151
|
Lees JA, Vehkala M, Välimäki N, Harris SR, Chewapreecha C, Croucher NJ, Marttinen P, Davies MR, Steer AC, Tong SYC, Honkela A, Parkhill J, Bentley SD, Corander J. Sequence element enrichment analysis to determine the genetic basis of bacterial phenotypes. Nat Commun 2016; 7:12797. [PMID: 27633831 PMCID: PMC5028413 DOI: 10.1038/ncomms12797] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/28/2016] [Indexed: 02/07/2023] Open
Abstract
Bacterial genomes vary extensively in terms of both gene content and gene sequence. This plasticity hampers the use of traditional SNP-based methods for identifying all genetic associations with phenotypic variation. Here we introduce a computationally scalable and widely applicable statistical method (SEER) for the identification of sequence elements that are significantly enriched in a phenotype of interest. SEER is applicable to tens of thousands of genomes by counting variable-length k-mers using a distributed string-mining algorithm. Robust options are provided for association analysis that also correct for the clonal population structure of bacteria. Using large collections of genomes of the major human pathogens Streptococcus pneumoniae and Streptococcus pyogenes, SEER identifies relevant previously characterized resistance determinants for several antibiotics and discovers potential novel factors related to the invasiveness of S. pyogenes. We thus demonstrate that our method can answer important biologically and medically relevant questions. Plasticity and clonal population structure in bacterial genomes can hinder traditional SNP-based genetic association studies. Here, Corander and colleagues present a method to identify variable-length sequence elements enriched in a phenotype of interest, and demonstrate its use in human pathogens.
Collapse
Affiliation(s)
- John A Lees
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Minna Vehkala
- Department of Mathematics and Statistics, University of Helsinki, Helsinki FI-00014, Finland
| | - Niko Välimäki
- Department of Medical and Clinical Genetics, Genome-Scale Biology Research Program, University of Helsinki, Helsinki FI-00014, Finland
| | - Simon R Harris
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | | | - Nicholas J Croucher
- Department of Infectious Disease Epidemiology, Imperial College, London W2 1NY, UK
| | - Pekka Marttinen
- Department of Computer Science, Aalto University, Espoo FI-00076, Finland.,Helsinki Institute of Information Technology HIIT, Department of Computer Science, Aalto University, Espoo FI-00076, Finland
| | - Mark R Davies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andrew C Steer
- Centre for International Child Health, Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia.,Group A Streptococcal Research Group, Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
| | - Steven Y C Tong
- Menzies School of Health Research, Darwin, Northern Territory 0811, Australia
| | - Antti Honkela
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Julian Parkhill
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Stephen D Bentley
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Jukka Corander
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK.,Department of Mathematics and Statistics, University of Helsinki, Helsinki FI-00014, Finland.,Department of Biostatistics, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
152
|
Abstract
The development of high-throughput whole genome sequencing (WGS) technologies is changing the face of microbiology, facilitating the comparison of large numbers of genomes from different lineages of a same organism. Our aim was to review the main advances on Helicobacter pylori "omics" and to understand how this is improving our knowledge of the biology, diversity and pathogenesis of H. pylori. Since the first H. pylori isolate was sequenced in 1997, 510 genomes have been deposited in the NCBI archive, providing a basis for improved understanding of the epidemiology and evolution of this important pathogen. This review focuses on works published between April 2015 and March 2016. Helicobacter "omics" is already making an impact and is a growing research field. Ultimately these advances will be translated into a routine clinical laboratory setting in order to improve public health.
Collapse
Affiliation(s)
- Elvire Berthenet
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK
| | - Sam Sheppard
- Departments of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Filipa F Vale
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Instituto de Medicina Molecular, Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
153
|
Mather AE, Vaughan TG, French NP. Molecular Approaches to Understanding Transmission and Source Attribution in Nontyphoidal Salmonella and Their Application in Africa. Clin Infect Dis 2016; 61 Suppl 4:S259-65. [PMID: 26449940 DOI: 10.1093/cid/civ727] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nontyphoidal Salmonella (NTS) is a frequent cause of diarrhea around the world, yet in many African countries it is more commonly associated with invasive bacterial disease. Various source attribution models have been developed that utilize microbial subtyping data to assign cases of human NTS infection to different animal populations and foods of animal origin. Advances in molecular microbial subtyping approaches, in particular whole-genome sequencing, provide higher resolution data with which to investigate these sources. In this review, we provide updates on the source attribution models developed for Salmonella, and examine the application of whole-genome sequencing data combined with evolutionary modeling to investigate the putative sources and transmission pathways of NTS, with a focus on the epidemiology of NTS in Africa. This is essential information to decide where, what, and how control strategies might be applied most effectively.
Collapse
Affiliation(s)
- Alison E Mather
- Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | - Timothy G Vaughan
- Department of Computer Science, University of Auckland Allan Wilson Centre for Molecular Ecology and Evolution
| | - Nigel P French
- mEpiLab, Infectious Disease Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
154
|
Boyd PW, Cornwall CE, Davison A, Doney SC, Fourquez M, Hurd CL, Lima ID, McMinn A. Biological responses to environmental heterogeneity under future ocean conditions. GLOBAL CHANGE BIOLOGY 2016; 22:2633-50. [PMID: 27111095 DOI: 10.1111/gcb.13287] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 05/20/2023]
Abstract
Organisms are projected to face unprecedented rates of change in future ocean conditions due to anthropogenic climate-change. At present, marine life encounters a wide range of environmental heterogeneity from natural fluctuations to mean climate change. Manipulation studies suggest that biota from more variable marine environments have more phenotypic plasticity to tolerate environmental heterogeneity. Here, we consider current strategies employed by a range of representative organisms across various habitats - from short-lived phytoplankton to long-lived corals - in response to environmental heterogeneity. We then discuss how, if and when organismal responses (acclimate/migrate/adapt) may be altered by shifts in the magnitude of the mean climate-change signal relative to that for natural fluctuations projected for coming decades. The findings from both novel climate-change modelling simulations and prior biological manipulation studies, in which natural fluctuations are superimposed on those of mean change, provide valuable insights into organismal responses to environmental heterogeneity. Manipulations reveal that different experimental outcomes are evident between climate-change treatments which include natural fluctuations vs. those which do not. Modelling simulations project that the magnitude of climate variability, along with mean climate change, will increase in coming decades, and hence environmental heterogeneity will increase, illustrating the need for more realistic biological manipulation experiments that include natural fluctuations. However, simulations also strongly suggest that the timescales over which the mean climate-change signature will become dominant, relative to natural fluctuations, will vary for individual properties, being most rapid for CO2 (~10 years from present day) to 4 decades for nutrients. We conclude that the strategies used by biota to respond to shifts in environmental heterogeneity may be complex, as they will have to physiologically straddle wide-ranging timescales in the alteration of ocean conditions, including the need to adapt to rapidly rising CO2 and also acclimate to environmental heterogeneity in more slowly changing properties such as warming.
Collapse
Affiliation(s)
- Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tas., 7001, Australia
- ACE CRC Antarctic Climate & Ecosystems CRC, UTAS, Private Bag 80, Hobart, Tas., 7001, Australia
| | - Christopher E Cornwall
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tas., 7001, Australia
| | - Andrew Davison
- Australian Antarctic Division, Channel Highway, Kingston, Tas., 7050, Australia
| | - Scott C Doney
- Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Marion Fourquez
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tas., 7001, Australia
- ACE CRC Antarctic Climate & Ecosystems CRC, UTAS, Private Bag 80, Hobart, Tas., 7001, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tas., 7001, Australia
| | - Ivan D Lima
- Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Andrew McMinn
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tas., 7001, Australia
- ACE CRC Antarctic Climate & Ecosystems CRC, UTAS, Private Bag 80, Hobart, Tas., 7001, Australia
| |
Collapse
|
155
|
Abstract
Staphylococcus aureus is a major human pathogen and an important cause of livestock infections. The first S. aureus genomes to be published, 15 years ago, provided the first view of genome structure and gene content. Since then, thousands of genomes from a wide array of strains from different sources have been sequenced. Comparison of these sequences has resulted in broad insights into population structure, bacterial evolution, clone emergence and expansion, and the molecular basis of niche adaptation. Furthermore, this information is now being applied clinically in outbreak investigations to inform infection control measures and to determine appropriate treatment regimens. In this review, we summarize some of the broad insights into S. aureus biology gained from the analysis of genomes and discuss future directions and opportunities in this dynamic field of research.
Collapse
Affiliation(s)
- J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom;
| | - Matthew T G Holden
- School of Medicine, University of St. Andrews, St. Andrews, Fife KY16 9S5, United Kingdom;
| |
Collapse
|
156
|
Tohya M, Watanabe T, Maruyama F, Arai S, Ota A, Athey TBT, Fittipaldi N, Nakagawa I, Sekizaki T. Comparative Genome Analyses of Streptococcus suis Isolates from Endocarditis Demonstrate Persistence of Dual Phenotypic Clones. PLoS One 2016; 11:e0159558. [PMID: 27433935 PMCID: PMC4951133 DOI: 10.1371/journal.pone.0159558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
Many bacterial species coexist in the same niche as heterogeneous clones with different phenotypes; however, understanding of infectious diseases by polyphenotypic bacteria is still limited. In the present study, encapsulation in isolates of the porcine pathogen Streptococcus suis from persistent endocarditis lesions was examined. Coexistence of both encapsulated and unencapsulated S. suis isolates was found in 26 out of 59 endocarditis samples. The isolates were serotype 2, and belonged to two different sequence types (STs), ST1 and ST28. The genomes of each of the 26 pairs of encapsulated and unencapsulated isolates from the 26 samples were sequenced. The data showed that each pair of isolates had one or more unique nonsynonymous mutations in the cps gene, and the encapsulated and unencapsulated isolates from the same samples were closest to each other. Pairwise comparisons of the sequences of cps genes in 7 pairs of encapsulated and unencapsulated isolates identified insertion/deletions (indels) ranging from one to 104 bp in different cps genes of unencapsulated isolates. Capsule expression was restored in a subset of unencapsulated isolates by complementation in trans with cps expression vectors. Examination of gene content common to isolates indicated that mutation frequency was higher in ST28 pairs than in ST1 pairs. Genes within mobile genetic elements were mutation hot spots among ST28 isolates. Taken all together, our results demonstrate the coexistence of dual phenotype (encapsulated and unencapsulated) bacterial clones and suggest that the dual phenotypes arose independently in each farm by means of spontaneous mutations in cps genes.
