151
|
Suppression of human immunodeficiency virus type 1 (HIV-1) viremia with reverse transcriptase and integrase inhibitors, CD4+ T-cell recovery, and viral rebound upon interruption of therapy in a new model for HIV treatment in the humanized Rag2-/-{gamma}c-/- mouse. J Virol 2009; 83:8254-8. [PMID: 19494021 DOI: 10.1128/jvi.00580-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A small animal model that reproduces human immunodeficiency virus type 1 (HIV-1) pathogenesis may allow modeling of new therapeutic strategies in ways not approachable in mononuclear cell culture. We find that, as in humans, combination antiretroviral therapy (ART) in humanized (hu-) Rag2(-/-)gamma(c)(-/-) mice allows suppression of viremia below the limits of detection and recovery of CD4(+) cells, while interruption of ART results in viral rebound and renewed loss of CD4(+) T cells. Failure of ART in infected mice is associated with the appearance of drug resistance mutations. The hu-Rag2(-/-)gamma(c)(-/-) mouse may therefore facilitate testing of novel approaches to HIV replication and persistence.
Collapse
|
152
|
Strowig T, Gurer C, Ploss A, Liu YF, Arrey F, Sashihara J, Koo G, Rice CM, Young JW, Chadburn A, Cohen JI, Münz C. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. ACTA ACUST UNITED AC 2009; 206:1423-34. [PMID: 19487422 PMCID: PMC2715061 DOI: 10.1084/jem.20081720] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Many pathogens that cause human disease infect only humans. To identify the mechanisms of immune protection against these pathogens and also to evaluate promising vaccine candidates, a small animal model would be desirable. We demonstrate that primary T cell responses in mice with reconstituted human immune system components control infection with the oncogenic and persistent Epstein-Barr virus (EBV). These cytotoxic and interferon-gamma-producing T cell responses were human leukocyte antigen (HLA) restricted and specific for EBV-derived peptides. In HLA-A2 transgenic animals and similar to human EBV carriers, T cell responses against lytic EBV antigens dominated over recognition of latent EBV antigens. T cell depletion resulted in elevated viral loads and emergence of EBV-associated lymphoproliferative disease. Both loss of CD4(+) and CD8(+) T cells abolished immune control. Therefore, this mouse model recapitulates features of symptomatic primary EBV infection and generates T cell-mediated immune control that resists oncogenic transformation.
Collapse
Affiliation(s)
- Till Strowig
- Laboratory of Viral Immunobiology, Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Von Eije KJ, Berkhout B. RNA-interference-based Gene Therapy Approaches to HIV Type-1 Treatment: Tackling the Hurdles from Bench to Bedside. ACTA ACUST UNITED AC 2009; 19:221-33. [DOI: 10.1177/095632020901900602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA interference (RNAi) is a cellular mechanism that can be induced by small interfering RNAs (siRNAs) to mediate sequence-specific gene silencing by cleavage of the targeted messenger RNA. RNAi can be used as an antiviral approach to silence HIV type-1 (HIV-1) through stable expression of precursors, such as short hairpin RNAs (shRNAs), which are processed into siRNAs that can elicit degradation of HIV-1 RNAs. At the beginning of 2008, the first clinical trial using a lentivirus with an RNA-based gene therapy against HIV-1 was initiated. The antiviral molecules in this gene therapy consist of three RNA effectors, one of which triggers the RNAi pathway. This review article focuses on the basic principles of an RNAi-based gene therapy against HIV-1, including delivery methods, target selection, viral escape possibilities, systems for multiplexing siRNAs to achieve a durable therapy and the in vitro and in vivo test systems to evaluate the efficacy and safety of such a therapy.
Collapse
Affiliation(s)
- Karin J Von Eije
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
154
|
Abstract
BACKGROUND RNA interference (RNAi) can be employed as a potent antiviral mechanism. OBJECTIVE To discuss RNAi approaches to target pathogenic human viruses causing acute or chronic infections, in particular RNAi gene therapy against HIV-1. METHODS A review of relevant literature. RESULTS/CONCLUSIONS The future of antiviral RNAi therapeutics is very promising. RNAi was discovered only a decade ago, and although we are still in the early days, the first clinical trials are already ongoing.
Collapse
Affiliation(s)
- Ben Berkhout
- Academic Medical Center of the University of Amsterdam, Center for Infection and Immunity Amsterdam (CINIMA), Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam, The Netherlands.
| | | |
Collapse
|
155
|
Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol 2009; 83:7305-21. [PMID: 19420076 DOI: 10.1128/jvi.02207-08] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The generation of humanized BLT mice by the cotransplantation of human fetal thymus and liver tissues and CD34(+) fetal liver cells into nonobese diabetic/severe combined immunodeficiency mice allows for the long-term reconstitution of a functional human immune system, with human T cells, B cells, dendritic cells, and monocytes/macrophages repopulating mouse tissues. Here, we show that humanized BLT mice sustained high-level disseminated human immunodeficiency virus (HIV) infection, resulting in CD4(+) T-cell depletion and generalized immune activation. Following infection, HIV-specific humoral responses were present in all mice by 3 months, and HIV-specific CD4(+) and CD8(+) T-cell responses were detected in the majority of mice tested after 9 weeks of infection. Despite robust HIV-specific responses, however, viral loads remained elevated in infected BLT mice, raising the possibility that these responses are dysfunctional. The increased T-cell expression of the negative costimulator PD-1 recently has been postulated to contribute to T-cell dysfunction in chronic HIV infection. As seen in human infection, both CD4(+) and CD8(+) T cells demonstrated increased PD-1 expression in HIV-infected BLT mice, and PD-1 levels in these cells correlated positively with viral load and inversely with CD4(+) cell levels. The ability of humanized BLT mice to generate both cellular and humoral immune responses to HIV will allow the further investigation of human HIV-specific immune responses in vivo and suggests that these mice are able to provide a platform to assess candidate HIV vaccines and other immunotherapeutic strategies.
Collapse
|
156
|
Abstract
FoxP3(+)CD4(+)CD25(+) regulatory T (Treg) cells are implicated in a number of pathologic processes including elevated levels in cancers and infectious diseases, and reduced levels in autoimmune diseases. Treg cells are activated to modulate immune responses to avoid over-reactive immunity. However, conflicting findings are reported regarding relative levels of Treg cells during HIV-1 infection and disease progression. The role of Treg cells in HIV-1 diseases (aberrant immune activation) is poorly understood due to lack of a robust model. We summarize here the regulation and function of Foxp3 in Treg cells and in modulating HIV-1 replication. Based on recent findings from SIV/monkey and HIV/humanized mouse models, a model of the dual role of Treg cells in HIV-1 infection and immuno-pathogenesis is discussed.
