target, the directional leads performed as well as they did in the central position, but the Medtronic 3389 activated only 2.9% of the STN. SIGNIFICANCE This DBS programming algorithm can be applied to cylindrical electrodes as well as novel directional leads that are too complex with modern technology to be manually programmed. This algorithm may reduce clinical programming time and encourage the use of directional leads, since they activate a larger volume of the target area than cylindrical electrodes in central and off-target lead placements.
Collapse
Affiliation(s)
- Daria Nesterovich Anderson
- Department of Bioengineering, University of Utah, Salt Lake City, UT, United States of America. Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States of America
| | | | | | | | | |
Collapse
|
190
|
Samura K, Miyagi Y, Kawaguchi M, Yoshida F, Okamoto T, Kawashima M. Predictive Factors of Antiparkinsonian Drug Reduction after Subthalamic Stimulation for Parkinson's Disease. Neurol Med Chir (Tokyo) 2019; 59:331-336. [PMID: 31231086 PMCID: PMC6753254 DOI: 10.2176/nmc.oa.2019-0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subthalamic nucleus deep brain stimulation (STN-DBS) improves motor symptoms in individuals with advanced Parkinson’s disease (PD) and enables physicians to reduce doses of antiparkinsonian drugs. We investigated possible predictive factors for the successful reduction of antiparkinsonian drug dosage after STN-DBS. We evaluated 33 PD patients who underwent bilateral STN-DBS. We assessed rates of reduction of the levodopa-equivalent daily dose (LEDD) and levodopa daily dose (LDD) by comparing drug doses before vs. 6-months post-surgery. We used correlation coefficients to measure the strength of the relationships between LEDD and LDD reduction rates and preoperative factors including age, disease duration, preoperative LEDD and LDD, unified Parkinson’s Disease Rating Scale part-II and -III, levodopa response rate, Mini-Mental State Examination score, dyskinesia score, Hamilton Rating Scale for depression, and the number of non-motor symptoms. The average LEDD and LDD reduction rates were 61.0% and 70.4%, respectively. Of the variables assessed, only the number of psychiatric/cognitive symptoms was significantly correlated with the LEDD reduction rate. No other preoperative factors were correlated with the LEDD or LDD reduction rate. A wide range of preoperative psychiatric and cognitive symptoms may predict the successful reduction of antiparkinsonian drugs after STN-DBS.
Collapse
Affiliation(s)
- Kazuhiro Samura
- Department of Neurosurgery, International University of Health and Welfare, School of Medicine
| | - Yasushi Miyagi
- Department of Stereotactic and Functional Neurosurgery, Fukuoka Mirai Hospital
| | - Minako Kawaguchi
- Department of Neurosurgery, Faculty of Medicine, Kyushu University
| | - Fumiaki Yoshida
- Department of Neurosurgery, Faculty of Medicine, Kyushu University.,Department of Anatomy and Physiology, Faculty of Medicine, Saga University
| | | | - Masatou Kawashima
- Department of Neurosurgery, International University of Health and Welfare, School of Medicine
| |
Collapse
|
191
|
Vidyadhara DJ, Lee JE, Chandra SS. Role of the endolysosomal system in Parkinson's disease. J Neurochem 2019; 150:487-506. [PMID: 31287913 PMCID: PMC6707858 DOI: 10.1111/jnc.14820] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders, affecting 1-1.5% of the total population. While progress has been made in understanding the neurodegenerative mechanisms that lead to cell death in late stages of PD, mechanisms for early, causal pathogenic events are still elusive. Recent developments in PD genetics increasingly point at endolysosomal (E-L) system dysfunction as the early pathomechanism and key pathway affected in PD. Clathrin-mediated synaptic endocytosis, an integral part of the neuronal E-L system, is probably the main early target as evident in auxilin, RME-8, and synaptojanin-1 mutations that cause PD. Autophagy, another important pathway in the E-L system, is crucial in maintaining proteostasis and a healthy mitochondrial pool, especially in neurons considering their inability to divide and requirement to function an entire life-time. PINK1 and Parkin mutations severely perturb autophagy of dysfunctional mitochondria (mitophagy), both in the cell body and synaptic terminals of dopaminergic neurons, leading to PD. Endolysosomal sorting and trafficking is also crucial, which is complex in multi-compartmentalized neurons. VPS35 and VPS13C mutations noted in PD target these mechanisms. Mutations in GBA comprise the most common risk factor for PD and initiate pathology by compromising lysosomal function. This is also the case for ATP13A2 mutations. Interestingly, α-synuclein and LRRK2, key proteins involved in PD, function in different steps of the E-L pathway and target their components to induce disease pathogenesis. In this review, we discuss these E-L system genes that are linked to PD and how their dysfunction results in PD pathogenesis. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John E Lee
