151
|
See K, Tan WLW, Lim EH, Tiang Z, Lee LT, Li PYQ, Luu TDA, Ackers-Johnson M, Foo RS. Single cardiomyocyte nuclear transcriptomes reveal a lincRNA-regulated de-differentiation and cell cycle stress-response in vivo. Nat Commun 2017; 8:225. [PMID: 28790305 PMCID: PMC5548780 DOI: 10.1038/s41467-017-00319-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022] Open
Abstract
Cardiac regeneration may revolutionize treatment for heart failure but endogenous progenitor-derived cardiomyocytes in the adult mammalian heart are few and pre-existing adult cardiomyocytes divide only at very low rates. Although candidate genes that control cardiomyocyte cell cycle re-entry have been implicated, expression heterogeneity in the cardiomyocyte stress-response has never been explored. Here, we show by single nuclear RNA-sequencing of cardiomyocytes from both mouse and human failing, and non-failing adult hearts that sub-populations of cardiomyocytes upregulate cell cycle activators and inhibitors consequent to the stress-response in vivo. We characterize these subgroups by weighted gene co-expression network analysis and discover long intergenic non-coding RNAs (lincRNA) as key nodal regulators. KD of nodal lincRNAs affects expression levels of genes related to dedifferentiation and cell cycle, within the same gene regulatory network. Our study reveals that sub-populations of adult cardiomyocytes may have a unique endogenous potential for cardiac regeneration in vivo. Adult mammalian cardiomyocytes are predominantly binucleated and unable to divide. Using single nuclear RNA-sequencing of cardiomyocytes from mouse and human failing and non-failing adult hearts, See et al. show that some cardiomyocytes respond to stress by dedifferentiation and cell cycle re-entry regulated by lncRNAs.
Collapse
Affiliation(s)
- Kelvin See
- Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Wilson L W Tan
- Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore.,Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Singapore
| | - Eng How Lim
- Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore.,Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Singapore
| | - Zenia Tiang
- Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore.,Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Singapore
| | - Li Ting Lee
- Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Peter Y Q Li
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Singapore
| | - Tuan D A Luu
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Singapore
| | - Matthew Ackers-Johnson
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Singapore
| | - Roger S Foo
- Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore. .,Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Singapore.
| |
Collapse
|
152
|
Patterson M, Barske L, Van Handel B, Rau CD, Gan P, Sharma A, Parikh S, Denholtz M, Huang Y, Yamaguchi Y, Shen H, Allayee H, Crump JG, Force TI, Lien CL, Makita T, Lusis AJ, Kumar SR, Sucov HM. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet 2017; 49:1346-1353. [PMID: 28783163 DOI: 10.1038/ng.3929] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/11/2017] [Indexed: 12/16/2022]
Abstract
Adult mammalian cardiomyocyte regeneration after injury is thought to be minimal. Mononuclear diploid cardiomyocytes (MNDCMs), a relatively small subpopulation in the adult heart, may account for the observed degree of regeneration, but this has not been tested. We surveyed 120 inbred mouse strains and found that the frequency of adult mononuclear cardiomyocytes was surprisingly variable (>7-fold). Cardiomyocyte proliferation and heart functional recovery after coronary artery ligation both correlated with pre-injury MNDCM content. Using genome-wide association, we identified Tnni3k as one gene that influences variation in this composition and demonstrated that Tnni3k knockout resulted in elevated MNDCM content and increased cardiomyocyte proliferation after injury. Reciprocally, overexpression of Tnni3k in zebrafish promoted cardiomyocyte polyploidization and compromised heart regeneration. Our results corroborate the relevance of MNDCMs in heart regeneration. Moreover, they imply that intrinsic heart regeneration is not limited nor uniform in all individuals, but rather is a variable trait influenced by multiple genes.
Collapse
Affiliation(s)
- Michaela Patterson
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Lindsey Barske
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ben Van Handel
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Christoph D Rau
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Peiheng Gan
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Avneesh Sharma
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Shan Parikh
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matt Denholtz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Ying Huang
- Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Yukiko Yamaguchi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hua Shen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hooman Allayee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Thomas I Force
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ching-Ling Lien
- Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Takako Makita
- Developmental Neuroscience Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Aldons J Lusis
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - S Ram Kumar
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Henry M Sucov
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
153
|
Hashimoto K, Kodama A, Honda T, Hanashima A, Ujihara Y, Murayama T, Nishimatsu SI, Mohri S. Fam64a is a novel cell cycle promoter of hypoxic fetal cardiomyocytes in mice. Sci Rep 2017; 7:4486. [PMID: 28667270 PMCID: PMC5493652 DOI: 10.1038/s41598-017-04823-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/22/2017] [Indexed: 01/22/2023] Open
Abstract
Fetal cardiomyocytes actively proliferate to form the primitive heart in utero in mammals, but they stop dividing shortly after birth. The identification of essential molecules maintaining this active cardiomyocyte proliferation is indispensable for potential adult heart regeneration. A recent study has shown that this proliferation depends on a low fetal oxygen condition before the onset of breathing at birth. We have established an isolation protocol for mouse fetal cardiomyocytes, performed under strict low oxygen conditions to mimic the intrauterine environment, that gives the highest proliferative activities thus far reported. Oxygen exposure during isolation/culture markedly inhibited cell division and repressed cell cycle-promoting genes, and subsequent genome-wide analysis identified Fam64a as a novel regulatory molecule. Fam64a was abundantly expressed in hypoxic fetal cardiomyocyte nuclei, but this expression was drastically repressed by oxygen exposure, and in postnatal cardiomyocytes following the onset of breathing and the resulting elevation of oxygen tension. Fam64a knockdown inhibited and its overexpression enhanced cardiomyocyte proliferation. Expression of a non-degradable Fam64a mutant suggested that optimum Fam64a expression and subsequent degradation by anaphase-promoting complex/cyclosome (APC/C) during the metaphase-to-anaphase transition are required for fetal cardiomyocyte division. We propose that Fam64a is a novel cell cycle promoter of hypoxic fetal cardiomyocytes in mice.
Collapse
Affiliation(s)
- Ken Hashimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan.
| | - Aya Kodama
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Takeshi Honda
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan.,Department of Cardiovascular Surgery, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Akira Hanashima
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Yoshihiro Ujihara
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University, Tokyo, 113-8421, Japan
| | - Shin-Ichiro Nishimatsu
- Department of Molecular and Developmental Biology, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Satoshi Mohri
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
154
|
The use and abuse of Cre/Lox recombination to identify adult cardiomyocyte renewal rate and origin. Pharmacol Res 2017; 127:116-128. [PMID: 28655642 DOI: 10.1016/j.phrs.2017.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 11/20/2022]
Abstract
The adult mammalian heart, including the human, is unable to regenerate segmental losses after myocardial infarction. This evidence has been widely and repeatedly used up-to-today to suggest that the myocardium, contrary to most adult tissues, lacks an endogenous stem cell population or more specifically a bona-fide cardiomyocyte-generating progenitor cell of biological significance. In the last 15 years, however, the field has slowly evolved from the dogma that no new cardiomyocytes were produced from shortly after birth to the present consensus that new cardiomyocytes are formed throughout lifespan. This endogenous regenerative potential increases after various forms of injury. Nevertheless, the degree/significance and more importantly the origin of adult new cardiomyocytes remains strongly disputed. Evidence from independent laboratories has shown that the adult myocardium harbours bona-fide tissue-specific cardiac stem cells (CSCs). Their transplantation and in situ activation have demonstrated the CSCs regenerative potential and have been used to develop regeneration protocols which in pre-clinical tests have shown to be effective in the prevention and treatment of heart failure. Recent reports purportedly tracking the c-kit+CSC's fate using Cre/lox recombination in the mouse have challenged the existence and regenerative potential of the CSCs and have raised scepticism about their role in myocardial homeostasis and regeneration. The validity of these reports, however, is controversial because they failed to show that the experimental approach used is capable to both identify and tract the fate of the CSCs. Despite these serious shortcomings, in contraposition to the CSCs, these publications have proposed the proliferation of existing adult fully-matured cardiomyocytes as the relevant mechanism to explain cardiomyocyte renewal in the adult. This review critically ponders the available evidence showing that the adult mammalian heart possesses a definable myocyte-generating progenitor cell of biological significance. This endogenous regenerative potential is expected to provide the bases for novel approaches of myocardial repair in the near future.
Collapse
|
155
|
Galdos FX, Guo Y, Paige SL, VanDusen NJ, Wu SM, Pu WT. Cardiac Regeneration: Lessons From Development. Circ Res 2017; 120:941-959. [PMID: 28302741 DOI: 10.1161/circresaha.116.309040] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023]
Abstract
Palliative surgery for congenital heart disease has allowed patients with previously lethal heart malformations to survive and, in most cases, to thrive. However, these procedures often place pressure and volume loads on the heart, and over time, these chronic loads can cause heart failure. Current therapeutic options for initial surgery and chronic heart failure that results from failed palliation are limited, in part, by the mammalian heart's low inherent capacity to form new cardiomyocytes. Surmounting the heart regeneration barrier would transform the treatment of congenital, as well as acquired, heart disease and likewise would enable development of personalized, in vitro cardiac disease models. Although these remain distant goals, studies of heart development are illuminating the path forward and suggest unique opportunities for heart regeneration, particularly in fetal and neonatal periods. Here, we review major lessons from heart development that inform current and future studies directed at enhancing cardiac regeneration.