Collapse
|
157
|
Abstract
There are few models in which HIV pathogenesis, particularly gut-associated lymphoid tissue CD4(+) T-cell depletion, can be studied and in which potential clinical interventions against HIV disease can be evaluated. HIV cannot be studied in normal mice due to the limited species tropism of the virus. Through the pioneering efforts of many investigators, humanized mice are now routinely used to rapidly advance HIV research. It is important to recognize that not all humanized murine models are equal, and their strengths and weaknesses must be taken into consideration to obtain information that is most relevant to the human condition. This review distinguishes the major humanization protocols and highlights each model's recent contributions to HIV research, including mucosal transmission, gut-associated lymphoid tissue pathogenesis, and the evaluation of novel therapeutic and prevention approaches to potentially treat HIV disease and prevent the further spread of AIDS.
Collapse
|
158
|
Affiliation(s)
- Carlos A Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
159
|
Abstract
Small animal models in which in vivo HIV-1 infection, pathogenesis, and immune responses can be studied would permit both basic research on the biology of the disease, as well as a system to rapidly screen developmental therapeutics and/or vaccines. To date, the most widely-used models have been the severe combined immunodeficient (SCID)-hu (also known as the thy/liv SCID-hu) and the huPBL-SCID mouse models. Recently three new models have emerged, i.e., the intrasplenic huPBL/SPL-SCID model, the NOD/SCID/IL2Rgamma(null) mouse model, and the Rag2(-/-)gamma(c) (-/-) mouse model. Details on the construction, maintenance and HIV-1 infection of these models are discussed.
Collapse
Affiliation(s)
- Aviva Joseph
- Department of Microbiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
160
|
Koo GC, Hasan A, O’Reilly RJ. Use of humanized severe combined immunodeficient mice for human vaccine development. Expert Rev Vaccines 2009; 8:113-20. [PMID: 19093778 PMCID: PMC2677709 DOI: 10.1586/14760584.8.1.113] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The severe combined immunodeficient (SCID) mouse has no adaptive immunity, lacking mature T and B cells in the peripheral blood or the lymphoid organs. It has been used extensively in biomedical research as a valuable translational model for xeno-engraftment of human tissues and cells. This review focuses on the engraftment of human peripheral blood cells and tissues in SCID mice, as well as in the newly established and more permissive SCID mice deficient in the IL-2 receptor gamma-chain. Human immune responses could be elicited and assessed in these humanized SCID mice upon vaccination or sensitization with allogeneic tissues. A translational model is proposed to attain preclinical data for testing human vaccines.
Collapse
Affiliation(s)
- Gloria C Koo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, NY 10021, USA and Lupus Research 3rd Floor, Hospital of Special Surgery, 535 East 70th Street, NY 10021, USA, Tel.: +1 212 774 7307, /
| | - Aisha Hasan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, NY 10021, USA, Tel.: +1 646 888 2116,
| | - Richard J O’Reilly
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, NY 10021, USA, Tel.: +1 212 639 5957,
| |
Collapse
|
161
|
Okada S, Harada H, Ito T, Saito T, Suzu S. Early development of human hematopoietic and acquired immune systems in new born NOD/Scid/Jak3null mice intrahepatic engrafted with cord blood-derived CD34 + cells. Int J Hematol 2008; 88:476-482. [PMID: 19039627 DOI: 10.1007/s12185-008-0215-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 10/28/2008] [Accepted: 11/04/2008] [Indexed: 11/29/2022]
Abstract
An animal model in which the human immune system can be reconstituted is necessary to study acquired immunity in vivo. We report here a novel model, the NOD/SCID/JAK3(null) mouse, for the human immune system's development. Newborn mice transplanted with human cord blood CD34(+) cells intrahepatically, developed human T and B cells, and myeloid and plasmacytoid dendritic cells. The T and B cells had a naïve to memory phenotype, and included plasma cells. The human acquired immune system can be reconstituted from CD34(+) cells in NOD/SCID/JAK3(null) mice. This model is a powerful tool for the study of human immunity.
Collapse
Affiliation(s)
- Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1, Honjo, Kumamoto, 860-0811, Japan.
| | - Hideki Harada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1, Honjo, Kumamoto, 860-0811, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, Yokohama, 230-0045, Japan
| | - Shinya Suzu
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1, Honjo, Kumamoto, 860-0811, Japan
| |
Collapse
|
162
|
Gianinazzi C, Schild M, Wüthrich F, Müller N, Schürch N, Gottstein B. Potentially human pathogenic Acanthamoeba isolated from a heated indoor swimming pool in Switzerland. Exp Parasitol 2008; 121:180-6. [PMID: 19041307 DOI: 10.1016/j.exppara.2008.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 10/31/2008] [Accepted: 11/05/2008] [Indexed: 11/25/2022]
Abstract
Some free-living amoebae, including some species of the genus Acanthamoeba, can cause infections in humans and animals. These organisms are known to cause granulomatous amebic encephalitis (GAE) in predominantly immune-deficient persons. In the present study, we isolated a potentially human pathogenic Acanthamoeba isolate originating from a public heated indoor swimming pool in Switzerland. The amoebae, thermophilically preselected by culture at 37 degrees C, subsequently displayed a high thermotolerance, being able to grow at 42 degrees C, and a marked cytotoxicity, based on a co-culture system using the murine cell line L929. Intranasal infection of Rag2-immunodeficient mice resulted in the death of all animals within 24 days. Histopathology of brains and lungs revealed marked tissue necrosis and hemorrhagic lesions going along with massive proliferation of amoebae. PCR and sequence analysis, based on 18S rDNA, identified the agent as Acanthamoeba lenticulata. In summary, the present study reports on an Acanthamoeba isolate from a heated swimming pool suggestive of being potentially pathogenic to immunocompromised persons.
