151
|
Frederiksen N, Hansen PR, Björkling F, Franzyk H. Peptide/Peptoid Hybrid Oligomers: The Influence of Hydrophobicity and Relative Side-Chain Length on Antibacterial Activity and Cell Selectivity. Molecules 2019; 24:E4429. [PMID: 31817108 PMCID: PMC6943742 DOI: 10.3390/molecules24244429] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Previous optimisation studies of peptide/peptoid hybrids typically comprise comparison of structurally related analogues displaying different oligomer length and diverse side chains. The present work concerns a systematically constructed series of 16 closely related 12-mer oligomers with an alternating cationic/hydrophobic design, representing a wide range of hydrophobicity and differences in relative side-chain lengths. The aim was to explore and rationalise the structure-activity relationships within a subclass of oligomers displaying variation of three structural features: (i) cationic side-chain length, (ii) hydrophobic side-chain length, and (iii) type of residue that is of a flexible peptoid nature. Increased side-chain length of cationic residues led to reduced hydrophobicity till the side chains became more extended than the aromatic/hydrophobic side chains, at which point hydrophobicity increased slightly. Evaluation of antibacterial activity revealed that analogues with lowest hydrophobicity exhibited reduced activity against E. coli, while oligomers with the shortest cationic side chains were most potent against P. aeruginosa. Thus, membrane-disruptive interaction with P. aeruginosa appears to be promoted by a hydrophobic surface of the oligomers (comprised of the aromatic groups shielding the cationic side chains). Peptidomimetics with short cationic side chains exhibit increased hemolytic properties as well as give rise to decreased HepG2 (hepatoblastoma G2 cell line) cell viability. An optimal hydrophobicity window could be defined by a threshold of minimal hydrophobicity conferring activity toward E. coli and a threshold for maximal hydrophobicity, beyond which cell selectivity was lost.
Collapse
Affiliation(s)
| | | | | | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark; (N.F.); (P.R.H.); (F.B.)
| |
Collapse
|
152
|
Barman R, Mondal T, Sarkar J, Sikder A, Ghosh S. Self-Assembled Polyurethane Capsules with Selective Antimicrobial Activity against Gram-Negative E. coli. ACS Biomater Sci Eng 2019; 6:654-663. [DOI: 10.1021/acsbiomaterials.9b00932] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ranajit Barman
- School of Applied and Interdisciplinary Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Tathagata Mondal
- School of Applied and Interdisciplinary Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Jayita Sarkar
- School of Applied and Interdisciplinary Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Amrita Sikder
- School of Applied and Interdisciplinary Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
153
|
Wijaya AW, Nguyen AI, Roe LT, Butterfoss GL, Spencer RK, Li NK, Zuckermann RN. Cooperative Intramolecular Hydrogen Bonding Strongly Enforces cis-Peptoid Folding. J Am Chem Soc 2019; 141:19436-19447. [DOI: 10.1021/jacs.9b10497] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andrew W. Wijaya
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Andy I. Nguyen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Leah T. Roe
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Glenn L. Butterfoss
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ryan K. Spencer
- Department of Chemistry, Department of Chemical Engineering & Material Science, University of California, Irvine, California 92697, United States
| | - Nan K. Li
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Ronald N. Zuckermann
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
154
|
Antibacterial activity of lipo-α/sulfono-γ-AA hybrid peptides. Eur J Med Chem 2019; 186:111901. [PMID: 31771826 DOI: 10.1016/j.ejmech.2019.111901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 11/22/2022]
Abstract
Development of novel antimicrobial agents combating drug resistance is in an urgent need. Herein we report the design and synthesis of a series of short lipo-α/sulfono-γ-AA hybrid peptides. Several short peptides exhibit potent and broad-spectrum antimicrobial activity toward both Gram-positive and Gram-negative bacteria. Membrane depolarization and fluorescence microscopy studies indicate that these short lipo-α/sulfono-γ-AA hybrid peptides can mimic the mechanisms of HDPs to kill bacteria by disrupting bacterial membranes. In addition, these short peptides also show capability to eradicate the biofilm formation of E. coli even at very low concentration. The further development of lipidated α/sulofono-γ-AA hybrid peptides may lead to a new class of antibiotic agents to combat drug resistance.
Collapse
|
155
|
Kim S, Nam HY, Lee J, Seo J. Mitochondrion-Targeting Peptides and Peptidomimetics: Recent Progress and Design Principles. Biochemistry 2019; 59:270-284. [PMID: 31696703 DOI: 10.1021/acs.biochem.9b00857] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria are multifunctional subcellular organelles whose operations encompass energy production, signal transduction, and metabolic regulation. Given their wide range of roles, they have been studied extensively as a potential therapeutic target for the treatment of various diseases, including cancer, diabetes, and neurodegenerative diseases. Mitochondrion-mediated pathways have been identified as promising targets in the context of these diseases. However, the delivery of specific probes and drugs to the mitochondria is one of the major problems that remains to be solved. Over the past decade, much effort has been devoted to developing mitochondrion-targeted delivery methods based on the membrane characteristics and the protein import machinery of mitochondria. While various methods utilizing small molecules to polymeric particles have been introduced, it is notable that many of these compounds share common structural elements and physicochemical properties for optimal selectivity and efficiency. In this Perspective, we will review the most recently developed mitochondrion-targeting peptides and peptidomimetics to outline the key aspects of structural requirements and design principles. We will also discuss successful and potential applications of mitochondrial delivery to assess opportunities and challenges in the targeting of mitochondria.
Collapse
Affiliation(s)
- Soyoung Kim
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Ho Yeon Nam
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science , Sungshin University , Seoul 01133 , Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| |
Collapse
|
156
|
Zhang K, Du Y, Si Z, Liu Y, Turvey ME, Raju C, Keogh D, Ruan L, Jothy SL, Reghu S, Marimuthu K, De PP, Ng OT, Mediavilla JR, Kreiswirth BN, Chi YR, Ren J, Tam KC, Liu XW, Duan H, Zhu Y, Mu Y, Hammond PT, Bazan GC, Pethe K, Chan-Park MB. Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters. Nat Commun 2019; 10:4792. [PMID: 31636263 PMCID: PMC6803644 DOI: 10.1038/s41467-019-12702-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
The treatment of bacterial infections is hindered by the presence of biofilms and metabolically inactive persisters. Here, we report the synthesis of an enantiomeric block co-beta-peptide, poly(amido-D-glucose)-block-poly(beta-L-lysine), with high yield and purity by one-shot one-pot anionic-ring opening (co)polymerization. The co-beta-peptide is bactericidal against methicillin-resistant Staphylococcus aureus (MRSA), including replicating, biofilm and persister bacterial cells, and also disperses biofilm biomass. It is active towards community-acquired and hospital-associated MRSA strains which are resistant to multiple drugs including vancomycin and daptomycin. Its antibacterial activity is superior to that of vancomycin in MRSA mouse and human ex vivo skin infection models, with no acute in vivo toxicity in repeated dosing in mice at above therapeutic levels. The copolymer displays bacteria-activated surfactant-like properties, resulting from contact with the bacterial envelope. Our results indicate that this class of non-toxic molecule, effective against different bacterial sub-populations, has promising potential for the treatment of S. aureus infections. The authors report the synthesis of an enantiomeric block co-beta-peptide that kills methicillin-resistant Staphylococcus aureus, including biofilm and persister bacterial cells, and disperses biofilms. The copolymer displays antibacterial activity in human ex vivo and mouse in vivo infection models without toxicity.
