151
|
Kranz A, Steinmann A, Degner U, Mengus-Kaya A, Matamouros S, Bott M, Polen T. Global mRNA decay and 23S rRNA fragmentation in Gluconobacter oxydans 621H. BMC Genomics 2018; 19:753. [PMID: 30326828 PMCID: PMC6191907 DOI: 10.1186/s12864-018-5111-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022] Open
Abstract
Background Gluconobacter oxydans is a strictly aerobic Gram-negative acetic acid bacterium used industrially for oxidative biotransformations due to its exceptional type of catabolism. It incompletely oxidizes a wide variety of carbohydrates regio- and stereoselectively in the periplasm using membrane-bound dehydrogenases with accumulation of the products in the medium. As a consequence, only a small fraction of the carbon and energy source enters the cell, resulting in a low biomass yield. Additionally, central carbon metabolism is characterized by the absence of a functional glycolysis and absence of a functional tricarboxylic acid (TCA) cycle. Due to these features, G. oxydans is a highly interesting model organism. Here we analyzed global mRNA decay in G. oxydans to describe its characteristic features and to identify short-lived mRNAs representing potential bottlenecks in the metabolism for further growth improvement by metabolic engineering. Results Using DNA microarrays we estimated the mRNA half-lives in G. oxydans. Overall, the mRNA half-lives ranged mainly from 3 min to 25 min with a global mean of 5.7 min. The transcripts encoding GroES and GroEL required for proper protein folding ranked at the top among transcripts exhibiting both long half-lives and high abundance. The F-type H+-ATP synthase transcripts involved in energy metabolism ranked among the transcripts with the shortest mRNA half-lives. RNAseq analysis revealed low expression levels for genes of the incomplete TCA cycle and also the mRNA half-lives of several of those were short and below the global mean. The mRNA decay analysis also revealed an apparent instability of full-length 23S rRNA. Further analysis of the ribosome-associated rRNA revealed a 23S rRNA fragmentation pattern exhibiting new cleavage regions in 23S rRNAs which were previously not known. Conclusions The very short mRNA half-lives of the H+-ATP synthase, which is likely responsible for the ATP-proton motive force interconversion in G. oxydans under many or most conditions, is notably in contrast to mRNA decay data from other bacteria. Together with the short mRNA half-lives and low expression of some other central metabolic genes it could limit intended improvements of G. oxydans’ biomass yield by metabolic engineering. Also, further studies are needed to unravel the multistep process of the 23S rRNA fragmentation in G. oxydans. Electronic supplementary material The online version of this article (10.1186/s12864-018-5111-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angela Kranz
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Andrea Steinmann
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Ursula Degner
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Aliye Mengus-Kaya
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Susana Matamouros
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
152
|
Steven B, Belnap J, Kuske CR. Chronic Physical Disturbance Substantially Alters the Response of Biological Soil Crusts to a Wetting Pulse, as Characterized by Metatranscriptomic Sequencing. Front Microbiol 2018; 9:2382. [PMID: 30349515 PMCID: PMC6186815 DOI: 10.3389/fmicb.2018.02382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
Biological soil crusts (biocrusts) are microbial communities that are a feature of arid surface soils worldwide. In drylands where precipitation is pulsed and ephemeral, the ability of biocrust microbiota to rapidly initiate metabolic activity is critical to their survival. Community gene expression was compared after a short duration (1 h) wetting pulse in both intact and soils disturbed by chronic foot trampling. Across the metatranscriptomes the majority of transcripts were cyanobacterial in origin, suggesting that cyanobacteria accounted for the bulk of the transcriptionally active cells. Chronic trampling substantially altered the functional profile of the metatranscriptomes, specifically resulting in a significant decrease in transcripts for nitrogen fixation. Soil depth (biocrust and below crust) was a relatively small factor in differentiating the metatranscriptomes, suggesting that the metabolically active bacteria were similar between shallow soil horizons. The dry samples were consistently enriched for hydrogenase genes, indicating that molecular hydrogen may serve as an energy source for the desiccated soil communities. The water pulse was associated with a restructuring of the metatranscriptome, particularly for the biocrusts. Biocrusts increased transcripts for photosynthesis and carbon fixation, suggesting a rapid resuscitation upon wetting. In contrast, the trampled surface soils showed a much smaller response to wetting, indicating that trampling altered the metabolic response of the community. Finally, several biogeochemical cycling genes in carbon and nitrogen cycling were assessed for their change in abundance due to wetting in the biocrusts. Different transcripts encoding the same gene product did not show a consensus response, with some more abundant in dry or wet biocrusts, highlighting the challenges in relating transcript abundance to biogeochemical cycling rates. These observations demonstrate that metatranscriptome sequencing was able to distinguish alterations in the function of arid soil microbial communities at two varying temporal scales, a long-term ecosystems disturbance through foot trampling, and a short term wetting pulse. Thus, community metatranscriptomes have the potential to inform studies on the response and resilience of biocrusts to various environmental perturbations.
Collapse
Affiliation(s)
- Blaire Steven
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Jayne Belnap
- Southwest Biological Science Center, United States Geological Survey, Moab, UT, United States
| | - Cheryl R Kuske
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
153
|
Afshari R, Pillidge CJ, Dias DA, Osborn AM, Gill H. Cheesomics: the future pathway to understanding cheese flavour and quality. Crit Rev Food Sci Nutr 2018; 60:33-47. [DOI: 10.1080/10408398.2018.1512471] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Roya Afshari
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | | | - Daniel A. Dias
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - A. Mark Osborn
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
154
|
Mohapatra S, Weisshaar JC. Functional mapping of the
E. coli
translational machinery using single‐molecule tracking. Mol Microbiol 2018; 110:262-282. [DOI: 10.1111/mmi.14103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
Affiliation(s)
| | - James C. Weisshaar
- Department of Chemistry University of Wisconsin‐Madison Madison WI 53706USA
| |
Collapse
|
155
|
Zhong L, Cai S, Huang Y, Yin L, Yang Y, Lu C, Yang H. DNA Octahedron-Based Fluorescence Nanoprobe for Dual Tumor-Related mRNAs Detection and Imaging. Anal Chem 2018; 90:12059-12066. [DOI: 10.1021/acs.analchem.8b02847] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lin Zhong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Shuxian Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Yuqing Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Litian Yin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Yuling Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| |
Collapse
|
156
|
Sepúlveda-Gálvez A, Agustín Badillo-Corona J, Chairez I. Finite-time parametric identification for the model representing the metabolic and genetic regulatory effects of sequential aerobic respiration and anaerobic fermentation processes in Escherichia coli. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2018; 35:299-317. [PMID: 28340243 DOI: 10.1093/imammb/dqx004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/20/2016] [Indexed: 11/14/2022]
Abstract
Mathematical modelling applied to biological systems allows for the inferring of changes in the dynamic behaviour of organisms associated with variations in the environment. Models based on ordinary differential equations are most commonly used because of their ability to describe the mechanisms of biological systems such as transcription. The disadvantage of using this approach is that there is a large number of parameters involved and that it is difficult to obtain them experimentally. This study presents an algorithm to obtain a finite-time parameter characterization of the model used to describe changes in the metabolic behaviour of Escherichia coli associated with environmental changes. In this scheme, super-twisting algorithm was proposed to recover the derivative of all the proteins and mRNA of E. coli associated to changes in the concentration of oxygen available in the growth media. The 75 identified parameters in this study maintain the biological coherence of the system and they were estimated with no more than 20% error with respect to the real ones included in the proposed model.
Collapse
Affiliation(s)
| | | | - Isaac Chairez
- Department of Bioprocesses, Instituto Politécnico Nacional, Mexico, Mexico
| |
Collapse
|
157
|
Bedoya-Pérez LP, Muriel-Millán LF, Moreno S, Quiroz-Rocha E, Rivera-Gómez N, Espín G. The pyrophosphohydrolase RppH is involved in the control of RsmA/CsrA expression in Azotobacter vinelandii and Escherichia coli. Microbiol Res 2018; 214:91-100. [DOI: 10.1016/j.micres.2018.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/28/2018] [Accepted: 05/17/2018] [Indexed: 02/06/2023]
|
158
|
Laguerre S, González I, Nouaille S, Moisan A, Villa-Vialaneix N, Gaspin C, Bouvier M, Carpousis AJ, Cocaign-Bousquet M, Girbal L. Large-Scale Measurement of mRNA Degradation in Escherichia coli: To Delay or Not to Delay. Methods Enzymol 2018; 612:47-66. [PMID: 30502954 DOI: 10.1016/bs.mie.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, we compared different computational methods used for genome-wide determination of mRNA half-lives in Escherichia coli with a special focus on the impact on considering a delay before the onset of mRNA decay after transcription arrest. A wide variety of datasets were analyzed coming from different technical methods for mRNA quantification (microarrays, RNA-seq, and RT-qPCR) and different bacterial growth conditions. The exponential decay of mRNA levels was fitted using both linear and exponential models and with or without a delay. We showed that for all the models, independently of mRNA quantification methods and growth conditions, ignoring the delay resulted in only a modest overestimation of the half-life. For approximately 80% of the mRNAs, differences in mRNA half-life values were less than 34s. The correlation between half-lives estimated with and without a delay was extremely high. However, the slope of the linear regression between the half-lives with and without a delay tended to decrease with the delay. For the few mRNAs for which taking into account the delay influenced the estimated half-life, the impact was dependent on the model and the growth condition. The smallest impact was obtained for the linear model.