Collapse
Affiliation(s)
- Mari Tohya
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takayasu Watanabe
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumito Maruyama
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- * E-mail: (TS); (FM)
| | - Sakura Arai
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Ota
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | | | - Nahuel Fittipaldi
- Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ichiro Nakagawa
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Tsutomu Sekizaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (TS); (FM)
| |
Collapse
|
157
|
Hanage WP. Not So Simple After All: Bacteria, Their Population Genetics, and Recombination. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018069. [PMID: 27091940 DOI: 10.1101/cshperspect.a018069] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The pervasive nature of bacterial recombination has become clear. Despite this, the population genetics of bacteria persist in being viewed as simple. Here, I argue against that characterization. After summarizing the history of the topic, I survey the evidence for remarkable and unexplained variation in recombination rate among and within bacterial species. I finally argue that despite recent assertions that recombination means bacterial genes are "public goods," in bacteria the level of selection is the gene, and genes can be understood to have niches with dimensions including the other contents of the genome in which they find themselves.
Collapse
Affiliation(s)
- William P Hanage
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| |
Collapse
|
158
|
McInerney J, Pisani D, O'Connell MJ. The ring of life hypothesis for eukaryote origins is supported by multiple kinds of data. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140323. [PMID: 26323755 DOI: 10.1098/rstb.2014.0323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The literature is replete with manuscripts describing the origin of eukaryotic cells. Most of the models for eukaryogenesis are either autogenous (sometimes called slow-drip), or symbiogenic (sometimes called big-bang). In this article, we use large and diverse suites of 'Omics' and other data to make the inference that autogeneous hypotheses are a very poor fit to the data and the origin of eukaryotic cells occurred in a single symbiosis.
Collapse
Affiliation(s)
- James McInerney
- Department of Biology, National University of Ireland Maynooth, Co. Kildare, Republic of Ireland Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Davide Pisani
- School of Biological Sciences and School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TG, UK
| | - Mary J O'Connell
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Republic of Ireland
| |
Collapse
|
159
|
Affiliation(s)
- Daniel Falush
- Institute of Life Science-1, Room 121, Swansea University, College of Medicine, Swansea, SA2 8PP, UK
| |
Collapse
|
160
|
Identifying lineage effects when controlling for population structure improves power in bacterial association studies. Nat Microbiol 2016; 1:16041. [PMID: 27572646 PMCID: PMC5049680 DOI: 10.1038/nmicrobiol.2016.41] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/01/2016] [Indexed: 01/03/2023]
Abstract
Bacteria pose unique challenges for genome-wide association studies because of strong structuring into distinct strains and substantial linkage disequilibrium across the genome(1,2). Although methods developed for human studies can correct for strain structure(3,4), this risks considerable loss-of-power because genetic differences between strains often contribute substantial phenotypic variability(5). Here, we propose a new method that captures lineage-level associations even when locus-specific associations cannot be fine-mapped. We demonstrate its ability to detect genes and genetic variants underlying resistance to 17 antimicrobials in 3,144 isolates from four taxonomically diverse clonal and recombining bacteria: Mycobacterium tuberculosis, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. Strong selection, recombination and penetrance confer high power to recover known antimicrobial resistance mechanisms and reveal a candidate association between the outer membrane porin nmpC and cefazolin resistance in E. coli. Hence, our method pinpoints locus-specific effects where possible and boosts power by detecting lineage-level differences when fine-mapping is intractable.
Collapse
|
161
|
Franz E, Gras LM, Dallman T. Significance of whole genome sequencing for surveillance, source attribution and microbial risk assessment of foodborne pathogens. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.04.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
162
|
Bentley SD, Parkhill J. Genomic perspectives on the evolution and spread of bacterial pathogens. Proc Biol Sci 2015; 282:20150488. [PMID: 26702036 PMCID: PMC4707741 DOI: 10.1098/rspb.2015.0488] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Since the first complete sequencing of a free-living organism, Haemophilus influenzae, genomics has been used to probe both the biology of bacterial pathogens and their evolution. Single-genome approaches provided information on the repertoire of virulence determinants and host-interaction factors, and, along with comparative analyses, allowed the proposal of hypotheses to explain the evolution of many of these traits. These analyses suggested many bacterial pathogens to be of relatively recent origin and identified genome degradation as a key aspect of host adaptation. The advent of very-high-throughput sequencing has allowed for detailed phylogenetic analysis of many important pathogens, revealing patterns of global and local spread, and recent evolution in response to pressure from therapeutics and the human immune system. Such analyses have shown that bacteria can evolve and transmit very rapidly, with emerging clones showing adaptation and global spread over years or decades. The resolution achieved with whole-genome sequencing has shown considerable benefits in clinical microbiology, enabling accurate outbreak tracking within hospitals and across continents. Continued large-scale sequencing promises many further insights into genetic determinants of drug resistance, virulence and transmission in bacterial pathogens.
Collapse
Affiliation(s)
- Stephen D Bentley
- The Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Julian Parkhill
- The Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
163
|
Feil EJ. Toward a synthesis of genotypic typing and phenotypic inference in the genomics era. Future Microbiol 2015; 10:1897-9. [PMID: 26582313 DOI: 10.2217/fmb.15.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Edward J Feil
- The Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
164
|
Abstract
Twenty years ago, the publication of the first bacterial genome sequence, from Haemophilus influenzae, shook the world of bacteriology. In this Timeline, we review the first two decades of bacterial genome sequencing, which have been marked by three revolutions: whole-genome shotgun sequencing, high-throughput sequencing and single-molecule long-read sequencing. We summarize the social history of sequencing and its impact on our understanding of the biology, diversity and evolution of bacteria, while also highlighting spin-offs and translational impact in the clinic. We look forward to a 'sequencing singularity', where sequencing becomes the method of choice for as-yet unthinkable applications in bacteriology and beyond.
Collapse
Affiliation(s)
- Nicholas J Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Mark J Pallen
- Microbiology and Infection Unit, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
165
|
Baig A, McNally A, Dunn S, Paszkiewicz KH, Corander J, Manning G. Genetic import and phenotype specific alleles associated with hyper-invasion in Campylobacter jejuni. BMC Genomics 2015; 16:852. [PMID: 26497129 PMCID: PMC4619573 DOI: 10.1186/s12864-015-2087-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/15/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Campylobacter jejuni is a major zoonotic pathogen, causing gastroenteritis in humans. Invasion is an important pathogenesis trait by which C. jejuni causes disease. Here we report the genomic analysis of 134 strains to identify traits unique to hyperinvasive isolates. METHODS A total of 134 C. jejuni genomes were used to create a phylogenetic tree to position the hyperinvasive strains. Comparative genomics lead to the identification of mosaic capsule regions. A pan genome approach led to the discovery of unique loci, or loci with unique alleles, to the hyperinvasive strains. RESULTS Phylogenetic analysis showed that the hyper-invasive phenotype is a generalist trait. Despite the fact that hyperinvasive strains are only distantly related based on the whole genome phylogeny, they all possess genes within the capsule region with high identity to capsule genes from C. jejuni subsp. doylei and C. lari. In addition there were genes unique to the hyper-invasive strains with identity to non-C. jejuni genes, as well as allelic variants of mainly pathogenesis related genes already known in the other C. jejuni. In particular, the sequence of flagella genes, flgD-E and flgL were highly conserved amongst the hyper-invasive strains and divergent from sequences in other C. jejuni. A novel cytolethal distending toxin (cdt) operon was also identified as present in all hyper-invasive strains in addition to the classic cdt operon present in other C. jejuni. CONCLUSIONS Overall, the hyper-invasive phenotype is strongly linked to the presence of orthologous genes from other Campylobacter species in their genomes, notably within the capsule region, in addition to the observed association with unique allelic variants in flagellar genes and the secondary cdt operon which is unlikely under random sharing of accessory alleles in separate lineages.
Collapse
Affiliation(s)
- Abiyad Baig
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK. .,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | - Alan McNally
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Steven Dunn
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | | | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| | - Georgina Manning
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| |
Collapse
|
166
|
Pascoe B, Méric G, Murray S, Yahara K, Mageiros L, Bowen R, Jones NH, Jeeves RE, Lappin-Scott HM, Asakura H, Sheppard SK. Enhanced biofilm formation and multi-host transmission evolve from divergent genetic backgrounds in Campylobacter jejuni. Environ Microbiol 2015; 17:4779-89. [PMID: 26373338 PMCID: PMC4862030 DOI: 10.1111/1462-2920.13051] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 02/01/2023]
Abstract
Multicellular biofilms are an ancient bacterial adaptation that offers a protective environment for survival in hostile habitats. In microaerophilic organisms such as Campylobacter, biofilms play a key role in transmission to humans as the bacteria are exposed to atmospheric oxygen concentrations when leaving the reservoir host gut. Genetic determinants of biofilm formation differ between species, but little is known about how strains of the same species achieve the biofilm phenotype with different genetic backgrounds. Our approach combines genome‐wide association studies with traditional microbiology techniques to investigate the genetic basis of biofilm formation in 102 Campylobacter jejuni isolates. We quantified biofilm formation among the isolates and identified hotspots of genetic variation in homologous sequences that correspond to variation in biofilm phenotypes. Thirteen genes demonstrated a statistically robust association including those involved in adhesion, motility, glycosylation, capsule production and oxidative stress. The genes associated with biofilm formation were different in the host generalist ST‐21 and ST‐45 clonal complexes, which are frequently isolated from multiple host species and clinical samples. This suggests the evolution of enhanced biofilm from different genetic backgrounds and a possible role in colonization of multiple hosts and transmission to humans.
