151
|
Han Y, Liu G, Wu Y, Bao Y, Zhang Y, Zhang T. CrisprStitch: Fast evaluation of the efficiency of CRISPR editing systems. PLANT COMMUNICATIONS 2024; 5:100783. [PMID: 38146164 PMCID: PMC10943576 DOI: 10.1016/j.xplc.2023.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Affiliation(s)
- Yangshuo Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yu Bao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yong Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
152
|
Chia SPS, Pang JKS, Soh BS. Current RNA strategies in treating cardiovascular diseases. Mol Ther 2024; 32:580-608. [PMID: 38291757 PMCID: PMC10928165 DOI: 10.1016/j.ymthe.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Cardiovascular disease (CVD) continues to impose a significant global health burden, necessitating the exploration of innovative treatment strategies. Ribonucleic acid (RNA)-based therapeutics have emerged as a promising avenue to address the complex molecular mechanisms underlying CVD pathogenesis. We present a comprehensive review of the current state of RNA therapeutics in the context of CVD, focusing on the diverse modalities that bring about transient or permanent modifications by targeting the different stages of the molecular biology central dogma. Considering the immense potential of RNA therapeutics, we have identified common gene targets that could serve as potential interventions for prevalent Mendelian CVD caused by single gene mutations, as well as acquired CVDs developed over time due to various factors. These gene targets offer opportunities to develop RNA-based treatments tailored to specific genetic and molecular pathways, presenting a novel and precise approach to address the complex pathogenesis of both types of cardiovascular conditions. Additionally, we discuss the challenges and opportunities associated with delivery strategies to achieve targeted delivery of RNA therapeutics to the cardiovascular system. This review highlights the immense potential of RNA-based interventions as a novel and precise approach to combat CVD, paving the way for future advancements in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Shirley Pei Shan Chia
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Jeremy Kah Sheng Pang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Boon-Seng Soh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| |
Collapse
|
153
|
Li F, Zhao H, Sui L, Yin F, Liu X, Guo G, Li J, Jiang Y, Cui W, Shan Z, Zhou H, Wang L, Qiao X, Tang L, Wang X, Li Y. Assessing immunogenicity of CRISPR-NCas9 engineered strain against porcine epidemic diarrhea virus. Appl Microbiol Biotechnol 2024; 108:248. [PMID: 38430229 PMCID: PMC10908614 DOI: 10.1007/s00253-023-12989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 03/03/2024]
Abstract
Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV), is an acute and highly infectious disease, resulting in substantial economic losses in the pig industry. Given that PEDV primarily infects the mucosal surfaces of the intestinal tract, it is crucial to improve the mucosal immunity to prevent viral invasion. Lactic acid bacteria (LAB) oral vaccines offer unique advantages and potential applications in combatting mucosal infectious diseases, making them an ideal approach for controlling PED outbreaks. However, traditional LAB oral vaccines use plasmids for exogenous protein expression and antibiotic genes as selection markers. Antibiotic genes can be diffused through transposition, transfer, or homologous recombination, resulting in the generation of drug-resistant strains. To overcome these issues, genome-editing technology has been developed to achieve gene expression in LAB genomes. In this study, we used the CRISPR-NCas9 system to integrate the PEDV S1 gene into the genome of alanine racemase-deficient Lactobacillus paracasei △Alr HLJ-27 (L. paracasei △Alr HLJ-27) at the thymidylate synthase (thyA) site, generating a strain, S1/△Alr HLJ-27. We conducted immunization assays in mice and piglets to evaluate the level of immune response and evaluated its protective effect against PEDV through challenge tests in piglets. Oral administration of the strain S1/△Alr HLJ-27 in mice and piglets elicited mucosal, humoral, and cellular immune responses. The strain also exhibited a certain level of resistance against PEDV infection in piglets. These results demonstrate the potential of S1/△Alr HLJ-27 as an oral vaccine candidate for PEDV control. KEY POINTS: • A strain S1/△Alr HLJ-27 was constructed as the candidate for an oral vaccine. • Immunogenicity response and challenge test was carried out to analyze the ability of the strain. • The strain S1/△Alr HLJ-27 could provide protection for piglets to a certain extent.
Collapse
Affiliation(s)
- Fengsai Li
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Haiyuan Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ling Sui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Fangjie Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xinzi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Guihai Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China.
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China.
| |
Collapse
|
154
|
Jiang H, Tang M, Xu Z, Wang Y, Li M, Zheng S, Zhu J, Lin Z, Zhang M. CRISPR/Cas9 system and its applications in nervous system diseases. Genes Dis 2024; 11:675-686. [PMID: 37692518 PMCID: PMC10491921 DOI: 10.1016/j.gendis.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is an acquired immune system of many bacteria and archaea, comprising CRISPR loci, Cas genes, and its associated proteins. This system can recognize exogenous DNA and utilize the Cas9 protein's nuclease activity to break DNA double-strand and to achieve base insertion or deletion by subsequent DNA repair. In recent years, multiple laboratory and clinical studies have revealed the therapeutic role of the CRISPR/Cas9 system in neurological diseases. This article reviews the CRISPR/Cas9-mediated gene editing technology and its potential for clinical application against neurological diseases.
Collapse
Affiliation(s)
- Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengyan Tang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanan Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuyin Zheng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
155
|
Salem AR, Bryant WB, Doja J, Griffin SH, Shi X, Han W, Su Y, Verin AD, Miano JM. Prime editing in mice with an engineered pegRNA. Vascul Pharmacol 2024; 154:107269. [PMID: 38158001 PMCID: PMC10939748 DOI: 10.1016/j.vph.2023.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024]
Abstract
CRISPR editing involves double-strand breaks in DNA with attending insertions/deletions (indels) that may result in embryonic lethality in mice. The prime editing (PE) platform uses a prime editing guide RNA (pegRNA) and a Cas9 nickase fused to a modified reverse transcriptase to precisely introduce nucleotide substitutions or small indels without the unintended editing associated with DNA double-strand breaks. Recently, engineered pegRNAs (epegRNAs), with a 3'-extension that shields the primer-binding site of the pegRNA from nucleolytic attack, demonstrated superior activity over conventional pegRNAs in cultured cells. Here, we show the inability of three-component CRISPR or conventional PE to incorporate a nonsynonymous substitution in the Capn2 gene, expected to disrupt a phosphorylation site (S50A) in CAPN2. In contrast, an epegRNA with the same protospacer correctly installed the desired edit in two founder mice, as evidenced by robust genotyping assays for the detection of subtle nucleotide substitutions. Long-read sequencing demonstrated sequence fidelity around the edited site as well as top-ranked distal off-target sites. Western blotting and histological analysis of lipopolysaccharide-treated lung tissue revealed a decrease in phosphorylation of CAPN2 and notable alleviation of inflammation, respectively. These results demonstrate the first successful use of an epegRNA for germline transmission in an animal model and provide a solution to targeting essential developmental genes that otherwise may be challenging to edit.
Collapse
Affiliation(s)
- Amr R Salem
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America.
| | - W Bart Bryant
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America
| | - Jaser Doja
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America
| | - Susan H Griffin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America
| | - Xiaofan Shi
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America
| | - Weihong Han
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America
| | - Joseph M Miano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States of America
| |
Collapse
|
156
|
Walther J, Porenta D, Wilbie D, Seinen C, Benne N, Yang Q, de Jong OG, Lei Z, Mastrobattista E. Comparative analysis of lipid Nanoparticle-Mediated delivery of CRISPR-Cas9 RNP versus mRNA/sgRNA for gene editing in vitro and in vivo. Eur J Pharm Biopharm 2024; 196:114207. [PMID: 38325664 DOI: 10.1016/j.ejpb.2024.114207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
The discovery that the bacterial defense mechanism, CRISPR-Cas9, can be reprogrammed as a gene editing tool has revolutionized the field of gene editing. CRISPR-Cas9 can introduce a double-strand break at a specific targeted site within the genome. Subsequent intracellular repair mechanisms repair the double strand break that can either lead to gene knock-out (via the non-homologous end-joining pathway) or specific gene correction in the presence of a DNA template via homology-directed repair. With the latter, pathological mutations can be cut out and repaired. Advances are being made to utilize CRISPR-Cas9 in patients by incorporating its components into non-viral delivery vehicles that will protect them from premature degradation and deliver them to the targeted tissues. Herein, CRISPR-Cas9 can be delivered in the form of three different cargos: plasmid DNA, RNA or a ribonucleoprotein complex (RNP). We and others have recently shown that Cas9 RNP can be efficiently formulated in lipid-nanoparticles (LNP) leading to functional delivery in vitro. In this study, we compared LNP encapsulating the mRNA Cas9, sgRNA and HDR template against LNP containing Cas9-RNP and HDR template. Former showed smaller particle sizes, better protection against degrading enzymes and higher gene editing efficiencies on both reporter HEK293T cells and HEPA 1-6 cells in in vitro assays. Both formulations were additionally tested in female Ai9 mice on biodistribution and gene editing efficiency after systemic administration. LNP delivering mRNA Cas9 were retained mainly in the liver, with LNP delivering Cas9-RNPs additionally found in the spleen and lungs. Finally, gene editing in mice could only be concluded for LNP delivering mRNA Cas9 and sgRNA. These LNPs resulted in 60 % gene knock-out in hepatocytes. Delivery of mRNA Cas9 as cargo format was thereby concluded to surpass Cas9-RNP for application of CRISPR-Cas9 for gene editing in vitro and in vivo.
Collapse
Affiliation(s)
- Johanna Walther
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99 3584 CG, Utrecht, the Netherlands
| | - Deja Porenta
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99 3584 CG, Utrecht, the Netherlands; Department of Infectious Diseases and immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, the Netherlands
| | - Danny Wilbie
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99 3584 CG, Utrecht, the Netherlands
| | - Cornelis Seinen
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Naomi Benne
- Department of Infectious Diseases and immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, the Netherlands
| | - Qiangbing Yang
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands; CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Olivier Gerrit de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99 3584 CG, Utrecht, the Netherlands
| | - Zhiyong Lei
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands; CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99 3584 CG, Utrecht, the Netherlands.
| |
Collapse
|
157
|
Wu C, Yue Y, Huang B, Ji H, Wu L, Huang H. CRISPR-powered microfluidic biosensor for preamplification-free detection of ochratoxin A. Talanta 2024; 269:125414. [PMID: 37992484 DOI: 10.1016/j.talanta.2023.125414] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The CRISPR technology, which does not require complex instruments, expensive reagents or professional operators, has attracted a lot of attention. When utilizing the CRISPR-Cas system for detection, the pre-amplification step is often necessary to enhance sensitivity. However, this approach tends to introduce complexity and prolong the time required. To address this issue, we employed Pd@PCN-222 nanozyme to label single-stranded DNA, referred to as Pd@PCN-222 CRISPR nanozyme, which serves as the reporter of the CRISPR system. Pd@PCN-222 nanozyme possess exceptional catalytic activity for the reduction of H2O2. Compared with traditional electrochemical probe ferrocene and methylene blue without catalytic activity, there is a significant amplification of the electrochemical signal. So the need for pre-amplification was eliminated. In this study, we constructed a CRISPR-Cas system for ochratoxin A, utilizing the Pd@PCN-222 CRISPR nanozyme to amplified signal avoiding pre-amplification with outstanding detection of 1.21 pg/mL. Furthermore, we developed a microfluidic electrochemical chip for the on-site detection of ochratoxin A. This achievement holds significant promise in establishing a practical on-site detection platform for identifying food safety hazards.