Collapse
Affiliation(s)
- Christian Gianinazzi
- Institute of Parasitology, University of Bern, Faculty of Veterinary and Medicine, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
163
|
Abstract
Therapeutic options against the human immunodeficiency virus type 1 (HIV-1) continue to expand with the development of new drugs and new therapeutic strategies. Nevertheless, management of HIV-1 infected individuals has become increasingly complex. The emergence of drug-resistant variants, the growing recognition of the long-term toxicity of antiretroviral therapies and the persistence of viral reservoirs justify the continued efforts to develop new anti-HIV-1 strategies. Recent advances regarding the utility of RNA-mediated interference (RNAi) to specifically inhibit HIV-1 replication have opened new possibilities for the development of gene-based therapies against HIV-1 infection. Here, the recent advances in siRNA-based therapies are reviewed.
Collapse
|
164
|
Cocco M, Bellan C, Tussiwand R, Corti D, Traggiai E, Lazzi S, Mannucci S, Bronz L, Palummo N, Ginanneschi C, Tosi P, Lanzavecchia A, Manz MG, Leoncini L. CD34+ cord blood cell-transplanted Rag2-/- gamma(c)-/- mice as a model for Epstein-Barr virus infection. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1369-78. [PMID: 18845836 DOI: 10.2353/ajpath.2008.071186] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies suggest that Epstein-Barr virus (EBV) can infect naïve B cells, driving them to differentiate into resting memory B cells via the germinal center reaction. This hypothesis has been inferred from parallels with the biology of normal B cells but has never been proven experimentally. Rag2(-/-) gamma(c)(-/-) mice that were transplanted with human CD34(+) cord blood cells as newborns were recently shown to develop human B, T, and dendritic cells, constituting lymphoid organs in situ. Here we used this model to better define the strategy of EBV infection of human B cells in vivo and to compare this model system with different conditions of EBV infection in humans. Our results support the model of EBV persistence in vivo in cases that were characterized by follicular hyperplasia and a relatively normal CD4(+) and CD8(+) T-cell distribution. Intriguingly, in cases that were characterized by nodular and diffuse proliferation with a preponderance of CD8(+) T cells, similar to infectious mononucleosis, EBV still infects naïve B cells but also induces clonal expansion and ongoing somatic mutations without germinal center reactions. Our results reveal different strategies of EBV infection in B cells that possibly result from variations in the host immune response. Future experiments might allow understanding of the mechanisms responsible for persistent EBV infection and provide targets for more highly tailored therapeutic interventions.
Collapse
Affiliation(s)
- Mario Cocco
- Department of Human Pathology and Oncology, Division of Pathological Anatomy, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
RAG2-/- gamma(c)-/- mice transplanted with CD34+ cells from human cord blood show low levels of intestinal engraftment and are resistant to rectal transmission of human immunodeficiency virus. J Virol 2008; 82:12145-53. [PMID: 18842716 DOI: 10.1128/jvi.01105-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Rectal transmission is one of the main routes of infection by human immunodeficiency virus type 1 (HIV-1). To efficiently study transmission mechanisms and prevention strategies, a small animal model permissive for rectal transmission of HIV is mandatory. We tested the susceptibility of RAG2(-/-)gamma(c)(-/-) mice transplanted with human cord blood hematopoietic stem cells to rectal infection with HIV. We rectally exposed these humanized mice to cell-free and cell-associated HIV. All mice remained HIV negative as assessed by plasma viral load. The same mice infected intraperitoneally showed high levels of HIV replication. In the gut-associated lymphatic tissue, we found disproportionately smaller numbers of human cells than in other lymphoid organs. This finding may explain the observed resistance to rectal transmission of HIV. To increase the numbers of local HIV target cells and the likelihood of HIV transmission, we treated mice with different proinflammatory stimuli: local application of interleukin-1beta, addition of seminal plasma to the inoculum, or induction of colitis with dextran sodium sulfate. These procedures attracted some human leukocytes, but the transmission rate was still very low. The humanized mice showed low levels of human engraftment in the intestinal tract and seem to be resistant to rectal transmission of HIV, and thus they are an unsuitable model for this application.
Collapse
|
166
|
Jiang Q, Zhang L, Wang R, Jeffrey J, Washburn ML, Brouwer D, Barbour S, Kovalev GI, Unutmaz D, Su L. FoxP3+CD4+ regulatory T cells play an important role in acute HIV-1 infection in humanized Rag2-/-gammaC-/- mice in vivo. Blood 2008; 112:2858-68. [PMID: 18544681 PMCID: PMC2556621 DOI: 10.1182/blood-2008-03-145946] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 05/27/2008] [Indexed: 01/07/2023] Open
Abstract
The role of FoxP3(+)CD4(+) regulatory T (Treg) cells in HIV-1 disease in vivo is poorly understood due to the lack of a robust model. We report here that CD4(+)FoxP3(+) T cells are developed in all lymphoid organs in humanized Rag2(-/-)gammaC(-/-) (DKO-hu HSC) mice and they display both Treg phenotype and Treg function. These FoxP3(+) Treg cells are preferentially infected and depleted by a pathogenic HIV-1 isolate in HIV-infected DKO-hu HSC mice; and depletion of Treg cells is correlated with induction of their apoptosis in vivo. When CD4(+)CD25(+/hi) Treg cells are depleted with the IL-2-toxin fusion protein (denileukin diftitox), HIV-1 infection is significantly impaired. This is demonstrated by reduced levels of productively infected cells in lymphoid organs and lower plasma viremia. Therefore, FoxP3(+) Treg cells are productively infected and play an important role in acute HIV-1 infection in vivo. The DKO-hu HSC mouse will be a valuable model to study human Treg functions and their role in HIV-1 pathogenesis in vivo.
Collapse
Affiliation(s)
- Qi Jiang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Gurer C, Strowig T, Brilot F, Pack M, Trumpfheller C, Arrey F, Park CG, Steinman RM, Münz C. Targeting the nuclear antigen 1 of Epstein-Barr virus to the human endocytic receptor DEC-205 stimulates protective T-cell responses. Blood 2008; 112:1231-9. [PMID: 18519810 PMCID: PMC2515117 DOI: 10.1182/blood-2008-03-148072] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 05/03/2008] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) express many endocytic receptors that deliver antigens for major histocompatibility class (MHC) I and II presentation to CD8(+) and CD4(+) T cells, respectively. Here, we show that targeting Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) to one of them, the human multilectin DEC-205 receptor, in the presence of the DC maturation stimulus poly(I:C), expanded EBNA1-specific CD4(+) and CD8(+) memory T cells, and these lymphocytes could control the outgrowth of autologous EBV-infected B cells in vitro. In addition, using a novel mouse model with reconstituted human immune system components, we demonstrated that vaccination with alphaDEC-205-EBNA1 antibodies primed EBNA1-specific IFN-gamma-secreting T cells and also induced anti-EBNA1 antibodies in a subset of immunized mice. Because EBNA1 is the one EBV antigen that is expressed in all proliferating cells infected with this virus, our data suggest that DEC-205 targeting should be explored as a vaccination approach against symptomatic primary EBV infection and against EBV-associated malignancies.