Collapse
Affiliation(s)
- Kaixi Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yu Du
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, 350002, Fuzhou, China
| | - Zhangyong Si
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yang Liu
- Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Michelle E Turvey
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology Centre, 1 Create Way, Singapore, 138602, Singapore
| | - Cheerlavancha Raju
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Damien Keogh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Lin Ruan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Subramanion L Jothy
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Sheethal Reghu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Kalisvar Marimuthu
- Department of Infectious Diseases, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.,National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore, 308442, Singapore
| | - Partha Pratim De
- Department of Laboratory Medicine, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Oon Tek Ng
- Department of Infectious Diseases, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.,National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore, 308442, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - José R Mediavilla
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Yonggui Robin Chi
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jinghua Ren
- Cancer Center, Union Hospital, Huazhong University of Science & Technology, Wuhan, 430022, Hubei, China
| | - Kam C Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Xue-Wei Liu
- Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yabin Zhu
- Medical School of Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Guillermo C Bazan
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106-9510, USA
| | - Kevin Pethe
- Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore. .,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore. .,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore. .,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore. .,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
| |
Collapse
|
157
|
Song L, Qiao X, Zhao D, Xie W, Bukhari SM, Meng Q, Wang L, Cui W, Jiang Y, Zhou H, Li Y, Xu Y, Tang L. Effects of Lactococcus lactis MG1363 producing fusion proteins of bovine lactoferricin-lactoferrampin on growth, intestinal morphology and immune function in weaned piglet. J Appl Microbiol 2019; 127:856-866. [PMID: 31161702 DOI: 10.1111/jam.14339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Abstract
AIMS We developed a strategy for localized delivery of the LFCA (lactoferricinlactoferrampin), which is actively synthesized in situ by Lactococcus lactis (pAMJ399-LFCA/LLMG1363), and explored the possibility of using pAMJ399-LFCA/LLMG1363 as an alternative additive diet to antibiotics. METHODS AND RESULTS The antimicrobial activities of the LFCA derived from pAMJ399-LFCA/LLMG1363 were tested in vitro. The results showed that LFCA had an inhibitory effect on Staphylococcus aureus, Escherichia coli and Salmonella enteritidis. Then, the pAMJ399-LFCA/LLMG1363 was used as an additive diet for piglets. Our data demonstrated that oral administration of pAMJ399-LFCA/LLMG1363 significantly improved the average daily gain, feed-to-gain ratio, intestinal mucosal integrity and decreased the serum endotoxin and d-lactic acid levels. The mRNA expression levels of intestinal tight junction proteins (including occludin, Claudin-1 and ZO-1) were significantly upregulated by pAMJ399-LFCA/LLMG1363 administration. The serum immunoglobulin G (IgG) levels, intestinal secretory immunoglobulin A (sIgA) levels, IL-2, IL-10 and TGF-β levels were significantly increased by pAMJ399-LFCA/LLMG1363. Furthermore, our data revealed that oral administration of pAMJ399-LFCA/LLMG1363 significantly increased the number of general Lactobacillus, and decreased the total viable E. coli counts in the ileum and cecum contents. CONCLUSIONS We developed a novel pAMJ399-LFCA/LLMG1363 secreting LFCA, which had probiotic effects on the growth performance, intestinal morphology, intestinal barrier function and immunological indices of weaned piglets. SIGNIFICANCE AND IMPACT OF THE STUDY pAMJ399-LFCA/LLMG1363, with probiotic effects on the health of weaned piglets, may be a promising feed additive for weaned piglets.
Collapse
Affiliation(s)
- L Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - X Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - D Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - W Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - S M Bukhari
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Q Meng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - L Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - W Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Y Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - H Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Y Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Y Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - L Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
158
|
|
159
|
Small-Molecule Morphogenesis Modulators Enhance the Ability of 14-Helical β-Peptides To Prevent Candida albicans Biofilm Formation. Antimicrob Agents Chemother 2019; 63:AAC.02653-18. [PMID: 31209011 DOI: 10.1128/aac.02653-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/03/2019] [Indexed: 02/03/2023] Open
Abstract
Candida albicans is an opportunistic fungal pathogen responsible for mucosal candidiasis and systemic candidemia in humans. Often, these infections are associated with the formation of drug-resistant biofilms on the surfaces of tissues or medical devices. Increased incidence of C. albicans resistance to current antifungals has heightened the need for new strategies to prevent or eliminate biofilm-related fungal infections. In prior studies, we designed 14-helical β-peptides to mimic the structural properties of natural antimicrobial α-peptides (AMPs) in an effort to develop active and selective antifungal compounds. These amphiphilic, cationic, helical β-peptides exhibited antifungal activity against planktonic C. albicans cells and inhibited biofilm formation in vitro and in vivo Recent studies have suggested the use of antivirulence agents in combination with antifungals. In this study, we investigated the use of compounds that target C. albicans polymorphism, such as 1-dodecanol, isoamyl alcohol, and farnesol, to attempt to improve β-peptide efficacy for preventing C. albicans biofilms. Isoamyl alcohol, which prevents hyphal formation, reduced the minimum biofilm prevention concentrations (MBPCs) of β-peptides by up to 128-fold. Combinations of isoamyl alcohol and antifungal β-peptides resulted in less than 10% hemolysis at the antifungal MBPCs. Overall, our results suggest potential benefits of combination therapies comprised of morphogenesis modulators and antifungal AMP peptidomimetics for preventing C. albicans biofilm formation.
Collapse
|
160
|
Laudadio E, Cedraro N, Mangiaterra G, Citterio B, Mobbili G, Minnelli C, Bizzaro D, Biavasco F, Galeazzi R. Natural Alkaloid Berberine Activity against Pseudomonas aeruginosa MexXY-Mediated Aminoglycoside Resistance: In Silico and in Vitro Studies. JOURNAL OF NATURAL PRODUCTS 2019; 82:1935-1944. [PMID: 31274312 DOI: 10.1021/acs.jnatprod.9b00317] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The multidrug efflux system MexXY-OprM, inside the resistance-nodulation-division family, is a major determinant of aminoglycoside resistance in Pseudomonas aeruginosa. In the fight aimed to identify potential efflux pump inhibitors among natural compounds, the alkaloid berberine emerged as a putative inhibitor of MexXY-OprM. In this work, we elucidated its interaction with the extrusor protein MexY and assessed its synergistic activity with aminoglycosides. In particular, we built an in silico model for the MexY protein in its trimeric association using both AcrB (E. coli) and MexB (P. aeruginosa) as 3D templates. This model has been stabilized in the bacterial cytoplasmic membrane using a molecular dynamics approach and used for ensemble docking to obtain the binding site mapping. Then, through dynamic docking, we assessed its binding affinity and its synergism with aminoglycosides focusing on tobramycin, which is widely used in the treatment of pulmonary infections. In vitro assays validated the data obtained: the results showed a 2-fold increase of the inhibitory activity and 2-4 log increase of the killing activity of the association berberine-tobramycin compared to those of tobramycin alone against 13/28 tested P. aeruginosa clinical isolates. From hemolytic assays, we preliminarily assessed berberine's low toxicity.
Collapse
Affiliation(s)
- Emiliano Laudadio
- Dipartimento S.I.M.A.U. , Università Politecnica delle Marche , Via Brecce Bianche , 60131 , Ancona , Italy
| | - Nicholas Cedraro
- Dipartimento di Scienze della Vita e dell'Ambiente , Università Politecnica delle Marche , Via Brecce Bianche , 60131 , Ancona , Italy
| | - Gianmarco Mangiaterra
- Dipartimento di Scienze della Vita e dell'Ambiente , Università Politecnica delle Marche , Via Brecce Bianche , 60131 , Ancona , Italy
| | - Barbara Citterio
- Dipartimento di Scienze Biomolecolari, sez. di Biotecnologie , Università degli Studi di Urbino "Carlo Bo" , 61029 , Urbino , Italy
| | - Giovanna Mobbili
- Dipartimento di Scienze della Vita e dell'Ambiente , Università Politecnica delle Marche , Via Brecce Bianche , 60131 , Ancona , Italy
| | - Cristina Minnelli
- Dipartimento di Scienze della Vita e dell'Ambiente , Università Politecnica delle Marche , Via Brecce Bianche , 60131 , Ancona , Italy
| | - Davide Bizzaro
- Dipartimento di Scienze della Vita e dell'Ambiente , Università Politecnica delle Marche , Via Brecce Bianche , 60131 , Ancona , Italy
| | - Francesca Biavasco
- Dipartimento di Scienze della Vita e dell'Ambiente , Università Politecnica delle Marche , Via Brecce Bianche , 60131 , Ancona , Italy
| | - Roberta Galeazzi
- Dipartimento di Scienze della Vita e dell'Ambiente , Università Politecnica delle Marche , Via Brecce Bianche , 60131 , Ancona , Italy
| |
Collapse
|
161
|
Carbon Nanomaterials and LED Irradiation as Antibacterial Strategies against Gram-Positive Multidrug-Resistant Pathogens. Int J Mol Sci 2019; 20:ijms20143603. [PMID: 31340560 PMCID: PMC6678746 DOI: 10.3390/ijms20143603] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Due to current antibiotic resistance worldwide, there is an urgent need to find new alternative antibacterial approaches capable of dealing with multidrug-resistant pathogens. Most recent studies have demonstrated the antibacterial activity and non-cytotoxicity of carbon nanomaterials such as graphene oxide (GO) and carbon nanofibers (CNFs). On the other hand, light-emitting diodes (LEDs) have shown great potential in a wide range of biomedical applications. Methods: We investigated a nanotechnological strategy consisting of GO or CNFs combined with light-emitting diod (LED) irradiation as novel nanoweapons against two clinically relevant Gram-positive multidrug-resistant pathogens: methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE). The cytotoxicity of GO and CNFs was studied in the presence of human keratinocyte HaCaT cells. Results: GO or CNFs exhibited no cytotoxicity and high antibacterial activity in direct contact with MRSE and MRSA cells. Furthermore, when GO or CNFs were illuminated with LED light, the MRSE and MRSA cells lost viability. The rate of decrease in colony forming units from 0 to 3 h, measured per mL, increased to 98.5 ± 1.6% and 95.8 ± 1.4% for GO and 99.5 ± 0.6% and 99.7 ± 0.2% for CNFs. Conclusions: This combined antimicrobial approach opens up many biomedical research opportunities and provides an enhanced strategy for the prevention and treatment of Gram-positive multidrug-resistant infections.