Collapse
Affiliation(s)
- Chengyuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yuanyuan Yue
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | | | - Hanxu Ji
- Key Laboratory of Biotoxin Analysis & Assessment for State Market Regulation, Nanjing Institute of Product Quality Inspection & Testing, Nanjing, 210019, China
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - He Huang
- Food Laboratory of Zhongyuan, Luohe, 462300, Henan, China.
| |
Collapse
|
158
|
Pacesa M, Pelea O, Jinek M. Past, present, and future of CRISPR genome editing technologies. Cell 2024; 187:1076-1100. [PMID: 38428389 DOI: 10.1016/j.cell.2024.01.042] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Genome editing has been a transformative force in the life sciences and human medicine, offering unprecedented opportunities to dissect complex biological processes and treat the underlying causes of many genetic diseases. CRISPR-based technologies, with their remarkable efficiency and easy programmability, stand at the forefront of this revolution. In this Review, we discuss the current state of CRISPR gene editing technologies in both research and therapy, highlighting limitations that constrain them and the technological innovations that have been developed in recent years to address them. Additionally, we examine and summarize the current landscape of gene editing applications in the context of human health and therapeutics. Finally, we outline potential future developments that could shape gene editing technologies and their applications in the coming years.
Collapse
Affiliation(s)
- Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Station 19, CH-1015 Lausanne, Switzerland
| | - Oana Pelea
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
159
|
Kozaeva E, Nielsen ZS, Nieto-Domínguez M, Nikel P. The pAblo·pCasso self-curing vector toolset for unconstrained cytidine and adenine base-editing in Gram-negative bacteria. Nucleic Acids Res 2024; 52:e19. [PMID: 38180826 PMCID: PMC10899774 DOI: 10.1093/nar/gkad1236] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
A synthetic biology toolkit, exploiting clustered regularly interspaced short palindromic repeats (CRISPR) and modified CRISPR-associated protein (Cas) base-editors, was developed for genome engineering in Gram-negative bacteria. Both a cytidine base-editor (CBE) and an adenine base-editor (ABE) have been optimized for precise single-nucleotide modification of plasmid and genome targets. CBE comprises a cytidine deaminase conjugated to a Cas9 nickase from Streptococcus pyogenes (SpnCas9), resulting in C→T (or G→A) substitutions. Conversely, ABE consists of an adenine deaminase fused to SpnCas9 for A→G (or T→C) editing. Several nucleotide substitutions were achieved using these plasmid-borne base-editing systems and a novel protospacer adjacent motif (PAM)-relaxed SpnCas9 (SpRY) variant. Base-editing was validated in Pseudomonas putida and other Gram-negative bacteria by inserting premature STOP codons into target genes, thereby inactivating both fluorescent proteins and metabolic (antibiotic-resistance) functions. The functional knockouts obtained by engineering STOP codons via CBE were reverted to the wild-type genotype using ABE. Additionally, a series of induction-responsive vectors was developed to facilitate the curing of the base-editing platform in a single cultivation step, simplifying complex strain engineering programs without relying on homologous recombination and yielding plasmid-free, modified bacterial cells.
Collapse
Affiliation(s)
- Ekaterina Kozaeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Zacharias S Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
160
|
Yahsi B, Palaz F, Dincer P. Applications of CRISPR Epigenome Editors in Tumor Immunology and Autoimmunity. ACS Synth Biol 2024; 13:413-427. [PMID: 38298016 DOI: 10.1021/acssynbio.3c00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Over the past decade, CRISPR-Cas systems have become indispensable tools for genetic engineering and have been used in clinical trials for various diseases. Beyond genome editing, CRISPR-Cas systems can also be used for performing programmable epigenetic modifications. Recent efforts in enhancing CRISPR-based epigenome modifiers have yielded potent tools enabling targeted DNA methylation/demethylation capable of sustaining epigenetic memory through numerous cell divisions. Moreover, it has been understood that during chronic inflammatory states, including cancer, T cells encounter a state called T cell exhaustion that involves elevated inhibitory receptors (e.g., LAG-3, TIM3, PD-1, CD39) and reduced effector T cell-related protein levels (IFN-γ, granzyme B, and perforin). Importantly, epigenetic dysregulation has been identified as one of the key drivers of T cell exhaustion, and it remains one of the biggest obstacles in the field of immunotherapy and decreases the efficiency of chimeric antigen receptor T (CAR-T) cell therapy. Similarly, autoimmune diseases exhibit epigenetically dysfunctional regulatory T (Treg) cells. For instance, FOXP3 intronic regions, known as conserved noncoding sequences, display hypomethylation in healthy states but hypermethylation in pathological contexts. Therefore, the reversal of epigenetic dysregulation in cancer and autoimmune diseases using CRISPR-based epigenome modifiers has important therapeutic implications. In this review, we outline the progressive refinement of CRISPR-based epigenome modifiers and explore their potential therapeutic applications in tumor immunology and autoimmunity.
Collapse
Affiliation(s)
- Berkay Yahsi
- Hacettepe University School of Medicine, Ankara 06100, Turkey
| | - Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Pervin Dincer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
161
|
Liang Y, Gao S, Qi X, Valentovich LN, An Y. Progress in Gene Editing and Metabolic Regulation of Saccharomyces cerevisiae with CRISPR/Cas9 Tools. ACS Synth Biol 2024; 13:428-448. [PMID: 38326929 DOI: 10.1021/acssynbio.3c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The CRISPR/Cas9 systems have been developed as tools for genetic engineering and metabolic engineering in various organisms. In this review, various aspects of CRISPR/Cas9 in Saccharomyces cerevisiae, from basic principles to practical applications, have been summarized. First, a comprehensive review has been conducted on the history of CRISPR/Cas9, successful cases of gene disruptions, and efficiencies of multiple DNA fragment insertions. Such advanced systems have accelerated the development of microbial engineering by reducing time and labor, and have enhanced the understanding of molecular genetics. Furthermore, the research progress of the CRISPR/Cas9-based systems in the production of high-value-added chemicals and the improvement of stress tolerance in S. cerevisiae have been summarized, which should have an important reference value for genetic and synthetic biology studies based on S. cerevisiae.
Collapse
Affiliation(s)
- Yaokun Liang
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110065, China
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110065, China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, Guangdong 511370, China
| | - Leonid N Valentovich
- Institute of Microbiology, National Academy of Sciences of Belarus, Minsk 220072, Belarus
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110065, China
| |
Collapse
|
162
|
Yin Y, Wen J, Wen M, Fu X, Ke G, Zhang XB. The design strategies for CRISPR-based biosensing: Target recognition, signal conversion, and signal amplification. Biosens Bioelectron 2024; 246:115839. [PMID: 38042054 DOI: 10.1016/j.bios.2023.115839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 11/11/2023] [Indexed: 12/04/2023]
Abstract
Rapid, sensitive and selective biosensing is highly important for analyzing biological targets and dynamic physiological processes in cells and living organisms. As an emerging tool, clustered regularly interspaced short palindromic repeats (CRISPR) system is featured with excellent complementary-dependent cleavage and efficient trans-cleavage ability. These merits enable CRISPR system to improve the specificity, sensitivity, and speed for molecular detection. Herein, the structures and functions of several CRISPR proteins for biosensing are summarized in depth. Moreover, the strategies of target recognition, signal conversion, and signal amplification for CRISPR-based biosensing were highlighted from the perspective of biosensor design principles. The state-of-art applications and recent advances of CRISPR system are then outlined, with emphasis on their fluorescent, electrochemical, colorimetric, and applications in POCT technology. Finally, the current challenges and future prospects of this frontier research area are discussed.
Collapse
Affiliation(s)
- Yao Yin
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jialin Wen
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mei Wen
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Xiaoyi Fu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| | - Guoliang Ke
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
163
|
Bischof J, Hierl M, Koller U. Emerging Gene Therapeutics for Epidermolysis Bullosa under Development. Int J Mol Sci 2024; 25:2243. [PMID: 38396920 PMCID: PMC10889532 DOI: 10.3390/ijms25042243] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
The monogenetic disease epidermolysis bullosa (EB) is characterised by the formation of extended blisters and lesions on the patient's skin upon minimal mechanical stress. Causal for this severe condition are genetic mutations in genes, leading to the functional impairment, reduction, or absence of the encoded protein within the skin's basement membrane zone connecting the epidermis to the underlying dermis. The major burden of affected families justifies the development of long-lasting and curative therapies operating at the genomic level. The landscape of causal therapies for EB is steadily expanding due to recent breakthroughs in the gene therapy field, providing promising outcomes for patients suffering from this severe disease. Currently, two gene therapeutic approaches show promise for EB. The clinically more advanced gene replacement strategy was successfully applied in severe EB forms, leading to a ground-breaking in vivo gene therapy product named beremagene geperpavec (B-VEC) recently approved from the US Food and Drug Administration (FDA). In addition, the continuous innovations in both designer nucleases and gene editing technologies enable the efficient and potentially safe repair of mutations in EB in a potentially permanent manner, inspiring researchers in the field to define and reach new milestones in the therapy of EB.
Collapse
Affiliation(s)
- Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
| | - Markus Hierl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
| |
Collapse
|
164
|
Bell RT, Sahakyan H, Makarova KS, Wolf YI, Koonin EV. CoCoNuTs: A diverse subclass of Type IV restriction systems predicted to target RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.31.551357. [PMID: 37790407 PMCID: PMC10542128 DOI: 10.1101/2023.07.31.551357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote CoCoNuTs (coiled-coil nuclease tandems) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with 3 distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.
