151
|
Ghadessy FJ, Ong JL, Holliger P. Directed evolution of polymerase function by compartmentalized self-replication. Proc Natl Acad Sci U S A 2001; 98:4552-7. [PMID: 11274352 PMCID: PMC31872 DOI: 10.1073/pnas.071052198] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe compartmentalized self-replication (CSR), a strategy for the directed evolution of enzymes, especially polymerases. CSR is based on a simple feedback loop consisting of a polymerase that replicates only its own encoding gene. Compartmentalization serves to isolate individual self-replication reactions from each other. In such a system, adaptive gains directly (and proportionally) translate into genetic amplification of the encoding gene. CSR has applications in the evolution of polymerases with novel and useful properties. By using three cycles of CSR, we obtained variants of Taq DNA polymerase with 11-fold higher thermostability than the wild-type enzyme or with a >130-fold increased resistance to the potent inhibitor heparin. Insertion of an extra stage into the CSR cycle before the polymerase reaction allows its application to enzymes other than polymerases. We show that nucleoside diphosphate kinase and Taq polymerase can form such a cooperative CSR cycle based on reciprocal catalysis, whereby nucleoside diphosphate kinase produces the substrates required for the replication of its own gene. We also find that in CSR the polymerase genes themselves evolve toward more efficient replication. Thus, polymerase genes and their encoded polypeptides cooperate to maximize postselection copy number. CSR should prove useful for the directed evolution of enzymes, particularly DNA or RNA polymerases, as well as for the design and study of in vitro self-replicating systems mimicking prebiotic evolution and viral replication.
Collapse
Affiliation(s)
- F J Ghadessy
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | |
Collapse
|
152
|
Bebenek A, Dressman HK, Carver GT, Ng S, Petrov V, Yang G, Konigsberg WH, Karam JD, Drake JW. Interacting fidelity defects in the replicative DNA polymerase of bacteriophage RB69. J Biol Chem 2001; 276:10387-97. [PMID: 11133987 DOI: 10.1074/jbc.m007707200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA polymerases (gp43s) of the related bacteriophages T4 and RB69 are B family (polymerase alpha class) enzymes that determine the fidelity of phage DNA replication. A T4 whose gene 43 has been mutationally inactivated can be replicated by a cognate RB69 gp43 encoded by a recombinant plasmid in T4-infected Escherichia coli. We used this phage-plasmid complementation assay to obtain rapid and sensitive measurements of the mutational specificities of mutator derivatives of the RB69 enzyme. RB69 gp43s lacking proofreading function (Exo(-) enzymes) and/or substituted with alanine, serine, or threonine at the conserved polymerase function residue Tyr(567) (Pol(Y567(A/S/T)) enzymes) were examined for their effects on the reversion of specific mutations in the T4 rII gene and on forward mutation in the T4 rI gene. The results reveal that Tyr(567) is a key determinant of the fidelity of base selection and that the Pol and Exo functions are strongly coupled in this B family enzyme. In vitro assays show that the Pol(Y567A) Exo(-) enzyme generates mispairs more frequently but extends them less efficiently than does a Pol(+) Exo(-) enzyme. Other replicative DNA polymerases may control fidelity by strategies similar to those used by RB69 gp43.
Collapse
Affiliation(s)
- A Bebenek
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 2001; 65:1-43. [PMID: 11238984 PMCID: PMC99017 DOI: 10.1128/mmbr.65.1.1-43.2001] [Citation(s) in RCA: 1425] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of > 80 degrees C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described.