Collapse
|
162
|
Landry MR, Rangel JL, Dao VP, MacKenzie MA, Gutierrez FL, Dowell KM, Calkins AL, Fuller AA, Stokes GY. Length and Charge of Water-Soluble Peptoids Impact Binding to Phospholipid Membranes. J Phys Chem B 2019; 123:5822-5831. [PMID: 31251622 DOI: 10.1021/acs.jpcb.9b04641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this study, we provide a quantitative description of the adsorption of water-soluble N-substituted glycine oligomers (peptoids) to supported lipid bilayers that mimic mammalian plasma membranes. We prepared a small array of systematically varied peptoid sequences ranging in length from 3 to 15 residues. Using the nonlinear optical method second harmonic generation (SHG), we directly monitored adsorption of aqueous solutions of 3- and 15-residue peptoids to phospholipid membranes of varying physical phase, cholesterol content, and head group charge in physiologically relevant pH buffer conditions without the use of extrinsic labels. Equilibrium binding constants and relative surface coverages of adsorbed peptoids were determined from fits to the Langmuir model. Three- and 15-residue peptoids did not interact with cholesterol-containing lipids or charged lipids in the same manner, suggesting that a peptoid's adsorption mechanism changes with sequence length. In a comparison of four three-residue peptoids, we observed a correlation between equilibrium binding constants and calculated log D7.4 values. Cationic charge modulated surface coverage. Principles governing how peptoid sequence and membrane composition alter peptoid-lipid interactions may be extended to predict physiological effects of peptoids used as therapeutics or as coatings in medical devices.
Collapse
Affiliation(s)
- Madeleine R Landry
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Jacenda L Rangel
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Vivian P Dao
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Morgan A MacKenzie
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Fabiola L Gutierrez
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Kalli M Dowell
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Anna L Calkins
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Amelia A Fuller
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Grace Y Stokes
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| |
Collapse
|
163
|
Andreev K, Martynowycz MW, Gidalevitz D. Peptoid drug discovery and optimization via surface X-ray scattering. Biopolymers 2019; 110:e23274. [PMID: 30892696 PMCID: PMC6661014 DOI: 10.1002/bip.23274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022]
Abstract
Synthetic polymers mimicking antimicrobial peptides have drawn considerable interest as potential therapeutics. N-substituted glycines, or peptoids, are recognized by their in vivo stability and ease of synthesis. Peptoids are thought to act primarily on the negatively charged lipids that are abundant in bacterial cell membranes. A mechanistic understanding of lipid-peptoid interaction at the molecular level will provide insights for rational design and optimization of peptoids. Here, we highlight recent studies that utilize synchrotron liquid surface X-ray scattering to characterize the underlying peptoid interactions with bacterial and eukaryotic membranes. Cellular membranes are highly complex, and difficult to characterize at the molecular level. Model systems including Langmuir monolayers, are used in these studies to reduce system complexity. The general workflow of these systems and the corresponding data analysis techniques are presented alongside recent findings. These studies investigate the role of peptoid physicochemical characteristics on membrane activity. Specifically, the roles of cationic charge, conformational constraint via macrocyclization, and hydrophobicity are shown to correlate their membrane interactions to biological activities in vitro. These structure-activity relationships have led to new insights into the mechanism of action by peptoid antimicrobials, and suggest optimization strategies for future therapeutics based on peptoids.
Collapse
Affiliation(s)
- Konstantin Andreev
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois
| | | | - David Gidalevitz
- Center for the Molecular Study of Condensed Soft Matter and Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| |
Collapse
|
164
|
Baker KR, Jana B, Hansen AM, Vissing KJ, Nielsen HM, Franzyk H, Guardabassi L. Repurposing azithromycin and rifampicin against Gram-negative pathogens by combination with peptide potentiators. Int J Antimicrob Agents 2019; 53:868-872. [DOI: 10.1016/j.ijantimicag.2018.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/11/2018] [Accepted: 10/30/2018] [Indexed: 10/27/2022]
|
165
|
Tao Y, Wang Z, Tao Y. Polypeptoids synthesis based on Ugi reaction: Advances and perspectives. Biopolymers 2019; 110:e23288. [DOI: 10.1002/bip.23288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Yue Tao
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
- College of Applied Chemistry and Engineering, University of Science and Technology of China Hefei China
| | - Zhen Wang
- College of Applied Chemistry and Engineering, University of Science and Technology of China Hefei China
- Laboratory of Polymer Composites EngineeringChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Youhua Tao
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
- College of Applied Chemistry and Engineering, University of Science and Technology of China Hefei China
| |
Collapse
|
166
|
Austin MJ, Rosales AM. Tunable biomaterials from synthetic, sequence-controlled polymers. Biomater Sci 2019; 7:490-505. [PMID: 30628589 DOI: 10.1039/c8bm01215f] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymeric biomaterials have many applications including therapeutic delivery vehicles, medical implants and devices, and tissue engineering scaffolds. Both naturally-derived and synthetic materials have successfully been used for these applications in the clinic. However, the increasing complexity of these applications requires materials with advanced properties, especially customizable or tunable materials with bioactivity. To address this issue, there have been recent efforts to better recapitulate the properties of natural materials using synthetic biomaterials composed of sequence-controlled polymers. Sequence control mimics the primary structure found in biopolymers, and in many cases, provides an extra handle for functionality in synthetic polymers. Here, we first review the advances in synthetic methods that have enabled sequence-controlled biomaterials on a relevant scale, and discuss strategies for choosing functional sequences from a biomaterials engineering context. Then, we highlight several recent studies that show strong impact of sequence control on biomaterial properties, including in vitro and in vivo behavior, in the areas of hydrogels, therapeutic materials, and novel applications such as molecular barcodes for medical devices. The role of sequence control in biomaterials properties is an emerging research area, and there remain many opportunities for investigation. Further study of this topic may significantly advance our understanding of bioactive or smart materials, as well as contribute design rules to guide the development of synthetic biomaterials for future applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mariah J Austin
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
167
|
Weiser LJ, Santiso EE. A CGenFF‐based force field for simulations of peptoids with both
cis
and
trans
peptide bonds. J Comput Chem 2019; 40:1946-1956. [DOI: 10.1002/jcc.25850] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/27/2019] [Accepted: 04/14/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Laura J. Weiser
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Campus Box 7905, Raleigh North Carolina 27695–7905
| | - Erik E. Santiso
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Campus Box 7905, Raleigh North Carolina 27695–7905
| |
Collapse
|
168
|
Moretti A, Weeks RM, Chikindas M, Uhrich KE. Cationic Amphiphiles with Specificity against Gram-Positive and Gram-Negative Bacteria: Chemical Composition and Architecture Combat Bacterial Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5557-5567. [PMID: 30888181 PMCID: PMC6832706 DOI: 10.1021/acs.langmuir.9b00110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Small-molecule cationic amphiphiles (CAms) were designed to combat the rapid rise in drug-resistant bacteria. CAms were designed to target and compromise the structural integrity of bacteria membranes, leading to cell rupture and death. Discrete structural features of CAms were varied, and structure-activity relationship studies were performed to guide the rational design of potent antimicrobials with desirable selectivity and cytocompatibility profiles. In particular, the effects of cationic conformational flexibility, hydrophobic domain flexibility, and hydrophobic domain architecture were evaluated. Their influence on antimicrobial efficacy in Gram-positive and Gram-negative bacteria was determined, and their safety profiles were established by assessing their impact on mammalian cells. All CAms have a potent activity against bacteria, and hydrophobic domain rigidity and branched architecture contribute to specificity. The insights gained from this project will aid in the optimization of CAm structures.