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sreeganga S Chandra
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
192
|
Cagnan H, Denison T, McIntyre C, Brown P. Emerging technologies for improved deep brain stimulation. Nat Biotechnol 2019; 37:1024-1033. [PMID: 31477926 PMCID: PMC6877347 DOI: 10.1038/s41587-019-0244-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
Deep brain stimulation (DBS) is an effective treatment for common movement disorders and has been used to modulate neural activity through delivery of electrical stimulation to key brain structures. The long-term efficacy of stimulation in treating disorders, such as Parkinson's disease and essential tremor, has encouraged its application to a wide range of neurological and psychiatric conditions. Nevertheless, adoption of DBS remains limited, even in Parkinson's disease. Recent failed clinical trials of DBS in major depression, and modest treatment outcomes in dementia and epilepsy, are spurring further development. These improvements focus on interaction with disease circuits through complementary, spatially and temporally specific approaches. Spatial specificity is promoted by the use of segmented electrodes and field steering, and temporal specificity involves the delivery of patterned stimulation, mostly controlled through disease-related feedback. Underpinning these developments are new insights into brain structure-function relationships and aberrant circuit dynamics, including new methods with which to assess and refine the clinical effects of stimulation.
Collapse
Affiliation(s)
- Hayriye Cagnan
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK.
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Engineering Sciences, University of Oxford, Oxford, UK
| | - Cameron McIntyre
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Peter Brown
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
193
|
Outcomes from deep brain stimulation targeting subthalamic nucleus and caudal zona incerta for Parkinson's disease. NPJ PARKINSONS DISEASE 2019; 5:17. [PMID: 31453317 PMCID: PMC6704060 DOI: 10.1038/s41531-019-0089-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/24/2019] [Indexed: 12/14/2022]
Abstract
Both subthalamic nucleus (STN) and caudal zona incerta (cZI) have been implicated as the optimal locus for deep brain stimulation (DBS) in Parkinson’s disease (PD). We present a retrospective clinico-anatomical analysis of outcomes from DBS targeting both STN and cZI. Forty patients underwent bilateral DBS using an image-verified implantable guide tube/stylette technique. Contacts on the same quadripolar lead were placed in both STN and cZI. After pulse generator programming, contacts yielding the best clinical effect were selected for chronic stimulation. OFF-medication unified PD rating scale (UPDRS) part III scores pre-operatively and ON-stimulation at 1–2 year follow up were compared. Active contacts at follow-up were anatomically localised from peri-operative imaging. Overall, mean UPDRS part III score improvement was 55 ± 9% (95% confidence interval), with improvement in subscores for rigidity (59 ± 13%), bradykinesia (58 ± 13%), tremor (71 ± 24%) and axial features (36 ± 19%). Active contacts were distributed in the following locations: (1) within posterior/dorsal STN (50%); (2) dorsal to STN (24%); (3) in cZI (21%); and (4) lateral to STN (5%). When contacts were grouped by location, no significant differences between groups were seen in baseline or post-operative improvement in contralateral UPDRS part III subscores. We conclude that when both STN and cZI are targeted, active contacts are distributed most commonly within and immediately dorsal to STN. In a subgroup of cases, cZI contacts were selected for chronic stimulation in preference. Dual targeting of STN and cZI is feasible and may provide extra benefit compared with conventional STN DBS is some patients.