Collapse
Affiliation(s)
- Ryan T. Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
165
|
Storz U. The CRISPR Cas patent files, part 2: Is Cpf1/Cas12a a less conflict- prone alternative to Cas9? J Biotechnol 2024; 381:67-75. [PMID: 38181979 DOI: 10.1016/j.jbiotec.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
CRISPR Cpf1/Cas12a has been discussed as a less conflict prone alternative, patent-wise, to Cas9. This article investigates whether or not this assumption is correct, and comes to the conclusion that the promise that CRISPR Cpf1/Cas12 would make things easier, and be less conflict-prone, is fragile.
Collapse
Affiliation(s)
- Ulrich Storz
- Michalski Hüttermann & Partner Patentanwälte mbB Düsseldorf, München, Germany.
| |
Collapse
|
166
|
Li B, Zhai G, Dong Y, Wang L, Ma P. Recent progress on the CRISPR/Cas system in optical biosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:798-816. [PMID: 38259224 DOI: 10.1039/d3ay02147e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) protein systems are adaptive immune systems unique to archaea and bacteria, with the characteristics of targeted recognition and gene editing to resist the invasion of foreign nucleic acids. Biosensors combined with the CRISPR/Cas system and optical detection technology have attracted much attention in medical diagnoses, food safety, agricultural progress, and environmental monitoring owing to their good sensitivity, high selectivity, and fast detection efficiency. In this review, we introduce the mechanism of CRISPR/Cas systems and developments in this area, followed by summarizing recent progress on CRISPR/Cas system-based optical biosensors combined with colorimetric, fluorescence, electrochemiluminescence and surface-enhanced Raman scattering optical techniques in various fields. Finally, we discuss the challenges and future perspectives of CRISPR/Cas systems in optical biosensors.
Collapse
Affiliation(s)
- Bingqian Li
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China.
| | - Guangyu Zhai
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yaru Dong
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lan Wang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China.
| | - Peng Ma
- School of Basic Medicine, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
167
|
Sui Z, Wu Q, Geng J, Xiao J, Huang D. CRISPR/Cas9-mediated efficient white genome editing in the black soldier fly Hermetia illucens. Mol Genet Genomics 2024; 299:5. [PMID: 38315256 DOI: 10.1007/s00438-023-02088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/17/2023] [Indexed: 02/07/2024]
Abstract
The CRISPR/Cas9 system is the most straightforward genome-editing technology to date, enabling genetic engineering in many insects, including the black soldier fly, Hermetia illucens. The white gene plays a significant role in the multifarious life activities of insects, especially the pigmentation of the eyes. In this study, the white gene of H. illucens (Hiwhite) was cloned, identified, and bioinformatically analysed for the first time. Using quantitative real-time polymerase chain reaction (qPCR), we found that the white gene was expressed in the whole body of the adult flies, particularly in Malpighian tubules and compound eyes. Furthermore, we utilised CRISPR/Cas9-mediated genome-editing technology to successfully generate heritable Hiwhite mutants using two single guide RNAs. During Hiwhite genome editing, we determined the timing, method, and needle-pulling parameters for embryo microinjection by observing early embryonic developmental features. We used the CasOT program to obtain highly specific guide RNAs (gRNAs) at the genome-wide level. According to the phenotypes of Hiwhite knockout strains, the pigmentation of larval stemmata, imaginal compound eyes, and ocelli differed from those of the wild type. These phenotypes were similar to those observed in other insects harbouring white gene mutations. In conclusion, our results described a detailed white genome editing process in black soldier flies, which lays a solid foundation for intensive research on the pigmentation pathway of the eyes and provides a methodological basis for further genome engineering applications in black soldier flies.
Collapse
Affiliation(s)
- Zhuoxiao Sui
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qi Wu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jin Geng
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinhua Xiao
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Dawei Huang
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
168
|
Liu S, Liu H, Wang X, Shi L. The immune system of prokaryotes: potential applications and implications for gene editing. Biotechnol J 2024; 19:e2300352. [PMID: 38403433 DOI: 10.1002/biot.202300352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
Gene therapy has revolutionized the treatment of genetic diseases. Spearheading this revolution are sophisticated genome editing methods such as TALENs, ZFNs, and CRISPR-Cas, which trace their origins back to prokaryotic immune systems. Prokaryotes have developed various antiviral defense systems to combat viral attacks and the invasion of genetic elements. The comprehension of these defense mechanisms has paved the way for the development of indispensable tools in molecular biology. Among them, restriction endonuclease originates from the innate immune system of bacteria. The CRISPR-Cas system, a widely applied genome editing technology, is derived from the prokaryotic adaptive immune system. Single-base editing is a precise editing tool based on CRISPR-Cas system that involves deamination of target base. It is worth noting that prokaryotes possess deamination enzymes as part of their defense arsenal over foreign genetic material. Furthermore, prokaryotic Argonauts (pAgo) proteins, also function in anti-phage defense, play an important role in complementing the CRISPR-Cas system by addressing certain limitations it may have. Recent studies have also shed light on the significance of Retron, a reverse transcription transposon previously showed potential in genome editing, has also come to light in the realm of prokaryotic immunity. These noteworthy findings highlight the importance of studying prokaryotic immune system for advancing genome editing techniques. Here, both the origin of prokaryotic immunity underlying aforementioned genome editing tools, and potential applications of deaminase, pAgo protein and reverse transcriptase in genome editing among prokaryotes were introduced, thus emphasizing the fundamental mechanism and significance of prokaryotic immunity.
Collapse
Affiliation(s)
- Siyang Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongling Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
169
|
McLaurin KA, Li H, Khalili K, Mactutus CF, Booze RM. HIV-1 mRNA knockdown with CRISPR/CAS9 enhances neurocognitive function. J Neurovirol 2024; 30:71-85. [PMID: 38355914 PMCID: PMC11035469 DOI: 10.1007/s13365-024-01193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Mixed glia are infiltrated with HIV-1 virus early in the course of infection leading to the development of a persistent viral reservoir in the central nervous system. Modification of the HIV-1 genome using gene editing techniques, including CRISPR/Cas9, has shown great promise towards eliminating HIV-1 viral reservoirs; whether these techniques are capable of removing HIV-1 viral proteins from mixed glia, however, has not been systematically evaluated. Herein, the efficacy of adeno-associated virus 9 (AAV9)-CRISPR/Cas9 gene editing for eliminating HIV-1 messenger RNA (mRNA) from cortical mixed glia was evaluated in vitro and in vivo. In vitro, a within-subjects experimental design was utilized to treat mixed glia isolated from neonatal HIV-1 transgenic (Tg) rats with varying doses (0, 0.9, 1.8, 2.7, 3.6, 4.5, or 5.4 µL corresponding to a physical titer of 0, 4.23 × 109, 8.46 × 109, 1.269 × 1010, 1.692 × 1010, 2.115 × 1010, and 2.538 × 1010 gc/µL) of CRISPR/Cas9 for 72 h. Dose-dependent decreases in the number of HIV-1 mRNA, quantified using an innovative in situ hybridization technique, were observed in a subset (i.e., n = 5 out of 8) of primary mixed glia. In vivo, HIV-1 Tg rats were retro-orbitally inoculated with CRISPR/Cas9 for two weeks, whereby treatment resulted in profound excision (i.e., approximately 53.2%) of HIV-1 mRNA from the medial prefrontal cortex. Given incomplete excision of the HIV-1 viral genome, the clinical relevance of HIV-1 mRNA knockdown for eliminating neurocognitive impairments was evaluated via examination of temporal processing, a putative neurobehavioral mechanism underlying HIV-1-associated neurocognitive disorders (HAND). Indeed, treatment with CRISPR/Cas9 protractedly, albeit not permanently, restored the developmental trajectory of temporal processing. Proof-of-concept studies, therefore, support the susceptibility of mixed glia to gene editing and the potential of CRISPR/Cas9 to serve as a novel therapeutic strategy for HAND, even in the absence of full viral eradication.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S Limestone Street, Lexington, KY, 40508, USA
| | - Hailong Li
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Kamel Khalili
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA.
- Department of Psychology, Carolina Trustees Professor and Bicentennial Endowed Chair of Behavioral Neuroscience, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA.
| |
Collapse
|
170
|
Macarrón Palacios A, Korus P, Wilkens BGC, Heshmatpour N, Patnaik SR. Revolutionizing in vivo therapy with CRISPR/Cas genome editing: breakthroughs, opportunities and challenges. Front Genome Ed 2024; 6:1342193. [PMID: 38362491 PMCID: PMC10867117 DOI: 10.3389/fgeed.2024.1342193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Genome editing using the CRISPR/Cas system has revolutionized the field of genetic engineering, offering unprecedented opportunities for therapeutic applications in vivo. Despite the numerous ongoing clinical trials focusing on ex vivo genome editing, recent studies emphasize the therapeutic promise of in vivo gene editing using CRISPR/Cas technology. However, it is worth noting that the complete attainment of the inherent capabilities of in vivo therapy in humans is yet to be accomplished. Before the full realization of in vivo therapeutic potential, it is crucial to achieve enhanced specificity in selectively targeting defective cells while minimizing harm to healthy cells. This review examines emerging studies, focusing on CRISPR/Cas-based pre-clinical and clinical trials for innovative therapeutic approaches for a wide range of diseases. Furthermore, we emphasize targeting cancer-specific sequences target in genes associated with tumors, shedding light on the diverse strategies employed in cancer treatment. We highlight the various challenges associated with in vivo CRISPR/Cas-based cancer therapy and explore their prospective clinical translatability and the strategies employed to overcome these obstacles.
Collapse
|
171
|
Yudin Kharismasari C, Irkham, Zein MIHL, Hardianto A, Nur Zakiyyah S, Umar Ibrahim A, Ozsoz M, Wahyuni Hartati Y. CRISPR/Cas12-based electrochemical biosensors for clinical diagnostic and food monitoring. Bioelectrochemistry 2024; 155:108600. [PMID: 37956622 DOI: 10.1016/j.bioelechem.2023.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
Each organism has a unique sequence of nitrogenous bases in in the form of DNA or RNA which distinguish them from other organisms. This characteristic makes nucleic acid-based detection extremely selective and compare to other molecular techniques. In recent years, several nucleic acid-based detection technology methods have been developed, one of which is the electrochemical biosensor. Electrochemical biosensors are known to have high sensitivity and accuracy. In addition, the ease of miniaturization of this electrochemical technique has garnered interest from many researchers. On the other hand, the CRISPR/Cas12 method has been widely used in detecting nucleic acids due to its highly selective nature. The CRISPR/Cas12 method is also reported to increase the sensitivity of electrochemical biosensors through the utilization of modified electrodes. The electrodes can be modified according to detection needs so that the biosensor's performance can be improved. This review discusses the application of CRISPR/Cas12-based electrochemical biosensors, as well as various electrode modifications that have been successfully used to improve the performance of these biosensors in the clinical and food monitoring fields.