Collapse
Affiliation(s)
- Alysha Moretti
- Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Richard M. Weeks
- Department of Microbiology and Biochemistry and School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Michael Chikindas
- Department of Microbiology and Biochemistry and School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Kathryn E. Uhrich
- Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854, United States
- Department of Chemistry, University of California, 501 Big Springs Rd., Riverside, California 92521, United States
- Corresponding Author:
| |
Collapse
|
169
|
Brown NJ, Lin JS, Barron AE. Helical side chain chemistry of a peptoid-based SP-C analogue: Balancing structural rigidity and biomimicry. Biopolymers 2019; 110:e23277. [PMID: 30972750 DOI: 10.1002/bip.23277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/21/2023]
Abstract
Surfactant protein C (SP-C) is an important constituent of lung surfactant (LS) and, along with SP-B, is included in exogenous surfactant replacement therapies for treating respiratory distress syndrome (RDS). SP-C's biophysical activity depends upon the presence of a rigid C-terminal helix, of which the secondary structure is more crucial to functionality than precise side-chain chemistry. SP-C is highly sequence-conserved, suggesting that the β-branched, aliphatic side chains of the helix are also important. Nonnatural mimics of SP-C were created using a poly-N-substituted glycine, or "peptoid," backbone. The mimics included varying amounts of α-chiral, aliphatic side chains and α-chiral, aromatic side chains in the helical region, imparting either biomimicry or structural rigidity. Biophysical studies confirmed that the peptoids mimicked SP-C's secondary structure and replicated many of its surface-active characteristics. Surface activity was optimized by incorporating both structurally rigid and biomimetic side chain chemistries in the helical region indicating that both characteristics are important for activity. By balancing these features in one mimic, a novel analogue was created that emulates SP-C's in vitro surface activity while overcoming many of the challenges related to natural SP-C. Peptoid-based analogues hold great potential for use in a synthetic, biomimetic LS formulation for treating RDS.
Collapse
Affiliation(s)
- Nathan J Brown
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University, Stanford, California
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, Stanford, California
| |
Collapse
|
170
|
Saporito P, Biljana M, Løbner Olesen A, Jenssen H. Antibacterial mechanisms of GN-2 derived peptides and peptoids against Escherichia coli. Biopolymers 2019; 110:e23275. [PMID: 30951211 DOI: 10.1002/bip.23275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/30/2022]
Abstract
Escherichia coli is the main etiological agent of urinary trait infections, able to form biofilms in indwelling devices, resulting in chronic infections which are refractory to antibiotics treatment. In this study, we investigated the antimicrobial and anti-biofilm properties exerted against E. coli ATCC 25922, by a set of peptoids and peptides modeled upon the peptide GN-2, previously reported as a valid antimicrobial agent. The putative antimicrobials were designed to evaluate the effect of cationicity, hydrophobicity and their partitioning on the overall properties against planktonic cells and biofilms as well as on LPS binding, permeabilization of Gram-negative bacteria membranes and hemolysis. The data demonstrated that peptides are stronger antimicrobials than the analogue peptoids which in return have superior anti-biofilm properties. In this study, we present evidence that peptides antimicrobial activity correlates with enhanced LPS binding and hydrophobicity but is not affected by partitioning. The data demonstrated that the enhanced anti-biofilm properties of the peptoids are associated with decreased hydrophobicity and increased penetration of the inner membrane, compared to that of their peptide counterpart, suggesting that the characteristic flexibility of peptoids or their lack of H-bonding donors in their backbone, would play a role in their ability to penetrate bacterial membranes.
Collapse
Affiliation(s)
- Paola Saporito
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mojsoska Biljana
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anders Løbner Olesen
- Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
171
|
Siriwardena TN, Lüscher A, Köhler T, van Delden C, Javor S, Reymond J. Antimicrobial Peptide Dendrimer Chimera. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thissa N. Siriwardena
- Department of Chemistry and BiochemistryUniversity of Bern, Freiestrasse 3 CH-3012 Bern Switzerland
| | - Alexandre Lüscher
- Department of Microbiology and Molecular Medicine, University of Geneva, Service of Infectious DiseasesUniversity Hospital of Geneva, 4 rue Gabrielle-Perret-Gentil CH-1211 Geneva Switzerland
| | - Thilo Köhler
- Department of Microbiology and Molecular Medicine, University of Geneva, Service of Infectious DiseasesUniversity Hospital of Geneva, 4 rue Gabrielle-Perret-Gentil CH-1211 Geneva Switzerland
| | - Christian van Delden
- Department of Microbiology and Molecular Medicine, University of Geneva, Service of Infectious DiseasesUniversity Hospital of Geneva, 4 rue Gabrielle-Perret-Gentil CH-1211 Geneva Switzerland
| | - Sacha Javor
- Department of Chemistry and BiochemistryUniversity of Bern, Freiestrasse 3 CH-3012 Bern Switzerland
| | - Jean‐Louis Reymond
- Department of Chemistry and BiochemistryUniversity of Bern, Freiestrasse 3 CH-3012 Bern Switzerland
| |
Collapse
|
172
|
Jimenez CJ, Tan J, Dowell KM, Gadbois GE, Read CA, Burgess N, Cervantes JE, Chan S, Jandaur A, Karanik T, Lee JJ, Ley MC, McGeehan M, McMonigal A, Palazzo KL, Parker SA, Payman A, Soria M, Verheyden L, Vo VT, Yin J, Calkins AL, Fuller AA, Stokes GY. Peptoids advance multidisciplinary research and undergraduate education in parallel: Sequence effects on conformation and lipid interactions. Biopolymers 2019; 110:e23256. [PMID: 30633339 PMCID: PMC6590334 DOI: 10.1002/bip.23256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 01/05/2023]
Abstract
Peptoids are versatile peptidomimetic molecules with wide-ranging applications from drug discovery to materials science. An understanding of peptoid sequence features that contribute to both their three-dimensional structures and their interactions with lipids will expand functions of peptoids in varied fields. Furthermore, these topics capture the enthusiasm of undergraduate students who prepare and study diverse peptoids in laboratory coursework and/or in faculty led research. Here, we present the synthesis and study of 21 peptoids with varied functionality, including 19 tripeptoids and 2 longer oligomers. We observed differences in fluorescence spectral features for 10 of the tripeptoids that correlated with peptoid flexibility and relative positioning of chromophores. Interactions of representative peptoids with sonicated glycerophospholipid vesicles were also evaluated using fluorescence spectroscopy. We observed evidence of conformational changes effected by lipids for select peptoids. We also summarize our experiences engaging students in peptoid-based projects to advance both research and undergraduate educational objectives in parallel.