Collapse
Affiliation(s)
- Ben Pascoe
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK.,MRC CLIMB Consortium, Institute of Life Science, Swansea University, Swansea, UK
| | - Guillaume Méric
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK
| | - Susan Murray
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK
| | - Koji Yahara
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK.,Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Leonardos Mageiros
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK
| | - Ryan Bowen
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK
| | - Nathan H Jones
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK
| | - Rose E Jeeves
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK
| | | | - Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences, Tokyo, Japan
| | - Samuel K Sheppard
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK.,MRC CLIMB Consortium, Institute of Life Science, Swansea University, Swansea, UK.,Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
167
|
Murren CJ, Auld JR, Callahan H, Ghalambor CK, Handelsman CA, Heskel MA, Kingsolver JG, Maclean HJ, Masel J, Maughan H, Pfennig DW, Relyea RA, Seiter S, Snell-Rood E, Steiner UK, Schlichting CD. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity (Edinb) 2015; 115:293-301. [PMID: 25690179 PMCID: PMC4815460 DOI: 10.1038/hdy.2015.8] [Citation(s) in RCA: 343] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/21/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022] Open
Abstract
Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce an optimal trait) to the evolution of phenotypic plasticity, or that plasticity may have inherent significant costs. Yet numerous experimental studies have not detected widespread costs. Explicitly differentiating plasticity costs from phenotype costs, we re-evaluate fundamental questions of the limits to the evolution of plasticity and of generalists vs specialists. We advocate for the view that relaxed selection and variable selection intensities are likely more important constraints to the evolution of plasticity than the costs of plasticity. Some forms of plasticity, such as learning, may be inherently costly. In addition, we examine opportunities to offset costs of phenotypes through ontogeny, amelioration of phenotypic costs across environments, and the condition-dependent hypothesis. We propose avenues of further inquiry in the limits of plasticity using new and classic methods of ecological parameterization, phylogenetics and omics in the context of answering questions on the constraints of plasticity. Given plasticity's key role in coping with environmental change, approaches spanning the spectrum from applied to basic will greatly enrich our understanding of the evolution of plasticity and resolve our understanding of limits.
Collapse
Affiliation(s)
- C J Murren
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - J R Auld
- Department of Biology, West Chester University, West Chester, PA, USA
| | - H Callahan
- Barnard College, Columbia University, New York, NY, USA
| | - C K Ghalambor
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - C A Handelsman
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - M A Heskel
- Research School of Biology, Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - J G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - H J Maclean
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - J Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | | | - D W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - R A Relyea
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - S Seiter
- Department of Ecology and Evolution, University of Colorado Boulder, Boulder, CO, USA
| | - E Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, USA
| | - U K Steiner
- Department of Biology, University of Southern Denmark, Max-Planck Odense Centre on the Biodemography of Aging, Odense, Denmark
| | - C D Schlichting
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
168
|
Szymanski CM. Are campylobacters now capable of carbo-loading? Mol Microbiol 2015; 98:805-8. [PMID: 26259768 DOI: 10.1111/mmi.13162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2015] [Indexed: 12/14/2022]
Abstract
Campylobacters are a leading cause of gastrointestinal morbidity worldwide and the majority of human infections are triggered by eating foods contaminated with Campylobacter jejuni or Campylobacter coli. Campylobacters are equally notorious for their ability to mimic human glycoconjugate structures and for their capacity to synthesize both N- and O-linked glycoproteins. These species were once considered to be asaccharolytic, but it was recently shown that several strains possess a pathway for fucose uptake and metabolism, providing those isolates with a competitive advantage in vivo. Vorwerk et al. have now demonstrated through isotopologue profiling that certain strains of C. coli and C. jejuni are capable of glucose catabolism through the Entner-Doudoroff and pentose phosphate pathways. However, unlike the fate of fucose that has only been shown to be used for nutrition, glucose can be metabolized or incorporated into select amino acids and glycoconjugates. This discovery now provides researchers with the opportunity to introduce metabolically labeled sugars into campylobacters to study glycoconjugate biosynthesis within the cell. In addition, Vorwerk et al. add to the metabolic arsenal of campylobacters further highlighting the nutritional diversity among strains, even within the same species.
Collapse
Affiliation(s)
- Christine M Szymanski
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
169
|
Vorwerk H, Huber C, Mohr J, Bunk B, Bhuju S, Wensel O, Spröer C, Fruth A, Flieger A, Schmidt-Hohagen K, Schomburg D, Eisenreich W, Hofreuter D. A transferable plasticity region in Campylobacter coli allows isolates of an otherwise non-glycolytic food-borne pathogen to catabolize glucose. Mol Microbiol 2015; 98:809-30. [PMID: 26259566 DOI: 10.1111/mmi.13159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2015] [Indexed: 12/31/2022]
Abstract
Thermophilic Campylobacter species colonize the intestine of agricultural and domestic animals commensally but cause severe gastroenteritis in humans. In contrast to other enteropathogenic bacteria, Campylobacter has been considered to be non-glycolytic, a metabolic property originally used for their taxonomic classification. Contrary to this dogma, we demonstrate that several Campylobacter coli strains are able to utilize glucose as a growth substrate. Isotopologue profiling experiments with (13) C-labeled glucose suggested that these strains catabolize glucose via the pentose phosphate and Entner-Doudoroff (ED) pathways and use glucose efficiently for de novo synthesis of amino acids and cell surface carbohydrates. Whole genome sequencing of glycolytic C. coli isolates identified a genomic island located within a ribosomal RNA gene cluster that encodes for all ED pathway enzymes and a glucose permease. We could show in vitro that a non-glycolytic C. coli strain could acquire glycolytic activity through natural transformation with chromosomal DNA of C. coli and C. jejuni subsp. doylei strains possessing the ED pathway encoding plasticity region. These results reveal for the first time the ability of a Campylobacter species to catabolize glucose and provide new insights into how genetic macrodiversity through intra- and interspecies gene transfer expand the metabolic capacity of this food-borne pathogen.
Collapse
Affiliation(s)
- Hanne Vorwerk
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Claudia Huber
- Lehrstuhl für Biochemie, Technische Universität München, Garching, Germany
| | - Juliane Mohr
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Sabin Bhuju
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Olga Wensel
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Angelika Fruth
- Division of Enteropathogenic Bacteria and Legionella (FG11), German National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institute, Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella (FG11), German National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institute, Wernigerode, Germany
| | - Kerstin Schmidt-Hohagen
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dietmar Schomburg
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Dirk Hofreuter
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
170
|
Abstract
What are species? How do they arise? These questions are not easy to answer and have been particularly controversial in microbiology. Yet, for those microbiologists studying environmental questions or dealing with clinical issues, the ability to name and recognize species, widely considered the fundamental units of ecology, can be practically useful. On a more fundamental level, the speciation problem, the focus here, is more mechanistic and conceptual. What is the origin of microbial species, and what evolutionary and ecological mechanisms keep them separate once they begin to diverge? To what extent are these mechanisms universal across diverse types of microbes, and more broadly across the entire the tree of life? Here, we propose that microbial speciation must be viewed in light of gene flow, which defines units of genetic similarity, and of natural selection, which defines units of phenotype and ecological function. We discuss to what extent ecological and genetic units overlap to form cohesive populations in the wild, based on recent evolutionary modeling and population genomics studies. These studies suggest a continuous "speciation spectrum," which microbial populations traverse in different ways depending on their balance of gene flow and natural selection.
Collapse
Affiliation(s)
- B Jesse Shapiro
- Département de Sciences Biologiques, Université de Montréal, Montréal QC H3C 3J7, Canada
| | - Martin F Polz
- Parsons Laboratory for Environmental Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
171
|
Derrick T, Roberts CH, Last AR, Burr SE, Holland MJ. Trachoma and Ocular Chlamydial Infection in the Era of Genomics. Mediators Inflamm 2015; 2015:791847. [PMID: 26424969 PMCID: PMC4573990 DOI: 10.1155/2015/791847] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022] Open
Abstract
Trachoma is a blinding disease usually caused by infection with Chlamydia trachomatis (Ct) serovars A, B, and C in the upper tarsal conjunctiva. Individuals in endemic regions are repeatedly infected with Ct throughout childhood. A proportion of individuals experience prolonged or severe inflammatory episodes that are known to be significant risk factors for ocular scarring in later life. Continued scarring often leads to trichiasis and in-turning of the eyelashes, which causes pain and can eventually cause blindness. The mechanisms driving the chronic immunopathology in the conjunctiva, which largely progresses in the absence of detectable Ct infection in adults, are likely to be multifactorial. Socioeconomic status, education, and behavior have been identified as contributing to the risk of scarring and inflammation. We focus on the contribution of host and pathogen genetic variation, bacterial ecology of the conjunctiva, and host epigenetic imprinting including small RNA regulation by both host and pathogen in the development of ocular pathology. Each of these factors or processes contributes to pathogenic outcomes in other inflammatory diseases and we outline their potential role in trachoma.