Collapse
Affiliation(s)
- Francisco X Galdos
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Yuxuan Guo
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Sharon L Paige
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Nathan J VanDusen
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Sean M Wu
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| | - William T Pu
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| |
Collapse
|
156
|
Ai S, Peng Y, Li C, Gu F, Yu X, Yue Y, Ma Q, Chen J, Lin Z, Zhou P, Xie H, Prendiville TW, Zheng W, Liu Y, Orkin SH, Wang DZ, Yu J, Pu WT, He A. EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent. eLife 2017; 6. [PMID: 28394251 PMCID: PMC5400508 DOI: 10.7554/elife.24570] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/09/2017] [Indexed: 12/19/2022] Open
Abstract
In proliferating cells, where most Polycomb repressive complex 2 (PRC2) studies have been performed, gene repression is associated with PRC2 trimethylation of H3K27 (H3K27me3). However, it is uncertain whether PRC2 writing of H3K27me3 is mechanistically required for gene silencing. Here, we studied PRC2 function in postnatal mouse cardiomyocytes, where the paucity of cell division obviates bulk H3K27me3 rewriting after each cell cycle. EED (embryonic ectoderm development) inactivation in the postnatal heart (EedCKO) caused lethal dilated cardiomyopathy. Surprisingly, gene upregulation in EedCKO was not coupled with loss of H3K27me3. Rather, the activating histone mark H3K27ac increased. EED interacted with histone deacetylases (HDACs) and enhanced their catalytic activity. HDAC overexpression normalized EedCKO heart function and expression of derepressed genes. Our results uncovered a non-canonical, H3K27me3-independent EED repressive mechanism that is essential for normal heart function. Our results further illustrate that organ dysfunction due to epigenetic dysregulation can be corrected by epigenetic rewiring. DOI:http://dx.doi.org/10.7554/eLife.24570.001
Collapse
Affiliation(s)
- Shanshan Ai
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Yong Peng
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Chen Li
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Fei Gu
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Xianhong Yu
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Yanzhu Yue
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Jinghai Chen
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Zhiqiang Lin
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Pingzhu Zhou
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Huafeng Xie
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, United States
| | | | - Wen Zheng
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Yuli Liu
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, United States.,Howard Hughes Medical Institute, Boston, United States
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Boston, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, United States
| | - Jia Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, United States
| | - Aibin He
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
157
|
Akerberg AA, Henner A, Stewart S, Stankunas K. Histone demethylases Kdm6ba and Kdm6bb redundantly promote cardiomyocyte proliferation during zebrafish heart ventricle maturation. Dev Biol 2017; 426:84-96. [PMID: 28372944 DOI: 10.1016/j.ydbio.2017.03.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/01/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Abstract
Trimethylation of lysine 27 on histone 3 (H3K27me3) by the Polycomb repressive complex 2 (PRC2) contributes to localized and inherited transcriptional repression. Kdm6b (Jmjd3) is a H3K27me3 demethylase that can relieve repression-associated H3K27me3 marks, thereby supporting activation of previously silenced genes. Kdm6b is proposed to contribute to early developmental cell fate specification, cardiovascular differentiation, and/or later steps of organogenesis, including endochondral bone formation and lung development. We pursued loss-of-function studies in zebrafish to define the conserved developmental roles of Kdm6b. kdm6ba and kdm6bb homozygous deficient zebrafish are each viable and fertile. However, loss of both kdm6ba and kdm6bb shows Kdm6b proteins share redundant and pleiotropic roles in organogenesis without impacting initial cell fate specification. In the developing heart, co-expressed Kdm6b proteins promote cardiomyocyte proliferation coupled with the initial stages of cardiac trabeculation. While newly formed trabecular cardiomyocytes display a striking transient decrease in bulk cellular H3K27me3 levels, this demethylation is independent of collective Kdm6b. Our results indicate a restricted and likely locus-specific role for Kdm6b demethylases during heart ventricle maturation rather than initial cardiogenesis.
Collapse
Affiliation(s)
- Alexander A Akerberg
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, United States; Department of Biology, University of Oregon, Eugene, OR 97403-1229, United States
| | - Astra Henner
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, United States
| | - Scott Stewart
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, United States
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, United States; Department of Biology, University of Oregon, Eugene, OR 97403-1229, United States.
| |
Collapse
|
158
|
Fernandez-Perez A, Munshi NV. Assessing Cardiomyocyte Subtypes Following Transcription Factor-mediated Reprogramming of Mouse Embryonic Fibroblasts. J Vis Exp 2017. [PMID: 28362413 DOI: 10.3791/55456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Direct reprogramming of one cell type into another has recently emerged as a powerful paradigm for regenerative medicine, disease modeling, and lineage specification. In particular, the conversion of fibroblasts into induced cardiomyocyte-like myocytes (iCLMs) by Gata4, Hand2, Mef2c, and Tbx5 (GHMT) represents an important avenue for generating de novo cardiac myocytes in vitro and in vivo. Recent evidence suggests that GHMT generates a greater diversity of cardiac subtypes than previously appreciated, thus underscoring the need for a systematic approach to conducting additional studies. Before direct reprogramming can be used as a therapeutic strategy, however, the mechanistic underpinnings of lineage conversion must be understood in detail to generate specific cardiac subtypes. Here we present a detailed protocol for generating iCLMs by GHMT-mediated reprogramming of mouse embryonic fibroblasts (MEFs). We outline methods for MEF isolation, retroviral production, and MEF infection to accomplish efficient reprogramming. To determine the subtype identity of reprogrammed cells, we detail a step-by-step approach for performing immunocytochemistry on iCLMs using a defined set of compatible antibodies. Methods for confocal microscopy, identification, and quantification of iCLMs and individual atrial (iAM), ventricular (iVM), and pacemaker (iPM) subtypes are also presented. Finally, we discuss representative results of prototypical direct reprogramming experiments and highlight important technical aspects of our protocol to ensure efficient lineage conversion. Taken together, our optimized protocol should provide a stepwise approach for investigators to conduct meaningful cardiac reprogramming experiments that require identification of individual CM subtypes.
Collapse
Affiliation(s)
| | - Nikhil V Munshi
- Department of Internal Medicine- Cardiology, UT Southwestern Medical Center;
| |
Collapse
|
159
|
Chen C, Termglinchan V, Karakikes I. Concise Review: Mending a Broken Heart: The Evolution of Biological Therapeutics. Stem Cells 2017; 35:1131-1140. [PMID: 28233392 DOI: 10.1002/stem.2602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/19/2016] [Accepted: 01/07/2017] [Indexed: 12/21/2022]
Abstract
Heart failure (HF), a common sequela of cardiovascular diseases, remains a staggering clinical problem, associated with high rates of morbidity and mortality worldwide. Advances in pharmacological, interventional, and operative management have improved patient care, but these interventions are insufficient to halt the progression of HF, particularly the end-stage irreversible loss of functional cardiomyocytes. Innovative therapies that could prevent HF progression and improve the function of the failing heart are urgently needed. Following successful preclinical studies, two main strategies have emerged as potential solutions: cardiac gene therapy and cardiac regeneration through stem and precursor cell transplantation. Many potential gene- and cell-based therapies have entered into clinical studies, intending to ameliorate cardiac dysfunction in patients with advanced HF. In this review, we focus on the recent advances in cell- and gene-based therapies in the context of cardiovascular disease, emphasizing the most advanced therapies. The principles and mechanisms of action of gene and cell therapies for HF are discussed along with the limitations of current approaches. Finally, we highlight the emerging technologies that hold promise to revolutionize the biological therapies for cardiovascular diseases. Stem Cells 2017;35:1131-1140.
Collapse
Affiliation(s)
- Caressa Chen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Vittavat Termglinchan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Ioannis Karakikes
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA.,Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
160
|
Li G, Chen J, Zhang X, He G, Tan W, Wu H, Li R, Chen Y, Gu R, Xie J, Xu B. Cardiac repair in a mouse model of acute myocardial infarction with trophoblast stem cells. Sci Rep 2017; 7:44376. [PMID: 28295048 PMCID: PMC5353648 DOI: 10.1038/srep44376] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/07/2017] [Indexed: 12/25/2022] Open
Abstract
Various stem cells have been explored for the purpose of cardiac repair. However, any individual stem cell population has not been considered as the ideal source. Recently, trophoblast stem cells (TSCs), a newly described stem cell type, have demonstrated extensive plasticity. The present study evaluated the therapeutic effect of TSCs transplantation for heart regeneration in a mouse model of myocardial infarction (MI) and made a direct comparison with the most commonly used mesenchymal stem cells (MSCs). Transplantation of TSCs and MSCs led to a remarkably improved cardiac function in contrast with the PBS control, but only the TSCs exhibited the potential of differentiation into cardiomyocytes in vivo. In addition, a significantly high proliferation level of both transplanted stem cells and resident cardiomyocytes was observed in the TSCs group. These findings primary revealed the therapeutic potential of TSCs in transplantation therapy for MI.
Collapse
Affiliation(s)
- Guannan Li
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Jianzhou Chen
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Xinlin Zhang
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Guixin He
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
- Department of Cardiology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, 530023, China
| | - Wei Tan
- Department of Cardiology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, 530023, China
| | - Han Wu
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Ran Li
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Yuhan Chen
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Rong Gu
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Jun Xie
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
161
|
Karra R, Poss KD. Redirecting cardiac growth mechanisms for therapeutic regeneration. J Clin Invest 2017; 127:427-436. [PMID: 28145902 DOI: 10.1172/jci89786] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heart failure is a major source of morbidity and mortality. Replacing lost myocardium with new tissue is a major goal of regenerative medicine. Unlike adult mammals, zebrafish and neonatal mice are capable of heart regeneration following cardiac injury. In both contexts, the regenerative program echoes molecular and cellular events that occur during cardiac development and morphogenesis, notably muscle creation through division of cardiomyocytes. Based on studies over the past decade, it is now accepted that the adult mammalian heart undergoes a low grade of cardiomyocyte turnover. Recent data suggest that this cardiomyocyte turnover can be augmented in the adult mammalian heart by redeployment of developmental factors. These findings and others suggest that stimulating endogenous regenerative responses can emerge as a therapeutic strategy for human cardiovascular disease.