Collapse
Affiliation(s)
- C Vieille
- Biochemistry Department, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
154
|
Leonard PM, Smits SH, Sedelnikova SE, Brinkman AB, de Vos WM, van der Oost J, Rice DW, Rafferty JB. Crystal structure of the Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus. EMBO J 2001; 20:990-7. [PMID: 11230123 PMCID: PMC145483 DOI: 10.1093/emboj/20.5.990] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The LrpA protein from the hyperthermophilic archaeon Pyrococcus furiosus belongs to the Lrp/AsnC family of transcriptional regulatory proteins, of which the Escherichia coli leucine-responsive regulatory protein is the archetype. Its crystal structure has been determined at 2.9 A resolution and is the first for a member of the Lrp/AsnC family, as well as one of the first for a transcriptional regulator from a hyperthermophile. The structure consists of an N-terminal domain containing a helix-turn-helix (HtH) DNA-binding motif, and a C-terminal domain of mixed alpha/beta character reminiscent of a number of RNA- and DNA-binding domains. Pyrococcus furiosus LrpA forms a homodimer mainly through interactions between the antiparallel beta-sheets of the C-terminal domain, and further interactions lead to octamer formation. The LrpA structure suggests how the protein might bind and possibly distort its DNA substrate through use of its HtH motifs and control gene expression. A possible location for an effector binding site is proposed by using sequence comparisons with other members of the family coupled to mutational analysis.
Collapse
Affiliation(s)
- Philip M. Leonard
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK and Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6703 CT Wageningen, The Netherlands Corresponding author e-mail:
P.M.Leonard and S.H.J.Smits contributed equally to this work
| | - Sander H.J. Smits
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK and Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6703 CT Wageningen, The Netherlands Corresponding author e-mail:
P.M.Leonard and S.H.J.Smits contributed equally to this work
| | - Svetlana E. Sedelnikova
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK and Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6703 CT Wageningen, The Netherlands Corresponding author e-mail:
P.M.Leonard and S.H.J.Smits contributed equally to this work
| | - Arie B. Brinkman
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK and Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6703 CT Wageningen, The Netherlands Corresponding author e-mail:
P.M.Leonard and S.H.J.Smits contributed equally to this work
| | - Willem M. de Vos
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK and Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6703 CT Wageningen, The Netherlands Corresponding author e-mail:
P.M.Leonard and S.H.J.Smits contributed equally to this work
| | - John van der Oost
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK and Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6703 CT Wageningen, The Netherlands Corresponding author e-mail:
P.M.Leonard and S.H.J.Smits contributed equally to this work
| | - David W. Rice
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK and Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6703 CT Wageningen, The Netherlands Corresponding author e-mail:
P.M.Leonard and S.H.J.Smits contributed equally to this work
| | - John B. Rafferty
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK and Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6703 CT Wageningen, The Netherlands Corresponding author e-mail:
P.M.Leonard and S.H.J.Smits contributed equally to this work
| |
Collapse
|
155
|
Hashimoto H, Nishioka M, Fujiwara S, Takagi M, Imanaka T, Inoue T, Kai Y. Crystal structure of DNA polymerase from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. J Mol Biol 2001; 306:469-77. [PMID: 11178906 DOI: 10.1006/jmbi.2000.4403] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of family B DNA polymerase from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 (KOD DNA polymerase) was determined. KOD DNA polymerase exhibits the highest known extension rate, processivity and fidelity. We carried out the structural analysis of KOD DNA polymerase in order to clarify the mechanisms of those enzymatic features. Structural comparison of DNA polymerases from hyperthermophilic archaea highlighted the conformational difference in Thumb domains. The Thumb domain of KOD DNA polymerase shows an "opened" conformation. The fingers subdomain possessed many basic residues at the side of the polymerase active site. The residues are considered to be accessible to the incoming dNTP by electrostatic interaction. A beta-hairpin motif (residues 242-249) extends from the Exonuclease (Exo) domain as seen in the editing complex of the RB69 DNA polymerase from bacteriophage RB69. Many arginine residues are located at the forked-point (the junction of the template-binding and editing clefts) of KOD DNA polymerase, suggesting that the basic environment is suitable for partitioning of the primer and template DNA duplex and for stabilizing the partially melted DNA structure in the high-temperature environments. The stabilization of the melted DNA structure at the forked-point may be correlated with the high PCR performance of KOD DNA polymerase, which is due to low error rate, high elongation rate and processivity.