Collapse
Affiliation(s)
- Tamsyn Derrick
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Chrissy h. Roberts
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Anna R. Last
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Sarah E. Burr
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Martin J. Holland
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
172
|
Laabei M, Uhlemann AC, Lowy FD, Austin ED, Yokoyama M, Ouadi K, Feil E, Thorpe HA, Williams B, Perkins M, Peacock SJ, Clarke SR, Dordel J, Holden M, Votintseva AA, Bowden R, Crook DW, Young BC, Wilson DJ, Recker M, Massey RC. Evolutionary Trade-Offs Underlie the Multi-faceted Virulence of Staphylococcus aureus. PLoS Biol 2015; 13:e1002229. [PMID: 26331877 PMCID: PMC4558032 DOI: 10.1371/journal.pbio.1002229] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/20/2015] [Indexed: 12/15/2022] Open
Abstract
Bacterial virulence is a multifaceted trait where the interactions between pathogen and host factors affect the severity and outcome of the infection. Toxin secretion is central to the biology of many bacterial pathogens and is widely accepted as playing a crucial role in disease pathology. To understand the relationship between toxicity and bacterial virulence in greater depth, we studied two sequenced collections of the major human pathogen Staphylococcus aureus and found an unexpected inverse correlation between bacterial toxicity and disease severity. By applying a functional genomics approach, we identified several novel toxicity-affecting loci responsible for the wide range in toxic phenotypes observed within these collections. To understand the apparent higher propensity of low toxicity isolates to cause bacteraemia, we performed several functional assays, and our findings suggest that within-host fitness differences between high- and low-toxicity isolates in human serum is a contributing factor. As invasive infections, such as bacteraemia, limit the opportunities for onward transmission, highly toxic strains could gain an additional between-host fitness advantage, potentially contributing to the maintenance of toxicity at the population level. Our results clearly demonstrate how evolutionary trade-offs between toxicity, relative fitness, and transmissibility are critical for understanding the multifaceted nature of bacterial virulence. This study shows that, contrary to expectation, toxin secretion inversely correlates with disease severity for the major human pathogen Staphylococcus aureus. Global efforts to counter the growing problem of antibiotic resistance and develop alternative treatment strategies rely on a fuller understanding of when and why opportunistic pathogens cause disease. Recent advances in DNA sequencing technologies have opened up new opportunities to study infectious organisms, yet identifying the genetic variants that explain differences in disease remains challenging. Here we aimed to understand the complex relationship between toxicity—a known risk factor for disease in many bacteria—and infection severity for the major human pathogen S. aureus. Against expectations, we found that the bacteria that caused the most severe disease were the least toxic strains. We were able to determine the mutations responsible for the differences in toxicity and identified a number of novel toxicity-affecting genes. We further discovered that bacterial fitness in human serum could explain the unexpected association of low-toxicity isolates with severe, invasive disease. Invasive S. aureus infections are usually considered a dead end for these bacteria, as these infections are rarely transmitted to another person. Here we show using a simple mathematical model that this might in fact favour transmission of highly toxic bacteria on a population level and thus contribute to their global success. Our work therefore highlights the complexity of bacterial infection and should aid in devising new treatment and control strategies against this important pathogen.
Collapse
Affiliation(s)
- Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Anne-Catrin Uhlemann
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Franklin D. Lowy
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Eloise D. Austin
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Maho Yokoyama
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Khadija Ouadi
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Edward Feil
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Harry A. Thorpe
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Barnabas Williams
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Mark Perkins
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Sharon J. Peacock
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stephen R. Clarke
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Janina Dordel
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Matthew Holden
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- School of Medicine, Medical & Biological Sciences, North Haugh, St Andrews, Fife, United Kingdom
| | - Antonina A. Votintseva
- Nuffield Dept. of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rory Bowden
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Derrick W. Crook
- Nuffield Dept. of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Bernadette C. Young
- Nuffield Dept. of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Daniel J. Wilson
- Nuffield Dept. of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Mario Recker
- Centre for Mathematics and the Environment, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Ruth C. Massey
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
173
|
Dearlove BL, Cody AJ, Pascoe B, Méric G, Wilson DJ, Sheppard SK. Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections. ISME JOURNAL 2015; 10:721-9. [PMID: 26305157 PMCID: PMC4677457 DOI: 10.1038/ismej.2015.149] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/20/2015] [Accepted: 07/21/2015] [Indexed: 12/12/2022]
Abstract
Campylobacter jejuni and Campylobacter coli are the biggest causes of bacterial gastroenteritis in the developed world, with human infections typically arising from zoonotic transmission associated with infected meat. Because Campylobacter is not thought to survive well outside the gut, host-associated populations are genetically isolated to varying degrees. Therefore, the likely origin of most strains can be determined by host-associated variation in the genome. This is instructive for characterizing the source of human infection. However, some common strains, notably isolates belonging to the ST-21, ST-45 and ST-828 clonal complexes, appear to have broad host ranges, hindering source attribution. Here whole-genome sequencing has the potential to reveal fine-scale genetic structure associated with host specificity. We found that rates of zoonotic transmission among animal host species in these clonal complexes were so high that the signal of host association is all but obliterated, estimating one zoonotic transmission event every 1.6, 1.8 and 12 years in the ST-21, ST-45 and ST828 complexes, respectively. We attributed 89% of clinical cases to a chicken source, 10% to cattle and 1% to pig. Our results reveal that common strains of C. jejuni and C. coli infectious to humans are adapted to a generalist lifestyle, permitting rapid transmission between different hosts. Furthermore, they show that the weak signal of host association within these complexes presents a challenge for pinpointing the source of clinical infections, underlining the view that whole-genome sequencing, powerful though it is, cannot substitute for intensive sampling of suspected transmission reservoirs.
Collapse
Affiliation(s)
- Bethany L Dearlove
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, UK
| | - Alison J Cody
- Department of Zoology, University of Oxford, Oxford, UK
| | - Ben Pascoe
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK.,MRC CLIMB Consortium, Institute of Life Science, Swansea University, Swansea, UK
| | - Guillaume Méric
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK.,MRC CLIMB Consortium, Institute of Life Science, Swansea University, Swansea, UK
| | - Daniel J Wilson
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Samuel K Sheppard
- Department of Zoology, University of Oxford, Oxford, UK.,College of Medicine, Institute of Life Science, Swansea University, Swansea, UK.,MRC CLIMB Consortium, Institute of Life Science, Swansea University, Swansea, UK
| |
Collapse
|
174
|
Sheppard SK, Maiden MCJ. The evolution of Campylobacter jejuni and Campylobacter coli. Cold Spring Harb Perspect Biol 2015; 7:a018119. [PMID: 26101080 DOI: 10.1101/cshperspect.a018119] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The global significance of Campylobacter jejuni and Campylobacter coli as gastrointestinal human pathogens has motivated numerous studies to characterize their population biology and evolution. These bacteria are a common component of the intestinal microbiota of numerous bird and mammal species and cause disease in humans, typically via consumption of contaminated meat products, especially poultry meat. Sequence-based molecular typing methods, such as multilocus sequence typing (MLST) and whole genome sequencing (WGS), have been instructive for understanding the epidemiology and evolution of these bacteria and how phenotypic variation relates to the high degree of genetic structuring in C. coli and C. jejuni populations. Here, we describe aspects of the relatively short history of coevolution between humans and pathogenic Campylobacter, by reviewing research investigating how mutation and lateral or horizontal gene transfer (LGT or HGT, respectively) interact to create the observed population structure. These genetic changes occur in a complex fitness landscape with divergent ecologies, including multiple host species, which can lead to rapid adaptation, for example, through frame-shift mutations that alter gene expression or the acquisition of novel genetic elements by HGT. Recombination is a particularly strong evolutionary force in Campylobacter, leading to the emergence of new lineages and even large-scale genome-wide interspecies introgression between C. jejuni and C. coli. The increasing availability of large genome datasets is enhancing understanding of Campylobacter evolution through the application of methods, such as genome-wide association studies, but MLST-derived clonal complex designations remain a useful method for describing population structure.
Collapse
Affiliation(s)
- Samuel K Sheppard
- College of Medicine, Institute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| |
Collapse
|
175
|
Genomic Context of Azole Resistance Mutations in Aspergillus fumigatus Determined Using Whole-Genome Sequencing. mBio 2015; 6:e00536. [PMID: 26037120 PMCID: PMC4453006 DOI: 10.1128/mbio.00536-15] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A rapid and global emergence of azole resistance has been observed in the pathogenic fungus Aspergillus fumigatus over the past decade. The dominant resistance mechanism appears to be of environmental origin and involves mutations in the cyp51A gene, which encodes a protein targeted by triazole antifungal drugs. Whole-genome sequencing (WGS) was performed for high-resolution single-nucleotide polymorphism (SNP) analysis of 24 A. fumigatus isolates, including azole-resistant and susceptible clinical and environmental strains obtained from India, the Netherlands, and the United Kingdom, in order to assess the utility of WGS for characterizing the alleles causing resistance. WGS analysis confirmed that TR34/L98H (a mutation comprising a tandem repeat [TR] of 34 bases in the promoter of the cyp51A gene and a leucine-to-histidine change at codon 98) is the sole mechanism of azole resistance among the isolates tested in this panel of isolates. We used population genomic analysis and showed that A. fumigatus was panmictic, with as much genetic diversity found within a country as is found between continents. A striking exception to this was shown in India, where isolates are highly related despite being isolated from both clinical and environmental sources across >1,000 km; this broad occurrence suggests a recent selective sweep of a highly fit genotype that is associated with the TR34/L98H allele. We found that these sequenced isolates are all recombining, showing that azole-resistant alleles are segregating into diverse genetic backgrounds. Our analysis delineates the fundamental population genetic parameters that are needed to enable the use of genome-wide association studies to identify the contribution of SNP diversity to the generation and spread of azole resistance in this medically important fungus. Resistance to azoles in the ubiquitous ascomycete fungus A. fumigatus was first reported from clinical isolates collected in the United States during the late 1980s. Over the last decade, an increasing number of A. fumigatus isolates from the clinic and from nature have been found to show resistance to azoles, suggesting that resistance is emerging through selection by the widespread usage of agricultural azole antifungal compounds. Aspergillosis is an emerging clinical problem, with high rates of treatment failures necessitating the development of new techniques for surveillance and for determining the genome-wide basis of azole resistance in A. fumigatus.
Collapse
|
176
|
Abstract
Bacterial symbionts of eukaryotes often give up generalist lifestyles to specialize to particular hosts. The eusocial honey bees and bumble bees harbor two such specialized gut symbionts, Snodgrassella alvi and Gilliamella apicola. Not only are these microorganisms specific to bees, but different strains of these bacteria tend to assort according to host species. By using in-vivo microbial transplant experiments, we show that the observed specificity is, at least in part, due to evolved physiological barriers that limit compatibility between a host and a potential gut colonizer. How and why such specialization occurs is largely unstudied for gut microbes, despite strong evidence that it is a general feature in many gut communities. Here, we discuss the potential factors that favor the evolution of host specialization, and the parallels that can be drawn with parasites and other symbiont systems. We also address the potential of the bee gut as a model for exploring gut community evolution.