Collapse
Affiliation(s)
- Clianta Yudin Kharismasari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Muhammad Ihda H L Zein
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Salma Nur Zakiyyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Abdullahi Umar Ibrahim
- Department of Biomedical Engineering, Near East University, Mersin 99138, Turkey; Operational Research Centre in Healthcare, Near East University, Mersin 10, TRNC, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, Mersin 99138, Turkey
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia.
| |
Collapse
|
172
|
Morris JA, Sun JS, Sanjana NE. Next-generation forward genetic screens: uniting high-throughput perturbations with single-cell analysis. Trends Genet 2024; 40:118-133. [PMID: 37989654 PMCID: PMC10872607 DOI: 10.1016/j.tig.2023.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
Programmable genome-engineering technologies, such as CRISPR (clustered regularly interspaced short palindromic repeats) nucleases and massively parallel CRISPR screens that capitalize on this programmability, have transformed biomedical science. These screens connect genes and noncoding genome elements to disease-relevant phenotypes, but until recently have been limited to individual phenotypes such as growth or fluorescent reporters of gene expression. By pairing massively parallel screens with high-dimensional profiling of single-cell types/states, we can now measure how individual genetic perturbations or combinations of perturbations impact the cellular transcriptome, proteome, and epigenome. We review technologies that pair CRISPR screens with single-cell multiomics and the unique opportunities afforded by extending pooled screens using deep multimodal phenotyping.
Collapse
Affiliation(s)
- John A Morris
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10003, USA
| | - Jennifer S Sun
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10003, USA
| | - Neville E Sanjana
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
173
|
Ahmar S, Usman B, Hensel G, Jung KH, Gruszka D. CRISPR enables sustainable cereal production for a greener future. TRENDS IN PLANT SCIENCE 2024; 29:179-195. [PMID: 37981496 DOI: 10.1016/j.tplants.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has become the most important tool for targeted genome editing in many plant and animal species over the past decade. The CRISPR/Cas9 technology has also sparked a flood of applications and technical advancements in genome editing in the key cereal crops, including rice, wheat, maize, and barley. Here, we review advanced uses of CRISPR/Cas9 and derived systems in genome editing of cereal crops to enhance a variety of agronomically important features. We also highlight new technological advances for delivering preassembled Cas9-gRNA ribonucleoprotein (RNP)-editing systems, multiplex editing, gain-of-function strategies, the use of artificial intelligence (AI)-based tools, and combining CRISPR with novel speed breeding (SB) and vernalization strategies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Babar Usman
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, D-40225 Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 783 71 Olomouc, Czech Republic
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Republic of Korea.
| | - Damian Gruszka
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
174
|
Montagud‐Martínez R, Márquez‐Costa R, Heras‐Hernández M, Dolcemascolo R, Rodrigo G. On the ever-growing functional versatility of the CRISPR-Cas13 system. Microb Biotechnol 2024; 17:e14418. [PMID: 38381083 PMCID: PMC10880580 DOI: 10.1111/1751-7915.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
CRISPR-Cas systems evolved in prokaryotes to implement a powerful antiviral immune response as a result of sequence-specific targeting by ribonucleoproteins. One of such systems consists of an RNA-guided RNA endonuclease, known as CRISPR-Cas13. In very recent years, this system is being repurposed in different ways in order to decipher and engineer gene expression programmes. Here, we discuss the functional versatility of the CRISPR-Cas13 system, which includes the ability for RNA silencing, RNA editing, RNA tracking, nucleic acid detection and translation regulation. This functional palette makes the CRISPR-Cas13 system a relevant tool in the broad field of systems and synthetic biology.
Collapse
Affiliation(s)
- Roser Montagud‐Martínez
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| | - Rosa Márquez‐Costa
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| | - María Heras‐Hernández
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| | - Roswitha Dolcemascolo
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| |
Collapse
|
175
|
Su M, Li F, Wang Y, Gao Y, Lan W, Shao Z, Zhu C, Tang N, Gan J, Wu Z, Ji Q. Molecular basis and engineering of miniature Cas12f with C-rich PAM specificity. Nat Chem Biol 2024; 20:180-189. [PMID: 37697004 DOI: 10.1038/s41589-023-01420-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/08/2023] [Indexed: 09/13/2023]
Abstract
CRISPR-Cas12f nucleases are currently one of the smallest genome editors, exhibiting advantages for efficient delivery via cargo-size-limited adeno-associated virus delivery vehicles. Most characterized Cas12f nucleases recognize similar T-rich protospacer adjacent motifs (PAMs) for DNA targeting, substantially restricting their targeting scope. Here we report the cryogenic electron microscopy structure and engineering of a miniature Clostridium novyi Cas12f1 nuclease (CnCas12f1, 497 amino acids) with rare C-rich PAM specificity. Structural characterizations revealed detailed PAM recognition, asymmetric homodimer formation and single guide RNA (sgRNA) association mechanisms. sgRNA engineering transformed CRISPR-CnCas12f1, which initially was incapable of genome targeting in bacteria, into an effective genome editor in human cells. Our results facilitate further understanding of CRISPR-Cas12f1 working mechanism and expand the mini-CRISPR toolbox.
Collapse
Affiliation(s)
- Mengjiao Su
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yujue Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Weiqi Lan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhiwei Shao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Chen Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Na Tang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jianhua Gan
- School of Life Sciences, Fudan University, Shanghai, China
| | - Zhaowei Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
176
|
Hu C, Myers MT, Zhou X, Hou Z, Lozen ML, Nam KH, Zhang Y, Ke A. Exploiting activation and inactivation mechanisms in type I-C CRISPR-Cas3 for genome-editing applications. Mol Cell 2024; 84:463-475.e5. [PMID: 38242128 PMCID: PMC10857747 DOI: 10.1016/j.molcel.2023.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/26/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
Type I CRISPR-Cas systems utilize the RNA-guided Cascade complex to identify matching DNA targets and the nuclease-helicase Cas3 to degrade them. Among the seven subtypes, type I-C is compact in size and highly active in creating large-sized genome deletions in human cells. Here, we use four cryoelectron microscopy snapshots to define its RNA-guided DNA binding and cleavage mechanisms in high resolution. The non-target DNA strand (NTS) is accommodated by I-C Cascade in a continuous binding groove along the juxtaposed Cas11 subunits. Binding of Cas3 further traps a flexible bulge in NTS, enabling NTS nicking. We identified two anti-CRISPR proteins AcrIC8 and AcrIC9 that strongly inhibit Neisseria lactamica I-C function. Structural analysis showed that AcrIC8 inhibits PAM recognition through allosteric inhibition, whereas AcrIC9 achieves so through direct competition. Both Acrs potently inhibit I-C-mediated genome editing and transcriptional modulation in human cells, providing the first off-switches for type I CRISPR eukaryotic genome engineering.
Collapse
Affiliation(s)
- Chunyi Hu
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA; Department of Biological Sciences, Faculty of Science; Department of Biochemistry, Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Mason T Myers
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xufei Zhou
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhonggang Hou
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Macy L Lozen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ki Hyun Nam
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Yan Zhang
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA.
| |
Collapse
|
177
|
Shao J, Peng B, Zhang Y, Yan X, Yao X, Hu X, Li L, Fu X, Zheng H, Tang K. A high-efficient protoplast transient system for screening gene editing elements in Salvia miltiorrhiza. PLANT CELL REPORTS 2024; 43:45. [PMID: 38261110 DOI: 10.1007/s00299-023-03134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
KEY MESSAGE A high-efficiency protoplast transient system was devised to screen genome editing elements in Salvia miltiorrhiza. Medicinal plants with high-value pharmaceutical ingredients have attracted research attention due to their beneficial effects on human health. Cell wall-free protoplasts of plants can be used to evaluate the efficiency of genome editing mutagenesis. The capabilities of gene editing in medicinal plants remain to be fully explored owing to their complex genetic background and shortfall of suitable transformation. Here, we took the Salvia miltiorrhiza as a representative example for developing a method to screen favorable gene editing elements with high editing efficiency in medical plants by a PEG-mediated protoplast transformation. Results indicated that using the endogenous SmU6.1 of S. miltiorrhiza to drive sgRNA and the plant codon-optimized Cas9 driven by the promoter SlEF1α can enhance the efficiency of editing. In summary, we uncover an efficacious transient method for screening editing elements and shed new light on increasing gene editing efficiency in medicinal plants.
Collapse
Affiliation(s)
- Jin Shao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bowen Peng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaojie Zhang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Yan
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinghao Yao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyi Hu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Han Zheng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
178
|
Tang N, Wu Z, Gao Y, Chen W, Wang Z, Su M, Ji W, Ji Q. Molecular Basis and Genome Editing Applications of a Compact Eubacterium ventriosum CRISPR-Cas9 System. ACS Synth Biol 2024; 13:269-281. [PMID: 38061052 DOI: 10.1021/acssynbio.3c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
CRISPR-Cas9 systems have been widely harnessed for diverse genome editing applications because of their ease of use and high efficiency. However, the large molecular sizes and strict PAM requirements of commonly used CRISPR-Cas9 systems restrict their broad applications in therapeutics. Here, we report the molecular basis and genome editing applications of a novel compact type II-A Eubacterium ventriosum CRISPR-Cas9 system (EvCas9) with 1107 residues and distinct 5'-NNGDGN-3' (where D represents A, T, or G) PAM specificity. We determine the cryo-EM structure of EvCas9 in a complex with an sgRNA and a target DNA, revealing the detailed PAM recognition and sgRNA and target DNA association mechanisms. Additionally, we demonstrate the robust genome editing capacity of EvCas9 in bacteria and human cells with superior fidelity compared to SaCas9 and SpCas9, and we engineer it to be efficient base editors by fusing a cytidine or adenosine deaminase. Collectively, our results facilitate further understanding of CRISPR-Cas9 working mechanisms and expand the compact CRISPR-Cas9 toolbox.