Collapse
Affiliation(s)
- Christian J. Jimenez
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Jiacheng Tan
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Kalli M. Dowell
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Gillian E. Gadbois
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Cameron A. Read
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Nicole Burgess
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Jesus E. Cervantes
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Shannon Chan
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Anmol Jandaur
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Tara Karanik
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Jaenic J. Lee
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Mikaela C. Ley
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Molly McGeehan
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Ann McMonigal
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Kira L. Palazzo
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Samantha A. Parker
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Andre Payman
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Maritza Soria
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Lauren Verheyden
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Vivian T. Vo
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Jennifer Yin
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Anna L. Calkins
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Amelia A. Fuller
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Grace Y. Stokes
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| |
Collapse
|
173
|
Bhattacharyya D, Kim M, Mroue KH, Park M, Tiwari A, Saleem M, Lee D, Bhunia A. Role of non-electrostatic forces in antimicrobial potency of a dengue-virus derived fusion peptide VG16KRKP: Mechanistic insight into the interfacial peptide-lipid interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:798-809. [DOI: 10.1016/j.bbamem.2019.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 12/28/2018] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
|
174
|
Christensen MV, Kongstad KT, Sondergaard TE, Staerk D, Nielsen HM, Franzyk H, Wimmer R. 19F-substituted amino acids as an alternative to fluorophore labels: monitoring of degradation and cellular uptake of analogues of penetratin by 19F NMR. JOURNAL OF BIOMOLECULAR NMR 2019; 73:167-182. [PMID: 30887171 DOI: 10.1007/s10858-019-00239-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Current methods for assessment of cellular uptake of cell-penetrating peptides (CPPs) often rely on detection of fluorophore-labeled CPPs. However, introduction of the fluorescent probe often confers changed physicochemical properties, so that the fluorophore-CPP conjugate may exhibit cytotoxic effects and membrane damage not exerted by the native CPP. In the present study, introduction of fluorine probes was investigated as an alternative to fluorophore labeling of a CPP, since this only confers minor changes to its overall physicochemical properties. The high sensitivity of 19F NMR spectroscopy and the absence of background signals from naturally occurring fluorine enabled detection of internalized CPP. Also, degradation of fluorine-labeled peptides during exposure to Caco-2 cells could be followed by using 19F NMR spectroscopy. In total, five fluorinated analogues of the model CPP penetratin were synthesized by using commercially available fluorinated amino acids as labels, including one analogue also carrying an N-terminal fluorophore. The apparent cellular uptake was considerably higher for the fluorophore-penetratin conjugate indicating that the fluorophore moiety promoted uptake of the peptide. The use of 19F NMR spectroscopy enabled monitoring of the fate of the CPPs over time by establishing molar balances, and by verifying CPP integrity upon uptake. Thus, the NMR-based method offers several advantages over currently widespread methods relying on fluorescence detection. The present findings provide guidelines for improved labeling strategies for CPPs, thereby expanding the repertoire of analytical techniques available for studying degradation and uptake of CPPs.
Collapse
Affiliation(s)
- Malene V Christensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Kenneth T Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Teis Esben Sondergaard
- Section for Biotechnology, Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Hanne M Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Reinhard Wimmer
- Section for Biotechnology, Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, 9220, Aalborg, Denmark.
| |
Collapse
|
175
|
Amso Z, Hayouka Z. Antimicrobial random peptide cocktails: a new approach to fight pathogenic bacteria. Chem Commun (Camb) 2019; 55:2007-2014. [PMID: 30688322 DOI: 10.1039/c8cc09961h] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Antibiotic resistance in bacteria has become a serious threat to public health, and therefore there is an urgent need to develop new classes of antimicrobial agents. Nowadays, natural antimicrobial peptides (AMPs) and their synthetic derivatives are considered as promising alternatives to traditional antibiotics. The broad molecular diversity of AMPs, in terms of sequences and structures, suggests that their activity does not depend on specific features of amino acid sequence or peptide conformation. We therefore selected two common properties of AMPs, (high percentage of hydrophobic and cationic amino acids), to develop a novel approach to synthesize random antimicrobial peptide mixtures (RPMs). Instead of incorporating a single amino acid at each coupling step, a mixture of hydrophobic and cationic amino acids in a defined proportion is coupled. This results in a mixture that contains up to 2n sequences, where n is the number of the coupling step, of random peptides with a defined composition, stereochemistry, and controlled chain length. We have discovered that RPMs of hydrophobic and cationic α-amino acids, such as phenylalanine and lysine, display strong and broad antimicrobial activity towards Gram-negative, Gram-positive, clinically isolated antibiotic resistant "superbugs", and several plant pathogenic bacteria. This review summarizes our efforts to explore the mode of action of RPMs and their potential as bioactive agents for multiple applications, including the prevention of biofilm formation and degradation of mature biofilm (related to human health), reduction of disease severity in plant bacterial disease models (related to crop protection), and inhibition of bacterial growth in milk (related to food preservation). All our findings illustrate the effectiveness of RPMs and their great potential for various applications.
Collapse
Affiliation(s)
- Zaid Amso
- The Scripps Research Institute, d/b/a Calibr, a division of Scripps Research, La Jolla, CA 92037, USA
| | | |
Collapse
|
176
|
Wellhöfer I, Frydenvang K, Kotesova S, Christiansen AM, Laursen JS, Olsen CA. Functionalized Helical β-Peptoids. J Org Chem 2019; 84:3762-3779. [DOI: 10.1021/acs.joc.9b00218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Isabelle Wellhöfer
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Karla Frydenvang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Simona Kotesova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Andreas M. Christiansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jonas S. Laursen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
177
|
Salesa B, Martí M, Frígols B, Serrano-Aroca Á. Carbon Nanofibers in Pure Form and in Calcium Alginate Composites Films: New Cost-Effective Antibacterial Biomaterials against the Life-Threatening Multidrug-Resistant Staphylococcus epidermidis. Polymers (Basel) 2019; 11:polym11030453. [PMID: 30960437 PMCID: PMC6473926 DOI: 10.3390/polym11030453] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022] Open
Abstract
Due to the current global health problem of antibiotic resistant recently announced by the World Health Organization, there is an urgent necessity of looking for new alternative antibacterial materials able to treat and impede multidrug-resistant infections which are cost-effective and non-toxic for human beings. In this regard, carbon nanofibers (CNFs) possess currently much lower cost than other carbon nanomaterials, such as graphene oxide, and exhibit excellent chemical, mechanical and electric properties. Furthermore, here, the first report on the antibacterial activity of CNFs was demonstrated. Thus, these nanomaterials, in pure form or incorporated in a minuscule amount into calcium alginate composite films to reduce production costs as much as possible, showed to be new weapons against a globally spreading multidrug-resistant pathogen, the methicillin-resistant Staphylococcus epidermidis (MRSE). This Gram-positive bacterium is becoming one of the most dangerous pathogens, due to its abundance on skin. In this study, these hollow filamentous materials, in direct contact with cells and loaded in the low-cost calcium alginate composite films, showed no cytotoxicity for human keratinocyte HaCaT cells, which render them very promising for biomedical applications. The CNFs used in this work were characterized by Raman spectroscopy and observed by high-resolution transmission electron with energy-disperse X-ray spectroscopy.
Collapse
Affiliation(s)
- Beatriz Salesa
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| | - Miguel Martí
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| | - Belén Frígols
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| | - Ángel Serrano-Aroca
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| |
Collapse
|
178
|
Kuppusamy R, Yasir M, Yee E, Willcox M, Black DS, Kumar N. Guanidine functionalized anthranilamides as effective antibacterials with biofilm disruption activity. Org Biomol Chem 2019; 16:5871-5888. [PMID: 30070287 DOI: 10.1039/c8ob01699b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We describe a library of amphiphilic anthranilamide compounds as antimicrobial peptide (AMP) mimics. These contain a hydrophobic naphthoyl side chain and different hydrophilic cationic groups such as amino, quaternary ammonium and guanidino groups. These are prepared via the ring-opening of different isatoic anhydrides. The antibacterial activity against S. aureus and E. coli of compounds containing guanidino cationic groups was greater than that for amino and quaternary ammonium cationic groups. The fluoro-substituted guanidinium compound 9b showed a minimum inhibitory concentration (MIC) of 2.0 μM against S. aureus, and reduced established biofilms of S. aureus by 92% at 64 μM concentration. The bromo-substituted guanidinium compound 9d exhibited good MIC against S. aureus (3.9 μM) and E. coli (15.6 μM) and disrupted established biofilms of S. aureus by 83% at 62.4 μM concentration. Cytoplasmic membrane permeability studies suggested that depolarization and disruption of the bacterial cell membrane could be a possible mechanism for antibacterial activity and the in vitro toxicity studies against MRC-5 human lung fibroblast cells showed that the potent compounds are non-toxic against mammalian cells.
Collapse
Affiliation(s)
- Rajesh Kuppusamy
- School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
179
|
Gimenez D, Zhou G, Hurley MFD, Aguilar JA, Voelz VA, Cobb SL. Fluorinated Aromatic Monomers as Building Blocks To Control α-Peptoid Conformation and Structure. J Am Chem Soc 2019; 141:3430-3434. [PMID: 30739443 DOI: 10.1021/jacs.8b13498] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptoids are peptidomimetics of interest in the fields of drug development and biomaterials. However, obtaining stable secondary structures is challenging, and designing these requires effective control of the peptoid tertiary amide cis/trans equilibrium. Herein, we report new fluorine-containing aromatic monomers that can control peptoid conformation. Specifically, we demonstrate that a fluoro-pyridine group can be used to circumvent the need for monomer chirality to control the cis/trans equilibrium. We also show that incorporation of a trifluoro-methyl group ( NCF3Rpe) rather than a methyl group ( NRpe) at the α-carbon of a monomer gives rise to a 5-fold increase in cis-isomer preference.