Collapse
Affiliation(s)
- Waldan K Kwong
- Department of Ecology and Evolutionary Biology; Yale University; New Haven, CT, USA,Department of Integrative Biology; University of Texas; Austin, TX, USA,Correspondence to: Waldan K Kwong;
| | - Nancy A Moran
- Department of Integrative Biology; University of Texas; Austin, TX, USA
| |
Collapse
|
177
|
Identification and functional analysis of genome mutations in a fluoride-resistant Streptococcus mutans strain. PLoS One 2015; 10:e0122630. [PMID: 25856576 PMCID: PMC4391945 DOI: 10.1371/journal.pone.0122630] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/23/2015] [Indexed: 02/05/2023] Open
Abstract
It is known that fluoride-resistant microorganisms are different from fluoride-sensitive ones in growth, adherence and metabolic activity. It was hypothesized that these phenotypic differences were due to stable genotypic changes in the fluoride-resistant strains. However, until now, no studies have reported these genotypic changes. The aim of this study is to identify such changes in a fluoride-resistant Streptococcus mutans strain (C180-2FR) using whole-genome shotgun (WGS) sequencing and to examine the potential function of the identified mutations by comparing gene expression between the fluoride-sensitive (C180-2) and C180-2FR strains. We performed 50 bp paired-end Illumina shotgun sequencing for both strains. Through extensive bioinformatic analysis, we were able to identify 8 single nucleotide polymorphisms (SNPs) in the genome of C180-2FR, which were further confirmed by Sanger sequencing. Expression of the genes containing or in proximity to the SNPs in C180-2 and C180-2FR was then quantified by real-time PCR. A gene cluster containing genes coding for fluoride antiporters was up-regulated 10-fold in C180-2FR when compared to that in C180-2, independent of growth phase. Two SNPs are located in this gene cluster, one in its promoter region and the other in its protein-coding region. In addition, one gene, which codes for a putative glycerol uptake facilitator protein, was found to be down-regulated by 60% in C180-2FR at an early growth phase. The promoter region of this gene contained a SNP. No difference in expression was found for the other SNP-containing genes. In summary, using WGS sequencing, we were able to uncover genetic changes in the genome of a fluoride-resistant strain. These findings can provide new insights into the mechanism of microbial fluoride resistance.
Collapse
|
178
|
The advent of genome-wide association studies for bacteria. Curr Opin Microbiol 2015; 25:17-24. [PMID: 25835153 DOI: 10.1016/j.mib.2015.03.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/28/2015] [Accepted: 03/05/2015] [Indexed: 02/05/2023]
Abstract
Significant advances in sequencing technologies and genome-wide association studies (GWAS) have revealed substantial insight into the genetic architecture of human phenotypes. In recent years, the application of this approach in bacteria has begun to reveal the genetic basis of bacterial host preference, antibiotic resistance, and virulence. Here, we consider relevant differences between bacterial and human genome dynamics, apply GWAS to a global sample of Mycobacterium tuberculosis genomes to highlight the impacts of linkage disequilibrium, population stratification, and natural selection, and finally compare the traditional GWAS against phyC, a contrasting method of mapping genotype to phenotype based upon evolutionary convergence. We discuss strengths and weaknesses of both methods, and make suggestions for factors to be considered in future bacterial GWAS.
Collapse
|
179
|
Gene Loss and Lineage-Specific Restriction-Modification Systems Associated with Niche Differentiation in the Campylobacter jejuni Sequence Type 403 Clonal Complex. Appl Environ Microbiol 2015; 81:3641-7. [PMID: 25795671 DOI: 10.1128/aem.00546-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/12/2015] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni is a highly diverse species of bacteria commonly associated with infectious intestinal disease of humans and zoonotic carriage in poultry, cattle, pigs, and other animals. The species contains a large number of distinct clonal complexes that vary from host generalist lineages commonly found in poultry, livestock, and human disease cases to host-adapted specialized lineages primarily associated with livestock or poultry. Here, we present novel data on the ST403 clonal complex of C. jejuni, a lineage that has not been reported in avian hosts. Our data show that the lineage exhibits a distinctive pattern of intralineage recombination that is accompanied by the presence of lineage-specific restriction-modification systems. Furthermore, we show that the ST403 complex has undergone gene decay at a number of loci. Our data provide a putative link between the lack of association with avian hosts of C. jejuni ST403 and both gene gain and gene loss through nonsense mutations in coding sequences of genes, resulting in pseudogene formation.
Collapse
|
180
|
Evolution and population genomics of the Lyme borreliosis pathogen, Borrelia burgdorferi. Trends Genet 2015; 31:201-7. [PMID: 25765920 DOI: 10.1016/j.tig.2015.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 11/22/2022]
Abstract
Population genomic studies have the potential to address many unresolved questions about microbial pathogens by facilitating the identification of genes underlying ecologically important traits, such as novel virulence factors and adaptations to humans or other host species. Additionally, this framework improves estimations of population demography and evolutionary history to accurately reconstruct recent epidemics and identify the molecular and environmental factors that resulted in the outbreak. The Lyme disease bacterium, Borrelia burgdorferi, exemplifies the power and promise of the application of population genomics to microbial pathogens. We discuss here the future of evolutionary studies in B. burgdorferi, focusing on the primary evolutionary forces of horizontal gene transfer, natural selection, and migration, as investigations transition from analyses of single genes to genomes.
Collapse
|
181
|
Castro-Nallar E, Hasan NA, Cebula TA, Colwell RR, Robison RA, Johnson WE, Crandall KA. Concordance and discordance of sequence survey methods for molecular epidemiology. PeerJ 2015; 3:e761. [PMID: 25737810 PMCID: PMC4338773 DOI: 10.7717/peerj.761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/21/2015] [Indexed: 12/23/2022] Open
Abstract
The post-genomic era is characterized by the direct acquisition and analysis of genomic data with many applications, including the enhancement of the understanding of microbial epidemiology and pathology. However, there are a number of molecular approaches to survey pathogen diversity, and the impact of these different approaches on parameter estimation and inference are not entirely clear. We sequenced whole genomes of bacterial pathogens, Burkholderia pseudomallei, Yersinia pestis, and Brucella spp. (60 new genomes), and combined them with 55 genomes from GenBank to address how different molecular survey approaches (whole genomes, SNPs, and MLST) impact downstream inferences on molecular evolutionary parameters, evolutionary relationships, and trait character associations. We selected isolates for sequencing to represent temporal, geographic origin, and host range variability. We found that substitution rate estimates vary widely among approaches, and that SNP and genomic datasets yielded different but strongly supported phylogenies. MLST yielded poorly supported phylogenies, especially in our low diversity dataset, i.e., Y. pestis. Trait associations showed that B. pseudomallei and Y. pestis phylogenies are significantly associated with geography, irrespective of the molecular survey approach used, while Brucella spp. phylogeny appears to be strongly associated with geography and host origin. We contrast inferences made among monomorphic (clonal) and non-monomorphic bacteria, and between intra- and inter-specific datasets. We also discuss our results in light of underlying assumptions of different approaches.
Collapse
Affiliation(s)
| | - Nur A. Hasan
- CosmosID, College Park, MD, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Thomas A. Cebula
- CosmosID, College Park, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Rita R. Colwell
- CosmosID, College Park, MD, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - W. Evan Johnson
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Keith A. Crandall
- Computational Biology Institute, George Washington University, Ashburn, VA, USA
| |
Collapse
|
182
|
Baily JL, Méric G, Bayliss S, Foster G, Moss SE, Watson E, Pascoe B, Mikhail J, Pizzi R, Goldstone RJ, Smith DGE, Willoughby K, Hall AJ, Sheppard SK, Dagleish MP. Evidence of land-sea transfer of the zoonotic pathogen Campylobacter to a wildlife marine sentinel species. Mol Ecol 2014; 24:208-21. [PMID: 25401947 DOI: 10.1111/mec.13001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/14/2023]
Abstract
Environmental pollution often accompanies the expansion and urbanization of human populations where sewage and wastewaters commonly have an impact on the marine environments. Here, we explored the potential for faecal bacterial pathogens, of anthropic origin, to spread to marine wildlife in coastal areas. The common zoonotic bacterium Campylobacter was isolated from grey seals (Halichoerus grypus), an important sentinel species for environmental pollution, and compared to isolates from wild birds, agricultural sources and clinical samples to characterize possible transmission routes. Campylobacter jejuni was present in half of all grey seal pups sampled (24/50 dead and 46/90 live pups) in the breeding colony on the Isle of May (Scotland), where it was frequently associated with histological evidence of disease. Returning yearling animals (19/19) were negative for C. jejuni suggesting clearance of infection while away from the localized colony infection source. The genomes of 90 isolates from seals were sequenced and characterized using a whole-genome multilocus sequence typing (MLST) approach and compared to 192 published genomes from multiple sources using population genetic approaches and a probabilistic genetic attribution model to infer the source of infection from MLST data. The strong genotype-host association has enabled the application of source attribution models in epidemiological studies of human campylobacteriosis, and here assignment analyses consistently grouped seal isolates with those from human clinical samples. These findings are consistent with either a common infection source or direct transmission of human campylobacter to grey seals, raising concerns about the spread of human pathogens to wildlife marine sentinel species in coastal areas.