Collapse
Affiliation(s)
| | | | | | - Annick Moisan
- MIAT, Université de Toulouse, INRA, Castanet-Tolosan, France
| | | | | | - Marie Bouvier
- LMGM, CBI, Université de Toulouse, CNRS, Toulouse, France
| | | | | | - Laurence Girbal
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| |
Collapse
|
159
|
Lau MCY, Harris RL, Oh Y, Yi MJ, Behmard A, Onstott TC. Taxonomic and Functional Compositions Impacted by the Quality of Metatranscriptomic Assemblies. Front Microbiol 2018; 9:1235. [PMID: 29973918 PMCID: PMC6019464 DOI: 10.3389/fmicb.2018.01235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/22/2018] [Indexed: 02/03/2023] Open
Abstract
Metatranscriptomics has recently been applied to investigate the active biogeochemical processes and elemental cycles, and in situ responses of microbiomes to environmental stimuli and stress factors. De novo assembly of RNA-Sequencing (RNA-Seq) data can reveal a more detailed description of the metabolic interactions amongst the active microbial communities. However, the quality of the assemblies and the depiction of the metabolic network provided by various de novo assemblers have not yet been thoroughly assessed. In this study, we compared 15 de novo metatranscriptomic assemblies for a fracture fluid sample collected from a borehole located at 1.34 km below land surface in a South African gold mine. These assemblies were constructed from total, non-coding, and coding reads using five de novo transcriptomic assemblers (Trans-ABySS, Trinity, Oases, IDBA-tran, and Rockhopper). They were evaluated based on the number of transcripts, transcript length, range of transcript coverage, continuity, percentage of transcripts with confident annotation assignments, as well as taxonomic and functional diversity patterns. The results showed that these parameters varied considerably among the assemblies, with Trans-ABySS and Trinity generating the best assemblies for non-coding and coding RNA reads, respectively, because the high number of transcripts assembled covered a wide expression range, and captured extensively the taxonomic and metabolic gene diversity, respectively. We concluded that the choice of de novo transcriptomic assemblers impacts substantially the taxonomic and functional compositions. Care should be taken to obtain high-quality assemblies for informing the in situ metabolic landscape.
Collapse
Affiliation(s)
- Maggie C Y Lau
- Department of Geosciences, Princeton University, Princeton, NJ, United States
| | - Rachel L Harris
- Department of Geosciences, Princeton University, Princeton, NJ, United States
| | - Youmi Oh
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, United States
| | - Min Joo Yi
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Aida Behmard
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ, United States
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ, United States
| |
Collapse
|
160
|
Extensive reshaping of bacterial operons by programmed mRNA decay. PLoS Genet 2018; 14:e1007354. [PMID: 29668692 PMCID: PMC5927463 DOI: 10.1371/journal.pgen.1007354] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/30/2018] [Accepted: 04/04/2018] [Indexed: 12/04/2022] Open
Abstract
Bacterial operons synchronize the expression of multiple genes by placing them under the control of a shared promoter. It was previously shown that polycistronic transcripts can undergo differential RNA decay, leaving some genes within the polycistron more stable than others, but the extent of regulation by differential mRNA decay or its evolutionary conservation remains unknown. Here, we find that a substantial fraction of E. coli genes display non-uniform mRNA stoichiometries despite being coded from the same operon. We further show that these altered operon stoichiometries are shaped post-transcriptionally by differential mRNA decay, which is regulated by RNA structures that protect specific regions in the transcript from degradation. These protective RNA structures are generally coded within the protein-coding regions of the regulated genes and are frequently evolutionarily conserved. Furthermore, we provide evidence that differences in ribosome densities across polycistronic transcript segments, together with the conserved structural RNA elements, play a major role in the differential decay process. Our results highlight a major role for differential mRNA decay in shaping bacterial transcriptomes. Bacteria utilize operonic transcription to synchronize the expression of multiple consecutive genes. However, this strategy lacks the ability to fine-tune the expression of specific operon members, which is often biologically important. In this report, we integrate multiple transcriptome-wide RNA-sequencing methods to show that bacteria commonly employ differential mRNA decay rates for genes residing within the same operon, generating differential transcript abundances for equally transcribed operon members, at steady state. By comparing the transcriptomes of different bacteria, we show that differential decay not only regulates the expression levels of hundreds of genes but also often evolutionarily conserved, providing support for its biological importance. By mapping the RNA termini positions at steady-state, we show that stabilized operon segments are protected from different RNases through a combination of protective RNA structures, which surprisingly, are often encoded within protein-coding regions and are evolutionarily conserved. In addition, we provide evidence that differential ribosome densities over the regulated operons guide the initial events in the differential decay mechanism. Our results highlight differential mRNA decay as a major shaping force of bacterial transcriptomes and gene regulatory programs.
Collapse
|
161
|
Spatial organization and dynamics of RNase E and ribosomes in Caulobacter crescentus. Proc Natl Acad Sci U S A 2018; 115:E3712-E3721. [PMID: 29610352 DOI: 10.1073/pnas.1721648115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We report the dynamic spatial organization of Caulobacter crescentus RNase E (RNA degradosome) and ribosomal protein L1 (ribosome) using 3D single-particle tracking and superresolution microscopy. RNase E formed clusters along the central axis of the cell, while weak clusters of ribosomal protein L1 were deployed throughout the cytoplasm. These results contrast with RNase E and ribosome distribution in Escherichia coli, where RNase E colocalizes with the cytoplasmic membrane and ribosomes accumulate in polar nucleoid-free zones. For both RNase E and ribosomes in Caulobacter, we observed a decrease in confinement and clustering upon transcription inhibition and subsequent depletion of nascent RNA, suggesting that RNA substrate availability for processing, degradation, and translation facilitates confinement and clustering. Importantly, RNase E cluster positions correlated with the subcellular location of chromosomal loci of two highly transcribed rRNA genes, suggesting that RNase E's function in rRNA processing occurs at the site of rRNA synthesis. Thus, components of the RNA degradosome and ribosome assembly are spatiotemporally organized in Caulobacter, with chromosomal readout serving as the template for this organization.
Collapse
|
162
|
Kannan S, Sams T, Maury J, Workman CT. Reconstructing Dynamic Promoter Activity Profiles from Reporter Gene Data. ACS Synth Biol 2018; 7:832-841. [PMID: 29457721 DOI: 10.1021/acssynbio.7b00223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accurate characterization of promoter activity is important when designing expression systems for systems biology and metabolic engineering applications. Promoters that respond to changes in the environment enable the dynamic control of gene expression without the necessity of inducer compounds, for example. However, the dynamic nature of these processes poses challenges for estimating promoter activity. Most experimental approaches utilize reporter gene expression to estimate promoter activity. Typically the reporter gene encodes a fluorescent protein that is used to infer a constant promoter activity despite the fact that the observed output may be dynamic and is a number of steps away from the transcription process. In fact, some promoters that are often thought of as constitutive can show changes in activity when growth conditions change. For these reasons, we have developed a system of ordinary differential equations for estimating dynamic promoter activity for promoters that change their activity in response to the environment that is robust to noise and changes in growth rate. Our approach, inference of dynamic promoter activity (PromAct), improves on existing methods by more accurately inferring known promoter activity profiles. This method is also capable of estimating the correct scale of promoter activity and can be applied to quantitative data sets to estimate quantitative rates.
Collapse
Affiliation(s)
- Soumya Kannan
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Thomas Sams
- Department of Electrical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Jérôme Maury
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Christopher T. Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
163
|
Zhang L, Vertes A. Einzelzell‐Massenspektrometrie zur Untersuchung zellulärer Heterogenität. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709719] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Linwen Zhang
- Department of Chemistry The George Washington University Washington DC 20052 USA
| | - Akos Vertes
- Department of Chemistry The George Washington University Washington DC 20052 USA
| |
Collapse
|
164
|
Zhang L, Vertes A. Single‐Cell Mass Spectrometry Approaches to Explore Cellular Heterogeneity. Angew Chem Int Ed Engl 2018; 57:4466-4477. [DOI: 10.1002/anie.201709719] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/27/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Linwen Zhang
- Department of Chemistry The George Washington University Washington DC 20052 USA
| | - Akos Vertes
- Department of Chemistry The George Washington University Washington DC 20052 USA
| |
Collapse
|
165
|
Bertaux F, Marguerat S, Shahrezaei V. Division rate, cell size and proteome allocation: impact on gene expression noise and implications for the dynamics of genetic circuits. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172234. [PMID: 29657814 PMCID: PMC5882738 DOI: 10.1098/rsos.172234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/15/2018] [Indexed: 05/12/2023]
Abstract
The cell division rate, size and gene expression programmes change in response to external conditions. These global changes impact on average concentrations of biomolecule and their variability or noise. Gene expression is inherently stochastic, and noise levels of individual proteins depend on synthesis and degradation rates as well as on cell-cycle dynamics. We have modelled stochastic gene expression inside growing and dividing cells to study the effect of division rates on noise in mRNA and protein expression. We use assumptions and parameters relevant to Escherichia coli, for which abundant quantitative data are available. We find that coupling of transcription, but not translation rates to the rate of cell division can result in protein concentration and noise homeostasis across conditions. Interestingly, we find that the increased cell size at fast division rates, observed in E. coli and other unicellular organisms, buffers noise levels even for proteins with decreased expression at faster growth. We then investigate the functional importance of these regulations using gene regulatory networks that exhibit bi-stability and oscillations. We find that network topology affects robustness to changes in division rate in complex and unexpected ways. In particular, a simple model of persistence, based on global physiological feedback, predicts increased proportion of persister cells at slow division rates. Altogether, our study reveals how cell size regulation in response to cell division rate could help controlling gene expression noise. It also highlights that understanding circuits' robustness across growth conditions is key for the effective design of synthetic biological systems.