Collapse
Affiliation(s)
- Na Tang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhaowei Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weizhong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zixiao Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengjiao Su
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenxin Ji
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
179
|
Hammad R, Alzubi J, Rhiel M, Chmielewski KO, Mosti L, Rositzka J, Heugel M, Lawrenz J, Pennucci V, Gläser B, Fischer J, Schambach A, Moritz T, Lachmann N, Cornu TI, Mussolino C, Schäfer R, Cathomen T. CRISPR-Cas12a for Highly Efficient and Marker-Free Targeted Integration in Human Pluripotent Stem Cells. Int J Mol Sci 2024; 25:985. [PMID: 38256061 PMCID: PMC10816062 DOI: 10.3390/ijms25020985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The CRISPR-Cas12a platform has attracted interest in the genome editing community because the prototypical Acidaminococcus Cas12a generates a staggered DNA double-strand break upon binding to an AT-rich protospacer-adjacent motif (PAM, 5'-TTTV). The broad application of the platform in primary human cells was enabled by the development of an engineered version of the natural Cas12a protein, called Cas12a Ultra. In this study, we confirmed that CRISPR-Cas12a Ultra ribonucleoprotein complexes enabled allelic gene disruption frequencies of over 90% at multiple target sites in human T cells, hematopoietic stem and progenitor cells (HSPCs), and induced pluripotent stem cells (iPSCs). In addition, we demonstrated, for the first time, the efficient knock-in potential of the platform in human iPSCs and achieved targeted integration of a GFP marker gene into the AAVS1 safe harbor site and a CSF2RA super-exon into CSF2RA in up to 90% of alleles without selection. Clonal analysis revealed bi-allelic integration in >50% of the screened iPSC clones without compromising their pluripotency and genomic integrity. Thus, in combination with the adeno-associated virus vector system, CRISPR-Cas12a Ultra provides a highly efficient genome editing platform for performing targeted knock-ins in human iPSCs.
Collapse
Affiliation(s)
- Ruba Hammad
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (R.H.); (J.A.); (M.R.); (K.O.C.); (L.M.); (J.R.); (M.H.); (V.P.); (T.I.C.); (C.M.); (R.S.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Freiburg iPS Core Facility, Medical Center—University of Freiburg, 79106 Freiburg, Germany
- PhD Program, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jamal Alzubi
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (R.H.); (J.A.); (M.R.); (K.O.C.); (L.M.); (J.R.); (M.H.); (V.P.); (T.I.C.); (C.M.); (R.S.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Manuel Rhiel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (R.H.); (J.A.); (M.R.); (K.O.C.); (L.M.); (J.R.); (M.H.); (V.P.); (T.I.C.); (C.M.); (R.S.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Kay O. Chmielewski
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (R.H.); (J.A.); (M.R.); (K.O.C.); (L.M.); (J.R.); (M.H.); (V.P.); (T.I.C.); (C.M.); (R.S.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
- PhD Program, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Laura Mosti
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (R.H.); (J.A.); (M.R.); (K.O.C.); (L.M.); (J.R.); (M.H.); (V.P.); (T.I.C.); (C.M.); (R.S.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Julia Rositzka
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (R.H.); (J.A.); (M.R.); (K.O.C.); (L.M.); (J.R.); (M.H.); (V.P.); (T.I.C.); (C.M.); (R.S.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Marcel Heugel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (R.H.); (J.A.); (M.R.); (K.O.C.); (L.M.); (J.R.); (M.H.); (V.P.); (T.I.C.); (C.M.); (R.S.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Jan Lawrenz
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (R.H.); (J.A.); (M.R.); (K.O.C.); (L.M.); (J.R.); (M.H.); (V.P.); (T.I.C.); (C.M.); (R.S.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Valentina Pennucci
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (R.H.); (J.A.); (M.R.); (K.O.C.); (L.M.); (J.R.); (M.H.); (V.P.); (T.I.C.); (C.M.); (R.S.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Birgitta Gläser
- Institute of Human Genetics, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (B.G.); (J.F.)
| | - Judith Fischer
- Institute of Human Genetics, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (B.G.); (J.F.)
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Axel Schambach
- Institute for Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (A.S.); (T.M.)
- REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Thomas Moritz
- Institute for Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (A.S.); (T.M.)
- REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Nico Lachmann
- REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany;
- Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625 Hannover, Germany
| | - Tatjana I. Cornu
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (R.H.); (J.A.); (M.R.); (K.O.C.); (L.M.); (J.R.); (M.H.); (V.P.); (T.I.C.); (C.M.); (R.S.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (R.H.); (J.A.); (M.R.); (K.O.C.); (L.M.); (J.R.); (M.H.); (V.P.); (T.I.C.); (C.M.); (R.S.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Richard Schäfer
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (R.H.); (J.A.); (M.R.); (K.O.C.); (L.M.); (J.R.); (M.H.); (V.P.); (T.I.C.); (C.M.); (R.S.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Freiburg iPS Core Facility, Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (R.H.); (J.A.); (M.R.); (K.O.C.); (L.M.); (J.R.); (M.H.); (V.P.); (T.I.C.); (C.M.); (R.S.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
180
|
Storz U. The CRISPR Cas patent files, part 1: Cas9 - Where to we stand at the 10 year halftime? J Biotechnol 2024; 379:46-52. [PMID: 37984590 DOI: 10.1016/j.jbiotec.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
CRISPR Cas9 has turned out to be one of the most influential technologies in the life sciences. However, ferocious patent debates and an unclear licensing situation makes access to this technology difficult for Small and medium enterprises. This article gives an overview of the status quo 10 years after the seminal patents were filed.
Collapse
Affiliation(s)
- Ulrich Storz
- Michalski Hüttermann & Partner Patentanwälte mbB, Düsseldorf, Germany.
| |
Collapse
|
181
|
Adler BA, Trinidad MI, Bellieny-Rabelo D, Zhang E, Karp HM, Skopintsev P, Thornton BW, Weissman RF, Yoon P, Chen L, Hessler T, Eggers AR, Colognori D, Boger R, Doherty EE, Tsuchida CA, Tran RV, Hofman L, Shi H, Wasko KM, Zhou Z, Xia C, Al-Shimary MJ, Patel JR, Thomas VCJX, Pattali R, Kan MJ, Vardapetyan A, Yang A, Lahiri A, Maxwell MF, Murdock AG, Ramit GC, Henderson HR, Calvert RW, Bamert R, Knott GJ, Lapinaite A, Pausch P, Cofsky J, Sontheimer EJ, Wiedenheft B, Fineran PC, Brouns SJJ, Sashital DG, Thomas BC, Brown CT, Goltsman DSA, Barrangou R, Siksnys V, Banfield JF, Savage DF, Doudna JA. CasPEDIA Database: a functional classification system for class 2 CRISPR-Cas enzymes. Nucleic Acids Res 2024; 52:D590-D596. [PMID: 37889041 PMCID: PMC10767948 DOI: 10.1093/nar/gkad890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
CRISPR-Cas enzymes enable RNA-guided bacterial immunity and are widely used for biotechnological applications including genome editing. In particular, the Class 2 CRISPR-associated enzymes (Cas9, Cas12 and Cas13 families), have been deployed for numerous research, clinical and agricultural applications. However, the immense genetic and biochemical diversity of these proteins in the public domain poses a barrier for researchers seeking to leverage their activities. We present CasPEDIA (http://caspedia.org), the Cas Protein Effector Database of Information and Assessment, a curated encyclopedia that integrates enzymatic classification for hundreds of different Cas enzymes across 27 phylogenetic groups spanning the Cas9, Cas12 and Cas13 families, as well as evolutionarily related IscB and TnpB proteins. All enzymes in CasPEDIA were annotated with a standard workflow based on their primary nuclease activity, target requirements and guide-RNA design constraints. Our functional classification scheme, CasID, is described alongside current phylogenetic classification, allowing users to search related orthologs by enzymatic function and sequence similarity. CasPEDIA is a comprehensive data portal that summarizes and contextualizes enzymatic properties of widely used Cas enzymes, equipping users with valuable resources to foster biotechnological development. CasPEDIA complements phylogenetic Cas nomenclature and enables researchers to leverage the multi-faceted nucleic-acid targeting rules of diverse Class 2 Cas enzymes.
Collapse
Affiliation(s)
- Benjamin A Adler
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Marena I Trinidad
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Daniel Bellieny-Rabelo
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Elaine Zhang
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Hannah M Karp
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Petr Skopintsev
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Brittney W Thornton
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Rachel F Weissman
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Peter H Yoon
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - LinXing Chen
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720, USA
| | - Tomas Hessler
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
- EGSB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Amy R Eggers
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - David Colognori
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ron Boger
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Erin E Doherty
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Connor A Tsuchida
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ryan V Tran
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Laura Hofman
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Graduate School of Life Sciences, Utrecht University, 3584 CS Utrecht, UT, The Netherlands
| | - Honglue Shi
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Kevin M Wasko
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Zehan Zhou
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Chenglong Xia
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Muntathar J Al-Shimary
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jaymin R Patel
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Vienna C J X Thomas
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Rithu Pattali
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Matthew J Kan
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, CA 94158, USA
| | - Anna Vardapetyan
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Alana Yang
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Arushi Lahiri
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Micaela F Maxwell
- Department of Chemistry and Biochemistry, Hampton University, Hampton, VA 23668, USA
| | - Andrew G Murdock
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Glenn C Ramit
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Hope R Henderson
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Roland W Calvert
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Rebecca S Bamert
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Gavin J Knott
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Audrone Lapinaite
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Patrick Pausch
- LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Joshua C Cofsky
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Genetics Otago, University of Otago, Dunedin 9016, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin 9016, New Zealand
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, 2629 HZ Delft, The Netherlands
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | - Rodolphe Barrangou
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Virginius Siksnys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
- EGSB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- The University of Melbourne, Parkville, VIC 3052, Australia
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Gladstone Institutes, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
182
|
Badon IW, Oh Y, Kim HJ, Lee SH. Recent application of CRISPR-Cas12 and OMEGA system for genome editing. Mol Ther 2024; 32:32-43. [PMID: 37952084 PMCID: PMC10787141 DOI: 10.1016/j.ymthe.2023.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
In 2012, it was discovered that precise gene editing could be induced in target DNA using the reprogrammable characteristics of the CRISPR system. Since then, several studies have investigated the potential of the CRISPR system to edit various biological organisms. For the typical CRISPR system obtained from bacteria and archaea, many application studies have been conducted and have spread to various fields. To date, orthologs with various characteristics other than CRISPR-Cas9 have been discovered and are being intensively studied in the field of gene editing. CRISPR-Cas12 and its varied orthologs are representative examples of genome editing tools and have superior properties in terms of in vivo target gene editing compared with Cas9. Recently, TnpB and Fanzor of the OMEGA (obligate mobile element guided activity) system were identified to be the ancestor of CRISPR-Cas12 on the basis of phylogenetic analysis. Notably, the compact sizes of Cas12 and OMEGA endonucleases allow adeno-associated virus (AAV) delivery; hence, they are set to challenge Cas9 for in vivo gene therapy. This review is focused on these RNA-guided reprogrammable endonucleases: their structure, biochemistry, off-target effects, and applications in therapeutic gene editing.