Collapse
Affiliation(s)
- Johanna L Baily
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK; SeaMammal Research Unit, University of St Andrews, Fife, KY16 8LB, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Howell KJ, Weinert LA, Chaudhuri RR, Luan SL, Peters SE, Corander J, Harris D, Angen Ø, Aragon V, Bensaid A, Williamson SM, Parkhill J, Langford PR, Rycroft AN, Wren BW, Holden MTG, Tucker AW, Maskell DJ. The use of genome wide association methods to investigate pathogenicity, population structure and serovar in Haemophilus parasuis. BMC Genomics 2014; 15:1179. [PMID: 25539682 PMCID: PMC4532294 DOI: 10.1186/1471-2164-15-1179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/12/2014] [Indexed: 01/06/2023] Open
Abstract
Background Haemophilus parasuis is the etiologic agent of Glässer’s disease in pigs and causes devastating losses to the farming industry. Whilst some hyper-virulent isolates have been described, the relationship between genetics and disease outcome has been only partially established. In particular, there is weak correlation between serovar and disease phenotype. We sequenced the genomes of 212 isolates of H. parasuis and have used this to describe the pan-genome and to correlate this with clinical and carrier status, as well as with serotype. Results Recombination and population structure analyses identified five groups with very high rates of recombination, separated into two clades of H. parasuis with no signs of recombination between them. We used genome-wide association methods including discriminant analysis of principal components (DAPC) and generalised linear modelling (glm) to look for genetic determinants of this population partition, serovar and pathogenicity. We were able to identify genes from the accessory genome that were significantly associated with phenotypes such as potential serovar specific genes including capsule genes, and 48 putative virulence factors that were significantly different between the clinical and non-clinical isolates. We also show that the presence of many previously suggested virulence factors is not an appropriate marker of virulence. Conclusions These genes will inform the generation of new molecular diagnostics and vaccines, and refinement of existing typing schemes and show the importance of the accessory genome of a diverse species when investigating the relationship between genotypes and phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1179) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kate J Howell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Roy R Chaudhuri
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| | - Shi-Lu Luan
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Sarah E Peters
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, 00100, Finland.
| | - David Harris
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Øystein Angen
- Norwegian Veterinary Institute, N-0106, Oslo, Norway.
| | - Virginia Aragon
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, and, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain.
| | - Albert Bensaid
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, and, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain.
| | - Susanna M Williamson
- Animal Health and Veterinary Laboratories Agency (AHVLA), Rougham Hill, Bury St Edmunds, Suffolk, IP33 2RX, UK.
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Paul R Langford
- Department of Medicine, Section of Paediatrics, Imperial College London, St. Mary's Campus, London, W2 1PG, UK.
| | - Andrew N Rycroft
- The Royal Veterinary College, Hawkshead Campus, Hatfield, AL9 7TA, Hertfordshire, UK.
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Matthew T G Holden
- School of Medicine, University of St. Andrews, St Andrews, KY16 9TF, UK.
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | | |
Collapse
|
184
|
One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr Opin Microbiol 2014; 23:110-20. [PMID: 25461581 DOI: 10.1016/j.mib.2014.11.014] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 11/20/2022]
Abstract
Like a jigsaw puzzle with large pieces, a genome sequenced with long reads is easier to assemble. However, recent sequencing technologies have favored lowering per-base cost at the expense of read length. This has dramatically reduced sequencing cost, but resulted in fragmented assemblies, which negatively affect downstream analyses and hinder the creation of finished (gapless, high-quality) genomes. In contrast, emerging long-read sequencing technologies can now produce reads tens of kilobases in length, enabling the automated finishing of microbial genomes for under $1000. This promises to improve the quality of reference databases and facilitate new studies of chromosomal structure and variation. We present an overview of these new technologies and the methods used to assemble long reads into complete genomes.
Collapse
|
185
|
Read TD, Massey RC. Characterizing the genetic basis of bacterial phenotypes using genome-wide association studies: a new direction for bacteriology. Genome Med 2014; 6:109. [PMID: 25593593 PMCID: PMC4295408 DOI: 10.1186/s13073-014-0109-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genome-wide association studies (GWASs) have become an increasingly important approach for eukaryotic geneticists, facilitating the identification of hundreds of genetic polymorphisms that are responsible for inherited diseases. Despite the relative simplicity of bacterial genomes, the application of GWASs to identify polymorphisms responsible for important bacterial phenotypes has only recently been made possible through advances in genome sequencing technologies. Bacterial GWASs are now about to come of age thanks to the availability of massive datasets, and because of the potential to bridge genomics and traditional genetic approaches that is provided by improving validation strategies. A small number of pioneering GWASs in bacteria have been published in the past 2 years, examining from 75 to more than 3,000 strains. The experimental designs have been diverse, taking advantage of different processes in bacteria for generating variation. Analysis of data from bacterial GWASs can, to some extent, be performed using software developed for eukaryotic systems, but there are important differences in genome evolution that must be considered. The greatest experimental advantage of bacterial GWASs is the potential to perform downstream validation of causality and dissection of mechanism. We review the recent advances and remaining challenges in this field and propose strategies to improve the validation of bacterial GWASs.
Collapse
Affiliation(s)
- Timothy D Read
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA ; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Ruth C Massey
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| |
Collapse
|
186
|
Farhat MR, Shapiro BJ, Sheppard SK, Colijn C, Murray M. A phylogeny-based sampling strategy and power calculator informs genome-wide associations study design for microbial pathogens. Genome Med 2014; 6:101. [PMID: 25484920 PMCID: PMC4256898 DOI: 10.1186/s13073-014-0101-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/30/2014] [Indexed: 11/20/2022] Open
Abstract
Whole genome sequencing is increasingly used to study phenotypic variation among infectious pathogens and to evaluate their relative transmissibility, virulence, and immunogenicity. To date, relatively little has been published on how and how many pathogen strains should be selected for studies associating phenotype and genotype. There are specific challenges when identifying genetic associations in bacteria which often comprise highly structured populations. Here we consider general methodological questions related to sampling and analysis focusing on clonal to moderately recombining pathogens. We propose that a matched sampling scheme constitutes an efficient study design, and provide a power calculator based on phylogenetic convergence. We demonstrate this approach by applying it to genomic datasets for two microbial pathogens: Mycobacterium tuberculosis and Campylobacter species.
Collapse
Affiliation(s)
- Maha R Farhat
- Department of Pulmonary and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA ; Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Avenue Suite 4A, Boston, MA 02115 USA
| | - B Jesse Shapiro
- Département de sciences biologiques, Université de Montréal, Montréal, QC Canada
| | - Samuel K Sheppard
- Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP UK
| | - Caroline Colijn
- Department of Mathematics, Imperial College London, London, UK
| | - Megan Murray
- Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Avenue Suite 4A, Boston, MA 02115 USA ; Department of Epidemiology, Harvard School of Public Health, Boston, MA USA
| |
Collapse
|
187
|
Salipante SJ, Roach DJ, Kitzman JO, Snyder MW, Stackhouse B, Butler-Wu SM, Lee C, Cookson BT, Shendure J. Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains. Genome Res 2014; 25:119-28. [PMID: 25373147 PMCID: PMC4317167 DOI: 10.1101/gr.180190.114] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Large-scale bacterial genome sequencing efforts to date have provided limited information on the most prevalent category of disease: sporadically acquired infections caused by common pathogenic bacteria. Here, we performed whole-genome sequencing and de novo assembly of 312 blood- or urine-derived isolates of extraintestinal pathogenic (ExPEC) Escherichia coli, a common agent of sepsis and community-acquired urinary tract infections, obtained during the course of routine clinical care at a single institution. We find that ExPEC E. coli are highly genomically heterogeneous, consistent with pan-genome analyses encompassing the larger species. Investigation of differential virulence factor content and antibiotic resistance phenotypes reveals markedly different profiles among lineages and among strains infecting different body sites. We use high-resolution molecular epidemiology to explore the dynamics of infections at the level of individual patients, including identification of possible person-to-person transmission. Notably, a limited number of discrete lineages caused the majority of bloodstream infections, including one subclone (ST131-H30) responsible for 28% of bacteremic E. coli infections over a 3-yr period. We additionally use a microbial genome-wide-association study (GWAS) approach to identify individual genes responsible for antibiotic resistance, successfully recovering known genes but notably not identifying any novel factors. We anticipate that in the near future, whole-genome sequencing of microorganisms associated with clinical disease will become routine. Our study reveals what kind of information can be obtained from sequencing clinical isolates on a large scale, even well-characterized organisms such as E. coli, and provides insight into how this information might be utilized in a healthcare setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brad T Cookson
- Department of Laboratory Medicine, Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
188
|
Iraola G, Pérez R, Naya H, Paolicchi F, Pastor E, Valenzuela S, Calleros L, Velilla A, Hernández M, Morsella C. Genomic evidence for the emergence and evolution of pathogenicity and niche preferences in the genus Campylobacter. Genome Biol Evol 2014; 6:2392-405. [PMID: 25193310 PMCID: PMC4202331 DOI: 10.1093/gbe/evu195] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The genus Campylobacter includes some of the most relevant pathogens for human and animal health; the continuous effort in their characterization has also revealed new species putatively involved in different kind of infections. Nowadays, the available genomic data for the genus comprise a wide variety of species with different pathogenic potential and niche preferences. In this work, we contribute to enlarge this available information presenting the first genome for the species Campylobacter sputorum bv. sputorum and use this and the already sequenced organisms to analyze the emergence and evolution of pathogenicity and niche preferences among Campylobacter species. We found that campylobacters can be unequivocally distinguished in established and putative pathogens depending on their repertory of virulence genes, which have been horizontally acquired from other bacteria because the nonpathogenic Campylobacter ancestor emerged, and posteriorly interchanged between some members of the genus. Additionally, we demonstrated the role of both horizontal gene transfers and diversifying evolution in niche preferences, being able to distinguish genetic features associated to the tropism for oral, genital, and gastrointestinal tissues. In particular, we highlight the role of nonsynonymous evolution of disulphide bond proteins, the invasion antigen B (CiaB), and other secreted proteins in the determination of niche preferences. Our results arise from assessing the previously unmet goal of considering the whole available Campylobacter diversity for genome comparisons, unveiling notorious genetic features that could explain particular phenotypes and set the basis for future research in Campylobacter biology.