Collapse
|
162
|
Omatsu-Kanbe M, Nozuchi N, Nishino Y, Mukaisho KI, Sugihara H, Matsuura H. Identification of cardiac progenitors that survive in the ischemic human heart after ventricular myocyte death. Sci Rep 2017; 7:41318. [PMID: 28120944 PMCID: PMC5264617 DOI: 10.1038/srep41318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
Atypically-shaped cardiomyocytes (ACMs) are beating heart cells identified in the cultures of cardiomyocyte-removed fractions obtained from adult mouse hearts. Since ACMs spontaneously develop into beating cells in the absence of hormones or chemicals, these cells are likely to be a type of cardiac progenitors rather than stem cells. “Native ACMs” are found as small interstitial cells among ventricular myocytes that co-express cellular prion protein (PrP) and cardiac troponin T (cTnT) in mouse and human heart tissues. However, the endogenous behavior of human ACMs is unclear. In the present study, we demonstrate that PrP+ cTnT+ cells are present in the human heart tissue with myocardial infarction (MI). These cells were mainly found in the border of necrotic cardiomyocytes caused by infarcts and also in the hibernating myocardium subjected to the chronic ischemia. The ratio of PrP+ cTnT+ cells to the total cells observed in the normal heart tissue section of mouse and human was estimated to range from 0.3–0.8%. Notably, living human PrP+ cTnT+ cells were identified in the cultures obtained at pathological autopsy despite exposure to lethal ischemic conditions for hours after death. These findings suggest that ACMs could survive in the ischemic human heart and develop into a sub-population of cardiac myocytes.
Collapse
Affiliation(s)
- Mariko Omatsu-Kanbe
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Nozomi Nozuchi
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Yuka Nishino
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Ken-Ichi Mukaisho
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Hiroyuki Sugihara
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
163
|
Wang Z, Schmull S, Zheng H, Shan J, Zou R, Xue S. Ascending Aortic Constriction Promotes Cardiomyocyte Proliferation in Neonatal Rats. Int Heart J 2017; 58:264-270. [PMID: 28077821 DOI: 10.1536/ihj.16-234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adult heart suffering from increased workload will undergo myocardial hypertrophy, subsequent cardiomyocyte (CM) death, and eventually heart failure. However, the effect of increasing afterload on the neonatal heart remains unknown. We performed ascending aortic constriction (AAC) in neonatal rats 8-12 hours after birth (P0, P indicates postpartum). Seven days after surgery, in vivo heart function was evaluated using cardiac ultrasonography. Haematoxylineosin and Masson staining were used to assess CM diameter and collagen deposition. Moreover, expression of both EdU and Ki67 were evaluated to determine DNA synthesis levels, and pH3 and aurora B as markers for mitosis in CMs. CM isolation was performed by heart perfusion at P0, P3, P5, and P7, respectively. CM number on P0 was 1.01 ± 0.29 × 106. We found that CM cell cycle activation was significantly increased among constricted hearts, as demonstrated by increased Ki67, EdU, pH3, and aurora B positive cells/1000 CMs. At day 7 (P7), constriction group hearts manifested increased wall thickness (0.55 ± 0.05 mm versus 0.85 ± 0.10 mm, P < 0.01, n = 6), and improved hemodynamics as well as left ventricular ejection fraction (65.5 ± 3.7% versus 77.7 ± 4.8%, P < 0.01, n = 6). Of note, the population of CMs was also markedly increased in the constriction group (2.92 ± 0.27 × 106 versus 3.41 ± 0.40 × 106, P < 0.05, n = 6). In summary, we found that during the first week after birth significant numbers of neonatal CMs can reenter the cell cycle. Ascending aortic constriction promotes neonatal rat CM proliferation resulting in 16.7% more CMs in the heart.
Collapse
Affiliation(s)
- Zhenhua Wang
- Department of Cardiovascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | | | | | | | | | | |
Collapse
|
164
|
Abstract
Cell therapies have been explored as a potential treatment avenue to treat heart diseases, such as myocardial infarction, doxorubicin-induced cardiomyopathy, and heart failure. Embryonic and adult stem cells (ASCs) have been examined in animal and clinical settings. Unlike embryonic and induced pluripotent stem cells, ASCs do not pose a threat to form teratomas, nor do they have immune system concerns, making them ideal for therapeutic use in humans. In this review, we will investigate different characteristics and sources of adult stem cells and progenitor cells, as well as determine their efficacy in cell transplantation in experimental and clinical trials. In addition, we will propose other research avenues that may promote further understanding and use of ASCs in therapeutic designs.
Collapse
Affiliation(s)
- Taylor A Johnson
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Dr., Orlando, FL, USA
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Dr., Orlando, FL, USA.
| |
Collapse
|
165
|
Shen L, Wang H, Bei Y, Cretoiu D, Cretoiu SM, Xiao J. Formation of New Cardiomyocytes in Exercise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:91-102. [DOI: 10.1007/978-981-10-4307-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
166
|
Brunner R, Lai HL, Deliu Z, Melman E, Geenen DL, Wang QT. Asxl2 -/- Mice Exhibit De Novo Cardiomyocyte Production during Adulthood. J Dev Biol 2016; 4:jdb4040032. [PMID: 29615595 PMCID: PMC5831801 DOI: 10.3390/jdb4040032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022] Open
Abstract
Heart attacks affect more than seven million people worldwide each year. A heart attack, or myocardial infarction, may result in the death of a billion cardiomyocytes within hours. The adult mammalian heart does not have an effective mechanism to replace lost cardiomyocytes. Instead, lost muscle is replaced with scar tissue, which decreases blood pumping ability and leads to heart failure over time. Here, we report that the loss of the chromatin factor ASXL2 results in spontaneous proliferation and cardiogenic differentiation of a subset of interstitial non-cardiomyocytes. The adult Asxl2-/- heart displays spontaneous overgrowth without cardiomyocyte hypertrophy. Thymidine analog labeling and Ki67 staining of 12-week-old hearts revealed 3- and 5-fold increases of proliferation rate for vimentin⁺ non-cardiomyocytes in Asxl2-/- over age- and sex-matched wildtype controls, respectively. Approximately 10% of proliferating non-cardiomyocytes in the Asxl2-/- heart express the cardiogenic marker NKX2-5, a frequency that is ~7-fold higher than that observed in the wildtype. EdU lineage tracing experiments showed that ~6% of pulsed-labeled non-cardiomyocytes in Asxl2-/- hearts differentiate into mature cardiomyocytes after a four-week chase, a phenomenon not observed for similarly pulse-chased wildtype controls. Taken together, these data indicate de novo cardiomyocyte production in the Asxl2-/- heart due to activation of a population of proliferative cardiogenic non-cardiomyocytes. Our study suggests the existence of an epigenetic barrier to cardiogenicity in the adult heart and raises the intriguing possibility of unlocking regenerative potential via transient modulation of epigenetic activity.
Collapse
Affiliation(s)
- Rachel Brunner
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Hsiao-Lei Lai
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
- PTM Biolabs Inc., Chicago, IL 60612, USA.
| | - Zane Deliu
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Elan Melman
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
- The School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA.
| | - David L Geenen
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Physician Assistant Studies, Grand Valley State University, Grand Rapids, MI 49503, USA.
| | - Q Tian Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
- Congressionally Directed Medical Research Programs, Frederick, MD 21702, USA.
| |
Collapse
|
167
|
Chen WCW, Wang Z, Missinato MA, Park DW, Long DW, Liu HJ, Zeng X, Yates NA, Kim K, Wang Y. Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration. SCIENCE ADVANCES 2016; 2:e1600844. [PMID: 28138518 PMCID: PMC5262469 DOI: 10.1126/sciadv.1600844] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/20/2016] [Indexed: 05/03/2023]
Abstract
Heart attack is a global health problem that leads to significant morbidity, mortality, and health care burden. Adult human hearts have very limited regenerative capability after injury. However, evolutionarily primitive species generally have higher regenerative capacity than mammals. The extracellular matrix (ECM) may contribute to this difference. Mammalian cardiac ECM may not be optimally inductive for cardiac regeneration because of the fibrotic, instead of regenerative, responses in injured adult mammalian hearts. Given the high regenerative capacity of adult zebrafish hearts, we hypothesize that decellularized zebrafish cardiac ECM (zECM) made from normal or healing hearts can induce mammalian heart regeneration. Using zebrafish and mice as representative species of lower vertebrates and mammals, we show that a single administration of zECM, particularly the healing variety, enables cardiac functional recovery and regeneration of adult mouse heart tissues after acute myocardial infarction. zECM-treated groups exhibit proliferation of the remaining cardiomyocytes and multiple cardiac precursor cell populations and reactivation of ErbB2 expression in cardiomyocytes. Furthermore, zECM exhibits pro-proliferative and chemotactic effects on human cardiac precursor cell populations in vitro. These contribute to the structural preservation and correlate with significantly higher cardiac contractile function, notably less left ventricular dilatation, and substantially more elastic myocardium in zECM-treated hearts than control animals treated with saline or decellularized adult mouse cardiac ECM. Inhibition of ErbB2 activity abrogates beneficial effects of zECM administration, indicating the possible involvement of ErbB2 signaling in zECM-mediated regeneration. This study departs from conventional focuses on mammalian ECM and introduces a new approach for cardiac tissue regeneration.