Collapse
Affiliation(s)
- François Bertaux
- Department of Mathematics, Imperial College London, London SW7 2AZ,UK
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Samuel Marguerat
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Authors for correspondence: Samuel Marguerat e-mail:
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College London, London SW7 2AZ,UK
- Authors for correspondence: Vahid Shahrezaei e-mail:
| |
Collapse
|
166
|
Bertaux F, Marguerat S, Shahrezaei V. Division rate, cell size and proteome allocation: impact on gene expression noise and implications for the dynamics of genetic circuits. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172234. [PMID: 29657814 DOI: 10.1101/209593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/15/2018] [Indexed: 05/25/2023]
Abstract
The cell division rate, size and gene expression programmes change in response to external conditions. These global changes impact on average concentrations of biomolecule and their variability or noise. Gene expression is inherently stochastic, and noise levels of individual proteins depend on synthesis and degradation rates as well as on cell-cycle dynamics. We have modelled stochastic gene expression inside growing and dividing cells to study the effect of division rates on noise in mRNA and protein expression. We use assumptions and parameters relevant to Escherichia coli, for which abundant quantitative data are available. We find that coupling of transcription, but not translation rates to the rate of cell division can result in protein concentration and noise homeostasis across conditions. Interestingly, we find that the increased cell size at fast division rates, observed in E. coli and other unicellular organisms, buffers noise levels even for proteins with decreased expression at faster growth. We then investigate the functional importance of these regulations using gene regulatory networks that exhibit bi-stability and oscillations. We find that network topology affects robustness to changes in division rate in complex and unexpected ways. In particular, a simple model of persistence, based on global physiological feedback, predicts increased proportion of persister cells at slow division rates. Altogether, our study reveals how cell size regulation in response to cell division rate could help controlling gene expression noise. It also highlights that understanding circuits' robustness across growth conditions is key for the effective design of synthetic biological systems.
Collapse
Affiliation(s)
- François Bertaux
- Department of Mathematics, Imperial College London, London SW7 2AZ,UK
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Samuel Marguerat
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College London, London SW7 2AZ,UK
| |
Collapse
|
167
|
Abstract
More than 50 years have passed since the presentation of the Replicon Model which states that a positively acting initiator interacts with a specific site on a circular chromosome molecule to initiate DNA replication. Since then, the origin of chromosome replication, oriC, has been determined as a specific region that carries sequences required for binding of positively acting initiator proteins, DnaA-boxes and DnaA proteins, respectively. In this review we will give a historical overview of significant findings which have led to the very detailed knowledge we now possess about the initiation process in bacteria using Escherichia coli as the model organism, but emphasizing that virtually all bacteria have DnaA proteins that interacts with DnaA boxes to initiate chromosome replication. We will discuss the dnaA gene regulation, the special features of the dnaA gene expression, promoter strength, and translation efficiency, as well as, the DnaA protein, its concentration, its binding to DnaA-boxes, and its binding of ATP or ADP. Furthermore, we will discuss the different models for regulation of initiation which have been proposed over the years, with particular emphasis on the Initiator Titration Model.
Collapse
Affiliation(s)
- Flemming G. Hansen
- Department of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Tove Atlung
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
168
|
Liu C, Zhang B, Liu YM, Yang KQ, Liu SJ. New Intracellular Shikimic Acid Biosensor for Monitoring Shikimate Synthesis in Corynebacterium glutamicum. ACS Synth Biol 2018; 7:591-601. [PMID: 29087704 DOI: 10.1021/acssynbio.7b00339] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The quantitative monitoring of intracellular metabolites with in vivo biosensors provides an efficient means of identifying high-yield strains and observing product accumulation in real time. In this study, a shikimic acid (SA) biosensor was constructed from a LysR-type transcriptional regulator (ShiR) of Corynebacterium glutamicum. The SA biosensor specifically responded to the increase of intracellular SA concentration over a linear range of 19.5 ± 3.6 to 120.9 ± 1.2 fmole at the single-cell level. This new SA biosensor was successfully used to (1) monitor the SA production of different C. glutamicum strains; (2) develop a novel result-oriented high-throughput ribosome binding site screening and sorting strategy that was used for engineering high-yield shikimate-producing strains; and (3) engineer a whole-cell biosensor through the coexpression of the SA sensor and a shikimate transporter shiA gene in C. glutamicum RES167. This work demonstrated that a new intracellular SA biosensor is a valuable tool facilitating the fast development of microbial SA producer.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory
of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, West Beichen Road No.1, 100101 Beijing, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Bo Zhang
- State Key Laboratory
of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, West Beichen Road No.1, 100101 Beijing, PR China
- Zhejiang University of Technology, 310014 Hangzhou, PR China
| | - Yi-Ming Liu
- State Key Laboratory
of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, West Beichen Road No.1, 100101 Beijing, PR China
| | - Ke-Qian Yang
- State Key Laboratory
of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, West Beichen Road No.1, 100101 Beijing, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory
of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, West Beichen Road No.1, 100101 Beijing, PR China
| |
Collapse
|
169
|
Jia C. Simplification of Markov chains with infinite state space and the mathematical theory of random gene expression bursts. Phys Rev E 2018; 96:032402. [PMID: 29346865 DOI: 10.1103/physreve.96.032402] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 11/07/2022]
Abstract
Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.
Collapse
Affiliation(s)
- Chen Jia
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
170
|
Hör J, Gorski SA, Vogel J. Bacterial RNA Biology on a Genome Scale. Mol Cell 2018; 70:785-799. [PMID: 29358079 DOI: 10.1016/j.molcel.2017.12.023] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/11/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022]
Abstract
Bacteria are an exceedingly diverse group of organisms whose molecular exploration is experiencing a renaissance. While the classical view of bacterial gene expression was relatively simple, the emerging view is more complex, encompassing extensive post-transcriptional control involving riboswitches, RNA thermometers, and regulatory small RNAs (sRNAs) associated with the RNA-binding proteins CsrA, Hfq, and ProQ, as well as CRISPR/Cas systems that are programmed by RNAs. Moreover, increasing interest in members of the human microbiota and environmental microbial communities has highlighted the importance of understudied bacterial species with largely unknown transcriptome structures and RNA-based control mechanisms. Collectively, this creates a need for global RNA biology approaches that can rapidly and comprehensively analyze the RNA composition of a bacterium of interest. We review such approaches with a focus on RNA-seq as a versatile tool to investigate the different layers of gene expression in which RNA is made, processed, regulated, modified, translated, and turned over.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Stanislaw A Gorski
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany.
| |
Collapse
|
171
|
Adachi K, Ohtani K, Kawano M, Singh RP, Yousuf B, Sonomoto K, Shimizu T, Nakayama J. Metabolic dependent and independent pH-drop shuts down VirSR quorum sensing in Clostridium perfringens. J Biosci Bioeng 2018; 125:525-531. [PMID: 29373309 DOI: 10.1016/j.jbiosc.2017.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022]
Abstract
Clostridium perfringens produces various exotoxins and enzymes that cause food poisoning and gas gangrene. The genes involved in virulence are regulated by the agr-like quorum sensing (QS) system, which consists of a QS signal synthesis system and a VirSR two-component regulatory system (VirSR TCS) which is a global regulatory system composed of signal sensor kinase (VirS) and response regulator (VirR). We found that the perfringolysin O gene (pfoA) was transiently expressed during mid-log phase of bacterial growth; its expression was rapidly shut down thereafter, suggesting the existence of a self-quorum quenching (sQQ) system. The sQQ system was induced by the addition of stationary phase culture supernatant (SPCS). Activity of the sQQ system was heat stable, and was present following filtration through the ultrafiltration membrane, suggesting that small molecules acted as sQQ agents. In addition, sQQ was also induced by pure acetic and butyric acids at concentrations equivalent to those in the stationary phase culture, suggesting that organic acids produced by C. perfringens were involved in sQQ. In pH-controlled batch culture, sQQ was greatly diminished; expression level of pfoA extended to late-log growth phase, and was eventually increased by one order of magnitude. Furthermore, hydrochloric acid induced sQQ at the same pH as was used in organic acids. SPCS also suppressed the expression of genes regulated by VirSR TCS. Overall, the expression of virulence factors of C. perfringens was downregulated by the sQQ system, which was mediated by primary acidic metabolites and acidic environments. This suggested the possibility of pH-controlled anti-virulence strategies.