Collapse
Affiliation(s)
- Cagan Gurer
- Laboratory of Viral Immunobiology, Christopher H Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Boberg A, Bråve A, Johansson S, Wahren B, Hinkula J, Rollman E. Murine models for HIV vaccination and challenge. Expert Rev Vaccines 2008; 7:117-30. [PMID: 18251698 DOI: 10.1586/14760584.7.1.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HIV-1 only infects humans and chimpanzees. SIV or SHIV are, therefore, used as models for HIV in rhesus, cynomologus and pigtail macaques. Since conducting experiments in primate models does not fully mimic infection or vaccination against HIV-1 and is expensive, there is a great need for small-animal models in which it is possible to study HIV-1 infection, immunity and vaccine efficacy. This review summarizes the available murine models for studying HIV-1 infection with an emphasis on our experience of the HIV-1-infected-cell challenge as a model for evaluating candidate HIV-1 vaccines. In the cell-based challenge model, several important factors that, hopefully, can be related to vaccine efficacy in humans were discovered: the efficiency of combining plasmid DNA representing several of the viral genes originating from multiple clades of HIV-1, the importance of adjuvants activating innate and induced immunity and the enhanced HIV eradication by drug-conjugated antibody.
Collapse
Affiliation(s)
- Andreas Boberg
- Swedish Institute for Infectious Disease Control and Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
169
|
Evaluation of safety and efficacy of RNAi against HIV-1 in the human immune system (Rag-2-/-γc-/-) mouse model. Gene Ther 2008; 16:148-53. [DOI: 10.1038/gt.2008.124] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
170
|
Barth H, Robinet E, Liang TJ, Baumert TF. Mouse models for the study of HCV infection and virus-host interactions. J Hepatol 2008; 49:134-42. [PMID: 18457898 PMCID: PMC2529177 DOI: 10.1016/j.jhep.2008.03.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver disease including steatosis, cirrhosis and hepatocellular carcinoma. The development of transgenic mice expressing HCV proteins and the successful repopulation of SCID/Alb-uPA mice with human hepatocytes provides an important tool for unraveling virus-host interactions in vivo. Several of these mouse models exhibit aspects of HCV-related liver disease. Thus, these in vivo models play an important role to further understand the pathogenesis of HCV infection and to evaluate the pre-clinical safety and efficacy of new antiviral compounds against HCV. This review summarizes the most important mouse models currently used to study HCV pathogenesis and infection. Finally, the perspective of these models for future HCV research as well as the design of novel small animal models is discussed.
Collapse
Affiliation(s)
- Heidi Barth
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Eric Robinet
- Inserm Unit 748, 3 rue Koeberlé, F-67000 Strasbourg, France
- Université Louis Pasteur, 3 rue Koeberlé, F-67000 Strasbourg, France
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Thomas F. Baumert
- Inserm Unit 748, 3 rue Koeberlé, F-67000 Strasbourg, France
- Université Louis Pasteur, 3 rue Koeberlé, F-67000 Strasbourg, France
- Service d’Hépato-gastroentérologie, Centre Hospitalier Universitaire Strasbourg, Nouvel Hôpital Civil, 1 place de l’hôpital, F-67000 Strasbourg, France
| |
Collapse
|
171
|
Van Duyne R, Cardenas J, Easley R, Wu W, Kehn-Hall K, Klase Z, Mendez S, Zeng C, Chen H, Saifuddin M, Kashanchi F. Effect of transcription peptide inhibitors on HIV-1 replication. Virology 2008; 376:308-22. [PMID: 18455747 DOI: 10.1016/j.virol.2008.02.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/21/2007] [Accepted: 02/27/2008] [Indexed: 11/17/2022]
Abstract
HIV-1 manipulates cellular machineries such as cyclin dependent kinases (cdks) and their cyclin elements, to stimulate virus production and maintain latent infection. Specifically, the HIV-1 viral protein Tat increases viral transcription by binding to the TAR promoter element. This binding event is mediated by the phosphorylation of Pol II by complexes such as cdk9/Cyclin T and cdk2/Cyclin E. Recent studies have shown that a Tat 41/44 peptide derivative prevents the loading of cdk2 onto the HIV-1 promoter, inhibiting gene expression and replication. Here we show that Tat peptide analogs computationally designed to dock at the cyclin binding site of cdk2 have the ability to bind to cdk2 and inhibit the association of cdk2 with the HIV promoter. Specifically, the peptide LAALS dissociated the complex and decreased kinase activity in vitro. We also describe our novel small animal model which utilizes humanized Rag2(-/-)gamma(c)(-/-) mice. This small peptide inhibitor induces a decrease in HIV-1 viral transcription in vitro and minimizes viral loads in vivo.
Collapse
Affiliation(s)
- Rachel Van Duyne
- The George Washington University Medical Center, Department of Microbiology, Immunology, and Tropical Medicine, Washington, DC 20037, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Relief of preintegration inhibition and characterization of additional blocks for HIV replication in primary mouse T cells. PLoS One 2008; 3:e2035. [PMID: 18446227 PMCID: PMC2323578 DOI: 10.1371/journal.pone.0002035] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 03/05/2008] [Indexed: 12/21/2022] Open
Abstract
Development of a small animal model to study HIV replication and pathogenesis has been hampered by the failure of the virus to replicate in non-primate cells. Most studies aimed at achieving replication in murine cells have been limited to fibroblast cell lines, but generating an appropriate model requires overcoming blocks to viral replication in primary T cells. We have studied HIV-1 replication in CD4(+) T cells from human CD4/CCR5/Cyclin T1 transgenic mice. Expression of hCD4 and hCCR5 in mouse CD4(+) T cells enabled efficient entry of R5 strain HIV-1. In mouse T cells, HIV-1 underwent reverse transcription and nuclear import as efficiently as in human T cells. In contrast, chromosomal integration of HIV-1 proviral DNA was inefficient in activated mouse T cells. This process was greatly enhanced by providing a secondary T cell receptor (TCR) signal after HIV-1 infection, especially between 12 to 24 h post infection. This effect was specific for primary mouse T cells. The pathways involved in HIV replication appear to be PKCtheta-, CARMA1-, and WASp-independent. Treatment with Cyclosporin A (CsA) further relieved the pre-integration block. However, transcription of HIV-1 RNA was still reduced in mouse CD4(+) T cells despite expression of the hCyclin T1 transgene. Additional post-transcriptional defects were observed at the levels of Gag expression, Gag processing, Gag release and virus infectivity. Together, these post-integration defects resulted in a dramatically reduced yield of infectious virus (300-500 fold) after a single cycle of HIV-1 replication. This study implies the existence of host factors, in addition to those already identified, that are critical for HIV-1 replication in mouse cells. This study also highlights the differences between primary T cells and cell lines regarding pre-integration steps in the HIV-1 replication cycle.