Collapse
Affiliation(s)
- Gregorio Iraola
- Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay Sección Genética Evolutiva, Facultad de Ciencias, Montevideo, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Facultad de Ciencias, Montevideo, Uruguay
| | - Hugo Naya
- Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Montevideo, Uruguay
| | - Fernando Paolicchi
- Laboratorio de Bacteriología, Unidad Integrada INTA-Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Eugenia Pastor
- Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay
| | | | - Lucía Calleros
- Sección Genética Evolutiva, Facultad de Ciencias, Montevideo, Uruguay
| | - Alejandra Velilla
- Laboratorio de Bacteriología, Unidad Integrada INTA-Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Martín Hernández
- Sección Genética Evolutiva, Facultad de Ciencias, Montevideo, Uruguay
| | - Claudia Morsella
- Laboratorio de Bacteriología, Unidad Integrada INTA-Universidad Nacional de Mar del Plata, Balcarce, Argentina
| |
Collapse
|
189
|
Chewapreecha C, Marttinen P, Croucher NJ, Salter SJ, Harris SR, Mather AE, Hanage WP, Goldblatt D, Nosten FH, Turner C, Turner P, Bentley SD, Parkhill J. Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. PLoS Genet 2014; 10:e1004547. [PMID: 25101644 PMCID: PMC4125147 DOI: 10.1371/journal.pgen.1004547] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/16/2014] [Indexed: 11/18/2022] Open
Abstract
Traditional genetic association studies are very difficult in bacteria, as the generally limited recombination leads to large linked haplotype blocks, confounding the identification of causative variants. Beta-lactam antibiotic resistance in Streptococcus pneumoniae arises readily as the bacteria can quickly incorporate DNA fragments encompassing variants that make the transformed strains resistant. However, the causative mutations themselves are embedded within larger recombined blocks, and previous studies have only analysed a limited number of isolates, leading to the description of “mosaic genes” as being responsible for resistance. By comparing a large number of genomes of beta-lactam susceptible and non-susceptible strains, the high frequency of recombination should break up these haplotype blocks and allow the use of genetic association approaches to identify individual causative variants. Here, we performed a genome-wide association study to identify single nucleotide polymorphisms (SNPs) and indels that could confer beta-lactam non-susceptibility using 3,085 Thai and 616 USA pneumococcal isolates as independent datasets for the variant discovery. The large sample sizes allowed us to narrow the source of beta-lactam non-susceptibility from long recombinant fragments down to much smaller loci comprised of discrete or linked SNPs. While some loci appear to be universal resistance determinants, contributing equally to non-susceptibility for at least two classes of beta-lactam antibiotics, some play a larger role in resistance to particular antibiotics. All of the identified loci have a highly non-uniform distribution in the populations. They are enriched not only in vaccine-targeted, but also non-vaccine-targeted lineages, which may raise clinical concerns. Identification of single nucleotide polymorphisms underlying resistance will be essential for future use of genome sequencing to predict antibiotic sensitivity in clinical microbiology. Streptococcus pneumoniae is carried asymptomatically in the nasopharyngeal tract. However, it is capable of causing multiple diseases, including pneumonia, bacteraemia and meningitis, which are common causes of morbidity and mortality in young children. Antibiotic treatment has become more difficult, especially that involving the group of beta-lactam antibiotics where resistance has developed rapidly. The organism is known to be highly recombinogenic, and this allows variants conferring beta-lactam resistance to be readily introduced into the genome. Identification of the specific genetic determinants of beta-lactam resistance is essential to understand both the mechanism of resistance and the spread of resistant variants in the pneumococcal population. Here, we performed a genome-wide association study on 3,701 isolates collected from two different locations and identified candidate variants that may explain beta-lactam resistance as well as discriminating potential genetic hitchhiking variants from potential causative variants. We report 51 loci, containing 301 SNPs, that are associated with beta-lactam non-susceptibility. 71 out of 301 polymorphic changes result in amino acid alterations, 28 of which have been reported previously. Understanding the determinants of resistance at the single nucleotide level will be important for the future use of sequence data to predict resistance in the clinical setting.
Collapse
Affiliation(s)
- Claire Chewapreecha
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Pekka Marttinen
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Helsinki Institute for Information Technology HIIT, Department of Information and Computer Science, Aalto University, Espoo, Finland
| | - Nicholas J. Croucher
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Susannah J. Salter
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Simon R. Harris
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Alison E. Mather
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - William P. Hanage
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - David Goldblatt
- Immunobiology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Francois H. Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Maesot, Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Claudia Turner
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Maesot, Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Paul Turner
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Maesot, Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Stephen D. Bentley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- * E-mail: (SDB); (JP)
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- * E-mail: (SDB); (JP)
| |
Collapse
|
190
|
McAdam PR, Richardson EJ, Fitzgerald JR. High-throughput sequencing for the study of bacterial pathogen biology. Curr Opin Microbiol 2014; 19:106-113. [PMID: 25033019 PMCID: PMC4150483 DOI: 10.1016/j.mib.2014.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/02/2014] [Accepted: 06/07/2014] [Indexed: 12/23/2022]
Abstract
A revolution in sequencing technologies in recent years has led to dramatically increased throughput and reduced cost of bacterial genome sequencing. An increasing number of applications of the new technologies are providing broad insights into bacterial evolution, epidemiology, and pathogenesis. For example, the capacity to sequence large numbers of bacterial isolates is enabling high resolution phylogenetic analyses of bacterial populations leading to greatly enhanced understanding of the emergence, adaptation, and transmission of pathogenic clones. In addition, RNA-seq offers improved quantification and resolution for transcriptomic analysis, and the combination of high-throughput sequencing with transposon mutagenesis is a powerful approach for the identification of bacterial determinants required for survival in vivo. In this concise review we provide selected examples of how high throughput sequencing is being applied to understand the biology of bacterial pathogens, and discuss future technological advances likely to have a profound impact on the field.
Collapse
Affiliation(s)
- Paul R McAdam
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush Campus, Edinburgh EH25 9RG, United Kingdom
| | - Emily J Richardson
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush Campus, Edinburgh EH25 9RG, United Kingdom
| | - J Ross Fitzgerald
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush Campus, Edinburgh EH25 9RG, United Kingdom.
| |
Collapse
|
191
|
Bronowski C, James CE, Winstanley C. Role of environmental survival in transmission of Campylobacter jejuni. FEMS Microbiol Lett 2014; 356:8-19. [PMID: 24888326 DOI: 10.1111/1574-6968.12488] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 11/29/2022] Open
Abstract
Campylobacter species are the most common cause of bacterial gastroenteritis, with C. jejuni responsible for the majority of these cases. Although it is clear that livestock, and particularly poultry, are the most common source, it is likely that the natural environment (soil and water) plays a key role in transmission, either directly to humans or indirectly via farm animals. It has been shown using multilocus sequence typing that some clonal complexes (such as ST-45) are more frequently isolated from environmental sources such as water, suggesting that strains vary in their ability to survive in the environment. Although C. jejuni are fastidious microaerophiles generally unable to grow in atmospheric levels of oxygen, C. jejuni can adapt to survival in the environment, exhibiting aerotolerance and starvation survival. Biofilm formation, the viable but nonculturable state, and interactions with other microorganisms can all contribute to survival outside the host. By exploiting high-throughput technologies such as genome sequencing and RNA Seq, we are well placed to decipher the mechanisms underlying the variations in survival between strains in environments such as soil and water and to better understand the role of environmental persistence in the transmission of C. jejuni directly or indirectly to humans.
Collapse
Affiliation(s)
- Christina Bronowski
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
192
|
Alam MT, Petit RA, Crispell EK, Thornton TA, Conneely KN, Jiang Y, Satola SW, Read TD. Dissecting vancomycin-intermediate resistance in staphylococcus aureus using genome-wide association. Genome Biol Evol 2014; 6:1174-85. [PMID: 24787619 PMCID: PMC4040999 DOI: 10.1093/gbe/evu092] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vancomycin-intermediate Staphylococcus aureus (VISA) is currently defined as having minimal inhibitory concentration (MIC) of 4–8 µg/ml. VISA evolves through changes in multiple genetic loci with at least 16 candidate genes identified in clinical and in vitro-selected VISA strains. We report a whole-genome comparative analysis of 49 vancomycin-sensitive S. aureus and 26 VISA strains. Resistance to vancomycin was determined by broth microdilution, Etest, and population analysis profile-area under the curve (PAP-AUC). Genome-wide association studies (GWAS) of 55,977 single-nucleotide polymorphisms identified in one or more strains found one highly significant association (P = 8.78E-08) between a nonsynonymous mutation at codon 481 (H481) of the rpoB gene and increased vancomycin MIC. Additionally, we used a database of public S. aureus genome sequences to identify rare mutations in candidate genes associated with VISA. On the basis of these data, we proposed a preliminary model called ECM+RMCG for the VISA phenotype as a benchmark for future efforts. The model predicted VISA based on the presence of a rare mutation in a set of candidate genes (walKR, vraSR, graSR, and agrA) and/or three previously experimentally verified mutations (including the rpoB H481 locus) with an accuracy of 81% and a sensitivity of 73%. Further, the level of resistance measured by both Etest and PAP-AUC regressed positively with the number of mutations present in a strain. This study demonstrated 1) the power of GWAS for identifying common genetic variants associated with antibiotic resistance in bacteria and 2) that rare mutations in candidate gene, identified using large genomic data sets, can also be associated with resistance phenotypes.