Collapse
Affiliation(s)
- Diana Gimenez
- Department of Chemistry , Durham University , South Road , Durham DH1 3LE , U.K
| | - Guangfeng Zhou
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Matthew F D Hurley
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Juan A Aguilar
- Department of Chemistry , Durham University , South Road , Durham DH1 3LE , U.K
| | - Vincent A Voelz
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Steven L Cobb
- Department of Chemistry , Durham University , South Road , Durham DH1 3LE , U.K
| |
Collapse
|
180
|
Yadav K, Yavvari PS, Pal S, Kumar S, Mishra D, Gupta S, Mitra M, Soni V, Khare N, Sharma P, Srikanth CV, Kapil A, Singh A, Nandicoori VK, Bajaj A. Oral Delivery of Cholic Acid-Derived Amphiphile Helps in Combating Salmonella-Mediated Gut Infection and Inflammation. Bioconjug Chem 2019; 30:721-732. [DOI: 10.1021/acs.bioconjchem.8b00880] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kavita Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
- Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Prabhu Srinivas Yavvari
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal-462026, Madhya Pradesh, India
| | - Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
- Kalinga Institute of Industrial Technology, Bhubaneswar-751024, Odisha India,
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
- Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Deepakkumar Mishra
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
| | - Siddhi Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
| | - Madhurima Mitra
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
| | - Vijay Soni
- National Institute of Immunology, Aruna Asaf Ali
Marg, New Delhi-110067, India
| | - Neha Khare
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
| | - Priyanka Sharma
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-110029, India
| | - Chittur V. Srikanth
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-110029, India
| | - Archana Singh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India
| | | | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
| |
Collapse
|
181
|
Tezgel Ö, Noinville S, Bennevault V, Illy N, Guégan P. An alternative approach to create N-substituted cyclic dipeptides. Polym Chem 2019. [DOI: 10.1039/c8py01552j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
N-Modified peptide backbones are promising peptidomimetics which offer several advantages in terms of improved biological activity and stability.
Collapse
Affiliation(s)
- Özgül Tezgel
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- Equipe Chimie des Polymères
- F-75005 Paris
| | | | - Véronique Bennevault
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- Equipe Chimie des Polymères
- F-75005 Paris
| | - Nicolas Illy
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- Equipe Chimie des Polymères
- F-75005 Paris
| | - Philippe Guégan
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- Equipe Chimie des Polymères
- F-75005 Paris
| |
Collapse
|
182
|
Datta LP, Dutta D, Chakraborty A, Das TK. Tyrosine based cationic acrylates as potent antimicrobial agents against shigellosis. Biomater Sci 2019; 7:2611-2622. [DOI: 10.1039/c8bm01588k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Design of tyrosine-based cationic polymers with antimicrobial activities.
Collapse
Affiliation(s)
- Lakshmi Priya Datta
- Department of Biochemistry and Biophysics
- University of Kalyani
- Kalyani-741235
- India
| | - Debanjan Dutta
- Department of Biochemistry and Biophysics
- University of Kalyani
- Kalyani-741235
- India
| | - Arpita Chakraborty
- Department of Biochemistry and Biophysics
- University of Kalyani
- Kalyani-741235
- India
| | - Tapan Kumar Das
- Department of Biochemistry and Biophysics
- University of Kalyani
- Kalyani-741235
- India
| |
Collapse
|
183
|
Martí M, Frígols B, Salesa B, Serrano-Aroca Á. Calcium alginate/graphene oxide films: Reinforced composites able to prevent Staphylococcus aureus and methicillin-resistant Staphylococcus epidermidis infections with no cytotoxicity for human keratinocyte HaCaT cells. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
184
|
Rahman MA, Bam M, Luat E, Jui MS, Ganewatta MS, Shokfai T, Nagarkatti M, Decho AW, Tang C. Macromolecular-clustered facial amphiphilic antimicrobials. Nat Commun 2018; 9:5231. [PMID: 30531920 PMCID: PMC6286373 DOI: 10.1038/s41467-018-07651-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022] Open
Abstract
Bacterial infections and antibiotic resistance, particularly by Gram-negative pathogens, have become a global healthcare crisis. We report the design of a class of cationic antimicrobial polymers that cluster local facial amphiphilicity from repeating units to enhance interactions with bacterial membranes without requiring a globally conformational arrangement associated with highly unfavorable entropic loss. This concept of macromolecular architectures is demonstrated with a series of multicyclic natural product-based cationic polymers. We have shown that cholic acid derivatives with three charged head groups are more potent and selective than lithocholic and deoxycholic counterparts, particularly against Gram-negative bacteria. This is ascribed to the formation of true facial amphiphilicity with hydrophilic ion groups oriented on one face and hydrophobic multicyclic hydrocarbon structures on the opposite face. Such local facial amphiphilicity is clustered via a flexible macromolecular backbone in a concerted way when in contact with bacterial membranes.
Collapse
Affiliation(s)
- Md Anisur Rahman
- Department of Chemistry and Biochemistry, Columbia, SC, 29208, United States
| | - Marpe Bam
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Edgar Luat
- Department of Chemistry and Biochemistry, Columbia, SC, 29208, United States
| | - Moumita Sharmin Jui
- Department of Chemistry and Biochemistry, Columbia, SC, 29208, United States
| | - Mitra S Ganewatta
- Department of Chemistry and Biochemistry, Columbia, SC, 29208, United States
| | - Tinom Shokfai
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, Columbia, SC, 29208, United States.
| |
Collapse
|
185
|
Song Y, Wang M, Li S, Jin H, Cai X, Du D, Li H, Chen CL, Lin Y. Efficient Cytosolic Delivery Using Crystalline Nanoflowers Assembled from Fluorinated Peptoids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803544. [PMID: 30565848 DOI: 10.1002/smll.201803544] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Indexed: 06/09/2023]
Abstract
The design and synthesis of biocompatible nanomaterials as cargoes for the intracellular delivery of therapeutic proteins or genes have attracted intense attention because of their potential for use in therapeutics. Despite the advances in this area, very few nanomaterials can be efficiently delivered to the cytosol. To address these challenges, crystalline nanoflower-like particles are designed and synthesized from fluorinated sequence-defined peptoids; the crystallinity and fluorination of these particles enable highly efficient cytosolic delivery with minimal cytotoxicity. A cytosol delivery rate of 80% has been achieved for the fluorinated peptoid nanoflowers. Furthermore, these nanocrystals can carry therapeutic genes, such as mRNA and effectively deliver the payload into the cytosol, demonstrating the universal delivery capability of the nanocrystals. The results indicate that self-assembly of crystalline nanomaterials from fluorinated peptoids paves a new way toward development of nanocargoes with efficient cytosolic gene delivery capability.
Collapse
Affiliation(s)
- Yang Song
- Department of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Mingming Wang
- Division of Physical Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Suiqiong Li
- Department of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Haibao Jin
- Division of Physical Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Xiaoli Cai
- Department of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Dan Du
- Department of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - He Li
- Department of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Chun-Long Chen
- Division of Physical Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yuehe Lin
- Department of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
186
|
Altering the edge chemistry of bicelles with peptoids. Chem Phys Lipids 2018; 217:43-50. [PMID: 30391486 DOI: 10.1016/j.chemphyslip.2018.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/10/2018] [Accepted: 10/23/2018] [Indexed: 01/23/2023]
Abstract
Cell function is tied to the interactions that occur within and across the cell membrane. Therefore, understanding membrane-affiliated interactions is important to many biomedical applications. Advancing the body of knowledge about these interactions will lead to discoveries in biomarker detection and therapeutic targets for disease detection and treatment. Model membrane systems are an effective way to study membrane proteins for such discoveries, allowing for stable protein structure and maintaining native activity. Bicelles, disc-shaped lipid bilayers created by combining long- and short-chain phospholipids, are the model membrane system of focus in this study. Bicelles are accessible from both sides and have a wide size range, which makes them attractive for studying membrane interactions without affecting function. In this work, bicelles were functionalized with peptoids to alter the edge chemistry. Peptoids are suitable for this application because of the large diversity of available side chain chemistries that can be easily incorporated in a sequence-specific manner. The peptoid sequence consists of three functional regions to promote insertion into the edge of bicelles. The insertion sequence at the C-terminus contains two alkyl chains and two hydrophobic, chiral aromatic groups that anchor into the bicelle edge. The facially amphipathic helix contains chiral aromatic groups on one side that interact with the lipid tails and positively charged groups on the other side, which interact with the lipid head groups. Thiol groups are included at the N-terminus to allow for visualization of peptoid location in the bicelle. Bicelle morphology and size were assessed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Peptoid location in the bicelle was determined by attachment of gold nanoparticles, which confirmed preferential incorporation of the peptoid into the bicelle edge with 82% specificity. Additionally, the peptoid-functionalized bicelles are of similar size and morphology to non-functionalized bicelles. Results from this study show that peptoid-functionalized bicelles are a promising model membrane system with potential applications in biosensors or bioseparations.