Collapse
|
194
|
Stimulation of the Posterior Cingulate Cortex Impairs Episodic Memory Encoding. J Neurosci 2019; 39:7173-7182. [PMID: 31358651 DOI: 10.1523/jneurosci.0698-19.2019] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/29/2019] [Accepted: 07/10/2019] [Indexed: 11/21/2022] Open
Abstract
Neuroimaging experiments implicate the posterior cingulate cortex (PCC) in episodic memory processing, making it a potential target for responsive neuromodulation strategies outside of the hippocampal network. However, causal evidence for the role that PCC plays in memory encoding is lacking. In human female and male participants (N = 17) undergoing seizure mapping, we investigated functional properties of the PCC using deep brain stimulation (DBS) and stereotactic electroencephalography. We used a verbal free recall paradigm in which the PCC was stimulated during presentation of half of the study lists, whereas no stimulation was applied during presentation of the remaining lists. We investigated whether stimulation affected memory and modulated hippocampal activity. Results revealed four main findings. First, stimulation during episodic memory encoding impaired subsequent free recall, predominantly for items presented early in the study lists. Second, PCC stimulation increased hippocampal gamma-band power. Third, stimulation-induced hippocampal gamma power predicted the magnitude of memory impairment. Fourth, functional connectivity between the hippocampus and PCC predicted the strength of the stimulation effect on memory. Our findings offer causal evidence implicating the PCC in episodic memory encoding. Importantly, the results indicate that stimulation targeted outside of the temporal lobe can modulate hippocampal activity and impact behavior. Furthermore, measures of connectivity between brain regions within a functional network can be informative in predicting behavioral effects of stimulation. Our findings have significant implications for developing therapies to treat memory disorders and cognitive impairment using DBS.SIGNIFICANCE STATEMENT Cognitive impairment and memory loss are critical public health challenges. Deep brain stimulation (DBS) is a promising tool for developing strategies to ameliorate memory disorders by targeting brain regions involved in mnemonic processing. Using DBS, our study sheds light on the lesser-known role of the posterior cingulate cortex (PCC) in memory encoding. Stimulating the PCC during encoding impairs subsequent recall memory. The degree of impairment is predicted by stimulation-induced hippocampal gamma oscillations and functional connectivity between PCC and hippocampus. Our findings provide the first causal evidence implicating PCC in memory encoding and highlight the PCC as a favorable target for neuromodulation strategies using a priori connectivity measures to predict stimulation effects. This has significant implications for developing therapies for memory diseases.
Collapse
|
195
|
Kim R, Yoo D, Jung YJ, Lee WW, Ehm G, Yun JY, Kim HJ, Lee JY, Kim JY, Kim HJ, Paek SH, Jeon B. Determinants of Functional Independence or Its Loss following Subthalamic Nucleus Stimulation in Parkinson's Disease. Stereotact Funct Neurosurg 2019; 97:106-112. [PMID: 31266044 DOI: 10.1159/000500277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/10/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study aimed to describe the change in functional status following bilateral subthalamic nucleus stimulation (STN-DBS) in Parkinson's disease (PD) and to identify predictors of postoperative functional dependence. METHODS We included PD patients with bilateral STN-DBS who had complete Schwab & England Activities of Daily Living (S&E ADL) Scale data at baseline and 6 months after surgery from our prospective registry. Functional dependence was defined as an S&E ADL score of less than 80%. All data were collected from the on-medication state and on-stimulation state (after surgery). Logistic regression analyses were performed to determine the factors predictive of functional dependence after surgery. RESULTS A total of 196 patients were included. At baseline, 41 patients were functionally dependent and the other 155 were functionally independent. Among the patients with preoperative dependence, 32 (78%) became functionally independent after surgery, and this conversion was associated with a lower baseline axial score (p = 0.012). Among the patients with preoperative independence, 21 (14%) developed postoperative dependence, and this conversion was associated with a higher baseline axial score (p = 0.013) and its smaller improvement (p < 0.001). Female sex (odds ratio [OR] 3.214; 95% confidence interval [CI] 1.210-8.542; p = 0.019) and a higher baseline axial score (OR 1.184; 95% CI 1.056-1.327; p = 0.004) significantly predicted the risk of postoperative functional dependence. CONCLUSIONS We found that functional status following bilateral STN-DBS is closely related to preoperative axial symptoms. When loss of independence is a potential target for STN-DBS, clinicians should take into consideration the severity of axial impairment before surgery.