Collapse
Affiliation(s)
- William C. W. Chen
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zhouguang Wang
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Maria Azzurra Missinato
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dae Woo Park
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Daniel Ward Long
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Heng-Jui Liu
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA
| | - Nathan A. Yates
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Kang Kim
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yadong Wang
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Clinical Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Corresponding author.
| |
Collapse
|
168
|
Skelton RJP, Brady B, Khoja S, Sahoo D, Engel J, Arasaratnam D, Saleh KK, Abilez OJ, Zhao P, Stanley EG, Elefanty AG, Kwon M, Elliott DA, Ardehali R. CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells. Stem Cell Reports 2016; 6:95-108. [PMID: 26771355 PMCID: PMC4720015 DOI: 10.1016/j.stemcr.2015.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/14/2015] [Accepted: 11/18/2015] [Indexed: 01/17/2023] Open
Abstract
The generation of tissue-specific cell types from human embryonic stem cells (hESCs) is critical for the development of future stem cell-based regenerative therapies. Here, we identify CD13 and ROR2 as cell-surface markers capable of selecting early cardiac mesoderm emerging during hESC differentiation. We demonstrate that the CD13+/ROR2+ population encompasses pre-cardiac mesoderm, which efficiently differentiates to all major cardiovascular lineages. We determined the engraftment potential of CD13+/ROR2+ in small (murine) and large (porcine) animal models, and demonstrated that CD13+/ROR2+ progenitors have the capacity to differentiate toward cardiomyocytes, fibroblasts, smooth muscle, and endothelial cells in vivo. Collectively, our data show that CD13 and ROR2 identify a cardiac lineage precursor pool that is capable of successful engraftment into the porcine heart. These markers represent valuable tools for further dissection of early human cardiac differentiation, and will enable a detailed assessment of human pluripotent stem cell-derived cardiac lineage cells for potential clinical applications. CD13 and ROR2 separate hESC-derived MIXL1+ mesoderm from MIXL1+ endoderm CD13 and ROR2 select for a population of highly enriched pre-cardiac mesoderm CD13+/ROR2+ cells derived from hESCs engraft into porcine, but not murine hearts CD13+/ROR2+ cells differentiate to all major cardiac lineages in the pig heart
Collapse
Affiliation(s)
- Rhys J P Skelton
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine at UCLA, 675 Charles E Young Drive South, Room 3645, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA; Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Bevin Brady
- Bio-X Program, Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Suhail Khoja
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine at UCLA, 675 Charles E Young Drive South, Room 3645, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
| | - Debashis Sahoo
- Bio-X Program, Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James Engel
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine at UCLA, 675 Charles E Young Drive South, Room 3645, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
| | - Deevina Arasaratnam
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Kholoud K Saleh
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine at UCLA, 675 Charles E Young Drive South, Room 3645, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
| | - Oscar J Abilez
- Bio-X Program, Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Zhao
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine at UCLA, 675 Charles E Young Drive South, Room 3645, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Murray Kwon
- Division of Cardiothoracic Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - David A Elliott
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine at UCLA, 675 Charles E Young Drive South, Room 3645, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
169
|
Malliaras K, Vakrou S, Kapelios CJ, Nanas JN. Innate heart regeneration: endogenous cellular sources and exogenous therapeutic amplification. Expert Opin Biol Ther 2016; 16:1341-1352. [PMID: 27484198 DOI: 10.1080/14712598.2016.1218846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The -once viewed as heretical- concept of the adult mammalian heart as a dynamic organ capable of endogenous regeneration has recently gained traction. However, estimated rates of myocyte turnover vary wildly and the underlying mechanisms of cardiac plasticity remain controversial. It is still unclear whether the adult mammalian heart gives birth to new myocytes through proliferation of resident myocytes, through cardiomyogenic differentiation of endogenous progenitors or through both mechanisms. AREAS COVERED In this review, the authors discuss the cellular origins of postnatal mammalian cardiomyogenesis and touch upon therapeutic strategies that could potentially amplify innate cardiac regeneration. EXPERT OPINION The adult mammalian heart harbors a limited but detectable capacity for spontaneous endogenous regeneration. During normal aging, proliferation of pre-existing cardiomyocytes is the dominant mechanism for generation of new cardiomyocytes. Following myocardial injury, myocyte proliferation increases modestly, but differentiation of endogenous progenitor cells appears to also contribute to cardiomyogenesis (although agreement on the latter point is not universal). Since cardiomyocyte deficiency underlies almost all types of heart disease, development of therapeutic strategies that amplify endogenous regeneration to a clinically-meaningful degree is of utmost importance.
Collapse
Affiliation(s)
- Konstantinos Malliaras
- a 3rd Department of Cardiology , University of Athens School of Medicine , Athens , Greece
| | - Styliani Vakrou
- a 3rd Department of Cardiology , University of Athens School of Medicine , Athens , Greece
| | - Chris J Kapelios
- a 3rd Department of Cardiology , University of Athens School of Medicine , Athens , Greece
| | - John N Nanas
- a 3rd Department of Cardiology , University of Athens School of Medicine , Athens , Greece
| |
Collapse
|
170
|
Foglia MJ, Poss KD. Building and re-building the heart by cardiomyocyte proliferation. Development 2016; 143:729-40. [PMID: 26932668 DOI: 10.1242/dev.132910] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adult human heart does not regenerate significant amounts of lost tissue after injury. Rather than making new, functional muscle, human hearts are prone to scarring and hypertrophy, which can often lead to fatal arrhythmias and heart failure. The most-cited basis of this ineffective cardiac regeneration in mammals is the low proliferative capacity of adult cardiomyocytes. However, mammalian cardiomyocytes can avidly proliferate during fetal and neonatal development, and both adult zebrafish and neonatal mice can regenerate cardiac muscle after injury, suggesting that latent regenerative potential exists. Dissecting the cellular and molecular mechanisms that promote cardiomyocyte proliferation throughout life, deciphering why proliferative capacity normally dissipates in adult mammals, and deriving means to boost this capacity are primary goals in cardiovascular research. Here, we review our current understanding of how cardiomyocyte proliferation is regulated during heart development and regeneration.
Collapse
Affiliation(s)
- Matthew J Foglia
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
171
|
Hatzistergos KE, Saur D, Seidler B, Balkan W, Breton M, Valasaki K, Takeuchi LM, Landin AM, Khan A, Hare JM. Stimulatory Effects of Mesenchymal Stem Cells on cKit+ Cardiac Stem Cells Are Mediated by SDF1/CXCR4 and SCF/cKit Signaling Pathways. Circ Res 2016; 119:921-30. [PMID: 27481956 DOI: 10.1161/circresaha.116.309281] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/29/2016] [Indexed: 01/13/2023]
Abstract
RATIONALE Culture-expanded cells originating from cardiac tissue that express the cell surface receptor cKit are undergoing clinical testing as a cell source for heart failure and congenital heart disease. Although accumulating data support that mesenchymal stem cells (MSCs) enhance the efficacy of cardiac cKit(+) cells (CSCs), the underlying mechanism for this synergistic effect remains incompletely understood. OBJECTIVE To test the hypothesis that MSCs stimulate endogenous CSCs to proliferate, migrate, and differentiate via the SDF1/CXCR4 and stem cell factor/cKit pathways. METHODS AND RESULTS Using genetic lineage-tracing approaches, we show that in the postnatal murine heart, cKit(+) cells proliferate, migrate, and form cardiomyocytes, but not endothelial cells. CSCs exhibit marked chemotactic and proliferative responses when cocultured with MSCs but not with cardiac stromal cells. Antagonism of the CXCR4 pathway with AMD3100 (an SDF1/CXCR4 antagonist) inhibited MSC-induced CSC chemotaxis but stimulated CSC cardiomyogenesis (P<0.0001). Furthermore, MSCs enhanced CSC proliferation via the stem cell factor/cKit and SDF1/CXCR4 pathways (P<0.0001). CONCLUSIONS Together these findings show that MSCs exhibit profound, yet differential, effects on CSC migration, proliferation, and differentiation and suggest a mechanism underlying the improved cardiac regeneration associated with combination therapy using CSCs and MSCs. These findings have important therapeutic implications for cell-based therapy strategies that use mixtures of CSCs and MSCs.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Dieter Saur
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Barbara Seidler
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Wayne Balkan
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Matthew Breton
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Krystalenia Valasaki
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Lauro M Takeuchi
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Ana Marie Landin
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Aisha Khan
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.)
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, FL (K.E.H., W.B., M.B., K.V., L.M.T., A.M.L., A.K., J.M.H.); Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Germany (D.S., B.S.); and German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany (D.S., B.S.).
| |
Collapse
|
172
|
Xiang MSW, Kikuchi K. Endogenous Mechanisms of Cardiac Regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:67-131. [PMID: 27572127 DOI: 10.1016/bs.ircmb.2016.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zebrafish possess a remarkable capacity for cardiac regeneration throughout their lifetime, providing a model for investigating endogenous cellular and molecular mechanisms regulating myocardial regeneration. By contrast, adult mammals have an extremely limited capacity for cardiac regeneration, contributing to mortality and morbidity from cardiac diseases such as myocardial infarction and heart failure. However, the viewpoint of the mammalian heart as a postmitotic organ was recently revised based on findings that the mammalian heart contains multiple undifferentiated cell types with cardiogenic potential as well as a robust regenerative capacity during a short period early in life. Although it occurs at an extremely low level, continuous cardiomyocyte turnover has been detected in adult mouse and human hearts, which could potentially be enhanced to restore lost myocardium in damaged human hearts. This review summarizes and discusses recent advances in the understanding of endogenous mechanisms of cardiac regeneration.