Collapse
|
187
|
Mitchell SA, Truscott F, Dickman R, Ward J, Tabor AB. Simplified lipid II-binding antimicrobial peptides: Design, synthesis and antimicrobial activity of bioconjugates of nisin rings A and B with pore-forming peptides. Bioorg Med Chem 2018; 26:5691-5700. [DOI: 10.1016/j.bmc.2018.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
|
188
|
Metalloporphyrin Dimers Bridged by a Peptoid Helix: Host-Guest Interaction and Chiral Recognition. Molecules 2018; 23:molecules23112741. [PMID: 30352958 PMCID: PMC6278558 DOI: 10.3390/molecules23112741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 11/22/2022] Open
Abstract
Co-facial porphyrins have been designed to construct porphyrin tweezers with versatile molecular recognition capabilities. In this study, we synthesized metalloporphyrin–peptoid conjugates (MPPCs) displaying two metalloporphyrins on a peptoid scaffold with either achiral unfolded (1) or helical (2 and 3) secondary structures. Host–guest complexation of MPPCs was realized with various guests of different lengths and basicities, and the extent of complexation was measured by UV-vis and circular dichroism (CD) spectroscopic titration. Intermolecular and intramolecular chirality induction were observed on achiral and chiral peptoid backbones, respectively. Spectroscopic data indicated that a broad scope of achiral guests can be recognized by chiral 2; in particular, longer and more flexible guests were seen to bind more tightly on 2. In addition, chiral 2 provided a distinct CD couplet with dl-, d-, or l-Lys-OMe, which was a result of the diastereomeric host–guest complex formation. Our results indicated that MPPCs can recognize, contrast, and analyze various achiral, chiral, or racemic molecules. Based on co-facial metalloporphyrins present on peptoid scaffolds, we developed a novel class of porphyrin tweezers, which can be further utilized in asymmetric catalysis, molecular sensing, and drug delivery.
Collapse
|
189
|
Wang J, Dou X, Song J, Lyu Y, Zhu X, Xu L, Li W, Shan A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med Res Rev 2018; 39:831-859. [PMID: 30353555 DOI: 10.1002/med.21542] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022]
Abstract
Antimicrobial peptides (AMPs), critical components of the innate immune system, are widely distributed throughout the animal and plant kingdoms. They can protect against a broad array of infection-causing agents, such as bacteria, fungi, parasites, viruses, and tumor cells, and also exhibit immunomodulatory activity. AMPs exert antimicrobial activities primarily through mechanisms involving membrane disruption, so they have a lower likelihood of inducing drug resistance. Extensive studies on the structure-activity relationship have revealed that net charge, hydrophobicity, and amphipathicity are the most important physicochemical and structural determinants endowing AMPs with antimicrobial potency and cell selectivity. This review summarizes the recent advances in AMPs development with respect to characteristics, structure-activity relationships, functions, antimicrobial mechanisms, expression regulation, and applications in food, medicine, and animals.
Collapse
Affiliation(s)
- Jiajun Wang
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xiujing Dou
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jing Song
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yinfeng Lyu
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xin Zhu
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Lin Xu
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Weizhong Li
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
190
|
Mondal J. A brief appraisal of computational modeling of antimicrobial peptides’ activity. Drug Dev Res 2018; 80:28-32. [DOI: 10.1002/ddr.21472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/16/2018] [Accepted: 08/27/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Jagannath Mondal
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences; Hyderabad 500107 India
| |
Collapse
|
191
|
Pompilio A, Geminiani C, Mantini P, Siriwardena TN, Di Bonaventura I, Reymond JL, Di Bonaventura G. Peptide dendrimers as "lead compounds" for the treatment of chronic lung infections by Pseudomonas aeruginosa in cystic fibrosis patients: in vitro and in vivo studies. Infect Drug Resist 2018; 11:1767-1782. [PMID: 30349334 PMCID: PMC6188189 DOI: 10.2147/idr.s168868] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim In the present work, the potential of the D-enantiomeric dendrimers dG3KL and dTNS18 was evaluated in relation to tobramycin (Tob), for the development of novel antibacterials to treat Pseudomonas aeruginosa chronic lung infections in patients with cystic fibrosis. Results The activity of dendrimers against planktonic P. aeruginosa cells was less than Tob against three of the four strains tested (median minimum inhibitory concentration [MIC] 8 vs 1 µg/mL, respectively), but 32-fold higher against the PaPh32 strain isolated at posttransplantation stage. Results from comparative minimum bactericidal concentration/MIC evaluation and time-kill assay suggested a bactericidal mechanism for all test agents. Subinhibitory concentrations of both dendrimers and Tob significantly affected biofilm formation by all strains in a dose-dependent manner, although the PaPh26 strain, isolated during the chronic stage of infection, was particularly susceptible to dendrimers. The activity of dendrimers against preformed P. aeruginosa biofilm was generally comparable to Tob, considering both dispersion and viability of biofilm. Particularly, exposure to the test agent at 10 × MIC caused significant biofilm death (>90%, even to eradication), though with strain-specific differences. Single administration of dendrimers or Tob at 10 × MIC was not toxic in Galleria mellonella wax-moth larvae over 96 hours. However, contrarily to Tob, dendrimers were not protective against systemic infection caused by P. aeruginosa in G. mellonella. Kinetics of P. aeruginosa growth in hemolymph showed that bacterial load increased over time in the presence of dendrimers. Conclusion Overall, our findings indicated that dG3KL and dTNS18 peptide dendrimers show in vitro activity comparable to Tob against both P. aeruginosa planktonic and biofilm cells at concentrations not toxic in vivo. Further studies are warranted to explore different dosages and to increase the bioavailability of the peptides to solve the lack of protective effect observed in G. mellonella larvae.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral, and Biotechnological Sciences, G d'Annunzio University of Chieti-Pescara, Chieti 66100, Italy, .,Center of Excellence on Aging and Translational Medicine, G d'Annunzio University of Chieti-Pescara, Chieti, Italy,
| | - Cristina Geminiani
- Department of Medical, Oral, and Biotechnological Sciences, G d'Annunzio University of Chieti-Pescara, Chieti 66100, Italy, .,Center of Excellence on Aging and Translational Medicine, G d'Annunzio University of Chieti-Pescara, Chieti, Italy,
| | - Paolo Mantini
- Department of Medical, Oral, and Biotechnological Sciences, G d'Annunzio University of Chieti-Pescara, Chieti 66100, Italy, .,Center of Excellence on Aging and Translational Medicine, G d'Annunzio University of Chieti-Pescara, Chieti, Italy,
| | | | - Ivan Di Bonaventura
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Jean Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Giovanni Di Bonaventura
- Department of Medical, Oral, and Biotechnological Sciences, G d'Annunzio University of Chieti-Pescara, Chieti 66100, Italy, .,Center of Excellence on Aging and Translational Medicine, G d'Annunzio University of Chieti-Pescara, Chieti, Italy,
| |
Collapse
|
192
|
Middleton MP, Armstrong SA, Bicker KL. Improved potency and reduced toxicity of the antifungal peptoid AEC5 through submonomer modification. Bioorg Med Chem Lett 2018; 28:3514-3519. [PMID: 30297282 DOI: 10.1016/j.bmcl.2018.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/23/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
As proteolytically stable peptidomimetics, peptoids could serve as antifungal agents to supplement a therapeutic field wrought with toxicity issues. We report the improvement of an antifungal peptoid, AEC5, through an iterative structure-activity relationship study. A sarcosine scan was used to first identify the most pharmacophorically important peptoid building blocks of AEC5, followed by sequential optimization of each building block. The optimized antifungal peptoid from this study, β-5, has improved potency towards Cryptococcus neoformans and decreased toxicity towards mammalian cells. For example, the selectivity ratio for C. neoformans over mammalian fibroblasts was improved from 8 for AEC5 to 37 for β-5.