Collapse
|
173
|
Zhang B, Duan Z, Zhao Y. Mouse models with human immunity and their application in biomedical research. J Cell Mol Med 2008; 13:1043-58. [PMID: 18419795 PMCID: PMC4496103 DOI: 10.1111/j.1582-4934.2008.00347.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Biomedical research in human beings is largely restricted to in vitro studies that lack complexity of a living organism. To overcome this limitation, humanized mouse models are developed based on immunodeficient characteristics of severe combined immunodeficiency (SCID) or recombination activating gene (Rag)(null) mice, which can accept xenografts. Peripheral constitution of human immunity in SCID or Rag(null) mice has been achieved by transplantation of mature human immune cells, foetal human thymus, bone marrow, liver tissues, lymph nodes or a combination of these, although efficiency needs to be improved. These mouse models with constituted human immunity (defined as humanized mice in the present text) have been widely used to investigate the basic principles of human immunobiology as well as complex pathomechanisms and potential therapies of human diseases. Here, elements of an ideal humanized mouse model are highlighted including genetic and non-genetic modification of recipient mice, transplantation strategies and proposals to improve engraftments. The applications of the humanized mice to study the development and response of human immune cells, human autoimmune diseases, virus infections, transplantation biology and tumour biology are reviewed as well.
Collapse
Affiliation(s)
- Baojun Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
174
|
Berges BK, Akkina SR, Folkvord JM, Connick E, Akkina R. Mucosal transmission of R5 and X4 tropic HIV-1 via vaginal and rectal routes in humanized Rag2-/- gammac -/- (RAG-hu) mice. Virology 2008; 373:342-51. [PMID: 18207484 PMCID: PMC3092740 DOI: 10.1016/j.virol.2007.11.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Revised: 10/16/2007] [Accepted: 11/12/2007] [Indexed: 01/01/2023]
Abstract
Studies on HIV-1 mucosal transmission to evaluate early events in pathogenesis and the development of effective preventive/prophylactic methods have thus far been hampered by the lack of a suitable animal model susceptible to HIV-1 infection by either vaginal and/or rectal routes. In this regard, while primate-SIV/SHIV and cat-FIV models provided useful surrogate platforms to derive comparative data, these viruses are distinct and different from that of HIV-1. Therefore an optimal model that permits direct study of HIV-1 transmission via mucosal routes is highly desirable. The new generation of humanized NOD/SCID BLT, NOD/SCIDgammac(-/-), and Rag2(-/-)gammac(-/-) mouse models show great promise to achieve this goal. Here, we show that humanized Rag2(-/-)gammac(-/-) mice (RAG-hu) engrafted with CD34 hematopoietic progenitor cells harbor HIV-1-susceptible human cells in the rectal and vaginal mucosa and are susceptible to HIV-1 infection when exposed to cell-free HIV-1 either via vagina or rectum. Infection could be established without any prior hormonal conditioning or mucosal abrasion. Both R5 and X4 tropic viruses were capable of mucosal infection resulting in viremia and associated helper T cell depletion. There was systemic spread of the virus with infected cells detected in different organs including the intestinal mucosa. R5 virus was highly efficient in mucosal transmission by both routes whereas X4 virus was relatively less efficient in causing infection. HIV-1 infection of RAG-hu mice by vaginal and rectal routes as shown here represents the first in vivo model of HIV-1 transmission across intact mucosal barriers and as such may prove very useful for studying early events in HIV-1 pathogenesis in vivo, as well as the testing of microbicides, anti-HIV vaccines/therapeutics, and other novel strategies to prevent HIV-1 transmission.
Collapse
Affiliation(s)
- Bradford K. Berges
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Sarah R. Akkina
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Joy M. Folkvord
- Division of Infectious Diseases, Department of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | - Elizabeth Connick
- Division of Infectious Diseases, Department of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
175
|
Goldstein H. Summary of presentations at the NIH/NIAID New Humanized Rodent Models 2007 Workshop. AIDS Res Ther 2008; 5:3. [PMID: 18237418 PMCID: PMC2276217 DOI: 10.1186/1742-6405-5-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 01/31/2008] [Indexed: 01/11/2023] Open
Abstract
It has long been recognized that a small animal model susceptible to HIV-1 infection with a functional immune system would be extremely useful in the study of HIV/AIDS pathogenesis and for the evaluation of vaccine and therapeutic strategies to combat this disease. By early 2007, a number of reports on various rodent models capable of being infected by and responding to HIV including some with a humanized immune system were published. The New Humanized Rodent Model Workshop, organized by the Division of AIDS (DAIDS), National Institute Allergy and Infection Diseases (NIAID), NIH, was held on September 24, 2007 at Bethesda for the purpose of bringing together key model developers and potential users. This report provides a synopsis of the presentations that discusses the current status of development and use of rodent models to evaluate the pathogenesis of HIV infection and to assess the efficacy of vaccine and therapeutic strategies including microbicides to prevent and/or treat HIV infection.
Collapse
|
176
|
Baenziger S, Ziegler P, Mazzucchelli L, Bronz L, Speck RF, Manz MG. Human T cell development and HIV infection in human hemato-lymphoid system mice. Curr Top Microbiol Immunol 2008; 324:125-31. [PMID: 18481457 DOI: 10.1007/978-3-540-75647-7_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Advances in generation of mice that on human hematopoietic stem and progenitor cell transplantation develop and maintain human hemato-lymphoid cells have fueled an already thriving field of research. We focus here on human T cell development and HIV infection in Rag2 -/- gamma(c) -/- mice transplanted as newborns with human CD34+ cord blood hematopoietic stem and progenitor cells.