Collapse
Affiliation(s)
- M S W Xiang
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst NSW, Australia
| | - K Kikuchi
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst NSW, Australia; St. Vincent's Clinical School, University of New South Wales, Kensington NSW, Australia.
| |
Collapse
|
173
|
Hatzistergos KE, Hare JM. Murine Models Demonstrate Distinct Vasculogenic and Cardiomyogenic cKit+ Lineages in the Heart. Circ Res 2016; 118:382-7. [PMID: 26846638 DOI: 10.1161/circresaha.115.308061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
After 2 recent genetic studies in mice addressing the developmental origins and regenerative activity of cardiac cKit+ cells, 2 additional reports by Sultana et al and Liu et al provide further information on the expression of cKit in the embryonic and adult hearts. Here, we synthesize the findings from the 4 distinct cKit models to gain insights into the biology of this important cell type.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- From the Interdisciplinary Stem Cell Institute (K.E.H.), and Department of Medicine, Division of Cardiology and Department of Molecular and Cellular Pharmacology (J.M.H.), Leonard M. Miller School of Medicine, University of Miami, FL
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (K.E.H.), and Department of Medicine, Division of Cardiology and Department of Molecular and Cellular Pharmacology (J.M.H.), Leonard M. Miller School of Medicine, University of Miami, FL.
| |
Collapse
|
174
|
Wystrychowski W, Patlolla B, Zhuge Y, Neofytou E, Robbins RC, Beygui RE. Multipotency and cardiomyogenic potential of human adipose-derived stem cells from epicardium, pericardium, and omentum. Stem Cell Res Ther 2016; 7:84. [PMID: 27296220 PMCID: PMC4907285 DOI: 10.1186/s13287-016-0343-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/30/2016] [Accepted: 05/17/2016] [Indexed: 12/24/2022] Open
Abstract
Background Acute myocardial infarction (MI) leads to an irreversible loss of proper cardiac function. Application of stem cell therapy is an attractive option for MI treatment. Adipose tissue has proven to serve as a rich source of stem cells (ADSCs). Taking into account the different morphogenesis, anatomy, and physiology of adipose tissue, we hypothesized that ADSCs from different adipose tissue depots may exert a diverse multipotency and cardiogenic potential. Methods The omental, pericardial, and epicardial adipose tissue samples were obtained from organ donors and patients undergoing heart transplantation at our institution. Human foreskin fibroblasts were used as the control group. Isolated ADSCs were analyzed for adipogenic and osteogenic differentiation capacity and proliferation potential. The immunophenotype and constitutive gene expression of alkaline phosphatase (ALP), GATA4, Nanog, and OCT4 were analyzed. DNA methylation inhibitor 5-azacytidine was exposed to the cells to stimulate the cardiogenesis. Finally, reprogramming towards cardiomyocytes was initiated with exogenous overexpression of seven transcription factors (ESRRG, GATA4, MEF2C, MESP1, MYOCD, TBX5, ZFPM2) previously applied successfully for fibroblast transdifferentiation toward cardiomyocytes. Expression of cardiac troponin T (cTNT) and alpha-actinin (Actn2) was analyzed 3 weeks after initiation of the cardiac differentiation. Results The multipotent properties of isolated plastic adherent cells were confirmed with expression of CD29, CD44, CD90, and CD105, as well as successful differentiation toward adipocytes and osteocytes; with the highest osteogenic and adipogenic potential for the epicardial and omental ADSCs, respectively. Epicardial ADSCs demonstrated a lower doubling time as compared with the pericardium and omentum-derived cells. Furthermore, epicardial ADSCs revealed higher constitutive expression of ALP and GATA4. Increased Actn2 and cTNT expression was observed after the transduction of seven reprogramming factors, with the highest expression in the epicardial ADSCs, as compared with the other ADSC subtypes and fibroblasts. Conclusions Human epicardial ADSCs revealed a higher cardiomyogenic potential as compared with the pericardial and omental ADSC subtypes as well as the fibroblast counterparts. Epicardial ADSCs may thus serve as the valuable subject for further studies on more effective methods of adult stem cell differentiation toward cardiomyocytes.
Collapse
Affiliation(s)
- Wojciech Wystrychowski
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, 300 Pasteur Dr, Stanford, CA, 94305, USA.
| | - Bhagat Patlolla
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, 300 Pasteur Dr, Stanford, CA, 94305, USA.
| | - Yan Zhuge
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Evgenios Neofytou
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Robert C Robbins
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Ramin E Beygui
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, 300 Pasteur Dr, Stanford, CA, 94305, USA.
| |
Collapse
|
175
|
Kurita H, Carreira VS, Fan Y, Jiang M, Naticchioni M, Koch S, Rubinstein J, Puga A. Ah receptor expression in cardiomyocytes protects adult female mice from heart dysfunction induced by TCDD exposure. Toxicology 2016; 355-356:9-20. [DOI: 10.1016/j.tox.2016.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/27/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
|
176
|
Xiao J, Chen P, Qu Y, Yu P, Yao J, Wang H, Fu S, Bei Y, Chen Y, Che L, Xu J. Telocytes in exercise-induced cardiac growth. J Cell Mol Med 2016; 20:973-9. [PMID: 26987685 PMCID: PMC4831349 DOI: 10.1111/jcmm.12815] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/16/2016] [Indexed: 12/16/2022] Open
Abstract
Exercise can induce physiological cardiac growth, which is featured by enlarged cardiomyocyte cell size and formation of new cardiomyocytes. Telocytes (TCs) are a recently identified distinct interstitial cell type, existing in many tissues and organs including heart. TCs have been shown to form a tandem with cardiac stem/progenitor cells in cardiac stem cell niches, participating in cardiac regeneration and repair. Although exercise‐induced cardiac growth has been confirmed as an important way to promote cardiac regeneration and repair, the response of cardiac TCs to exercise is still unclear. In this study, 4 weeks of swimming training was used to induce robust healthy cardiac growth. Exercise can induce an increase in cardiomyocyte cell size and formation of new cardiomyocytes as determined by Wheat Germ Lectin and EdU staining respectively. TCs were identified by three immunofluorescence stainings including double labelling for CD34/vimentin, CD34/platelet‐derived growth factor (PDGF) receptor‐α and CD34/PDGF receptor‐β. We found that cardiac TCs were significantly increased in exercised heart, suggesting that TCs might help control the activity of cardiac stem/progenitor cells, cardiomyocytes or endothelial cells. Adding cardiac TCs might help promote cardiac regeneration and renewal.
Collapse
Affiliation(s)
- Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Ping Chen
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China.,Department of Geriatrics, Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Science, Shanghai, China
| | - Yi Qu
- Department of Geriatrics, Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Science, Shanghai, China
| | - Pujiao Yu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianhua Yao
- Department of Cardiology, Shanghai Yangpu District Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongbao Wang
- Department of Cardiology, Shanghai Yangpu District Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siyi Fu
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Yan Chen
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Che
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiahong Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
177
|
Zebrowski DC, Becker R, Engel FB. Towards regenerating the mammalian heart: challenges in evaluating experimentally induced adult mammalian cardiomyocyte proliferation. Am J Physiol Heart Circ Physiol 2016; 310:H1045-54. [PMID: 26921436 DOI: 10.1152/ajpheart.00697.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/23/2016] [Indexed: 12/19/2022]
Abstract
In recent years, there has been a dramatic increase in research aimed at regenerating the mammalian heart by promoting endogenous cardiomyocyte proliferation. Despite many encouraging successes, it remains unclear if we are any closer to achieving levels of mammalian cardiomyocyte proliferation for regeneration as seen during zebrafish regeneration. Furthermore, current cardiac regenerative approaches do not clarify whether the induced cardiomyocyte proliferation is an epiphenomena or responsible for the observed improvement in cardiac function. Moreover, due to the lack of standardized protocols to determine cardiomyocyte proliferation in vivo, it remains unclear if one mammalian regenerative factor is more effective than another. Here, we discuss current methods to identify and evaluate factors for the induction of cardiomyocyte proliferation and challenges therein. Addressing challenges in evaluating adult cardiomyocyte proliferation will assist in determining 1) which regenerative factors should be pursued in large animal studies; 2) if a particular level of cell cycle regulation presents a better therapeutic target than another (e.g., mitogenic receptors vs. cyclins); and 3) which combinatorial approaches offer the greatest likelihood of success. As more and more regenerative studies come to pass, progress will require a system that not only can evaluate efficacy in an objective manner but can also consolidate observations in a meaningful way.
Collapse
Affiliation(s)
- David C Zebrowski
- Experimental Renal and Cardiovascular Research, Institute of Pathology, Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Robert Becker
- Experimental Renal and Cardiovascular Research, Institute of Pathology, Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Institute of Pathology, Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
178
|
Affiliation(s)
- Fan Jiang
- Department of Pathophysiology; School of Medicine; Shandong University; Jinan Shandong Province China
| |
Collapse
|
179
|
Alkass K, Panula J, Westman M, Wu TD, Guerquin-Kern JL, Bergmann O. No Evidence for Cardiomyocyte Number Expansion in Preadolescent Mice. Cell 2016; 163:1026-36. [PMID: 26544945 DOI: 10.1016/j.cell.2015.10.035] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/30/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022]
Abstract
The magnitude of cardiomyocyte generation in the adult heart has been heavily debated. A recent report suggests that during mouse preadolescence, cardiomyocyte proliferation leads to a 40% increase in the number of cardiomyocytes. Such an expansion would change our understanding of heart growth and have far-reaching implications for cardiac regeneration. Here, using design-based stereology, we found that cardiomyocyte proliferation accounted for 30% of postnatal DNA synthesis; however, we were unable to detect any changes in cardiomyocyte number after postnatal day 11. (15)N-thymidine and BrdU analyses provided no evidence for a proliferative peak in preadolescent mice. By contrast, cardiomyocyte multinucleation comprises 57% of postnatal DNA synthesis, followed by cardiomyocyte nuclear polyploidisation, contributing with 13% to DNA synthesis within the second and third postnatal weeks. We conclude that the majority of cardiomyocytes is set within the first postnatal week and that this event is followed by two waves of non-replicative DNA synthesis. This Matters Arising paper is in response to Naqvi et al. (2014), published in Cell. See also the associated Correspondence by Soonpaa et al. (2015), and the response by Naqvi et al. (2015), published in this issue.