Collapse
Affiliation(s)
- H Hashimoto
- Department of Materials Chemistry, Graduate School of Engineering, Osaka University, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
156
|
Vande Berg BJ, Beard WA, Wilson SH. DNA structure and aspartate 276 influence nucleotide binding to human DNA polymerase beta. Implication for the identity of the rate-limiting conformational change. J Biol Chem 2001; 276:3408-16. [PMID: 11024043 DOI: 10.1074/jbc.m002884200] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structures of DNA polymerase (pol) beta bound to single-nucleotide gapped DNA had revealed that the lyase and pol domains form a "doughnut-shaped" structure altering the dNTP binding pocket in a fashion that is not observed when bound to non-gapped DNA. We have investigated dNTP binding to pol beta-DNA complexes employing steady-state and pre-steady-state kinetics. Although pol beta has a kinetic scheme similar to other DNA polymerases, polymerization by pol beta is limited by at least two partially rate-limiting steps: a conformational change after dNTP ground-state binding and product release. The equilibrium binding constant, K(d)((dNTP)), decreased and the insertion efficiency increased with a one-nucleotide gapped DNA substrate, as compared with non-gapped DNA. Valine substitution for Asp(276), which interacts with the base of the incoming nucleotide, increased the binding affinity for the incoming nucleotide indicating that the negative charge contributed by Asp(276) weakens binding and that an interaction between residue 276 with the incoming nucleotide occurs during ground-state binding. Since the interaction between Asp(276) and the nascent base pair is observed only in the "closed" conformation of pol beta, the increased free energy in ground-state binding for the mutant suggests that the subsequent rate-limiting conformational change is not the "open" to "closed" structural transition, but instead is triggered in the closed pol conformation.
Collapse
Affiliation(s)
- B J Vande Berg
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
157
|
Abstract
SUMMARY Replicative DNA polymerases are essential for the replication of the genomes of all living organisms. On the basis of sequence similarities they can be classified into three types. Type A polymerases are homologous to bacterial polymerases I, Type B comprises archaebacterial DNA polymerases and eukaryotic DNA polymerase alpha, and the bacterial polymerase III class make up type C. Structures have been solved for several type A and B polymerases, which share a similar architecture. The structure of type C is not yet known. The catalytic mechanism of all three types involves two metal-ion-binding acidic residues in the active site. Replicative polymerases are constitutively expressed, but their activity is regulated through the cell cycle and in response to different growth conditions.
Collapse
Affiliation(s)
- M Albà
- Wohl Virion Centre, Department of Immunology and Molecular Pathology, University College London, Cleveland Street, London, W1T 4JF, UK.
| |
Collapse
|
158
|
Fluorescence Correlation Spectroscopy in Nucleic Acid Analysis. SPRINGER SERIES IN CHEMICAL PHYSICS 2001. [DOI: 10.1007/978-3-642-59542-4_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
159
|
Dufour E, Méndez J, Lázaro JM, de Vega M, Blanco L, Salas M. An aspartic acid residue in TPR-1, a specific region of protein-priming DNA polymerases, is required for the functional interaction with primer terminal protein. J Mol Biol 2000; 304:289-300. [PMID: 11090274 DOI: 10.1006/jmbi.2000.4216] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A multiple sequence alignment of eukaryotic-type DNA polymerases led to the identification of two regions of amino acid residues that are only present in the group of DNA polymerases that make use of terminal proteins. (TPs) as primers to initiate DNA replication of linear genomes. These amino acid regions (named terminal region (TPR protein-1 and TPR-2) are inserted between the generally conserved motifs Dx(2)SLYP and Kx(3)NSxYG (TPR-1) and motifs Kx(3)NSxYG and YxDTDS (TPR-2) of the eukaryotic-type family of DNA polymerases. We carried out site-directed mutagenesis in two of the most conserved residues of phi29 DNA polymerase TPR-1 to study the possible role of this specific region. Two mutant DNA polymerases, in conserved residues AsP332 and Leu342, were purified and subjected to a detailed biochemical analysis of their enzymatic activities. Both mutant DNA polymerases were essentially normal when assayed for synthetic activities in DNA-primed reactions. However, mutant D332Y was drastically affected in phi29 TP-DNA replication as a consequence of a large reduction in the catalytic efficiency of the protein-primed reactions. The molecular basis of this defect is a non-functional interaction with TP that strongly reduces the activity of the DNA polymerase/TP heterodimer.