Collapse
Affiliation(s)
- S Baenziger
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
177
|
Huntington ND, Di Santo JP. Humanized immune system (HIS) mice as a tool to study human NK cell development. Curr Top Microbiol Immunol 2008; 324:109-24. [PMID: 18481456 DOI: 10.1007/978-3-540-75647-7_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The study of human hematopoiesis is conditioned by access to nondiseased human tissue samples that harbor the cellular substrates for this developmental process. Technical and ethical concerns limit the availability to tissues derived from the fetal and newborn periods, while adult samples are generally restricted to peripheral blood. Access to a small animal model that faithfully recapitulates the process of human hematopoiesis would provide an important tool. Natural killer (NK) cells comprise between 10% and 15% of human peripheral blood lymphocytes and appear conserved in several species. NK cells are implicated in the recognition of pathogen-infected cells and in the clearance of certain tumor cells. In this chapter, we discuss NK cell developmental pathways and the use of humanized murine models for the study of human hematopoiesis and, in particular, human NK cell development.
Collapse
Affiliation(s)
- N D Huntington
- Cytokine and Lymphoid Development Unit, Immunology Department, Institut Pasteur, 25 rue du Docteur Roux, Paris 75724, France
| | | |
Collapse
|
178
|
Abstract
Inbred mice with specific genetic defects have greatly facilitated the analysis of complex biological events. Several humanized mouse models using the C.B.-17 scid/scid mouse (referred to as the SCID mouse) have been created from two transplantation protocols, and these mice have been utilized for the investigation of human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type I (HTLV-I) pathogenesis and the evaluation of antiviral compounds. To generate a more prominent small animal model for human retrovirus infection, especially for examination of the pathological process and the immune reaction, a novel immunodeficient mouse strain derived from the NOD SCID mouse was created by backcrossing with a common gamma chain (gamma(c))-knockout mouse. The NOD-SCID gamma(c)null (NOG) mouse has neither functional T and B cells nor NK cells and has been used as a recipient in humanized mouse models for transplantation of human immune cells particularly including hematopoietic stem cells (HSC). From recent advances in development of humanized mice, we are now able to provide a new version of the animal model for human retrovirus infection and human immunity.
Collapse
|
179
|
Abstract
There is a growing need for effective animal models to carry out experimental studies on human hematopoietic and immune systems without putting individuals at risk. Progress in development of small animal models for the in vivo investigation of human hematopoiesis and immunity has seen three major breakthroughs over the last three decades. First, CB 17-Prkdc(scid) (abbreviated CB 17-scid) mice were discovered in 1983, and engraftment of these mice with human fetal tissues (SCID-Hu model) and peripheral blood mononuclear cells (Hu-PBL-SCID model) was reported in 1988. Second, NOD-scid mice were developed and their enhanced ability to engraft with human hematolymphoid tissues as compared with CB17-scid mice was reported in 1995. NOD-scid mice have been the "gold standard" for studies of human hematolymphoid engraftment in small animal models over the last 10 years. Third, immunodeficient mice bearing a targeted mutation in the IL-2 receptor common gamma chain (IL2rgamma(null)) were developed independently by four groups between 2002 and 2005, and a major increase in the engraftment and function of human hematolymphoid cells as compared with NOD-scid mice has been reported. These new strains of immunodeficient IL2rgamma(null) mice are now being used for studies in human hematopoiesis, innate and adaptive immunity, autoimmunity, infectious diseases, cancer biology, and regenerative medicine. In this chapter, we discuss the current state of development of these strains of mice, the remaining deficiencies, and how approaches used to increase the engraftment and function of human hematolymphoid cells in CB 17-scid mice and in previous models based on NOD-scid mice may enhance human hematolymphoid engraftment and function in NOD-scid IL2rgamma(null) mice.
Collapse
|
180
|
Ito M, Kobayashi K, Nakahata T. NOD/Shi-scid IL2rgamma(null) (NOG) mice more appropriate for humanized mouse models. Curr Top Microbiol Immunol 2008; 324:53-76. [PMID: 18481452 DOI: 10.1007/978-3-540-75647-7_3] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
"Humanized mice," in which various kinds of human cells and tissues can be engrafted and retain the same functions as in humans, are extremely useful because human diseases can be studied directly. Using the newly combined immunodeficient NOD-scid IL2rgamma(null) mice and Rag2(null) IL2rgamma(null) humanized mice, it has became possible to expand applications because various hematopoietic cells can be differentiated by human hematopoietic stem cell transplantation, and the human immune system can be reconstituted to some degree. This work has attracted attention worldwide, but the development and use of immunodeficient mice in Japan are not very well known or understood. This review describes the history and characteristics of the NOD/Shi-scid IL2rgamma(null) (NOG) and BALB/cA-Rag2(null) IL2rgamma(null) mice that were established in Japan, including our unpublished data from researchers who are currently using these mice. In addition, we also describe the potential development of new immunodeficient mice that can be used as humanized mice in the future.
Collapse
Affiliation(s)
- M Ito
- Laboratory of Immunology, Central Institute for Experimental Animals, 1430 Nogawa, Miyamae, Kawasaki 216-0001, Japan.
| | | | | |
Collapse
|
181
|
Nonprimate models of HIV-1 infection and pathogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:399-422. [PMID: 18086419 DOI: 10.1016/s1054-3589(07)56013-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
182
|
Klase ZA, Van Duyne R, Kashanchi F. Identification of potential drug targets using genomics and proteomics: a systems approach. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:327-68. [PMID: 18086417 DOI: 10.1016/s1054-3589(07)56011-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zachary A Klase
- Department of Biochemistry, Medical Center, The George Washington University, Washington, DC 20037, USA
| | | | | |
Collapse
|
183
|
Watanabe S, Ohta S, Yajima M, Terashima K, Ito M, Mugishima H, Fujiwara S, Shimizu K, Honda M, Shimizu N, Yamamoto N. Humanized NOD/SCID/IL2Rgamma(null) mice transplanted with hematopoietic stem cells under nonmyeloablative conditions show prolonged life spans and allow detailed analysis of human immunodeficiency virus type 1 pathogenesis. J Virol 2007; 81:13259-64. [PMID: 17881441 PMCID: PMC2169100 DOI: 10.1128/jvi.01353-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In a previous study, we demonstrated that humanized NOD/SCID/IL2Rgamma(null) (hNOG) mice constructed with human hematopoietic stem cells (HSCs) allow efficient human immunodeficiency virus type 1 (HIV-1) infection. However, HIV-1 infection could be monitored for only 43 days in the animals due to their short life spans. By transplanting HSCs without any myeloablation methods, the mice successfully survived longer than 300 days with stable engraftment of human cells. The mice showed high viremia state for more than the 3 months examined, with systemic HIV-1 infection and gradual decrease of CD4+ T cells analogous to that in humans. These capacities of the hNOG mice are very attractive for modeling mechanisms of AIDS progression and therapeutic strategy.