Collapse
Affiliation(s)
- Ryul Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dallah Yoo
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Jin Jung
- Department of Neurology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woong-Woo Lee
- Department of Neurology, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Gwanhee Ehm
- Department of Neurology, National Medical Center, Seoul, Republic of Korea
| | - Ji Young Yun
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul National University - Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji-Young Kim
- Department of Neurology, Inje University Seoul Paik Hospital, Seoul, Republic of Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea,
| |
Collapse
|
196
|
Sette A, Seigneuret E, Reymond F, Chabardes S, Castrioto A, Boussat B, Moro E, François P, Fraix V. Battery longevity of neurostimulators in Parkinson disease: A historic cohort study. Brain Stimul 2019; 12:851-857. [DOI: 10.1016/j.brs.2019.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/30/2018] [Accepted: 02/11/2019] [Indexed: 10/27/2022] Open
|
197
|
Boring MJ, Jessen ZF, Wozny TA, Ward MJ, Whiteman AC, Richardson RM, Ghuman AS. Quantitatively validating the efficacy of artifact suppression techniques to study the cortical consequences of deep brain stimulation with magnetoencephalography. Neuroimage 2019; 199:366-374. [PMID: 31154045 DOI: 10.1016/j.neuroimage.2019.05.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 11/17/2022] Open
Abstract
Deep brain stimulation (DBS) is an established and effective treatment for several movement disorders and is being developed to treat a host of neuropsychiatric disorders including epilepsy, chronic pain, obsessive compulsive disorder, and depression. However, the neural mechanisms through which DBS produces therapeutic benefits, and in some cases unwanted side effects, in these disorders are only partially understood. Non-invasive neuroimaging techniques that can assess the neural effects of active stimulation are important for advancing our understanding of the neural basis of DBS therapy. Magnetoencephalography (MEG) is a safe, passive imaging modality with relatively high spatiotemporal resolution, which makes it a potentially powerful method for examining the cortical network effects of DBS. However, the degree to which magnetic artifacts produced by stimulation and the associated hardware can be suppressed from MEG data, and the comparability between signals measured during DBS-on and DBS-off conditions, have not been fully quantified. The present study used machine learning methods in conjunction with a visual perception task, which should be relatively unaffected by DBS, to quantify how well neural data can be salvaged from artifact contamination introduced by DBS and how comparable DBS-on and DBS-off data are after artifact removal. Machine learning also allowed us to determine whether the spatiotemporal pattern of neural activity recorded during stimulation are comparable to those recorded when stimulation is off. The spatiotemporal patterns of visually evoked neural fields could be accurately classified in all 8 patients with DBS implants during both DBS-on and DBS-off conditions and performed comparably across those two conditions. Further, the classification accuracy for classifiers trained on the spatiotemporal patterns evoked during DBS-on trials and applied to DBS-off trials, and vice versa, were similar to that of the classifiers trained and tested on either trial type, demonstrating the comparability of these patterns across conditions. Together, these results demonstrate the ability of MEG preprocessing techniques, like temporal signal space separation, to salvage neural data from recordings contaminated with DBS artifacts and validate MEG as a powerful tool to study the cortical consequences of DBS.
Collapse
Affiliation(s)
- Matthew J Boring
- Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Zachary F Jessen
- Medical Scientist Training Program, Northwestern University, Chicago, IL, USA
| | - Thomas A Wozny
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J Ward
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ashley C Whiteman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - R Mark Richardson
- Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Avniel Singh Ghuman
- Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
198
|
Koeglsperger T, Palleis C, Hell F, Mehrkens JH, Bötzel K. Deep Brain Stimulation Programming for Movement Disorders: Current Concepts and Evidence-Based Strategies. Front Neurol 2019; 10:410. [PMID: 31231293 PMCID: PMC6558426 DOI: 10.3389/fneur.2019.00410] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Deep brain stimulation (DBS) has become the treatment of choice for advanced stages of Parkinson's disease, medically intractable essential tremor, and complicated segmental and generalized dystonia. In addition to accurate electrode placement in the target area, effective programming of DBS devices is considered the most important factor for the individual outcome after DBS. Programming of the implanted pulse generator (IPG) is the only modifiable factor once DBS leads have been implanted and it becomes even more relevant in cases in which the electrodes are located at the border of the intended target structure and when side effects become challenging. At present, adjusting stimulation parameters depends to a large extent on personal experience. Based on a comprehensive literature search, we here summarize previous studies that examined the significance of distinct stimulation strategies for ameliorating disease signs and symptoms. We assess the effect of adjusting the stimulus amplitude (A), frequency (f), and pulse width (pw) on clinical symptoms and examine more recent techniques for modulating neuronal elements by electrical stimulation, such as interleaving (Medtronic®) or directional current steering (Boston Scientific®, Abbott®). We thus provide an evidence-based strategy for achieving the best clinical effect with different disorders and avoiding adverse effects in DBS of the subthalamic nucleus (STN), the ventro-intermedius nucleus (VIM), and the globus pallidus internus (GPi).