Collapse
Affiliation(s)
- Isabel Wen Badon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeounsun Oh
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Republic of Korea.
| | - Seung Hwan Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
183
|
Mojtaba Mousavi S, Alireza Hashemi S, Yari Kalashgrani M, Rahmanian V, Riazi M, Omidifar N, Hamed Althomali R, Rahman MM, Chiang WH, Gholami A. Recent Progress in Prompt Molecular Detection of Exosomes Using CRISPR/Cas and Microfluidic-Assisted Approaches Toward Smart Cancer Diagnosis and Analysis. ChemMedChem 2024; 19:e202300359. [PMID: 37916531 DOI: 10.1002/cmdc.202300359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/03/2023]
Abstract
Exosomes are essential indicators of molecular mechanisms involved in interacting with cancer cells and the tumor environment. As nanostructures based on lipids and nucleic acids, exosomes provide a communication pathway for information transfer by transporting biomolecules from the target cell to other cells. Importantly, these extracellular vesicles are released into the bloodstream by the most invasive cells, i. e., cancer cells; in this way, they could be considered a promising specific biomarker for cancer diagnosis. In this matter, CRISPR-Cas systems and microfluidic approaches could be considered practical tools for cancer diagnosis and understanding cancer biology. CRISPR-Cas systems, as a genome editing approach, provide a way to inactivate or even remove a target gene from the cell without affecting intracellular mechanisms. These practical systems provide vital information about the factors involved in cancer development that could lead to more effective cancer treatment. Meanwhile, microfluidic approaches can also significantly benefit cancer research due to their proper sensitivity, high throughput, low material consumption, low cost, and advanced spatial and temporal control. Thereby, employing CRISPR-Cas- and microfluidics-based approaches toward exosome monitoring could be considered a valuable source of information for cancer therapy and diagnosis. This review assesses the recent progress in these promising diagnosis approaches toward accurate cancer therapy and in-depth study of cancer cell behavior.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Health Policy Research Center, Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Vahid Rahmanian
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Mohsen Riazi
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| |
Collapse
|
184
|
Stella G, Marraffini L. Type III CRISPR-Cas: beyond the Cas10 effector complex. Trends Biochem Sci 2024; 49:28-37. [PMID: 37949766 PMCID: PMC10844953 DOI: 10.1016/j.tibs.2023.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Type III CRISPR-Cas loci encode some of the most abundant, yet complex, immune systems of prokaryotes. They are composed of a Cas10 complex that uses an RNA guide to recognize transcripts from bacteriophage and plasmid invaders. Target recognition triggers three activities within this complex: ssDNA degradation, synthesis of cyclic oligoadenylates (cOA) that act as second messengers to activate CARF-domain effectors, and cleavage of target RNA. This review covers recent research in type III CRISPR-Cas systems that looked beyond the activity of the canonical Cas10 complexes towards: (i) ancillary nucleases and understanding how they provide defense by sensing cOA molecules; (ii) ring nucleases and their role in regulating cOA production; and (iii) CRISPR-associated proteases, including the function of the Craspase complex in a transcriptional response to phage infection.
Collapse
Affiliation(s)
- Gianna Stella
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Luciano Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
185
|
Tripathi S, Sharma Y, Rane R, Kumar D. CRISPR/Cas9 Gene Editing: A Novel Approach Towards Alzheimer's Disease Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1405-1424. [PMID: 38716549 DOI: 10.2174/0118715273283786240408034408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 10/22/2024]
Abstract
In defiance of the vast amount of information regarding Alzheimer's disease (AD) that has been learned over the past thirty years, progress toward developing an effective therapy has been difficult. A neurological ailment that progresses and cannot be reversed is Alzheimer's disease, which shows neurofibrillary tangles, beta-amyloid plaque, and a lack of cognitive processes that is created by tau protein clumps with hyperphosphorylation that finally advances to neuronal damage without a recognized treatment, which has stimulated research into new therapeutic strategies. The protein CAS9 is linked to CRISPR, which is a clustered Regularly Interspaced Short Palindromic Repeat that inactivates or corrects a gene by recognizing a gene sequence that produces a doublestranded break has enchanted a whole amount of interest towards its potency to cure gene sequences in AD. The novel CRISPR-Cas9 applications for developing in vitro and in vivo models to the benefit of AD investigation and therapies are thoroughly analyzed in this work. The discussion will also touch on the creation of delivery methods, which is a significant obstacle to the therapeutic use of CRISPR/Cas9 technology. By concentrating on specific genes, such as those that are significant early- onset AD risk factors and late-onset AD risk factors, like the apolipoprotein E4 (APOE4) gene, this study aims to evaluate the potential application of CRISPR/Cas9 as a possible treatment for AD.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Department of Pharm Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra 411038, India
| | - Yashika Sharma
- Department of Pharm Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra 411038, India
| | - Rajesh Rane
- Department of Pharm Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra 411038, India
| | - Dileep Kumar
- Department of Pharm Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra 411038, India
| |
Collapse
|
186
|
Singh K, Bhushan B, Kumar S, Singh S, Macadangdang RR, Pandey E, Varma AK, Kumar S. Precision Genome Editing Techniques in Gene Therapy: Current State and Future Prospects. Curr Gene Ther 2024; 24:377-394. [PMID: 38258771 DOI: 10.2174/0115665232279528240115075352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Precision genome editing is a rapidly evolving field in gene therapy, allowing for the precise modification of genetic material. The CRISPR and Cas systems, particularly the CRISPRCas9 system, have revolutionized genetic research and therapeutic development by enabling precise changes like single-nucleotide substitutions, insertions, and deletions. This technology has the potential to correct disease-causing mutations at their source, allowing for the treatment of various genetic diseases. Programmable nucleases like CRISPR-Cas9, transcription activator-like effector nucleases (TALENs), and zinc finger nucleases (ZFNs) can be used to restore normal gene function, paving the way for novel therapeutic interventions. However, challenges, such as off-target effects, unintended modifications, and ethical concerns surrounding germline editing, require careful consideration and mitigation strategies. Researchers are exploring innovative solutions, such as enhanced nucleases, refined delivery methods, and improved bioinformatics tools for predicting and minimizing off-target effects. The prospects of precision genome editing in gene therapy are promising, with continued research and innovation expected to refine existing techniques and uncover new therapeutic applications.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sunil Kumar
- Department of Pharmacology, P.K. University, Thanra, Karera, Shivpuri, Madhya Pradesh, India
| | - Supriya Singh
- Department of Pharmaceutics, Babu Banarasi Das Northern India Institute of Technology, Faizabaad road, Lucknow, Uttar Pradesh, India
| | | | - Ekta Pandey
- Department of Chemistry, Bundelkhand Institute of Engineering and Technology, Jhansi, Uttar Pradesh, India
| | - Ajit Kumar Varma
- Department of Pharmaceutics, Rama University, Kanpur, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| |
Collapse
|
187
|
Bhushan B, Singh K, Kumar S, Bhardwaj A. Advancements in CRISPR-Based Therapies for Genetic Modulation in Neurodegenerative Disorders. Curr Gene Ther 2024; 25:34-45. [PMID: 38738727 DOI: 10.2174/0115665232292246240426125504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024]
Abstract
Neurodegenerative disorders pose significant challenges in the realm of healthcare, as these conditions manifest in complex, multifaceted ways, often attributed to genetic anomalies. With the emergence of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology, a new frontier has been unveiled in the quest for targeted, precise genetic manipulation. This abstract explores the recent advancements and potential applications of CRISPR-based therapies in addressing genetic components contributing to various neurodegenerative disorders. The review delves into the foundational principles of CRISPR technology, highlighting its unparalleled ability to edit genetic sequences with unprecedented precision. In addition, it talks about the latest progress in using CRISPR to target specific genetic mutations linked to neurodegenerative diseases like Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Parkinson's disease. It talks about the most important studies and trials that show how well and safely CRISPR-based therapies work. This shows how this technology can change genetic variants that cause diseases. Notably, the discussion emphasizes the challenges and ethical considerations associated with the implementation of CRISPR in clinical settings, including off-target effects, delivery methods, and long-term implications. Furthermore, the article explores the prospects and potential hurdles in the widespread application of CRISPR technology for treating neurodegenerative disorders. It touches upon the need for continued research, improved delivery mechanisms, and ethical frameworks to ensure responsible and equitable access to these groundbreaking therapies.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Anjali Bhardwaj
- Department of Pharmaceutics, Durga College of Pharmacy, Sambhal, Uttar Pradesh, India
| |
Collapse
|
188
|
Lee Y, Oh Y, Lee SH. Recent advances in genome engineering by CRISPR technology. BMB Rep 2024; 57:12-18. [PMID: 38053294 PMCID: PMC10828434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 12/07/2023] Open
Abstract
Due to the development of CRISPR technology, the era of effective editing of target genes has arrived. However, the offtarget problem that occurs when recognizing target DNA due to the inherent nature of CRISPR components remains the biggest task to be overcome in the future. In this review, the principle of inducing such unintended off-target editing is analyzed from the structural aspect of CRISPR, and the methodology that has been developed to reduce off-target editing until now is summarized. [BMB Reports 2024; 57(1): 12-18].
Collapse
Affiliation(s)
- Youngsik Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Yeounsun Oh
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Seung Hwan Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
189
|
Choi SY, Romero-Calle DX, Cho HG, Bae HW, Cho YH. Use of Cas9 Targeting and Red Recombination for Designer Phage Engineering. J Microbiol 2024; 62:1-10. [PMID: 38300409 DOI: 10.1007/s12275-024-00107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
Bacteriophages (phages) are natural antibiotics and biological nanoparticles, whose application is significantly boosted by recent advances of synthetic biology tools. Designer phages are synthetic phages created by genome engineering in a way to increase the benefits or decrease the drawbacks of natural phages. Here we report the development of a straightforward genome engineering method to efficiently obtain engineered phages in a model bacterial pathogen, Pseudomonas aeruginosa. This was achieved by eliminating the wild type phages based on the Streptococcus pyogenes Cas9 (SpCas9) and facilitating the recombinant generation based on the Red recombination system of the coliphage λ (λRed). The producer (PD) cells of P. aeruginosa strain PAO1 was created by miniTn7-based chromosomal integration of the genes for SpCas9 and λRed under an inducible promoter. To validate the efficiency of the recombinant generation, we created the fluorescent phages from a temperate phage MP29. A plasmid bearing the single guide RNA (sgRNA) gene for selectively targeting the wild type gp35 gene and the editing template for tagging the Gp35 with superfolder green fluorescent protein (sfGFP) was introduced into the PD cells by electroporation. We found that the targeting efficiency was affected by the position and number of sgRNA. The fluorescent phage particles were efficiently recovered from the culture of the PD cells expressing dual sgRNA molecules. This protocol can be used to create designer phages in P. aeruginosa for both application and research purposes.