Collapse
Affiliation(s)
- Keika Adachi
- Laboratory of Microbial Technology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Kaori Ohtani
- Department of Bacteriology, Graduate School of Medical Science, University of Kanazawa, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8203, Japan; Miyarisan Pharmaceutical Co. Ltd., 1-10-3 Kaminakazato, Kita-ku, Tokyo 114-0016, Japan
| | - Michio Kawano
- Laboratory of Microbial Technology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Ravindra Pal Singh
- Laboratory of Microbial Technology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Basit Yousuf
- Laboratory of Microbial Technology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Tohru Shimizu
- Department of Bacteriology, Graduate School of Medical Science, University of Kanazawa, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8203, Japan
| | - Jiro Nakayama
- Laboratory of Microbial Technology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|
172
|
Short FL, Akusobi C, Broadhurst WR, Salmond GPC. The bacterial Type III toxin-antitoxin system, ToxIN, is a dynamic protein-RNA complex with stability-dependent antiviral abortive infection activity. Sci Rep 2018; 8:1013. [PMID: 29343718 PMCID: PMC5772629 DOI: 10.1038/s41598-017-18696-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/12/2017] [Indexed: 12/03/2022] Open
Abstract
Bacteria have evolved numerous defense systems to protect themselves from viral (bacteriophage) infection. The ToxIN system of Pectobacterium atrosepticum is a Type III toxin-antitoxin complex and “altruistic suicide” anti-phage system, which kills phage-infected cells through the release of a ribonuclease toxin, ToxN. ToxN is counteracted by a co-transcribed antitoxic RNA pseudoknot, ToxI, which self-assembles with ToxN into an inactive 3 ToxI:3 ToxN complex in vitro. However it is not known whether this complex is predominant in vivo, or how the complex is disassembled following infection to trigger a lethal, “altruistic” response. In this study, we characterise ToxI turnover and folding, and explore the link between complex stability and anti-phage activity, with a view to understanding events that lead to ToxN-mediated suicide following phage infection. We present evidence that ToxN constantly cleaves fresh ToxI in vivo rather than staying associated with pre-processed antitoxin, and that the ToxI antitoxin can partially fold spontaneously using conserved nucleotides. We also show that reducing the stability of the ToxIN complex can increase the strength of the antiviral response in a phage-dependent manner. Based on this information, we propose a revised model for ToxN inhibition, complex assembly and activation by infecting bacteriophage.
Collapse
Affiliation(s)
- Francesca L Short
- Department of Biochemistry, Hopkins Building, Downing Site, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK.,Wellcome Trust Sanger Institute, Genome Campus, Hinxton, CB10 1SA, UK
| | - Chidiebere Akusobi
- Department of Biochemistry, Hopkins Building, Downing Site, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - William R Broadhurst
- Department of Biochemistry, Hopkins Building, Downing Site, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK
| | - George P C Salmond
- Department of Biochemistry, Hopkins Building, Downing Site, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
173
|
From RNA-seq to Biological Inference: Using Compositional Data Analysis in Meta-Transcriptomics. Methods Mol Biol 2018; 1849:193-213. [PMID: 30298256 DOI: 10.1007/978-1-4939-8728-3_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The proper analysis of high-throughput sequencing datasets of mixed microbial communities (meta-transcriptomics) is substantially more complex than for datasets composed of single organisms. Adapting commonly used RNA-seq methods to the analysis of meta-transcriptome datasets can be misleading and not use all the available information in a consistent manner. However, meta-transcriptomic experiments can be investigated in a principled manner using Bayesian probabilistic modeling of the data at a functional level coupled with analysis under a compositional data analysis paradigm. We present a worked example for the differential functional evaluation of mixed-species microbial communities obtained from human clinical samples that were sequenced on an Illumina platform. We demonstrate methods to functionally map reads directly, conduct a compositionally appropriate exploratory data analysis, evaluate differential relative abundance, and finally identify compositionally associated (constant ratio) functions. Using these approaches we have found that meta-transcriptomic functional analyses are highly reproducible and convey significant information regarding the ecosystem.
Collapse
|
174
|
Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch. Proc Natl Acad Sci U S A 2017; 115:331-336. [PMID: 29279370 DOI: 10.1073/pnas.1712983115] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Because RNAs fold as they are being synthesized, their transcription rate can affect their folding. Here, we report the results of single-molecule fluorescence studies that characterize the ligand-dependent cotranscriptional folding of the Escherichia coli thiM riboswitch that regulates translation. We found that the riboswitch aptamer folds into the "off" conformation independent of its ligand, but switches to the "on" conformation during transcriptional pausing near the translational start codon. Ligand binding maintains the riboswitch in the off conformation during transcriptional pauses. We expect our assay will permit the controlled study of the two main physical mechanisms that regulate cotranscriptional folding: transcriptional pausing and transcriptional speed.
Collapse
|
175
|
Großmann P, Lück A, Kaleta C. Model-based genome-wide determination of RNA chain elongation rates in Escherichia coli. Sci Rep 2017; 7:17213. [PMID: 29222445 PMCID: PMC5722913 DOI: 10.1038/s41598-017-17408-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/24/2017] [Indexed: 11/17/2022] Open
Abstract
Dynamics in the process of transcription are often simplified, yet they play an important role in transcript folding, translation into functional protein and DNA supercoiling. While the modulation of the speed of transcription of individual genes and its role in regulation and proper protein folding has been analyzed in depth, the functional relevance of differences in transcription speeds as well as the factors influencing it have not yet been determined on a genome-wide scale. Here we determined transcription speeds for the majority of E. coli genes based on experimental data. We find large differences in transcription speed between individual genes and a strong influence of both cellular location as well as the relative importance of genes for cellular function on transcription speeds. Investigating factors influencing transcription speeds we observe both codon composition as well as factors associated to DNA topology as most important factors influencing transcription speeds. Moreover, we show that differences in transcription speeds are sufficient to explain the timing of regulatory responses during environmental shifts and highlight the importance of the consideration of transcription speeds in the design of experiments measuring transcriptomic responses to perturbations.
Collapse
Affiliation(s)
- Peter Großmann
- Research Group Theoretical Systems Biology, Friedrich-Schiller-University Jena, Ernst-Abbe-Platz 2, 07747, Jena, Germany
| | - Anja Lück
- Research Group Theoretical Systems Biology, Friedrich-Schiller-University Jena, Ernst-Abbe-Platz 2, 07747, Jena, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, c/o Transfusionsmedizin, Institut für Experimentelle Medizin, Christian-Albrechts-University Kiel, Michaelis-Straße 5, Haus 17, 24105, Kiel, Germany.
| |
Collapse
|
176
|
Reduction and Stability Analysis of a Transcription–Translation Model of RNA Polymerase. Bull Math Biol 2017; 80:294-318. [DOI: 10.1007/s11538-017-0372-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 11/22/2017] [Indexed: 01/28/2023]
|
177
|
Jaruszewicz-Błońska J, Lipniacki T. Genetic toggle switch controlled by bacterial growth rate. BMC SYSTEMS BIOLOGY 2017; 11:117. [PMID: 29197392 PMCID: PMC5712128 DOI: 10.1186/s12918-017-0483-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/09/2017] [Indexed: 01/27/2023]
Abstract
Background In favorable conditions bacterial doubling time is less than 20 min, shorter than DNA replication time. In E. coli a single round of genome replication lasts about 40 min and it must be accomplished about 20 min before cell division. To achieve such fast growth rates bacteria perform multiple replication rounds simultaneously. As a result, when the division time is as short as 20 min E. coli has about 8 copies of origin of replication (ori) and the average copy number of the genes situated close to ori can be 4 times larger than those near the terminus of replication (ter). It implies that shortening of cell cycle may influence dynamics of regulatory pathways involving genes placed at distant loci. Results We analyze this effect in a model of a genetic toggle switch, i.e. a system of two mutually repressing genes, one localized in the vicinity of ori and the other localized in the vicinity of ter. Using a stochastic model that accounts for cell growth and divisions we demonstrate that shortening of the cell cycle can induce switching of the toggle to the state in which expression of the gene placed near ter is suppressed. The toggle bistability causes that the ratio of expression of the competing genes changes more than two orders of magnitude for a two-fold change of the doubling time. The increasing stability of the two toggle states enhances system sensitivity but also its reaction time. Conclusions By fusing the competing genes with fluorescent tags this mechanism could be tested and employed to create an indicator of the doubling time. By manipulating copy numbers of the competing genes and locus of the gene situated near ter, one can obtain equal average expression of both genes for any doubling time T between 20 and 120 min. Such a toggle would accurately report departures of the doubling time from T. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0483-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joanna Jaruszewicz-Błońska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw, 02-106, Poland.
| | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw, 02-106, Poland
| |
Collapse
|
178
|
Cameron ADS, Dillon SC, Kröger C, Beran L, Dorman CJ. Broad-scale redistribution of mRNA abundance and transcriptional machinery in response to growth rate in Salmonella enterica serovar Typhimurium. Microb Genom 2017; 3:e000127. [PMID: 29177086 PMCID: PMC5695205 DOI: 10.1099/mgen.0.000127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/12/2017] [Indexed: 11/18/2022] Open
Abstract
We have investigated the connection between the four-dimensional architecture of the bacterial nucleoid and the organism's global gene expression programme. By localizing the transcription machinery and the transcriptional outputs across the genome of the model bacterium Salmonella enterica serovar Typhimurium at different stages of the growth cycle, a surprising disconnection between gene dosage and transcriptional output was revealed. During exponential growth, gene output occurred chiefly in the Ori (origin), Ter (terminus) and NSL (non-structured left) domains, whereas the Left macrodomain remained transcriptionally quiescent at all stages of growth. The apparently high transcriptional output in Ter was correlated with an enhanced stability of the RNA expressed there during exponential growth, suggesting that longer mRNA half-lives compensate for low gene dosage. During exponential growth, RNA polymerase (RNAP) was detected everywhere, whereas in stationary phase cells, RNAP was concentrated in the Ter macrodomain. The alternative sigma factors RpoE, RpoH and RpoN were not required to drive transcription in these growth conditions, consistent with their observed binding to regions away from RNAP and regions of active transcription. Specifically, these alternative sigma factors were found in the Ter macrodomain during exponential growth, whereas they were localized at the Ori macrodomain in stationary phase.
Collapse
Affiliation(s)
- Andrew D S Cameron
- 1Institute of Microbial Systems and Society, University of Regina, Regina, SK, S4S 0A2, Canada.,2Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Shane C Dillon
- 3School of Biological Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - Carsten Kröger
- 4Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Laurens Beran
- 1Institute of Microbial Systems and Society, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Charles J Dorman
- 4Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
179
|
Bernardini A, Martínez JL. Genome-wide analysis shows that RNase G plays a global role in the stability of mRNAs in Stenotrophomonas maltophilia. Sci Rep 2017; 7:16016. [PMID: 29167539 PMCID: PMC5700063 DOI: 10.1038/s41598-017-16091-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/07/2017] [Indexed: 11/28/2022] Open
Abstract
Gene expression is determined by critical processes such as RNA synthesis and degradation. Ribonucleases participate in the coordinated and differential decay of messenger RNAs. We describe a suitable method of normalization and calculation of mRNAs half-life values quantified by RNA-Seq. We determined the mRNA half-lives of more than 2000 genes in Stenotrophomonas maltophilia D457 and in an isogenic RNase G deficient mutant. Median half-lives were 2,74 and 3 min in the wild-type and the rng-deficient strain, respectively. The absence of RNase G resulted in an overall enhancement of mRNA half-life times, showing that many RNAs are targets of RNase G in S. maltophilia. Around 40 genes are likely to be regulated directly by RNase G since their half-lives were more than two-fold higher in the rng-deficient mutant. Gene length, GC content or expression levels did not correlate with mRNAs lifetimes, although groups of genes with different functions showed different RNA half-lives. Further, we predicted 1542 gene pairs to be part of the same operons in S. maltophilia. In contrast to what was described for other bacteria, our data indicate that RNase G has a global role in mRNA stability and consequently in the regulation of S. maltophilia gene expression.
Collapse
Affiliation(s)
| | - José L Martínez
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
180
|
Schavemaker PE, Śmigiel WM, Poolman B. Ribosome surface properties may impose limits on the nature of the cytoplasmic proteome. eLife 2017; 6:e30084. [PMID: 29154755 PMCID: PMC5726854 DOI: 10.7554/elife.30084] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Much of the molecular motion in the cytoplasm is diffusive, which possibly limits the tempo of processes. We studied the dependence of protein mobility on protein surface properties and ionic strength. We used surface-modified fluorescent proteins (FPs) and determined their translational diffusion coefficients (D) in the cytoplasm of Escherichia coli, Lactococcus lactis and Haloferax volcanii. We find that in E. coli D depends on the net charge and its distribution over the protein, with positive proteins diffusing up to 100-fold slower than negative ones. This effect is weaker in L. lactis and Hfx. volcanii due to electrostatic screening. The decrease in mobility is probably caused by interaction of positive FPs with ribosomes as shown in in vivo diffusion measurements and confirmed in vitro with purified ribosomes. Ribosome surface properties may thus limit the composition of the cytoplasmic proteome. This finding lays bare a paradox in the functioning of prokaryotic (endo)symbionts.
Collapse
Affiliation(s)
| | | | - Bert Poolman
- Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenNetherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenGroningenNetherlands
| |
Collapse
|
181
|
Potts AH, Vakulskas CA, Pannuri A, Yakhnin H, Babitzke P, Romeo T. Global role of the bacterial post-transcriptional regulator CsrA revealed by integrated transcriptomics. Nat Commun 2017; 8:1596. [PMID: 29150605 PMCID: PMC5694010 DOI: 10.1038/s41467-017-01613-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
CsrA is a post-transcriptional regulatory protein that is widely distributed among bacteria. This protein influences bacterial lifestyle decisions by binding to the 5′ untranslated and/or early coding regions of mRNA targets, causing changes in translation initiation, RNA stability, and/or transcription elongation. Here, we assess the contribution of CsrA to gene expression in Escherichia coli on a global scale. UV crosslinking immunoprecipitation and sequencing (CLIP-seq) identify RNAs that interact directly with CsrA in vivo, while ribosome profiling and RNA-seq uncover the impact of CsrA on translation, RNA abundance, and RNA stability. This combination of approaches reveals unprecedented detail about the regulatory role of CsrA, including novel binding targets and physiological roles, such as in envelope function and iron homeostasis. Our findings highlight the integration of CsrA throughout the E. coli regulatory network, where it orchestrates vast effects on gene expression. The RNA-binding protein CsrA regulates the expression of hundreds of bacterial genes. Here, Potts et al. use several approaches to assess the contribution of CsrA to global gene expression in E. coli, revealing new binding targets and physiological roles such as in envelope function and iron homeostasis.
Collapse
Affiliation(s)
- Anastasia H Potts
- Department of Microbiology and Cell Science, University of Florida, Institute of Food and Agricultural Sciences, Gainesville, FL, 32611-0700, USA
| | - Christopher A Vakulskas
- Department of Microbiology and Cell Science, University of Florida, Institute of Food and Agricultural Sciences, Gainesville, FL, 32611-0700, USA.,Integrated DNA Technologies, Molecular Genetics Department, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Archana Pannuri
- Department of Microbiology and Cell Science, University of Florida, Institute of Food and Agricultural Sciences, Gainesville, FL, 32611-0700, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, University of Florida, Institute of Food and Agricultural Sciences, Gainesville, FL, 32611-0700, USA.
| |
Collapse
|
182
|
Baumschlager A, Aoki SK, Khammash M. Dynamic Blue Light-Inducible T7 RNA Polymerases (Opto-T7RNAPs) for Precise Spatiotemporal Gene Expression Control. ACS Synth Biol 2017; 6:2157-2167. [PMID: 29045151 DOI: 10.1021/acssynbio.7b00169] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Light has emerged as a control input for biological systems due to its precise spatiotemporal resolution. The limited toolset for light control in bacteria motivated us to develop a light-inducible transcription system that is independent from cellular regulation through the use of an orthogonal RNA polymerase. Here, we present our engineered blue light-responsive T7 RNA polymerases (Opto-T7RNAPs) that show properties such as low leakiness of gene expression in the dark state, high expression strength when induced with blue light, and an inducible range of more than 300-fold. Following optimization of the system to reduce expression variability, we created a variant that returns to the inactive dark state within minutes once the blue light is turned off. This allows for precise dynamic control of gene expression, which is a key aspect for most applications using optogenetic regulation. The regulators, which only require blue light from ordinary light-emitting diodes for induction, were developed and tested in the bacterium Escherichia coli, which is a crucial cell factory for biotechnology due to its fast and inexpensive cultivation and well understood physiology and genetics. Opto-T7RNAP, with minor alterations, should be extendable to other bacterial species as well as eukaryotes such as mammalian cells and yeast in which the T7 RNA polymerase and the light-inducible Vivid regulator have been shown to be functional. We anticipate that our approach will expand the applicability of using light as an inducer for gene expression independent from cellular regulation and allow for a more reliable dynamic control of synthetic and natural gene networks.