Collapse
Affiliation(s)
- Kanar Alkass
- Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden; Department of Forensic Medicine, The National Board of Forensic Medicine, SE-17177 Stockholm, Sweden
| | - Joni Panula
- Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Mattias Westman
- Department of Medicine, Karolinska Institutet, SE-14186 Huddinge, Sweden
| | - Ting-Di Wu
- Institut Curie, Centre de Recherche, F-91405 Orsay, France; INSERM, U1196; CNRS, UMR9187, F-91405 Orsay, France
| | - Jean-Luc Guerquin-Kern
- Institut Curie, Centre de Recherche, F-91405 Orsay, France; INSERM, U1196; CNRS, UMR9187, F-91405 Orsay, France
| | - Olaf Bergmann
- Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| |
Collapse
|
180
|
Bhattacharya S, Asaithamby A. Ionizing radiation and heart risks. Semin Cell Dev Biol 2016; 58:14-25. [PMID: 26849909 DOI: 10.1016/j.semcdb.2016.01.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/07/2016] [Accepted: 01/29/2016] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease and cancer are the two leading causes of morbidity and mortality worldwide. As advancements in radiation therapy (RT) have significantly increased the number of cancer survivors, the risk of radiation-induced cardiovascular disease (RICD) in this group is a growing concern. Recent epidemiological data suggest that accidental or occupational exposure to low dose radiation, in addition to therapeutic ionizing radiation, can result in cardiovascular complications. The progression of radiation-induced cardiotoxicity often takes years to manifest but is also multifaceted, as the heart may be affected by a variety of pathologies. The risk of cardiovascular disease development in RT cancer survivors has been known for 40 years and several risk factors have been identified in the last two decades. However, most of the early work focused on clinical symptoms and manifestations, rather than understanding cellular processes regulating homeostatic processes of the cardiovascular system in response to radiation. Recent studies have suggested that a different approach may be needed to refute the risk of cardiovascular disease following radiation exposure. In this review, we will focus on how different radiation types and doses may induce cardiovascular complications, highlighting clinical manifestations and the mechanisms involved in the pathophysiology of radiation-induced cardiotoxicity. We will finally discuss how current and future research on heart development and homeostasis can help reduce the incidence of RICD.
Collapse
Affiliation(s)
- Souparno Bhattacharya
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
181
|
Chung R, Maulik A, Hamarneh A, Hochhauser D, Hausenloy DJ, Walker JM, Yellon DM. Effect of Remote Ischaemic Conditioning in Oncology Patients Undergoing Chemotherapy: Rationale and Design of the ERIC-ONC Study--A Single-Center, Blinded, Randomized Controlled Trial. Clin Cardiol 2016; 39:72-82. [PMID: 26807534 PMCID: PMC4864751 DOI: 10.1002/clc.22507] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/15/2015] [Indexed: 01/01/2023] Open
Abstract
Cancer survival continues to improve, and thus cardiovascular consequences of chemotherapy are increasingly important determinants of long‐term morbidity and mortality. Conventional strategies to protect the heart from chemotherapy have important hemodynamic or myelosuppressive side effects. Remote ischemic conditioning (RIC) using intermittent limb ischemia‐reperfusion reduces myocardial injury in the setting of percutaneous coronary intervention. Anthracycline cardiotoxicity and ischemia‐reperfusion injury share common biochemical pathways in cardiomyocytes. The potential for RIC as a novel treatment to reduce subclinical myocyte injury in chemotherapy has never been explored and will be investigated in the Effect of Remote Ischaemic Conditioning in Oncology (ERIC‐ONC) trial (clinicaltrials.gov NCT 02471885). The ERIC‐ONC trial is a single‐center, blinded, randomized, sham‐controlled study. We aim to recruit 128 adult oncology patients undergoing anthracycline‐based chemotherapy treatment, randomized in a 1:1 ratio into 2 groups: (1) sham procedure or (2) RIC, comprising 4, 5‐minute cycles of upper arm blood pressure cuff inflations and deflations, immediately before each cycle of chemotherapy. The primary outcome measure, defining cardiac injury, will be high‐sensitivity troponin‐T over 6 cycles of chemotherapy and 12 months follow‐up. Secondary outcome measures will include clinical, electrical, structural, and biochemical endpoints comprising major adverse cardiovascular clinical events, incidence of cardiac arrhythmia over 14 days at cycle 5/6, echocardiographic ventricular function, N‐terminal pro‐brain natriuretic peptide levels at 3 months follow‐up, and changes in mitochondrial DNA, micro‐RNA, and proteomics after chemotherapy. The ERIC‐ONC trial will determine the efficacy of RIC as a novel, noninvasive, nonpharmacological, low‐cost cardioprotectant in cancer patients undergoing anthracycline‐based chemotherapy.
Collapse
Affiliation(s)
- Robin Chung
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Angshuman Maulik
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Ashraf Hamarneh
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Daniel Hochhauser
- Research Department of Oncology, The Cancer Institute, University College London, London, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom.,Cardiovascular and Metabolic Disorders Program, Duke University-National University of Singapore Medical School, Singapore
| | - J Malcolm Walker
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| |
Collapse
|
182
|
Affiliation(s)
- Mo Li
- From the Gene Expression Laboratory, the Salk Institute for Biological Studies, La Jolla, CA (M.L., J.C.I.B.); and Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, Murcia, Spain (M.L.)
| | - Juan Carlos Izpisua Belmonte
- From the Gene Expression Laboratory, the Salk Institute for Biological Studies, La Jolla, CA (M.L., J.C.I.B.); and Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, Murcia, Spain (M.L.)
| |
Collapse
|
183
|
Pharmacological Therapy in the Heart as an Alternative to Cellular Therapy: A Place for the Brain Natriuretic Peptide? Stem Cells Int 2016; 2016:5961342. [PMID: 26880973 PMCID: PMC4735943 DOI: 10.1155/2016/5961342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/08/2015] [Accepted: 10/08/2015] [Indexed: 02/08/2023] Open
Abstract
The discovery that stem cells isolated from different organs have the ability to differentiate into mature beating cardiomyocytes has fostered considerable interest in developing cellular regenerative therapies to treat cardiac diseases associated with the loss of viable myocardium. Clinical studies evaluating the potential of stem cells (from heart, blood, bone marrow, skeletal muscle, and fat) to regenerate the myocardium and improve its functional status indicated that although the method appeared generally safe, its overall efficacy has remained modest. Several issues raised by these studies were notably related to the nature and number of injected cells, as well as the route and timing of their administration, to cite only a few. Besides the direct administration of cardiac precursor cells, a distinct approach to cardiac regeneration could be based upon the stimulation of the heart's natural ability to regenerate, using pharmacological approaches. Indeed, differentiation and/or proliferation of cardiac precursor cells is controlled by various endogenous mediators, such as growth factors and cytokines, which could thus be used as pharmacological agents to promote regeneration. To illustrate such approach, we present recent results showing that the exogenous administration of the natriuretic peptide BNP triggers “endogenous” cardiac regeneration, following experimental myocardial infarction.
Collapse
|
184
|
JUDD J, XUAN W, HUANG GN. Cellular and molecular basis of cardiac regeneration. Turk J Biol 2016. [DOI: 10.3906/biy-1504-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
185
|
Breckwoldt K, Weinberger F, Eschenhagen T. Heart regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1749-59. [PMID: 26597703 DOI: 10.1016/j.bbamcr.2015.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/06/2015] [Accepted: 11/12/2015] [Indexed: 01/14/2023]
Abstract
Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Kaja Breckwoldt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Florian Weinberger
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
186
|
Samse K, Hariharan N, Sussman MA. Personalizing cardiac regenerative therapy: At the heart of Pim1 kinase. Pharmacol Res 2015; 103:13-6. [PMID: 26563999 DOI: 10.1016/j.phrs.2015.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/24/2022]
Abstract
During cardiac aging, DNA damage and environmental stressors contribute to telomeric shortening and human cardiac progenitor cells acquire a senescent phenotype that leads to decreased stem cell function. Reversion of this phenotype through genetic modification is essential to advance regenerative therapy. Studies in the cardiac specific overexpression and subcellular targeting of Pim1 kinase demonstrate its influence on regeneration, proliferation, survival, metabolism and senescence. The cardioprotective effects of Pim1 modification can be picked apart and enhanced by targeting the kinase to distinct subcellular compartments, allowing for selection of specific phenotypic traits after molecular modification. In this perspective, we examine the therapeutic implications of Pim1 to encourage the personalization of cardiac regenerative therapy.
Collapse
Affiliation(s)
- Kaitlen Samse
- San Diego Heart Research Institute, San Diego State University, San Diego, CA 92182, United States
| | - Nirmala Hariharan
- San Diego Heart Research Institute, San Diego State University, San Diego, CA 92182, United States
| | - Mark A Sussman
- San Diego Heart Research Institute, San Diego State University, San Diego, CA 92182, United States.
| |
Collapse
|
187
|
Abstract
After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear. These same studies have also revealed an astonishing capacity for cardiac repair early in life that is largely lost with adult differentiation and maturation. Regardless, this renewed focus on cardiac regeneration as a therapeutic goal holds great promise as a novel strategy to address the leading cause of death in the developed world.