Collapse
Affiliation(s)
- Shin-Yae Choi
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi, 13488, Republic of Korea
| | - Danitza Xiomara Romero-Calle
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi, 13488, Republic of Korea
| | - Han-Gyu Cho
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi, 13488, Republic of Korea
| | - Hee-Won Bae
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi, 13488, Republic of Korea
| | - You-Hee Cho
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi, 13488, Republic of Korea.
| |
Collapse
|
190
|
Williams L, Larsen J. Nanoparticle-mediated delivery of non-viral gene editing technology to the brain. Prog Neurobiol 2024; 232:102547. [PMID: 38042249 PMCID: PMC10872436 DOI: 10.1016/j.pneurobio.2023.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Neurological disorders pose a significant burden on individuals and society, affecting millions worldwide. These disorders, including but not limited to Alzheimer's disease, Parkinson's disease, and Huntington's disease, often have limited treatment options and can lead to progressive degeneration and disability. Gene editing technologies, including Zinc Finger Nucleases (ZFN), Transcription Activator-Like Effector Nucleases (TALEN), and Clustered Regularly Interspaced Short Palindromic Repeats-associated Protein 9 (CRISPR-Cas9), offer a promising avenue for potential cures by targeting and correcting the underlying genetic mutations responsible for neurologic disorders. However, efficient delivery methods are crucial for the successful application of gene editing technologies in the context of neurological disorders. The central nervous system presents unique challenges to treatment development due to the blood-brain barrier, which restricts the entry of large molecules. While viral vectors are traditionally used for gene delivery, nonviral delivery methods, such as nanoparticle-mediated delivery, offer safer alternatives that can efficiently transport gene editing components. Herein we aim to introduce the three main gene editing nucleases as nonviral treatments for neurologic disorders, the delivery barriers associated with brain targeting, and the current nonviral techniques used for brain-specific delivery. We highlight the challenges and opportunities for future research in this exciting and growing field that could lead to blood-brain barrier bypassing therapeutic gene editing.
Collapse
Affiliation(s)
- Lucian Williams
- Department of Bioengineering, Clemson University, Clemson, SC 29631, USA
| | - Jessica Larsen
- Department of Bioengineering, Clemson University, Clemson, SC 29631, USA; Department of Chemical Engineering, Clemson University, Clemson, SC 29631, USA.
| |
Collapse
|
191
|
Ravagnan G, Meliawati M, Schmid J. CRISPR-Cas9-Mediated Genome Editing in Paenibacillus polymyxa. Methods Mol Biol 2024; 2760:267-280. [PMID: 38468094 DOI: 10.1007/978-1-0716-3658-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
In recent years, the clustered regularly interspaced palindromic repeats-Cas (CRISPR-Cas) technology has become the method of choice for precision genome editing in many organisms due to its simplicity and efficacy. Multiplex genome editing, point mutations, and large genomic modifications are attractive features of the CRISPR-Cas9 system. These applications facilitate both the ease and velocity of genetic manipulations and the discovery of novel functions. In this protocol chapter, we describe the use of a CRISPR-Cas9 system for multiplex integration and deletion modifications, and deletions of large genomic regions by the use of a single guide RNA (sgRNA), and, finally, targeted point mutation modifications in Paenibacillus polymyxa.
Collapse
Affiliation(s)
- Giulia Ravagnan
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Meliawati Meliawati
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Jochen Schmid
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany.
| |
Collapse
|
192
|
Zhou C, Yang G, Meng P, Qin W, Li Y, Lin Z, Hui W, Zhang H, Lu F. Identification and engineering of the aprE regulatory region and relevant regulatory proteins in Bacillus licheniformis 2709. Enzyme Microb Technol 2024; 172:110310. [PMID: 37925770 DOI: 10.1016/j.enzmictec.2023.110310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/01/2023] [Accepted: 08/27/2023] [Indexed: 11/07/2023]
Abstract
Bacillus licheniformis 2709 is the main industrial producer of alkaline protease (AprE), but its biosynthesis is strictly controlled by a highly sophisticated transcriptional network. In this study, the UP elements of aprE located 74-98, 98-119 and 140-340 bp upstream of the transcriptional start site (TSS) were identified, which presented obvious effects on the transcription of aprE. To further analyze the transcriptional mechanism, the specific proteins binding to the approximately 500-bp DNA sequences were subsequently captured by reverse-chromatin immunoprecipitation (reverse-ChIP) and DNA pull-down (DPD) assays, which captured the transcriptional factors CggR, FruR, and YhcZ. The study demonstrated that CggR, FruR and YhcZ had no significant effect on cell growth and aprE expression. Then, aprE expression was significantly enhanced by deleting a potential negative regulatory factor binding site in the genome. The AprE enzyme activity in shake flasks of the genomic mutant BL ∆1 was 47% higher than in the original strain, while the aprE transcription level increased 3.16 times. The protocol established in this study provides a valuable reference for the high-level production of proteins in other Bacillus species. At the same time, it will help reveal the molecular mechanism of the transcriptional regulatory network of aprE and provide important theoretical guidance for further enhancing the yield of AprE.
Collapse
Affiliation(s)
- Cuixia Zhou
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China; Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Guangcheng Yang
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China.
| | - Panpan Meng
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Weishuai Qin
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Yanyan Li
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Zhenxian Lin
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Wei Hui
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Huitu Zhang
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Fuping Lu
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China.
| |
Collapse
|
193
|
Kola NS, Patel D, Thakur A. RNA-Based Vaccines and Therapeutics Against Intracellular Pathogens. Methods Mol Biol 2024; 2813:321-370. [PMID: 38888787 DOI: 10.1007/978-1-0716-3890-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
RNA-based vaccines have sparked a paradigm shift in the treatment and prevention of diseases by nucleic acid medicines. There has been a notable surge in the development of nucleic acid therapeutics and vaccines following the global approval of the two messenger RNA-based COVID-19 vaccines. This growth is fueled by the exploration of numerous RNA products in preclinical stages, offering several advantages over conventional methods, i.e., safety, efficacy, scalability, and cost-effectiveness. In this chapter, we provide an overview of various types of RNA and their mechanisms of action for stimulating immune responses and inducing therapeutic effects. Furthermore, this chapter delves into the varying delivery systems, particularly emphasizing the use of nanoparticles to deliver RNA. The choice of delivery system is an intricate process involved in developing nucleic acid medicines that significantly enhances their stability, biocompatibility, and site-specificity. Additionally, this chapter sheds light on the current landscape of clinical trials of RNA therapeutics and vaccines against intracellular pathogens.
Collapse
Affiliation(s)
- Naga Suresh Kola
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dhruv Patel
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aneesh Thakur
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
194
|
Koonin EV, Gootenberg JS, Abudayyeh OO. Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry 2023; 62:3465-3487. [PMID: 37192099 PMCID: PMC10734277 DOI: 10.1021/acs.biochem.3c00159] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Indexed: 05/18/2023]
Abstract
CRISPR systems mediate adaptive immunity in bacteria and archaea through diverse effector mechanisms and have been repurposed for versatile applications in therapeutics and diagnostics thanks to their facile reprogramming with RNA guides. RNA-guided CRISPR-Cas targeting and interference are mediated by effectors that are either components of multisubunit complexes in class 1 systems or multidomain single-effector proteins in class 2. The compact class 2 CRISPR systems have been broadly adopted for multiple applications, especially genome editing, leading to a transformation of the molecular biology and biotechnology toolkit. The diversity of class 2 effector enzymes, initially limited to the Cas9 nuclease, was substantially expanded via computational genome and metagenome mining to include numerous variants of Cas12 and Cas13, providing substrates for the development of versatile, orthogonal molecular tools. Characterization of these diverse CRISPR effectors uncovered many new features, including distinct protospacer adjacent motifs (PAMs) that expand the targeting space, improved editing specificity, RNA rather than DNA targeting, smaller crRNAs, staggered and blunt end cuts, miniature enzymes, promiscuous RNA and DNA cleavage, etc. These unique properties enabled multiple applications, such as harnessing the promiscuous RNase activity of the type VI effector, Cas13, for supersensitive nucleic acid detection. class 1 CRISPR systems have been adopted for genome editing, as well, despite the challenge of expressing and delivering the multiprotein class 1 effectors. The rich diversity of CRISPR enzymes led to rapid maturation of the genome editing toolbox, with capabilities such as gene knockout, base editing, prime editing, gene insertion, DNA imaging, epigenetic modulation, transcriptional modulation, and RNA editing. Combined with rational design and engineering of the effector proteins and associated RNAs, the natural diversity of CRISPR and related bacterial RNA-guided systems provides a vast resource for expanding the repertoire of tools for molecular biology and biotechnology.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Jonathan S. Gootenberg
- McGovern
Institute for Brain Research at MIT, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Omar O. Abudayyeh
- McGovern
Institute for Brain Research at MIT, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
195
|
Wang J, Maschietto F, Qiu T, Arantes PR, Skeens E, Palermo G, Lisi GP, Batista VS. Substrate-independent activation pathways of the CRISPR-Cas9 HNH nuclease. Biophys J 2023; 122:4635-4644. [PMID: 37936350 PMCID: PMC10754686 DOI: 10.1016/j.bpj.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
A hallmark of tightly regulated high-fidelity enzymes is that they become activated only after encountering cognate substrates, often by an induced-fit mechanism rather than conformational selection. Upon analysis of molecular dynamics trajectories, we recently discovered that the Cas9 HNH domain exists in three conformations: 1) Y836 (which is two residues away from the catalytic D839 and H840 residues) is hydrogen bonded to the D829 backbone amide, 2) Y836 is hydrogen bonded to the backbone amide of D861 (which is one residue away from the third catalytic residue N863), and 3) Y836 is not hydrogen bonded to either residue. Each of the three conformers differs from the active state of HNH. The conversion between the inactive and active states involves a local unfolding-refolding process that displaces the Cα and side chain of the catalytic N863 residue by ∼5 Å and ∼10 Å, respectively. In this study, we report the two largest principal components of coordinate variance of the HNH domain throughout molecular dynamics trajectories to establish the interconversion pathways of these conformations. We show that conformation 2 is an obligate step between conformations 1 and 3, which are not directly interconvertible without conformation 2. The loss of hydrogen bonding of the Y836 side chain in conformation 3 likely plays an essential role in activation during local unfolding-refolding of an α-helix containing the catalytic N863. Three single Lys-to-Ala mutants appear to eliminate this substrate-independent activation pathway of the wild-type HNH nuclease, thereby enhancing the fidelity of HNH cleavage.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| | | | - Tianyin Qiu
- Department of Chemistry, Yale University, New Haven, Connecticut
| | - Pablo R Arantes
- Department of Bioengineering, University of California, Riverside, Riverside, California
| | - Erin Skeens
- Department of Chemistry, University of California, Riverside, Riverside, California
| | - Giulia Palermo
- Department of Bioengineering, University of California, Riverside, Riverside, California; Department of Chemistry, University of California, Riverside, Riverside, California.
| | - George P Lisi
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island.