Collapse
Affiliation(s)
- Armin Baumschlager
- Department of Biosystems
Science and Engineering (D-BSSE), ETH−Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Stephanie K. Aoki
- Department of Biosystems
Science and Engineering (D-BSSE), ETH−Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems
Science and Engineering (D-BSSE), ETH−Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
183
|
Felletti M, Bieber A, Hartig JS. The 3'-untranslated region of mRNAs as a site for ribozyme cleavage-dependent processing and control in bacteria. RNA Biol 2017; 14:1522-1533. [PMID: 27690736 DOI: 10.1080/15476286.2016.1240141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Besides its primary informational role, the sequence of the mRNA (mRNA) including its 5'- and 3'- untranslated regions (UTRs), contains important features that are relevant for post-transcriptional and translational regulation of gene expression. In this work a number of bacterial twister motifs are characterized both in vitro and in vivo. The analysis of their genetic contexts shows that these motifs have the potential of being transcribed as part of polycistronic mRNAs, thus we suggest the involvement of bacterial twister motifs in the processing of mRNA. Our data show that the ribozyme-mediated cleavage of the bacterial 3'-UTR has major effects on gene expression. While the observed effects correlate weakly with the kinetic parameters of the ribozymes, they show dependence on motif-specific structural features and on mRNA stabilization properties of the secondary structures that remain on the 3'-UTR after ribozyme cleavage. Using these principles, novel artificial twister-based riboswitches are developed that exert their activity via ligand-dependent cleavage of the 3'-UTR and the removal of the protective intrinsic terminator. Our results provide insights into possible biological functions of these recently discovered and widespread catalytic RNA motifs and offer new tools for applications in biotechnology, synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Michele Felletti
- a Department of Chemistry , University of Konstanz , Konstanz , Germany.,b Konstanz Research School Chemical Biology (Kors-CB), University of Konstanz Konstanz , Germany
| | - Anna Bieber
- a Department of Chemistry , University of Konstanz , Konstanz , Germany
| | - Jörg S Hartig
- a Department of Chemistry , University of Konstanz , Konstanz , Germany.,b Konstanz Research School Chemical Biology (Kors-CB), University of Konstanz Konstanz , Germany
| |
Collapse
|
184
|
Chao Y, Li L, Girodat D, Förstner KU, Said N, Corcoran C, Śmiga M, Papenfort K, Reinhardt R, Wieden HJ, Luisi BF, Vogel J. In Vivo Cleavage Map Illuminates the Central Role of RNase E in Coding and Non-coding RNA Pathways. Mol Cell 2017; 65:39-51. [PMID: 28061332 PMCID: PMC5222698 DOI: 10.1016/j.molcel.2016.11.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/26/2016] [Accepted: 10/31/2016] [Indexed: 01/21/2023]
Abstract
Understanding RNA processing and turnover requires knowledge of cleavages by major endoribonucleases within a living cell. We have employed TIER-seq (transiently inactivating an endoribonuclease followed by RNA-seq) to profile cleavage products of the essential endoribonuclease RNase E in Salmonella enterica. A dominating cleavage signature is the location of a uridine two nucleotides downstream in a single-stranded segment, which we rationalize structurally as a key recognition determinant that may favor RNase E catalysis. Our results suggest a prominent biogenesis pathway for bacterial regulatory small RNAs whereby RNase E acts together with the RNA chaperone Hfq to liberate stable 3' fragments from various precursor RNAs. Recapitulating this process in vitro, Hfq guides RNase E cleavage of a representative small-RNA precursor for interaction with a mRNA target. In vivo, the processing is required for target regulation. Our findings reveal a general maturation mechanism for a major class of post-transcriptional regulators.
Collapse
Affiliation(s)
- Yanjie Chao
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Lei Li
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany; Core Unit Systems Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Dylan Girodat
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Konrad U Förstner
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany; Core Unit Systems Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Nelly Said
- Laboratory of Structural Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Colin Corcoran
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Michał Śmiga
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Kai Papenfort
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany; Department of Biology I, Microbiology, Ludwig-Maximilians-Universität Munich, 82152 Martinsried, Germany
| | - Richard Reinhardt
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Jörg Vogel
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany.
| |
Collapse
|
185
|
Alenko A, Fleming AM, Burrows CJ. Reverse Transcription Past Products of Guanine Oxidation in RNA Leads to Insertion of A and C opposite 8-Oxo-7,8-dihydroguanine and A and G opposite 5-Guanidinohydantoin and Spiroiminodihydantoin Diastereomers. Biochemistry 2017; 56:5053-5064. [PMID: 28845978 DOI: 10.1021/acs.biochem.7b00730] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species, both endogenous and exogenous, can damage nucleobases of RNA and DNA. Among the nucleobases, guanine has the lowest redox potential, making it a major target of oxidation. Although RNA is more prone to oxidation than DNA is, oxidation of guanine in RNA has been studied to a significantly lesser extent. One of the reasons for this is that many tools that were previously developed to study oxidation of DNA cannot be used on RNA. In the study presented here, the lack of a method for seeking sites of modification in RNA where oxidation occurs is addressed. For this purpose, reverse transcription of RNA containing major products of guanine oxidation was used. Extension of a DNA primer annealed to an RNA template containing 8-oxo-7,8-dihydroguanine (OG), 5-guanidinohydantoin (Gh), or the R and S diastereomers of spiroiminodihydantoin (Sp) was studied under standing start conditions. SuperScript III reverse transcriptase is capable of bypassing these lesions in RNA inserting predominantly A opposite OG, predominantly G opposite Gh, and almost an equal mixture of A and G opposite the Sp diastereomers. These data should allow RNA sequencing of guanine oxidation products by following characteristic mutation signatures formed by the reverse transcriptase during primer elongation past G oxidation sites in the template RNA strand.
Collapse
Affiliation(s)
- Anton Alenko
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
186
|
Escherichia coli responds to environmental changes using enolasic degradosomes and stabilized DicF sRNA to alter cellular morphology. Proc Natl Acad Sci U S A 2017; 114:E8025-E8034. [PMID: 28874523 DOI: 10.1073/pnas.1703731114] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli RNase E is an essential enzyme that forms multicomponent ribonucleolytic complexes known as "RNA degradosomes." These complexes consist of four major components: RNase E, PNPase, RhlB RNA helicase, and enolase. However, the role of enolase in the RNase E/degradosome is not understood. Here, we report that presence of enolase in the RNase E/degradosome under anaerobic conditions regulates cell morphology, resulting in Ecoli MG1655 cell filamentation. Under anaerobic conditions, enolase bound to the RNase E/degradosome stabilizes the small RNA (sRNA) DicF, i.e., the inhibitor of the cell division gene ftsZ, through chaperon protein Hfq-dependent regulation. RNase E/enolase distribution changes from membrane-associated patterns under aerobic to diffuse patterns under anaerobic conditions. When the enolase-RNase E/degradosome interaction is disrupted, the anaerobically induced characteristics disappear. We provide a mechanism by which Ecoli uses enolase-bound degradosomes to switch from rod-shaped to filamentous form in response to anaerobiosis by regulating RNase E subcellular distribution, RNase E enzymatic activity, and the stability of the sRNA DicF required for the filamentous transition. In contrast to Ecoli nonpathogenic strains, pathogenic Ecoli strains predominantly have multiple copies of sRNA DicF in their genomes, with cell filamentation previously being linked to bacterial pathogenesis. Our data suggest a mechanism for bacterial cell filamentation during infection under anaerobic conditions.
Collapse
|
187
|
Yus E, Yang JS, Sogues A, Serrano L. A reporter system coupled with high-throughput sequencing unveils key bacterial transcription and translation determinants. Nat Commun 2017; 8:368. [PMID: 28848232 PMCID: PMC5573727 DOI: 10.1038/s41467-017-00239-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/09/2017] [Indexed: 12/24/2022] Open
Abstract
Quantitative analysis of the sequence determinants of transcription and translation regulation is relevant for systems and synthetic biology. To identify these determinants, researchers have developed different methods of screening random libraries using fluorescent reporters or antibiotic resistance genes. Here, we have implemented a generic approach called ELM-seq (expression level monitoring by DNA methylation) that overcomes the technical limitations of such classic reporters. ELM-seq uses DamID (Escherichia coli DNA adenine methylase as a reporter coupled with methylation-sensitive restriction enzyme digestion and high-throughput sequencing) to enable in vivo quantitative analyses of upstream regulatory sequences. Using the genome-reduced bacterium Mycoplasma pneumoniae, we show that ELM-seq has a large dynamic range and causes minimal toxicity. We use ELM-seq to determine key sequences (known and putatively novel) of promoter and untranslated regions that influence transcription and translation efficiency. Applying ELM-seq to other organisms will help us to further understand gene expression and guide synthetic biology. Quantitative analysis of how DNA sequence determines transcription and translation regulation is of interest to systems and synthetic biologists. Here the authors present ELM-seq, which uses Dam activity as reporter for high-throughput analysis of promoter and 5’-UTR regions.