Collapse
Affiliation(s)
- Yiqiang Zhang
- Center for Cardiovascular Biology, Institute for Stem Cell Research and Division of Cardiology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington
| | - John Mignone
- Center for Cardiovascular Biology, Institute for Stem Cell Research and Division of Cardiology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington
| | - W Robb MacLellan
- Center for Cardiovascular Biology, Institute for Stem Cell Research and Division of Cardiology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
188
|
Ho YS, Tsai WH, Lin FC, Huang WP, Lin LC, Wu SM, Liu YR, Chen WP. Cardioprotective Actions of TGFβRI Inhibition Through Stimulating Autocrine/Paracrine of Survivin and Inhibiting Wnt in Cardiac Progenitors. Stem Cells 2015; 34:445-55. [PMID: 26418219 DOI: 10.1002/stem.2216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/17/2015] [Accepted: 09/14/2015] [Indexed: 01/10/2023]
Abstract
Heart failure due to myocardial infarction (MI) is a major cause of morbidity and mortality in the world. We found previously that A83-01, a TGFβRI inhibitor, could facilitate cardiac repair in post-MI mice and induce the expansion of a Nkx2.5 + cardiomyoblast population. This study aimed to investigate the key autocrine/paracrine factors regulated by A83-01 in the injured heart and the mechanism of cardioprotection by this molecule. Using a previously described transgenic Nkx2.5 enhancer-green fluorescent protein (GFP) reporter mice, we isolated cardiac progenitor cells (CPC) including Nkx2.5-GFP + (Nkx2.5+), sca1+, and Nkx2.5+/sca1 + cells. A83-01 was found to induce proliferation of these three subpopulations mainly through increasing Birc5 expression in the MEK/ERK-dependent pathway. Survivin, encoded by Birc5, could also directly proliferate Nkx2.5 + cells and enhance cultured cardiomyocytes viability. A83-01 could also reverse the downregulation of Birc5 in postinjured mice hearts (n = 6) to expand CPCs. Moreover, the increased Wnt3a in postinjured hearts could decrease CPCs, which could be reversed by A83-01 via inhibiting Fzd6 and Wnt1-induced signaling protein 1 expressions in CPCs. Next, we used inducible αMHC-cre/mTmG mice to label cardiomyocytes with GFP and nonmyocytes with RFP. We found A83-01 preserved more GFP + myocytes (68.6% ± 3.1% vs. 80.9% ± 3.0%; p < .05, n = 6) and fewer renewed RFP + myocytes (0.026% ± 0.005% vs. 0.062% ± 0.008%; p < .05, n = 6) in parallel with less cardiac fibrosis in isoprenaline-injected mice treated with A83-01. TGFβRI inhibition in an injured adult heart could both stimulate the autocrine/paracrine activity of survivin and inhibit Wnt in CPCs to mediate cardioprotection and improve cardiac function.
Collapse
Affiliation(s)
- Yu-Sian Ho
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Wan-Hsuan Tsai
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Fen-Chiung Lin
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei City, Taiwan.,Division of Cardiology, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Wei-Pang Huang
- Department of Life Science, National Taiwan University, Taipei City, Taiwan
| | - Lung-Chun Lin
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Sean M Wu
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Yu-Ru Liu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Wen-Pin Chen
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
189
|
Han C, Nie Y, Lian H, Liu R, He F, Huang H, Hu S. Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Res 2015; 25:1137-51. [PMID: 26358185 PMCID: PMC4650627 DOI: 10.1038/cr.2015.110] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/25/2015] [Accepted: 07/17/2015] [Indexed: 02/06/2023] Open
Abstract
Cardiac injury in neonatal 1-day-old mice stimulates a regenerative response characterized by reactive cardiomyocyte proliferation, which is distinguished from the fibrotic repair process in adults. Acute inflammation occurs immediately after heart injury and has generally been believed to exert a negative effect on heart regeneration by promoting scar formation in adults; however, little is known about the role of acute inflammation in the cardiac regenerative response in neonatal mice. Here, we show that acute inflammation induced cardiomyocyte proliferation after apical intramyocardial microinjection of immunogenic zymosan A particles into the neonatal mouse heart. We also found that cardiac injury-induced regenerative response was suspended after immunosuppression in neonatal mice, and that cardiomyocytes could not be reactivated to proliferate after neonatal heart injury in the absence of interleukin-6 (IL-6). Furthermore, cardiomyocyte-specific deletion of signal transducer and activator of transcription 3 (STAT3), the major downstream effector of IL-6 signaling, decreased reactive cardiomyocyte proliferation after apical resection. Our results indicate that acute inflammation stimulates the regenerative response in neonatal mouse heart, and suggest that modulation of inflammatory signals might have important implications in cardiac regenerative medicine.
Collapse
Affiliation(s)
- Chunyong Han
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Rui Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Feng He
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Huihui Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
190
|
Leone M, Magadum A, Engel FB. Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations. Am J Physiol Heart Circ Physiol 2015; 309:H1237-50. [PMID: 26342071 DOI: 10.1152/ajpheart.00559.2015] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The newt and the zebrafish have the ability to regenerate many of their tissues and organs including the heart. Thus, a major goal in experimental medicine is to elucidate the molecular mechanisms underlying the regenerative capacity of these species. A wide variety of experiments have demonstrated that naturally occurring heart regeneration relies on cardiomyocyte proliferation. Thus, major efforts have been invested to induce proliferation of mammalian cardiomyocytes in order to improve cardiac function after injury or to protect the heart from further functional deterioration. In this review, we describe and analyze methods currently used to evaluate cardiomyocyte proliferation. In addition, we summarize the literature on naturally occurring heart regeneration. Our analysis highlights that newt and zebrafish heart regeneration relies on factors that are also utilized in cardiomyocyte proliferation during mammalian fetal development. Most of these factors have, however, failed to induce adult mammalian cardiomyocyte proliferation. Finally, our analysis of mammalian neonatal heart regeneration indicates experiments that could resolve conflicting results in the literature, such as binucleation assays and clonal analysis. Collectively, cardiac regeneration based on cardiomyocyte proliferation is a promising approach for improving adult human cardiac function after injury, but it is important to elucidate the mechanisms arresting mammalian cardiomyocyte proliferation after birth and to utilize better assays to determine formation of new muscle mass.
Collapse
Affiliation(s)
- Marina Leone
- Experimental Renal and Cardiovascular Research, Institute of Pathology, Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; and
| | - Ajit Magadum
- Department of Cardiology, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Institute of Pathology, Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; and
| |
Collapse
|
191
|
|
192
|
Yan J, Zhang L, Sultana N, Park DS, Shekhar A, Bu L, Hu J, Razzaque S, Cai CL. A Murine Myh6MerCreMer Knock-In Allele Specifically Mediates Temporal Genetic Deletion in Cardiomyocytes after Tamoxifen Induction. PLoS One 2015. [PMID: 26204265 PMCID: PMC4512710 DOI: 10.1371/journal.pone.0133472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A mouse model that mediates temporal, specific, and efficient myocardial deletion with Cre-LoxP technology will be a valuable tool to determine the function of genes during heart formation. Mhy6 encodes a cardiac muscle specific protein: alpha-myosin heavy chain. Here, we generated a new Myh6-MerCreMer (Myh6(MerCreMer/+)) inducible Cre knock-in mouse by inserting a MerCreMer cassette into the Myh6 start codon. By crossing knock-in mice with Rosa26 reporter lines, we found the Myh6(MerCreMer/+) mice mediate complete Cre-LoxP recombination in cardiomyocytes after tamoxifen induction. X-gal staining and immunohistochemistry analysis revealed that Myh6-driven Cre recombinase was specifically activated in cardiomyocytes at embryonic and adult stages. Furthermore, echocardiography showed that Myh6(MerCreMer/+) mice maintained normal cardiac structure and function before and after tamoxifen administration. These results suggest that the new Myh6(MerCreMer/+) mouse can serve as a robust tool to dissect the roles of genes in heart development and function. Additionally, myocardial progeny during heart development and after cardiac injury can be traced using this mouse line.
Collapse
Affiliation(s)
- Jianyun Yan
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Lu Zhang
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Nishat Sultana
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - David S. Park
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States of America
| | - Akshay Shekhar
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States of America
| | - Lei Bu
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States of America
| | - Jun Hu
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Shegufta Razzaque
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Chen-Leng Cai
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
193
|
Abstract
The ability to repair damaged or lost tissues varies significantly among vertebrates. The regenerative ability of the heart is clinically very relevant, because adult teleost fish and amphibians can regenerate heart tissue, but we mammals cannot. Interestingly, heart regeneration is possible in neonatal mice, but this ability is lost within 7 days after birth. In zebrafish and neonatal mice, lost cardiomyocytes are regenerated via proliferation of spared, differentiated cardiomyocytes. While some cardiomyocyte turnover occurs in adult mammals, the cardiomyocyte production rate is too low in response to injury to regenerate the heart. Instead, mammalian hearts respond to injury by remodeling of spared tissue, which includes cardiomyocyte hypertrophy. Wnt/β-catenin signaling plays important roles during vertebrate heart development, and it is re-activated in response to cardiac injury. In this review, we discuss the known functions of this signaling pathway in injured hearts, its involvement in cardiac fibrosis and hypertrophy, and potential therapeutic approaches that might promote cardiac repair after injury by modifying Wnt/β-catenin signaling. Regulation of cardiac remodeling by this signaling pathway appears to vary depending on the injury model and the exact stages that have been studied. Thus, conflicting data have been published regarding a potential role of Wnt/β-catenin pathway in promotion of fibrosis and cardiomyocyte hypertrophy. In addition, the Wnt inhibitory secreted Frizzled-related proteins (sFrps) appear to have Wnt-dependent and Wnt-independent roles in the injured heart. Thus, while the exact functions of Wnt/β-catenin pathway activity in response to injury still need to be elucidated in the non-regenerating mammalian heart, but also in regenerating lower vertebrates, manipulation of the pathway is essential for creation of therapeutically useful cardiomyocytes from stem cells in culture. Hopefully, a detailed understanding of the in vivo role of Wnt/β-catenin signaling in injured mammalian and non-mammalian hearts will also contribute to the success of current efforts towards developing regenerative therapies.