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut.
| |
Collapse
|
196
|
Tenjo-Castaño F, Montoya G, Carabias A. Transposons and CRISPR: Rewiring Gene Editing. Biochemistry 2023; 62:3521-3532. [PMID: 36130724 PMCID: PMC10734217 DOI: 10.1021/acs.biochem.2c00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Indexed: 11/30/2022]
Abstract
CRISPR-Cas is driving a gene editing revolution because of its simple reprogramming. However, off-target effects and dependence on the double-strand break repair pathways impose important limitations. Because homology-directed repair acts primarily in actively dividing cells, many of the current gene correction/replacement approaches are restricted to a minority of cell types. Furthermore, current approaches display low efficiency upon insertion of large DNA cargos (e.g., sequences containing multiple gene circuits with tunable functionalities). Recent research has revealed new links between CRISPR-Cas systems and transposons providing new scaffolds that might overcome some of these limitations. Here, we comment on two new transposon-associated RNA-guided mechanisms considering their potential as new gene editing solutions. Initially, we focus on a group of small RNA-guided endonucleases of the IS200/IS605 family of transposons, which likely evolved into class 2 CRISPR effector nucleases (Cas9s and Cas12s). We explore the diversity of these nucleases (named OMEGA, obligate mobile element-guided activity) and analyze their similarities with class 2 gene editors. OMEGA nucleases can perform gene editing in human cells and constitute promising candidates for the design of new compact RNA-guided platforms. Then, we address the co-option of the RNA-guided activity of different CRISPR effector nucleases by a specialized group of Tn7-like transposons to target transposon integration. We describe the various mechanisms used by these RNA-guided transposons for target site selection and integration. Finally, we assess the potential of these new systems to circumvent some of the current gene editing challenges.
Collapse
Affiliation(s)
- Francisco Tenjo-Castaño
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| | - Arturo Carabias
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| |
Collapse
|
197
|
Fan HC, Yang MT, Lin LC, Chiang KL, Chen CM. Clinical and Genetic Features of Dravet Syndrome: A Prime Example of the Role of Precision Medicine in Genetic Epilepsy. Int J Mol Sci 2023; 25:31. [PMID: 38203200 PMCID: PMC10779156 DOI: 10.3390/ijms25010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Dravet syndrome (DS), also known as severe myoclonic epilepsy of infancy, is a rare and drug-resistant form of developmental and epileptic encephalopathies, which is both debilitating and challenging to manage, typically arising during the first year of life, with seizures often triggered by fever, infections, or vaccinations. It is characterized by frequent and prolonged seizures, developmental delays, and various other neurological and behavioral impairments. Most cases result from pathogenic mutations in the sodium voltage-gated channel alpha subunit 1 (SCN1A) gene, which encodes a critical voltage-gated sodium channel subunit involved in neuronal excitability. Precision medicine offers significant potential for improving DS diagnosis and treatment. Early genetic testing enables timely and accurate diagnosis. Advances in our understanding of DS's underlying genetic mechanisms and neurobiology have enabled the development of targeted therapies, such as gene therapy, offering more effective and less invasive treatment options for patients with DS. Targeted and gene therapies provide hope for more effective and personalized treatments. However, research into novel approaches remains in its early stages, and their clinical application remains to be seen. This review addresses the current understanding of clinical DS features, genetic involvement in DS development, and outcomes of novel DS therapies.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan;
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Tao Yang
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan
| | - Lung-Chang Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuo-Liang Chiang
- Department of Pediatric Neurology, Kuang-Tien General Hospital, Taichung 433, Taiwan;
- Department of Nutrition, Hungkuang University, Taichung 433, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
198
|
Xu Z, Chen S, Wu W, Wen Y, Cao H. Type I CRISPR-Cas-mediated microbial gene editing and regulation. AIMS Microbiol 2023; 9:780-800. [PMID: 38173969 PMCID: PMC10758571 DOI: 10.3934/microbiol.2023040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
There are six major types of CRISPR-Cas systems that provide adaptive immunity in bacteria and archaea against invasive genetic elements. The discovery of CRISPR-Cas systems has revolutionized the field of genetics in many organisms. In the past few years, exploitations of the most abundant class 1 type I CRISPR-Cas systems have revealed their great potential and distinct advantages to achieve gene editing and regulation in diverse microorganisms in spite of their complicated structures. The widespread and diversified type I CRISPR-Cas systems are becoming increasingly attractive for the development of new biotechnological tools, especially in genetically recalcitrant microbial strains. In this review article, we comprehensively summarize recent advancements in microbial gene editing and regulation by utilizing type I CRISPR-Cas systems. Importantly, to expand the microbial host range of type I CRISPR-Cas-based applications, these structurally complicated systems have been improved as transferable gene-editing tools with efficient delivery methods for stable expression of CRISPR-Cas elements, as well as convenient gene-regulation tools with the prevention of DNA cleavage by obviating deletion or mutation of the Cas3 nuclease. We envision that type I CRISPR-Cas systems will largely expand the biotechnological toolbox for microbes with medical, environmental and industrial importance.
Collapse
Affiliation(s)
- Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shuzhen Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Weiyan Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yongqi Wen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Huiluo Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
199
|
Ellis NA, Myers KS, Tung J, Davidson Ward A, Johnston K, Bonnington KE, Donohue TJ, Machner MP. A randomized multiplex CRISPRi-Seq approach for the identification of critical combinations of genes. eLife 2023; 12:RP86903. [PMID: 38095310 PMCID: PMC10721215 DOI: 10.7554/elife.86903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Identifying virulence-critical genes from pathogens is often limited by functional redundancy. To rapidly interrogate the contributions of combinations of genes to a biological outcome, we have developed a multiplex, randomized CRISPR interference sequencing (MuRCiS) approach. At its center is a new method for the randomized self-assembly of CRISPR arrays from synthetic oligonucleotide pairs. When paired with PacBio long-read sequencing, MuRCiS allowed for near-comprehensive interrogation of all pairwise combinations of a group of 44 Legionella pneumophila virulence genes encoding highly conserved transmembrane proteins for their role in pathogenesis. Both amoeba and human macrophages were challenged with L. pneumophila bearing the pooled CRISPR array libraries, leading to the identification of several new virulence-critical combinations of genes. lpg2888 and lpg3000 were particularly fascinating for their apparent redundant functions during L. pneumophila human macrophage infection, while lpg3000 alone was essential for L. pneumophila virulence in the amoeban host Acanthamoeba castellanii. Thus, MuRCiS provides a method for rapid genetic examination of even large groups of redundant genes, setting the stage for application of this technology to a variety of biological contexts and organisms.
Collapse
Affiliation(s)
- Nicole A Ellis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-MadisonMadisonUnited States
- Wisconsin Energy Institute, University of Wisconsin-MadisonMadisonUnited States
| | - Jessica Tung
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Anne Davidson Ward
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Kathryn Johnston
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Katherine E Bonnington
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Timothy J Donohue
- Great Lakes Bioenergy Research Center, University of Wisconsin-MadisonMadisonUnited States
- Wisconsin Energy Institute, University of Wisconsin-MadisonMadisonUnited States
- Department of Bacteriology, University of Wisconsin-MadisonMadisonUnited States
| | - Matthias P Machner
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
200
|
Bhuyan SJ, Kumar M, Ramrao Devde P, Rai AC, Mishra AK, Singh PK, Siddique KHM. Progress in gene editing tools, implications and success in plants: a review. Front Genome Ed 2023; 5:1272678. [PMID: 38144710 PMCID: PMC10744593 DOI: 10.3389/fgeed.2023.1272678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Genetic modifications are made through diverse mutagenesis techniques for crop improvement programs. Among these mutagenesis tools, the traditional methods involve chemical and radiation-induced mutagenesis, resulting in off-target and unintended mutations in the genome. However, recent advances have introduced site-directed nucleases (SDNs) for gene editing, significantly reducing off-target changes in the genome compared to induced mutagenesis and naturally occurring mutations in breeding populations. SDNs have revolutionized genetic engineering, enabling precise gene editing in recent decades. One widely used method, homology-directed repair (HDR), has been effective for accurate base substitution and gene alterations in some plant species. However, its application has been limited due to the inefficiency of HDR in plant cells and the prevalence of the error-prone repair pathway known as non-homologous end joining (NHEJ). The discovery of CRISPR-Cas has been a game-changer in this field. This system induces mutations by creating double-strand breaks (DSBs) in the genome and repairing them through associated repair pathways like NHEJ. As a result, the CRISPR-Cas system has been extensively used to transform plants for gene function analysis and to enhance desirable traits. Researchers have made significant progress in genetic engineering in recent years, particularly in understanding the CRISPR-Cas mechanism. This has led to various CRISPR-Cas variants, including CRISPR-Cas13, CRISPR interference, CRISPR activation, base editors, primes editors, and CRASPASE, a new CRISPR-Cas system for genetic engineering that cleaves proteins. Moreover, gene editing technologies like the prime editor and base editor approaches offer excellent opportunities for plant genome engineering. These cutting-edge tools have opened up new avenues for rapidly manipulating plant genomes. This review article provides a comprehensive overview of the current state of plant genetic engineering, focusing on recently developed tools for gene alteration and their potential applications in plant research.
Collapse
Affiliation(s)
- Suman Jyoti Bhuyan
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Pandurang Ramrao Devde
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Avinash Chandra Rai
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | | | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | | |
Collapse
|