Collapse
Affiliation(s)
- Thomas Koeglsperger
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Carla Palleis
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Franz Hell
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jan H Mehrkens
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
199
|
Li GY, Zhuang QX, Zhang XY, Wang JJ, Zhu JN. Ionic Mechanisms Underlying the Excitatory Effect of Orexin on Rat Subthalamic Nucleus Neurons. Front Cell Neurosci 2019; 13:153. [PMID: 31105528 PMCID: PMC6499184 DOI: 10.3389/fncel.2019.00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/08/2019] [Indexed: 11/24/2022] Open
Abstract
Central orexinergic system deficiency results in cataplexy, a motor deficit characterized with a sudden loss of muscle tone, highlighting a direct modulatory role of orexin in motor control. However, the neural mechanisms underlying the regulation of orexin on motor function are still largely unknown. The subthalamic nucleus (STN), the only excitatory structure of the basal ganglia, holds a key position in the basal ganglia circuitry and motor control. Previous study has revealed a wide distribution of orexinergic fibers as well as orexin receptors in the basal ganglia including the STN. Therefore, in the present study, by using whole-cell patch clamp recording and immunostaining techniques, the direct effect of orexin on the STN neurons in brain slices, especially the underlying receptor and ionic mechanisms, were investigated. Our results show that orexin-A elicits an excitatory effect on STN neurons in rats. Tetrodotoxin (TTX) does not block the orexin-induced excitation on STN neurons, suggesting a direct postsynaptic action of the neuropeptide. The orexin-A-induced inward current on STN neurons is mediated by the activation of both OX1 and OX2 receptors. Immunofluorescence result shows that OX1 and OX2 receptors are co-expressed and co-localized in STN neurons. Furthermore, Na+-Ca2+ exchangers (NCXs) and inward rectifier K+ channels co-mediate the excitatory effect of orexin-A on STN neurons. These results demonstrate a dual receptor in conjunction with the downstream ionic mechanisms underlying the excitatory action of orexin on STN neurons, suggesting a potential modulation of the central orexinergic system on basal ganglia circuitry as well as its related motor control and motor diseases.
Collapse
Affiliation(s)
- Guang-Ying Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qian-Xing Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
200
|
Continuous subcutaneous apomorphine infusion in Parkinson's disease: causes of discontinuation and subsequent treatment strategies. Neurol Sci 2019; 40:1917-1923. [PMID: 31111272 DOI: 10.1007/s10072-019-03920-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/02/2019] [Indexed: 11/27/2022]
Abstract
Continuous subcutaneous apomorphine infusion (CSAI) is a well-recognized therapeutic option for the management of motor fluctuations in Parkinson's disease (PD), although clinical experience suggests that most patients discontinue CSAI after a variable amount of time due to several causes and circumstances. The objective of the present study was to evaluate the reasons of CSAI discontinuation and to investigate which treatment was adopted afterwards. Two independent raters retrospectively reviewed the electronic medical record of 114 patients treated with CSAI for at least 6 months. The records were reviewed regarding efficacy, safety, and evolution of CSAI treatment. Most of PD patients on CSAI had a significant improvement in their clinical condition. Lack of improvement of dyskinesia was the most frequent causes of treatment discontinuation. The second reason for CSAI discontinuation was cognitive deterioration. At CSAI discontinuation, younger patients were more likely to undergo deep brain stimulation (DBS), while older patients and patients with cognitive impairment were more likely switched to oral therapy alone (OTA). CSAI is an effective treatment that unfortunately must be discontinued in a great number of patients with advanced PD. As older age is the main limiting factor for accessing second-level therapies at CSAI discontinuation, CSAI treatment should not be postponed to older age. CSAI might be considered a good first-line and fast strategy in patients undergoing rapid deterioration of their quality of life while waiting for DBS or levodopa/carbidopa intestinal gel therapy.
Collapse
|