Collapse
Affiliation(s)
- E Dufour
- Centro de Biologia Molecular "Severo Ochoa", Universidad Autonoma, Cantoblanco, Madrid, 28049, Spain
| | | | | | | | | | | |
Collapse
|
160
|
de Vega M, Lázaro JM, Salas M. Phage phi 29 DNA polymerase residues involved in the proper stabilisation of the primer-terminus at the 3'-5' exonuclease active site. J Mol Biol 2000; 304:1-9. [PMID: 11071805 DOI: 10.1006/jmbi.2000.4178] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three highly conserved amino acid residues have been characterised here as ssDNA ligands at the 3'-5' exonuclease active site of o29 DNA polymerase. The functional role of Tyr59, His61 and Phe69 residues of o29 DNA polymerase (belonging to Exo II motif, previously described as containing an invariant catalytic aspartate residue and two highly conserved ssDNA ligands) was assayed by biochemical analysis of six site-directed mutants at those residues. These studies revealed that the mutations introduced severely affected their ssDNA binding capacity and, as a consequence, the 3'-5' exonuclease activity on ssDNA substrates was also severely impaired, producing drastic defects in the maintenance of replication fidelity. Crystal structures of Klenow fragment of Pol Ik and Thermococcus gorgonarius DNA polymerase complexed with ssDNA at their 3'-5' exonuclease active sites revealed that residues Gln419 of the former, and Tyr209 of the latter, the counterparts of His61 of o29 DNA polymerase, are making contacts with the penultimate phosphodiester bond of ssDNA substrate. Here, the functional role of this residue is described.
Collapse
Affiliation(s)
- M de Vega
- Centro de Biología Molecular "Severo Ochoa", Cantoblanco, Universidad Autónoma de Madrid, 28049, Spain
| | | | | |
Collapse
|
161
|
Böhlke K, Pisani FM, Vorgias CE, Frey B, Sobek H, Rossi M, Antranikian G. PCR performance of the B-type DNA polymerase from the thermophilic euryarchaeon Thermococcus aggregans improved by mutations in the Y-GG/A motif. Nucleic Acids Res 2000; 28:3910-7. [PMID: 11024170 PMCID: PMC110800 DOI: 10.1093/nar/28.20.3910] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effect of mutations in the highly conserved Y-GG/A motif of B-type DNA polymerases was studied in the DNA polymerase from the hyperthermophilic euryarchaeon Thermococcus aggregans. This motif plays a critical role in the balance between the synthesis and degradation of the DNA chain. Five different mutations of the tyrosine at position 387 (Tyr387-->Phe, Tyr387-->Trp, Tyr387-->His, Tyr387-->Asn and Tyr387-->Ser) revealed that an aromatic ring system is crucial for the synthetic activity of the enzyme. Amino acids at this position lacking the ring system (Ser and Asn) led to a significant decrease in polymerase activity and to enhanced exonuclease activity, which resulted in improved enzyme fidelity. Exchange of tyrosine to phenylalanine, tryptophan or histidine led to phenotypes with wild-type-like fidelity but enhanced PCR performance that could be related to a higher velocity of polymerisation. With the help of a modelled structure of T.aggregans DNA polymerase, the biochemical data were interpreted proposing that the conformation of the flexible loop containing the Y-GG/A motif is an important factor for the equilibrium between DNA polymerisation and exonucleolysis.