Collapse
Affiliation(s)
- Satoru Watanabe
- Department of Virology, Division of Medical Science, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Kuruvilla JG, Troyer RM, Devi S, Akkina R. Dengue virus infection and immune response in humanized RAG2(-/-)gamma(c)(-/-) (RAG-hu) mice. Virology 2007; 369:143-52. [PMID: 17707071 DOI: 10.1016/j.virol.2007.06.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 05/31/2007] [Accepted: 06/06/2007] [Indexed: 11/17/2022]
Abstract
Dengue viral (DENV) pathogenesis and vaccine studies are hampered by the lack of an ideal animal model mimicking human disease and eliciting an adaptive human immune response. Although currently available animal models have been very useful in dissecting some key aspects of disease pathogenesis, a major limitation with these is the lack of a human immune response. In this study, we sought to overcome this difficulty by utilizing a novel mouse model that permits multi-lineage human hematopoiesis and immune response following transplantation with human hematopoietic stem cells. To generate immunocompetent humanized mice, neonatal RAG2(-/-)gamma(c)(-/-) mice were xenografted with human CD34+ hematopoietic stem cells, resulting in de novo development of major functional cells of the human adaptive immune system. To evaluate susceptibility to dengue viral infection, humanized mice were challenged with DEN-2 serotype. Viremia lasting up to 3 weeks was detected in infected mice with viral titers reaching up to 10(6.3) RNA copies/ml. Fever characteristic of dengue was also noted in infected mice. Presence of human anti-dengue antibodies was evaluated using an antibody capture ELISA. Anti-dengue IgM was first detected by 2 weeks post-infection followed by IgG at 6 weeks. Sera from some of the infected mice were also found to be capable of dengue virus neutralization. Infected mouse sera showed reactivity with the viral envelope and capsid proteins in immunoprecipitation assay. These results demonstrate for the first time that humanized mice are capable of dengue viral primary human immune responses thus paving the way for new dengue immunopathogenesis and vaccine studies.
Collapse
Affiliation(s)
- Jes G Kuruvilla
- Department of Microbiology, Immunology and Pathology, 1619 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1619, USA
| | | | | | | |
Collapse
|
185
|
Stoddart CA, Bales CA, Bare JC, Chkhenkeli G, Galkina SA, Kinkade AN, Moreno ME, Rivera JM, Ronquillo RE, Sloan B, Black PL. Validation of the SCID-hu Thy/Liv mouse model with four classes of licensed antiretrovirals. PLoS One 2007; 2:e655. [PMID: 17668043 PMCID: PMC1925140 DOI: 10.1371/journal.pone.0000655] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 06/20/2007] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The SCID-hu Thy/Liv mouse model of HIV-1 infection is a useful platform for the preclinical evaluation of antiviral efficacy in vivo. We performed this study to validate the model with representatives of all four classes of licensed antiretrovirals. METHODOLOGY/PRINCIPAL FINDINGS Endpoint analyses for quantification of Thy/Liv implant viral load included ELISA for cell-associated p24, branched DNA assay for HIV-1 RNA, and detection of infected thymocytes by intracellular staining for Gag-p24. Antiviral protection from HIV-1-mediated thymocyte depletion was assessed by multicolor flow cytometric analysis of thymocyte subpopulations based on surface expression of CD3, CD4, and CD8. These mice can be productively infected with molecular clones of HIV-1 (e.g., the X4 clone NL4-3) as well as with primary R5 and R5X4 isolates. To determine whether results in this model are concordant with those found in humans, we performed direct comparisons of two drugs in the same class, each of which has known potency and dosing levels in humans. Here we show that second-generation antiretrovirals were, as expected, more potent than their first-generation predecessors: emtricitabine was more potent than lamivudine, efavirenz was more potent than nevirapine, and atazanavir was more potent than indinavir. After interspecies pharmacodynamic scaling, the dose ranges found to inhibit viral replication in the SCID-hu Thy/Liv mouse were similar to those used in humans. Moreover, HIV-1 replication in these mice was genetically stable; treatment of the mice with lamivudine did not result in the M184V substitution in reverse transcriptase, and the multidrug-resistant NY index case HIV-1 retained its drug-resistance substitutions. CONCLUSION Given the fidelity of such comparisons, we conclude that this highly reproducible mouse model is likely to predict clinical antiviral efficacy in humans.
Collapse
Affiliation(s)
- Cheryl A Stoddart
- Gladstone Institute of Virology and Immunology, University of California at San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Abstract
With the recent advances in human-hemato-lymphoid-system mice, this commentary discusses the utility of these mice and further improvements required to generate an accessible system that allows predictive in vivo human hematology and immunology research.
Collapse
Affiliation(s)
- Markus G Manz
- Institute for Research in Biomedicine (IRB), Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland.
| |
Collapse
|
187
|
Ambrose Z, KewalRamani VN, Bieniasz PD, Hatziioannou T. HIV/AIDS: in search of an animal model. Trends Biotechnol 2007; 25:333-7. [PMID: 17574286 DOI: 10.1016/j.tibtech.2007.05.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/11/2007] [Accepted: 05/30/2007] [Indexed: 11/28/2022]
Abstract
AIDS is among the most devastating diseases of our time, claiming the lives of approximately 3 million people per year. The primary cause of AIDS, human immunodeficiency virus type 1 (HIV-1), is a pathogen that is highly specific for humans and generally does not infect or cause disease in other species. This property complicates the generation of animal models that are urgently needed to test new antiretroviral therapies and vaccines. The most practical animal models developed to date consist of infection of rhesus macaques with a simian immunodeficiency virus (SIV) or chimeric HIV/SIV viruses. Although these models are useful for particular applications, the fact that SIV is a distinct virus compared with HIV-1 represents a significant limitation to their use. Here, we discuss the uses and limitations of existing models and recent advances that might lead to better animal models for HIV/AIDS.