Collapse
Affiliation(s)
- Eva Yus
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jae-Seong Yang
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Adrià Sogues
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institut Pasteur, Unité de Microbiologie Structurale (CNRS) UMR 3528, Université Paris Diderot, 25 rue du Docteur Roux, Paris, 75724, France
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona, 08003, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
188
|
Ferreira R, Borges V, Borrego MJ, Gomes JP. Global survey of mRNA levels and decay rates of Chlamydia trachomatis trachoma and lymphogranuloma venereum biovars. Heliyon 2017; 3:e00364. [PMID: 28795162 PMCID: PMC5541142 DOI: 10.1016/j.heliyon.2017.e00364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
Interpreting the intricate bacterial transcriptomics implies understanding the dynamic relationship established between de novo transcription and the degradation of transcripts. Here, we performed a comparative overview of gene expression levels and mRNA decay rates for different-biovar (trachoma and lymphogranuloma venereum) strains of the obligate intracellular bacterium Chlamydia trachomatis. By using RNA-sequencing to measure gene expression levels at mid developmental stage and mRNA decay rates upon rifampicin-based transcription blockage, we observed that: i) 60-70% of the top-50 expressed genes encode proteins with unknown function and proteins involved in "Translation, ribosomal structure and biogenesis" for all strains; ii) the expression ranking by genes' functional categories was in general concordant among different-biovar strains; iii) the median of the half-life time (t1/2) values of transcripts were 15-17 min, indicating that the degree of transcripts' stability seems to correlate with the bacterial intracellular life-style, as these values are considerably higher than the ones observed in other studies for facultative intracellular and free-living bacteria; iv) transcript decay rates were highly heterogeneous within each C. trachomatis strain and did not correlate with steady-state expression levels; v) only at very few instances (essentially at gene functional category level) was possible to unveil dissimilarities potentially underlying phenotypic differences between biovars. In summary, the unveiled transcriptomic scenario, marked by a general lack of correlation between transcript production and degradation and a huge inter-transcript heterogeneity in decay rates, likely reflects the challenges underlying the unique biphasic developmental cycle of C. trachomatis and its intricate interactions with the human host, which probably exacerbate the complexity of the bacterial transcription regulation.
Collapse
Affiliation(s)
- Rita Ferreira
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Vítor Borges
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal.,Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Maria José Borrego
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - João Paulo Gomes
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal.,Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| |
Collapse
|
189
|
van Gijtenbeek LA, Kok J. Illuminating Messengers: An Update and Outlook on RNA Visualization in Bacteria. Front Microbiol 2017; 8:1161. [PMID: 28690601 PMCID: PMC5479882 DOI: 10.3389/fmicb.2017.01161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/07/2017] [Indexed: 01/04/2023] Open
Abstract
To be able to visualize the abundance and spatiotemporal features of RNAs in bacterial cells would permit obtaining a pivotal understanding of many mechanisms underlying bacterial cell biology. The first methods that allowed observing single mRNA molecules in individual cells were introduced by Bertrand et al. (1998) and Femino et al. (1998). Since then, a plethora of techniques to image RNA molecules with the aid of fluorescence microscopy has emerged. Many of these approaches are useful for the large eukaryotic cells but their adaptation to study RNA, specifically mRNA molecules, in bacterial cells progressed relatively slow. Here, an overview will be given of fluorescent techniques that can be used to reveal specific RNA molecules inside fixed and living single bacterial cells. It includes a critical evaluation of their caveats as well as potential solutions.
Collapse
Affiliation(s)
- Lieke A van Gijtenbeek
- Department of Molecular Genetics, Faculty of Science and Engineering, University of GroningenGroningen, Netherlands
| | - Jan Kok
- Department of Molecular Genetics, Faculty of Science and Engineering, University of GroningenGroningen, Netherlands
| |
Collapse
|
190
|
Enzymatic activity necessary to restore the lethality due to Escherichia coli RNase E deficiency is distributed among bacteria lacking RNase E homologues. PLoS One 2017; 12:e0177915. [PMID: 28542621 PMCID: PMC5436854 DOI: 10.1371/journal.pone.0177915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli RNase E (Eco-RNase E), encoded by rne (Eco-rne), is considered the global RNA decay initiator. Although Eco-RNase E is an essential gene product in E. coli, some bacterial species, such as Bacillus subtilis, do not possess Eco-RNase E sequence homologues. B. subtilis instead possesses RNase J1/J2 (Bsu-RNase J1/J2) and RNase Y (Bsu-RNase Y) to execute RNA decay. Here we found that E. coli lacking the Eco-rne gene (Δrne E. coli) was viable conditional on M9 minimal media by introducing Bsu-RNase J1/J2 or Bsu-RNase Y. We also cloned an extremely short Eco-RNase E homologue (Wpi-RNase E) and a canonical sized Bsu-RNase J1/J2 homologue (Wpi-RNase J) from Wolbachia pipientis, an α-proteobacterial endosymbiont of arthropods. We found that Wpi-RNase J restored the colony-forming ability (CFA) of Δrne E. coli, whereas Wpi-RNase E did not. Unexpectedly, Wpi-RNase E restored defective CFA due to lack of Eco-RNase G, a paralogue of Eco-RNase E. Our results indicate that bacterial species that lack Eco-RNase E homologues or bacterial species that possess Eco-RNase E homologues which lack Eco-RNase E-like activities have a modest Eco-RNase E-like function using RNase J and/or RNase Y. These results suggest that Eco-RNase E-like activities might distribute among a wide array of bacteria and that functions of RNases may have changed dynamically during evolutionary divergence of bacterial lineages.
Collapse
|
191
|
Bauernfeind AL, Babbitt CC. The predictive nature of transcript expression levels on protein expression in adult human brain. BMC Genomics 2017; 18:322. [PMID: 28438116 PMCID: PMC5402646 DOI: 10.1186/s12864-017-3674-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 04/01/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Next generation sequencing methods are the gold standard for evaluating expression of the transcriptome. When determining the biological implications of such studies, the assumption is often made that transcript expression levels correspond to protein levels in a meaningful way. However, the strength of the overall correlation between transcript and protein expression is inconsistent, particularly in brain samples. RESULTS Following high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses of adult human brain samples, we compared the correlation in the expression of transcripts and proteins that support various biological processes, molecular functions, and that are located in different areas of the cell. Although most categories of transcripts have extremely weak predictive value for the expression of their associated proteins (R2 values of < 10%), transcripts coding for protein kinases and membrane-associated proteins, including those that are part of receptors or ion transporters, are among those that are most predictive of downstream protein expression levels. CONCLUSIONS The predictive value of transcript expression for corresponding proteins is variable in human brain samples, reflecting the complex regulation of protein expression. However, we found that transcriptomic analyses are appropriate for assessing the expression levels of certain classes of proteins, including those that modify proteins, such as kinases and phosphatases, regulate metabolic and synaptic activity, or are associated with a cellular membrane. These findings can be used to guide the interpretation of gene expression results from primate brain samples.
Collapse
Affiliation(s)
- Amy L Bauernfeind
- Department of Neuroscience, Washington University Medical School, St. Louis, MO, 63110, USA. .,Department of Anthropology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
192
|
Ignatova Z, Narberhaus F. Systematic probing of the bacterial RNA structurome to reveal new functions. Curr Opin Microbiol 2017; 36:14-19. [DOI: 10.1016/j.mib.2017.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 12/15/2022]
|
193
|
von Wulffen J, Ulmer A, Jäger G, Sawodny O, Feuer R. Rapid Sampling of Escherichia coli After Changing Oxygen Conditions Reveals Transcriptional Dynamics. Genes (Basel) 2017; 8:genes8030090. [PMID: 28264512 PMCID: PMC5368694 DOI: 10.3390/genes8030090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/10/2017] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Escherichia coli is able to shift between anaerobic and aerobic metabolism by adapting its gene expression, e.g., of metabolic genes, to the new environment. The dynamics of gene expression that result from environmental shifts are limited, amongst others, by the time needed for regulation and transcription elongation. In this study, we examined gene expression dynamics after an anaerobic-to-aerobic shift on a short time scale (0.5, 1, 2, 5, and 10 min) by RNA sequencing with emphasis on delay times and transcriptional elongation rates (TER). Transient expression patterns and timing of differential expression, characterized by delay and elongation, were identified as key features of the dataset. Gene ontology enrichment analysis revealed early upregulation of respiratory and iron-related gene sets. We inferred specific TERs of 89 operons with a mean TER of 42.0 nt/s and mean delay time of 22.4 s. TERs correlate with sequence features, such as codon bias, whereas delay times correlate with the involvement of regulators. The presented data illustrate that at very short times after a shift in oxygenation, extensional changes of the transcriptome, such as temporary responses, can be observed. Besides regulation, TERs contribute to the dynamics of gene expression.