Collapse
Affiliation(s)
- K Böhlke
- Institute of Technical Microbiology, Technical University Hamburg-Harburg, Denickestrabetae 15, 21073 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
162
|
Abstract
Deamination of cytosine to uracil is one of the major pro-mutagenic events in DNA, causing G:C-->A:T transition mutations if not repaired before replication. Repair of uracil-DNA is achieved in a base-excision pathway initiated by a uracil-DNA glycosylase (UDG) enzyme of which four families have so far been identified. Family-1 enzymes are active against uracil in ssDNA and dsDNA, and recognise uracil explicitly in an extrahelical conformation via a combination of protein and bound-water interactions. Extrahelical recognition requires an efficient process of substrate location by 'base-sampling' probably by hopping or gliding along the DNA. Family-2 enzymes are mismatch specific and explicitly recognise the widowed guanine on the complementary strand rather than the extrahelical scissile pyrimidine. This allows a broader specificity so that some Family-2 enzymes can excise uracil and 3, N(4)-ethenocytosine from mismatches with guanine. Although structures are not yet available for Family-3 (SMUG) and Family-4 enzymes, sequence analysis suggests similar overall folds, and identifies common active site motifs but with a surprising lack of conservation of catalytic residues between members of the super-family.
Collapse
Affiliation(s)
- L H Pearl
- Section of Structural Biology and CRC DNA Repair Enzyme Group, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, SW3 6JB, London, UK.
| |
Collapse
|
163
|
Toth EA, Worby C, Dixon JE, Goedken ER, Marqusee S, Yeates TO. The crystal structure of adenylosuccinate lyase from Pyrobaculum aerophilum reveals an intracellular protein with three disulfide bonds. J Mol Biol 2000; 301:433-50. [PMID: 10926519 DOI: 10.1006/jmbi.2000.3970] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenylosuccinate lyase catalyzes two separate reactions in the de novo purine biosynthetic pathway. Through its dual action in this pathway, adenylosuccinate lyase plays an integral part in cellular replication and metabolism. Mutations in the human enzyme can result in severe neurological disorders, including mental retardation with autistic features. The crystal structure of adenylosuccinate lyase from the hyperthermophilic archaebacterium Pyrobaculum aerophilum has been determined to 2.1 A resolution. Although both the fold of the monomer and the architecture of the tetrameric assembly are similar to adenylosuccinate lyase from the thermophilic eubacterium Thermotoga maritima, the archaebacterial lyase contains unique features. Surprisingly, the structure of adenylosuccinate lyase from P. aerophilum reveals that this intracellular protein contains three disulfide bonds that contribute significantly to its stability against thermal and chemical denaturation. The observation of multiple disulfide bonds in the recombinant form of the enzyme suggests the need for further investigations into whether the intracellular environment of P. aerophilum, and possibly other hyperthermophiles, may be compatible with protein disulfide bond formation. In addition, the protein is shorter in P. aerophilum than it is in other organisms. This abbreviation results from an internal excision of a cluster of helices that may be involved in protein-protein interactions in other organisms and may relate to the observed clinical effects of human mutations in that region.