Collapse
Affiliation(s)
- Madyson P Middleton
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132, United States
| | - Scott A Armstrong
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132, United States
| | - Kevin L Bicker
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132, United States.
| |
Collapse
|
193
|
Lee Y, Seo J. Oxopiperazine capping: Formation of oxopiperazine-containing peptoids via C-terminal cyclization. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
194
|
Hansen AM, Skovbakke SL, Christensen SB, Perez-Gassol I, Franzyk H. Studies on acid stability and solid-phase block synthesis of peptide-peptoid hybrids: ligands for formyl peptide receptors. Amino Acids 2018; 51:205-218. [PMID: 30267164 DOI: 10.1007/s00726-018-2656-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
α-Peptoids as well as peptide/α-peptoid hybrids and peptide/β-peptoid hybrids constitute major classes of proteolytically stable peptidomimetics that have been extensively investigated as mimetics of biologically active peptides. Representatives of lipidated peptide/β-peptoid hybrids have been identified as promising immunomodulatory lead compounds, and hence access to these via protocols suitable for gram-scale synthesis is warranted to enable animal in vivo studies. Recent observations indicated that several byproducts appear in crude mixtures of relatively short benzyl-based peptide/β-peptoid oligomers, and that these were most predominant when the β-peptoid units displayed an α-chiral benzyl side chain. This prompted an investigation of their stability under acidic conditions. Simultaneous deprotection and cleavage of peptidomimetics containing either α-chiral α- or β-peptoid residues required treatment with strong acid only for a short time to minimize the formation of partially debenzylated byproducts. The initial work on peptide/β-peptoid oligomers with an alternating design established that it was beneficial to form the amide bond between the carboxyl group of the α-amino acid and the congested amino functionality of the β-peptoid residue in solution. To further simplify oligomer assembly on solid phase, we now present a protocol for purification-free solid-phase synthesis of tetrameric building blocks. Next, syntheses of peptidomimetic ligands via manual solid-phase methodologies involving tetrameric building blocks were found to give more readily purified products as compared to those obtained with dimeric building blocks. Moreover, the tetrameric building blocks could be utilized in automated synthesis with microwave-assisted heating, albeit the purity of the crude products was not increased.
Collapse
Affiliation(s)
- Anna Mette Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Sarah Line Skovbakke
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Rolighedsvej 25b, 1958, Frederiksberg, Denmark
| | - Simon Bendt Christensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Iris Perez-Gassol
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark.
| |
Collapse
|
195
|
Hoff EA, Artim CM, Brown JS, Alabi CA. Sensitivity of Antibacterial Activity to Backbone Sequence in Constitutionally Isomeric OligoTEAs. Macromol Biosci 2018; 18:e1800241. [PMID: 30238615 DOI: 10.1002/mabi.201800241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/03/2018] [Indexed: 01/28/2023]
Abstract
Antimicrobial peptides are promising alternatives to traditional antibiotics but their translational potential is limited due to rapid degradation by serum proteases. Recently, a number of peptidomimetics with backbones resistant to proteolysis have been synthesized and their antimicrobial potential evaluated as a function of their hydrophobic to cationic ratio. However, these mimetics also have a fixed backbone thus making it difficult to isolate the effect of backbone hydrophobic composition and sequence. In this work, advantage is taken of the oligothioetheramide (oligoTEA) synthetic strategy that allows for precise control over backbone and pendant group placement to systematically study the effect of backbone hydrophobic sequence while keeping pendant group constant. Biophysical data acquired with a set of constitutional oligoTEA isomers show that backbone hydrophobic sequence, that is, local hydrophobicity, affects the mode of oligoTEA interaction with lipid bilayers. This differential interaction among the constitutionally isomeric oligoTEAs is manifested in their antibacterial activities and points to the possibility of using backbone hydrophobic sequence to tune antibacterial potency and selectivity.
Collapse
Affiliation(s)
- Emily A Hoff
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Christine M Artim
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Joseph S Brown
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Christopher A Alabi
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
196
|
Arfan G, Ong CYF, Ng SMS, Lau QY, Ng FM, Ong EHQ, Hill J, Chia CSB. Designing an ultra-short antibacterial peptide with potent activity against Mupirocin-resistant MRSA. Chem Biol Drug Des 2018; 93:4-11. [DOI: 10.1111/cbdd.13377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/17/2018] [Accepted: 07/22/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Giovinna Arfan
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); Singapore Singapore
| | - Chu Yang Fann Ong
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); Singapore Singapore
| | - Siew Mei Samantha Ng
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); Singapore Singapore
| | - Qiu Ying Lau
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); Singapore Singapore
| | - Fui Mee Ng
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); Singapore Singapore
| | - Esther Hong Qian Ong
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); Singapore Singapore
| | - Jeffrey Hill
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); Singapore Singapore
| | - Cheng San Brian Chia
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); Singapore Singapore
| |
Collapse
|
197
|
Zimnicka MM. Conformational Features of Thioamide-Containing Dipeptoids and Peptoid–Peptide Hybrids—Computational and Experimental Approaches. J Phys Chem A 2018; 122:7819-7831. [DOI: 10.1021/acs.jpca.8b05456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Magdalena M. Zimnicka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
198
|
Martí M, Frígols B, Serrano-Aroca A. Antimicrobial Characterization of Advanced Materials for Bioengineering Applications. J Vis Exp 2018:57710. [PMID: 30124638 PMCID: PMC6126623 DOI: 10.3791/57710] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The development of new advanced materials with enhanced properties is becoming more and more important in a wide range of bioengineering applications. Thus, many novel biomaterials are being designed to mimic specific environments required for biomedical applications such as tissue engineering and controlled drug delivery. The development of materials with improved properties for the immobilization of cells or enzymes is also a current research topic in bioprocess engineering. However, one of the most desirable properties of a material in these applications is the antimicrobial capacity to avoid any undesirable infections. For this, we present easy-to-follow protocols for the antimicrobial characterization of materials based on (i) the agar disk diffusion test (diffusion method) and (ii) the ISO 22196:2007 norm to measure the antimicrobial activity on material surfaces (contact method). This protocol must be performed using Gram-positive and Gram-negative bacteria and yeast to cover a broad range of microorganisms. As an example, 4 materials with different chemical natures are tested following this protocol against Staphylococcus aureus, Escherichia coli, and Candida albicans.The results of these tests exhibit non-antimicrobial activity for the first material and increasing antibacterial activity against Gram-positive and Gram-negative bacteria for the other 3 materials. However, none of the 4 materials are able to inhibit the growth of Candida albicans.
Collapse
Affiliation(s)
- Miguel Martí
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir
| | - Belén Frígols
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir
| | - Angel Serrano-Aroca
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir;
| |
Collapse
|
199
|
Lee YJ, Kang D, Seo J. Facile method for the synthesis of triazole- and tetrazole-containing peptoids on a solid support. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
200
|
Carmona-Ribeiro AM. Self-Assembled Antimicrobial Nanomaterials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1408. [PMID: 29973521 PMCID: PMC6069395 DOI: 10.3390/ijerph15071408] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022]
Abstract
Nanotechnology came to stay improving the quality of human life by reducing environmental contamination of earth and water with pathogens. This review discusses how self-assembled antimicrobial nanomaterials can contribute to maintain humans, their water and their environment inside safe boundaries to human life even though some of these nanomaterials display an overt toxicity. At the core of their strategic use, the self-assembled antimicrobial nanomaterials exhibit optimal and biomimetic organization leading to activity at low doses of their toxic components. Antimicrobial bilayer fragments, bilayer-covered or multilayered nanoparticles, functionalized inorganic or organic polymeric materials, coatings and hydrogels disclose their potential for environmental and public health applications in this review.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Instituto de Química, Universidade de São Paulo; Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil.
| |
Collapse
|