Collapse
Affiliation(s)
- Joachim von Wulffen
- Institute for System Dynamics, University of Stuttgart, Keplerstraße 7, 70174 Stuttgart, Germany.
| | - Andreas Ulmer
- Institute for System Dynamics, University of Stuttgart, Keplerstraße 7, 70174 Stuttgart, Germany.
| | - Günter Jäger
- Insitute of Medical Genetics and Applied Genomics, University of Tübingen, Geschwister-Scholl-Platz, 72074 Tübingen, Germany.
| | - Oliver Sawodny
- Institute for System Dynamics, University of Stuttgart, Keplerstraße 7, 70174 Stuttgart, Germany.
| | - Ronny Feuer
- Institute for System Dynamics, University of Stuttgart, Keplerstraße 7, 70174 Stuttgart, Germany.
| |
Collapse
|
194
|
Kempes CP, van Bodegom PM, Wolpert D, Libby E, Amend J, Hoehler T. Drivers of Bacterial Maintenance and Minimal Energy Requirements. Front Microbiol 2017; 8:31. [PMID: 28197128 PMCID: PMC5281582 DOI: 10.3389/fmicb.2017.00031] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
Microbes maintain themselves through a variety of processes. Several of these processes can be reduced or shut down entirely when resource availability declines. In pure culture conditions with ample substrate supply, a relationship between the maximum growth rate and the energy invested in maintenance has been reported widely. However, at the other end of the resources spectrum, bacteria are so extremely limited by energy that no growth occurs and metabolism is constrained to the most essential functions only. These minimum energy requirements have been called the basal power requirement. While seemingly different from each other, both aspects are likely components of a continuum of regulated maintenance processes. Here, we analyze cross-species tradeoffs in cellular physiology over the range of bacterial size and energy expenditure and determine the contributions to maintenance metabolism at each point along the size-energy spectrum. Furthermore, by exploring the simplest bacteria within this framework– which are most affected by maintenance constraints– we uncover which processes become most limiting. For the smallest species, maintenance metabolism converges on total metabolism, where we predict that maintenance is dominated by the repair of proteins. For larger species the relative costs of protein repair decrease and maintenance metabolism is predicted to be dominated by the repair of RNA components. These results provide new insights into which processes are likely to be regulated in environments that are extremely limited by energy.
Collapse
Affiliation(s)
| | | | | | | | - Jan Amend
- Department of Earth Sciences, University of Southern CaliforniaLos Angeles, CA, USA; Department of Biological Sciences, University of Southern CaliforniaLos Angeles, CA, USA
| | - Tori Hoehler
- NASA Ames Research Center Moffett Field, CA, USA
| |
Collapse
|
195
|
Brennecke J, Kraut S, Zwadlo K, Gandi SK, Pritchard D, Templeton K, Bachmann T. High-yield extraction of Escherichia coli RNA from human whole blood. J Med Microbiol 2017; 66:301-311. [PMID: 28126043 DOI: 10.1099/jmm.0.000439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Studies of bacterial transcriptomics during bloodstream infections are limited to-date because unbiased extraction of bacterial mRNA from whole blood in sufficient quantity and quality has proved challenging. Problems include the high excess of human cells, the presence of PCR inhibitors and the short intrinsic half-life of bacterial mRNA. This study aims to provide a framework for the choice of the most suitable sample preparation method. METHODOLOGY Escherichia coli cells were spiked into human whole blood and the bacterial gene expression was stabilized with RNAprotect either immediately or after lysis of the red blood cells with Triton X-100, saponin, ammonium chloride or the commercial MolYsis buffer CM. RNA yield, purity and integrity were assessed by absorbance measurements at 260 and 280 nm, real-time PCR and capillary electrophoresis. RESULTS For low cell numbers, the best mRNA yields were obtained by adding the commercial RNAprotect reagent directly to the sample without prior lyses of the human blood cells. Using this protocol, significant amounts of human RNA were co-purified, however, this had a beneficial impact on the yields of bacterial mRNA. Among the tested lysis agents, Triton X-100 was the most effective and reduced the human RNA background by three to four orders of magnitude. CONCLUSION For most applications, lysis of the human blood cells is not required. However, co-purified human RNA may interfere with some downstream processes such as RNA sequencing. In this case, blood cell lysis with Triton X-100 is desirable.
Collapse
Affiliation(s)
- Johannes Brennecke
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK
| | - Simone Kraut
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK.,AG Aus- und Weiterbildung, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Klara Zwadlo
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK.,AG Aus- und Weiterbildung, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Senthil Kumar Gandi
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK
| | | | | | - Till Bachmann
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
196
|
Abstract
We study a theoretical model for the toxin-antitoxin (hok/sok) mechanism for plasmid maintenance in bacteria. Toxin-antitoxin systems enforce the maintenance of a plasmid through post-segregational killing of cells that have lost the plasmid. Key to their function is the tight regulation of expression of a protein toxin by an sRNA antitoxin. Here, we focus on the nonlinear nature of the regulatory circuit dynamics of the toxin-antitoxin mechanism. The mechanism relies on a transient increase in protein concentration rather than on the steady state of the genetic circuit. Through a systematic analysis of the parameter dependence of this transient increase, we confirm some known design features of this system and identify new ones: for an efficient toxin-antitoxin mechanism, the synthesis rate of the toxin’s mRNA template should be lower that of the sRNA antitoxin, the mRNA template should be more stable than the sRNA antitoxin, and the mRNA-sRNA complex should be more stable than the sRNA antitoxin. Moreover, a short half-life of the protein toxin is also beneficial to the function of the toxin-antitoxin system. In addition, we study a therapeutic scenario in which a competitor mRNA is introduced to sequester the sRNA antitoxin, causing the toxic protein to be expressed.
Collapse
|
197
|
Nandi S, Subramanian A, Sarkar RR. An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features. MOLECULAR BIOSYSTEMS 2017; 13:1584-1596. [DOI: 10.1039/c7mb00234c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We propose an integrated machine learning process to predict gene essentiality in Escherichia coli K-12 MG1655 metabolism that outperforms known methods.
Collapse
Affiliation(s)
- Sutanu Nandi
- Chemical Engineering and Process Development
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific & Innovative Research (AcSIR)
| | - Abhishek Subramanian
- Chemical Engineering and Process Development
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific & Innovative Research (AcSIR)
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- Academy of Scientific & Innovative Research (AcSIR)
| |
Collapse
|
198
|
van Gijtenbeek LA, Robinson A, van Oijen AM, Poolman B, Kok J. On the Spatial Organization of mRNA, Plasmids, and Ribosomes in a Bacterial Host Overexpressing Membrane Proteins. PLoS Genet 2016; 12:e1006523. [PMID: 27977669 PMCID: PMC5201305 DOI: 10.1371/journal.pgen.1006523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/30/2016] [Accepted: 12/06/2016] [Indexed: 01/03/2023] Open
Abstract
By using fluorescence imaging, we provide a time-resolved single-cell view on coupled defects in transcription, translation, and growth during expression of heterologous membrane proteins in Lactococcus lactis. Transcripts encoding poorly produced membrane proteins accumulate in mRNA-dense bodies at the cell poles, whereas transcripts of a well-expressed homologous membrane protein show membrane-proximal localization in a translation-dependent fashion. The presence of the aberrant polar mRNA foci correlates with cessation of cell division, which is restored once these bodies are cleared. In addition, activation of the heat-shock response and a loss of nucleoid-occluded ribosomes are observed. We show that the presence of a native-like N-terminal domain is key to SRP-dependent membrane localization and successful production of membrane proteins. The work presented gives new insights and detailed understanding of aberrant membrane protein biogenesis, which can be used for strategies to optimize membrane protein production.
Collapse
Affiliation(s)
- Lieke A. van Gijtenbeek
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
- * E-mail: (LAvG); (JK)
| | - Andrew Robinson
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Antoine M. van Oijen
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Bert Poolman
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- Department of Biochemistry, University of Groningen, Groningen, The Netherlands
| | - Jan Kok
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
- * E-mail: (LAvG); (JK)
| |
Collapse
|
199
|
Joyeux M. In vivo compaction dynamics of bacterial DNA: A fingerprint of DNA/RNA demixing? Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
200
|
The Expression of Antibiotic Resistance Methyltransferase Correlates with mRNA Stability Independently of Ribosome Stalling. Antimicrob Agents Chemother 2016; 60:7178-7188. [PMID: 27645242 PMCID: PMC5118997 DOI: 10.1128/aac.01806-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/12/2016] [Indexed: 12/28/2022] Open
Abstract
Members of the Erm methyltransferase family modify 23S rRNA of the bacterial ribosome and render cross-resistance to macrolides and multiple distantly related antibiotics. Previous studies have shown that the expression of erm is activated when a macrolide-bound ribosome stalls the translation of the leader peptide preceding the cotranscribed erm. Ribosome stalling is thought to destabilize the inhibitory stem-loop mRNA structure and exposes the erm Shine-Dalgarno (SD) sequence for translational initiation. Paradoxically, mutations that abolish ribosome stalling are routinely found in hyper-resistant clinical isolates; however, the significance of the stalling-dead leader sequence is largely unknown. Here, we show that nonsense mutations in the Staphylococcus aureus ErmB leader peptide (ErmBL) lead to high basal and induced expression of downstream ErmB in the absence or presence of macrolide concomitantly with elevated ribosome methylation and resistance. The overexpression of ErmB is associated with the reduced turnover of the ermBL-ermB transcript, and the macrolide appears to mitigate mRNA cleavage at a site immediately downstream of the ermBL SD sequence. The stabilizing effect of antibiotics on mRNA is not limited to ermBL-ermB; cationic antibiotics representing a ribosome-stalling inducer and a noninducer increase the half-life of specific transcripts. These data unveil a new layer of ermB regulation and imply that ErmBL translation or ribosome stalling serves as a “tuner” to suppress aberrant production of ErmB because methylated ribosome may impose a fitness cost on the bacterium as a result of misregulated translation.
Collapse
|