Collapse
Affiliation(s)
- Md Tauqeer Alam
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine
| | - Robert A Petit
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine
| | - Emily K Crispell
- Division of Infectious Diseases, Department of Medicine, Emory University School of MedicineAtlanta Veterans Affairs Medical Center
| | | | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine
| | - Yunxuan Jiang
- Department of Human Genetics, Emory University School of MedicineDepartment of Biostatistics and Bioinformatics, Emory University School of Public Health
| | - Sarah W Satola
- Division of Infectious Diseases, Department of Medicine, Emory University School of MedicineAtlanta Veterans Affairs Medical Center
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of MedicineDepartment of Human Genetics, Emory University School of Medicine
| |
Collapse
|
193
|
Laabei M, Recker M, Rudkin JK, Aldeljawi M, Gulay Z, Sloan TJ, Williams P, Endres JL, Bayles KW, Fey PD, Yajjala VK, Widhelm T, Hawkins E, Lewis K, Parfett S, Scowen L, Peacock SJ, Holden M, Wilson D, Read TD, van den Elsen J, Priest NK, Feil EJ, Hurst LD, Josefsson E, Massey RC. Predicting the virulence of MRSA from its genome sequence. Genome Res 2014; 24:839-49. [PMID: 24717264 PMCID: PMC4009613 DOI: 10.1101/gr.165415.113] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microbial virulence is a complex and often multifactorial phenotype, intricately linked to a pathogen’s evolutionary trajectory. Toxicity, the ability to destroy host cell membranes, and adhesion, the ability to adhere to human tissues, are the major virulence factors of many bacterial pathogens, including Staphylococcus aureus. Here, we assayed the toxicity and adhesiveness of 90 MRSA (methicillin resistant S. aureus) isolates and found that while there was remarkably little variation in adhesion, toxicity varied by over an order of magnitude between isolates, suggesting different evolutionary selection pressures acting on these two traits. We performed a genome-wide association study (GWAS) and identified a large number of loci, as well as a putative network of epistatically interacting loci, that significantly associated with toxicity. Despite this apparent complexity in toxicity regulation, a predictive model based on a set of significant single nucleotide polymorphisms (SNPs) and insertion and deletions events (indels) showed a high degree of accuracy in predicting an isolate’s toxicity solely from the genetic signature at these sites. Our results thus highlight the potential of using sequence data to determine clinically relevant parameters and have further implications for understanding the microbial virulence of this opportunistic pathogen.
Collapse
Affiliation(s)
- Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Baker KS, Murcia PR. Poxviruses in bats … so what? Viruses 2014; 6:1564-77. [PMID: 24704730 PMCID: PMC4014710 DOI: 10.3390/v6041564] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 12/23/2022] Open
Abstract
Poxviruses are important pathogens of man and numerous domestic and wild animal species. Cross species (including zoonotic) poxvirus infections can have drastic consequences for the recipient host. Bats are a diverse order of mammals known to carry lethal viral zoonoses such as Rabies, Hendra, Nipah, and SARS. Consequent targeted research is revealing bats to be infected with a rich diversity of novel viruses. Poxviruses were recently identified in bats and the settings in which they were found were dramatically different. Here, we review the natural history of poxviruses in bats and highlight the relationship of the viruses to each other and their context in the Poxviridae family. In addition to considering the zoonotic potential of these viruses, we reflect on the broader implications of these findings. Specifically, the potential to explore and exploit this newfound relationship to study coevolution and cross species transmission together with fundamental aspects of poxvirus host tropism as well as bat virology and immunology.
Collapse
Affiliation(s)
- Kate S Baker
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.
| | - Pablo R Murcia
- University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
195
|
A reference pan-genome approach to comparative bacterial genomics: identification of novel epidemiological markers in pathogenic Campylobacter. PLoS One 2014; 9:e92798. [PMID: 24676150 PMCID: PMC3968026 DOI: 10.1371/journal.pone.0092798] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/26/2014] [Indexed: 11/19/2022] Open
Abstract
The increasing availability of hundreds of whole bacterial genomes provides opportunities for enhanced understanding of the genes and alleles responsible for clinically important phenotypes and how they evolved. However, it is a significant challenge to develop easy-to-use and scalable methods for characterizing these large and complex data and relating it to disease epidemiology. Existing approaches typically focus on either homologous sequence variation in genes that are shared by all isolates, or non-homologous sequence variation--focusing on genes that are differentially present in the population. Here we present a comparative genomics approach that simultaneously approximates core and accessory genome variation in pathogen populations and apply it to pathogenic species in the genus Campylobacter. A total of 7 published Campylobacter jejuni and Campylobacter coli genomes were selected to represent diversity across these species, and a list of all loci that were present at least once was compiled. After filtering duplicates a 7-isolate reference pan-genome, of 3,933 loci, was defined. A core genome of 1,035 genes was ubiquitous in the sample accounting for 59% of the genes in each isolate (average genome size of 1.68 Mb). The accessory genome contained 2,792 genes. A Campylobacter population sample of 192 genomes was screened for the presence of reference pan-genome loci with gene presence defined as a BLAST match of ≥ 70% identity over ≥ 50% of the locus length--aligned using MUSCLE on a gene-by-gene basis. A total of 21 genes were present only in C. coli and 27 only in C. jejuni, providing information about functional differences associated with species and novel epidemiological markers for population genomic analyses. Homologs of these genes were found in several of the genomes used to define the pan-genome and, therefore, would not have been identified using a single reference strain approach.
Collapse
|
196
|
Shapiro BJ, Polz MF. Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol 2014; 22:235-47. [PMID: 24630527 DOI: 10.1016/j.tim.2014.02.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/08/2014] [Accepted: 02/14/2014] [Indexed: 11/16/2022]
Abstract
We propose that microbial diversity must be viewed in light of gene flow and selection, which define units of genetic similarity, and of phenotype and ecological function, respectively. We discuss to what extent ecological and genetic units overlap to form cohesive populations in the wild, based on recent evolutionary modeling and on evidence from some of the first microbial populations studied with genomics. These show that if recombination is frequent and selection moderate, ecologically adaptive mutations or genes can spread within populations independently of their original genomic background (gene-specific sweeps). Alternatively, if the effect of recombination is smaller than selection, genome-wide selective sweeps should occur. In both cases, however, distinct units of overlapping ecological and genotypic similarity will form if microgeographic separation, likely involving ecological tradeoffs, induces barriers to gene flow. These predictions are supported by (meta)genomic data, which suggest that a 'reverse ecology' approach, in which genomic and gene flow information is used to make predictions about the nature of ecological units, is a powerful approach to ordering microbial diversity.
Collapse
Affiliation(s)
- B Jesse Shapiro
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Martin F Polz
- Parsons Laboratory for Environmental Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
197
|
Alqasim A, Emes R, Clark G, Newcombe J, La Ragione R, McNally A. Phenotypic microarrays suggest Escherichia coli ST131 is not a metabolically distinct lineage of extra-intestinal pathogenic E. coli. PLoS One 2014; 9:e88374. [PMID: 24516644 PMCID: PMC3917908 DOI: 10.1371/journal.pone.0088374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/06/2014] [Indexed: 01/26/2023] Open
Abstract
Extraintestinal pathogenic E. coli (ExPEC) are the major aetiological agent of urinary tract infections (UTIs) in humans. The emergence of the CTX-M producing clone E. coli ST131 represents a major challenge to public health worldwide. A recent study on the metabolic potential of E. coli isolates demonstrated an association between the E. coli ST131 clone and enhanced utilisation of a panel of metabolic substrates. The studies presented here investigated the metabolic potential of ST131 and other major ExPEC ST isolates using 120 API test reagents and found that ST131 isolates demonstrated a lower metabolic activity for 5 of 120 biochemical tests in comparison to non-ST131 ExPEC isolates. Furthermore, comparative phenotypic microarray analysis showed a lack of specific metabolic profile for ST131 isolates countering the suggestion that these bacteria are metabolically fitter and therefore more successful human pathogens.
Collapse
Affiliation(s)
- Abdulaziz Alqasim
- Pathogen Research Group, Nottingham Trent University, Nottingham, United Kingdom
| | - Richard Emes
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Advanced Data Analysis Centre, University of Nottingham, Nottingham, United Kingdom
| | - Gemma Clark
- Pathogen Research Group, Nottingham Trent University, Nottingham, United Kingdom
| | - Jane Newcombe
- Department of Microbial and Cellular Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Roberto La Ragione
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Weybridge, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Alan McNally
- Pathogen Research Group, Nottingham Trent University, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
198
|
Brisse S, Brehony C, Conceição T, Cubero M, Glasner C, Le Gouil M, Renvoisé A, Sheppard S, Weinert LA. Microbial molecular markers and epidemiological surveillance in the era of high throughput sequencing: an update from the IMMEM-10 conference. Res Microbiol 2014; 165:140-53. [PMID: 24486597 PMCID: PMC7126388 DOI: 10.1016/j.resmic.2014.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sylvain Brisse
- Institut Pasteur, Microbial Evolutionary Genomics, Paris, France; CNRS, UMR3525, Paris, France.
| | - Carina Brehony
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Teresa Conceição
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa (UNL), Oeiras, Portugal
| | - Meritxell Cubero
- Microbiology Department, Hospital Universitari de Bellvitge-University of Barcelona-IDIBELL, Barcelona, Spain; CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Corinna Glasner
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Meriadeg Le Gouil
- Institut Pasteur, Environment and Infectious Risks unit, Paris, France
| | - Aurélie Renvoisé
- AP-HP, Hôpital Pitié-Salpêtrière, Bactériologie-Hygiène, F-75013, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, U1135, Centre for Immunology and Microbial Infections, team 13, F-75013, Paris, France; INSERM, U1135, Centre for Immunology and Microbial Infections, team 13, F-75013, Paris, France
| | | | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
199
|
Signatures of Natural Selection and Ecological Differentiation in Microbial Genomes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:339-59. [DOI: 10.1007/978-94-007-7347-9_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
200
|
Vinatzer BA, Monteil CL, Clarke CR. Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:19-43. [PMID: 24820995 DOI: 10.1146/annurev-phyto-102313-045907] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Crop diseases emerge without warning. In many cases, diseases cross borders, or even oceans, before plant pathologists have time to identify and characterize the causative agents. Genome sequencing, in combination with intensive sampling of pathogen populations and application of population genetic tools, is now providing the means to unravel how bacterial crop pathogens emerge from environmental reservoirs, how they evolve and adapt to crops, and what international and intercontinental routes they follow during dissemination. Here, we introduce the field of population genomics and review the population genomics research of bacterial plant pathogens over the past 10 years. We highlight the potential of population genomics for investigating plant pathogens, using examples of population genomics studies of human pathogens. We also describe the complementary nature of the fields of population genomics and molecular plant-microbe interactions and propose how to translate new insights into improved disease prevention and control.
Collapse
Affiliation(s)
- Boris A Vinatzer
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia 24061; ,
| | | | | |
Collapse
|