Collapse
Affiliation(s)
- Gunes Ozhan
- Izmir Biomedicine and Genome Center (iBG-izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey ; Department of Medical Biology and Genetics, Dokuz Eylul University Medical School, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
194
|
Chen CH, Sereti KI, Wu BM, Ardehali R. Translational aspects of cardiac cell therapy. J Cell Mol Med 2015; 19:1757-72. [PMID: 26119413 PMCID: PMC4549027 DOI: 10.1111/jcmm.12632] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/13/2015] [Indexed: 02/06/2023] Open
Abstract
Cell therapy has been intensely studied for over a decade as a potential treatment for ischaemic heart disease. While initial trials using skeletal myoblasts, bone marrow cells and peripheral blood stem cells showed promise in improving cardiac function, benefits were found to be short-lived likely related to limited survival and engraftment of the delivered cells. The discovery of putative cardiac ‘progenitor’ cells as well as the creation of induced pluripotent stem cells has led to the delivery of cells potentially capable of electromechanical integration into existing tissue. An alternative strategy involving either direct reprogramming of endogenous cardiac fibroblasts or stimulation of resident cardiomyocytes to regenerate new myocytes can potentially overcome the limitations of exogenous cell delivery. Complimentary approaches utilizing combination cell therapy and bioengineering techniques may be necessary to provide the proper milieu for clinically significant regeneration. Clinical trials employing bone marrow cells, mesenchymal stem cells and cardiac progenitor cells have demonstrated safety of catheter based cell delivery, with suggestion of limited improvement in ventricular function and reduction in infarct size. Ongoing trials are investigating potential benefits to outcome such as morbidity and mortality. These and future trials will clarify the optimal cell types and delivery conditions for therapeutic effect.
Collapse
Affiliation(s)
- Cheng-Han Chen
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Bioengineering, UCLA, Los Angeles, CA, USA
| | - Konstantina-Ioanna Sereti
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Benjamin M Wu
- Department of Bioengineering, UCLA, Los Angeles, CA, USA
| | - Reza Ardehali
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
| |
Collapse
|
195
|
Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature 2015; 523:226-30. [PMID: 26098368 DOI: 10.1038/nature14582] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 05/22/2015] [Indexed: 12/28/2022]
Abstract
Although the adult mammalian heart is incapable of meaningful functional recovery following substantial cardiomyocyte loss, it is now clear that modest cardiomyocyte turnover occurs in adult mouse and human hearts, mediated primarily by proliferation of pre-existing cardiomyocytes. However, fate mapping of these cycling cardiomyocytes has not been possible thus far owing to the lack of identifiable genetic markers. In several organs, stem or progenitor cells reside in relatively hypoxic microenvironments where the stabilization of the hypoxia-inducible factor 1 alpha (Hif-1α) subunit is critical for their maintenance and function. Here we report fate mapping of hypoxic cells and their progenies by generating a transgenic mouse expressing a chimaeric protein in which the oxygen-dependent degradation (ODD) domain of Hif-1α is fused to the tamoxifen-inducible CreERT2 recombinase. In mice bearing the creERT2-ODD transgene driven by either the ubiquitous CAG promoter or the cardiomyocyte-specific α myosin heavy chain promoter, we identify a rare population of hypoxic cardiomyocytes that display characteristics of proliferative neonatal cardiomyocytes, such as smaller size, mononucleation and lower oxidative DNA damage. Notably, these hypoxic cardiomyocytes contributed widely to new cardiomyocyte formation in the adult heart. These results indicate that hypoxia signalling is an important hallmark of cycling cardiomyocytes, and suggest that hypoxia fate mapping can be a powerful tool for identifying cycling cells in adult mammals.
Collapse
|
196
|
Germani A, Foglio E, Capogrossi MC, Russo MA, Limana F. Generation of cardiac progenitor cells through epicardial to mesenchymal transition. J Mol Med (Berl) 2015; 93:735-48. [PMID: 25943780 DOI: 10.1007/s00109-015-1290-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 12/23/2022]
Abstract
The epithelial to mesenchymal transition (EMT) is a biological process that drives the formation of cells involved both in tissue repair and in pathological conditions, including tissue fibrosis and tumor metastasis by providing cancer cells with stem cell properties. Recent findings suggest that EMT is reactivated in the heart following ischemic injury. Specifically, epicardial EMT might be involved in the formation of cardiac progenitor cells (CPCs) that can differentiate into endothelial cells, smooth muscle cells, and, possibly, cardiomyocytes. The identification of mechanisms and signaling pathways governing EMT-derived CPC generation and differentiation may contribute to the development of a more efficient regenerative approach for adult heart repair. Here, we summarize key literature in the field.
Collapse
Affiliation(s)
- Antonia Germani
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy
| | | | | | | | | |
Collapse
|
197
|
Almeida SO, Skelton RJ, Adigopula S, Ardehali R. Arrhythmia in stem cell transplantation. Card Electrophysiol Clin 2015; 7:357-70. [PMID: 26002399 DOI: 10.1016/j.ccep.2015.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stem cell regenerative therapies hold promise for treating diseases across the spectrum of medicine. While significant progress has been made in the preclinical stages, the clinical application of cardiac cell therapy is limited by technical challenges. Certain methods of cell delivery, such as intramyocardial injection, carry a higher rate of arrhythmias. Other potential contributors to the arrhythmogenicity of cell transplantation include reentrant pathways caused by heterogeneity in conduction velocities between graft and host as well as graft automaticity. In this article, the arrhythmogenic potential of cell delivery to the heart is discussed.
Collapse
Affiliation(s)
- Shone O Almeida
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 100 UCLA Medical Plaza, Suite 630 East, Los Angeles, CA 90095, USA
| | - Rhys J Skelton
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 100 UCLA Medical Plaza, Suite 630 East, Los Angeles, CA 90095, USA; Murdoch Children's Research Institute, The Royal Children's Hospital, Cardiac Development, 50 Flemington Road, Parkville, Victoria 3052, Australia
| | - Sasikanth Adigopula
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 100 UCLA Medical Plaza, Suite 630 East, Los Angeles, CA 90095, USA
| | - Reza Ardehali
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 100 UCLA Medical Plaza, Suite 630 East, Los Angeles, CA 90095, USA; Eli and Edyth Broad Stem Cell Research Center, University of California, 675 Charles E Young Drive South, MRL Room 3780, Los Angeles, CA 90095, USA.
| |
Collapse
|
198
|
An emerging consensus on cardiac regeneration. Nat Med 2015; 20:1386-93. [PMID: 25473919 DOI: 10.1038/nm.3764] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/31/2014] [Indexed: 12/22/2022]
Abstract
Cardiac regeneration is a rapidly evolving and controversial field of research. The identification some 12 years ago of progenitor cells that reside within the heart spurred enthusiasm for cell-based regenerative therapies. However, recent evidence has called into question both the presence of a biologically important stem cell population in the heart and the ability of exogenously derived cells to promote regeneration through direct formation of new cardiomyocytes. Here, we discuss recent developments that suggest an emerging consensus on the ability of different cell types to regenerate the adult mammalian heart.
Collapse
|
199
|
Abstract
Exercise is the archetype of physiologic demands placed on the cardiovascular system. Acute responses provide an informative assessment of cardiovascular function and fitness, while repeated exercise promotes cardiovascular health and evokes important molecular, structural, and functional changes contributing to its effects in primary and secondary prevention. Here we examine the use of exercise in murine models, both as a phenotypic assay and as a provocative intervention. We first review the advantages and limitations of exercise testing for assessing cardiac function, then highlight the cardiac structural and cellular changes elicited by chronic exercise and key molecular pathways that mediate these effects.
Collapse
Affiliation(s)
- Colin Platt
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| | - Nicholas Houstis
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115
| | - Anthony Rosenzweig
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215.,Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
200
|
Abstract
During development, cardiogenesis is orchestrated by a family of heart progenitors that build distinct regions of the heart. Each region contains diverse cell types that assemble to form the complex structures of the individual cardiac compartments. Cardiomyocytes are the main cell type found in the heart and ensure contraction of the chambers and efficient blood flow throughout the body. Injury to the cardiac muscle often leads to heart failure due to the loss of a large number of cardiomyocytes and its limited intrinsic capacity to regenerate the damaged tissue, making it one of the leading causes of morbidity and mortality worldwide. In this Primer we discuss how insights into the molecular and cellular framework underlying cardiac development can be used to guide the in vitro specification of cardiomyocytes, whether by directed differentiation of pluripotent stem cells or via direct lineage conversion. Additional strategies to generate cardiomyocytes in situ, such as reactivation of endogenous cardiac progenitors and induction of cardiomyocyte proliferation, will also be discussed.
Collapse
Affiliation(s)
- Daniela Später
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Bioscience, CVMD iMED, AstraZeneca, Pepparedsleden 1, Mölndal 43150, Sweden
| | - Emil M Hansson
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Cell and Molecular Biology and Medicine, Karolinska Institutet, 35 Berzelius Vag, Stockholm 171 77, Sweden
| | - Lior Zangi
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Cardiology, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA Cardiovascular Research Center, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Kenneth R Chien
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Cell and Molecular Biology and Medicine, Karolinska Institutet, 35 Berzelius Vag, Stockholm 171 77, Sweden
| |
Collapse
|