Collapse
Affiliation(s)
- Zandrea Ambrose
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
188
|
Abstract
The Rag2-gammaC double-knockout (DKO) mouse lacks T, B, and natural killer (NK) cells, and allows development of a functional human immune system with human CD34+ hematopoietic stem/progenitor cells (DKO-hu HSCs). Normal human T, B, and dendritic cells are present in peripheral blood, thymus, spleen, and lymph nodes. We report that both CCR5 and CXCR4 are expressed on human immature and mature T cells. DKO-hu HSC mice allow efficient HIV-1 infection with plasma high viremia. High levels of productive infection occur in the thymus, spleen, and lymph nodes. Human CD4+ T cells are gradually depleted by HIV-1 in a dose-dependent manner. In addition, HIV-1 infection persists in infected DKO-hu HSC mice for at least 19 weeks, with infectious HIV-1 in lymphoid tissues. Thus, the DKO-hu HSC mouse can serve as a relevant in vivo model to investigate mechanisms of HIV-1 infection and immunopathogenesis as well as to develop anti-HIV-1 therapeutics.
Collapse
Affiliation(s)
- Liguo Zhang
- Department of Microbiology and Immunology, The Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599-7295, USA
| | | | | |
Collapse
|
189
|
Sparwasser T, Eberl G. BAC to immunology--bacterial artificial chromosome-mediated transgenesis for targeting of immune cells. Immunology 2007; 121:308-13. [PMID: 17437533 PMCID: PMC2265958 DOI: 10.1111/j.1365-2567.2007.02605.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Thirty years after the first transgenic mouse was produced, a plethora of genetic tools has been developed to study immune cells in vivo. A powerful development is the bacterial artificial chromosome (BAC) transgenic approach, combining advantages of both conventional transgenic and knock-in gene-targeting strategies. In immunology the potential of BAC transgenic technology has yet to be fully harvested and, combined with a variety of elegant genetic tools, it will allow the analysis of complex immunological processes in vivo. In this short review, we discuss the applications of BACs in immunology, such as identification of regulatory regions, expression and cell-fate mapping, cell ablation, conditional mutations and the generation of humanized mice.
Collapse
Affiliation(s)
- Tim Sparwasser
- Institut für Medizinische Mikrobiologie, Immunologie & Hygiene, Technische Universität MünchenMunich, Germany
| | - Gérard Eberl
- Laboratory of Lymphoid Tissue Development, Institut PasteurParis, France
| |
Collapse
|
190
|
Abstract
The culmination of decades of research on humanized mice is leading to advances in our understanding of human haematopoiesis, innate and adaptive immunity, autoimmunity, infectious diseases, cancer biology and regenerative medicine. In this Review, we discuss the development of these new generations of humanized mice, how they will facilitate translational research in several biomedical disciplines and approaches to overcome the remaining limitations of these models.
Collapse
Affiliation(s)
- Leonard D Shultz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA.
| | | | | |
Collapse
|
191
|
An DS, Poon B, Ho Tsong Fang R, Weijer K, Blom B, Spits H, Chen ISY, Uittenbogaart CH. Use of a novel chimeric mouse model with a functionally active human immune system to study human immunodeficiency virus type 1 infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:391-6. [PMID: 17314230 PMCID: PMC1865603 DOI: 10.1128/cvi.00403-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The goal of this study was to develop a small-animal model to study human immunodeficiency virus type 1 (HIV-1) pathogenesis in blood and primary and secondary lymphoid organs. Rag2(-/-)gamma(c)(-/-) mice that are neonatally injected with human CD34(+) cells develop a functional human immune system (HIS), with human hematopoietic cells being found in the thymuses, peripheral blood, spleens, and bone marrow of the animals (hereafter these animals are referred to as HIS-Rag2(-/-)gamma(c)(-/-) mice). HIS-Rag2(-/-)gamma(c)(-/-) mice were infected with small amounts of CCR5-tropic HIV-1. Viral replication and immunophenotypic changes in the human cells in peripheral blood and lymphoid organs were examined. The productive infection of human cells in peripheral blood, thymus and spleen tissue, and bone marrow was detected. Ratios of CD4(+) T cells to CD8(+) T cells in the infected animals declined. Although no specific anti-HIV-1 immune responses were detected, immunoglobulin M (IgM) and IgG antibodies to an unidentified fetal calf serum protein present in the virus preparation were found in the inoculated animals. Thus, we have shown that the HIS-Rag2(-/-)gamma(c)(-/-) mouse model can be used for infection with low doses of CCR5-tropic HIV-1, which is most commonly transmitted during primary infections. HIS-Rag2(-/-)gamma(c)(-/-) mice can serve as a small-animal model for investigating HIV-1 pathogenesis and testing potential HIV-1 therapies, and studies with this model may replace some long and costly studies with nonhuman primates.
Collapse
Affiliation(s)
- Dong Sung An
- Department of Medicine, David E. Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1747, USA
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Stevens M, Pollicita M, Pannecouque C, Verbeken E, Tabarrini O, Cecchetti V, Aquaro S, Perno CF, Fravolini A, De Clercq E, Schols D, Balzarini J. Novel in vivo model for the study of human immunodeficiency virus type 1 transcription inhibitors: evaluation of new 6-desfluoroquinolone derivatives. Antimicrob Agents Chemother 2007; 51:1407-13. [PMID: 17242146 PMCID: PMC1855509 DOI: 10.1128/aac.01251-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Two novel 6-desfluoroquinolone derivatives, HM-12 and HM-13, were evaluated for anti-human immunodeficiency virus (anti-HIV) activity in acutely, chronically, and latently HIV type 1 (HIV-1)-infected cell cultures and were found to behave as potent HIV-1 transcription inhibitors. In order to extend this result in vivo, we developed an artificial hu-SCID mouse model for HIV-1 latency based on SCID mice engrafted with latently HIV-1-infected promyelocytic OM-10.1 cells in which HIV-1 can be reactivated in vivo by the administration of human tumor necrosis factor alpha (hTNF-alpha). Treating these SCID mice with HM-12 or HM-13 prior to hTNF-alpha stimulation resulted in a pronounced suppressive effect on viral reactivation. Since both quinolone derivatives were able to inhibit the reactivation of HIV-1 from this artificial viral reservoir in vivo, we provide encouraging evidence for the use of quinolones in the control of HIV-1 infections.
Collapse
Affiliation(s)
- Miguel Stevens
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, and Division of Histopathology, University Hospitals, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|