Collapse
Affiliation(s)
- E A Toth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | |
Collapse
|
164
|
Rodriguez AC, Park HW, Mao C, Beese LS. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7. J Mol Biol 2000; 299:447-62. [PMID: 10860752 DOI: 10.1006/jmbi.2000.3728] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The 2.25 A resolution crystal structure of a pol alpha family (family B) DNA polymerase from the hyperthermophilic marine archaeon Thermococcus sp. 9 degrees N-7 (9 degrees N-7 pol) provides new insight into the mechanism of pol alpha family polymerases that include essentially all of the eukaryotic replicative and viral DNA polymerases. The structure is folded into NH(2)- terminal, editing 3'-5' exonuclease, and polymerase domains that are topologically similar to the two other known pol alpha family structures (bacteriophage RB69 and the recently determined Thermococcus gorgonarius), but differ in their relative orientation and conformation. The 9 degrees N-7 polymerase domain structure is reminiscent of the "closed" conformation characteristic of ternary complexes of the pol I polymerase family obtained in the presence of their dNTP and DNA substrates. In the apo-9 degrees N-7 structure, this conformation appears to be stabilized by an ion pair. Thus far, the other apo-pol alpha structures that have been determined adopt open conformations. These results therefore suggest that the pol alpha polymerases undergo a series of conformational transitions during the catalytic cycle similar to those proposed for the pol I family. Furthermore, comparison of the orientations of the fingers and exonuclease (sub)domains relative to the palm subdomain that contains the pol active site suggests that the exonuclease domain and the fingers subdomain of the polymerase can move as a unit and may do so as part of the catalytic cycle. This provides a possible structural explanation for the interdependence of polymerization and editing exonuclease activities unique to pol alpha family polymerases. We suggest that the NH(2)-terminal domain of 9 degrees N-7 pol may be structurally related to an RNA-binding motif, which appears to be conserved among archaeal polymerases. The presence of such a putative RNA- binding domain suggests a mechanism for the observed autoregulation of bacteriophage T4 DNA polymerase synthesis by binding to its own mRNA. Furthermore, conservation of this domain could indicate that such regulation of pol expression may be a characteristic of archaea. Comparion of the 9 degrees N-7 pol structure to its mesostable homolog from bacteriophage RB69 suggests that thermostability is achieved by shortening loops, forming two disulfide bridges, and increasing electrostatic interactions at subdomain interfaces.
Collapse
Affiliation(s)
- A C Rodriguez
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | | | | | | |
Collapse
|
165
|
Abstract
Combinatorial library selections through the systematic evolution of ligands by exponential enrichment (SELEX) technique identify so-called nucleic acid aptamers that bind with high-affinity and specificity to a wide range of selected molecules. However, the modest chemical functionality of nucleic acids poses some limits on their versatility as binders and catalysts, and, furthermore, the sensitivity of pure RNA- and DNA-based aptamers to nucleases restricts their use as therapeutic and diagnostic agents. Here we review synthetic chemistries for modifying nucleotides that have been developed to enhance the affinity of aptamers for targets and to increase their stability in biological fluids. Implementation of in vitro selections with modified nucleotides promises to be an elegant technique for the creation of ligands with novel physical and chemical properties and is anticipated to have a significant impact on biotechnology, diagnostics and drug development. The current molecular designs and applications of modified nucleotides for in vitro selections are reviewed, along with a discussion of future developments expected to further the utility of this approach in both practical and theoretical terms.
Collapse
Affiliation(s)
- W Kusser
- Invitrogen Corporation, Carlsbad, CA 92008, USA.
| |
Collapse
|
166
|
Evans SJ, Fogg MJ, Mamone A, Davis M, Pearl LH, Connolly BA. Improving dideoxynucleotide-triphosphate utilisation by the hyper-thermophilic DNA polymerase from the archaeon Pyrococcus furiosus. Nucleic Acids Res 2000; 28:1059-66. [PMID: 10666444 PMCID: PMC102620 DOI: 10.1093/nar/28.5.1059] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/1999] [Revised: 01/14/2000] [Accepted: 01/14/2000] [Indexed: 02/02/2023] Open
Abstract
Polymerases from the Pol-I family which are able to efficiently use ddNTPs have demonstrated a much improved performance when used to sequence DNA. A number of mutations have been made to the gene coding for the Pol-II family DNA polymerase from the archaeon Pyrococcus furiosus with the aim of improving ddNTP utilisation. 'Rational' alterations to amino acids likely to be near the dNTP binding site (based on sequence homologies and structural information) did not yield the desired level of selectivity for ddNTPs. However, alteration at four positions (Q472, A486, L490 and Y497) gave rise to variants which incorporated ddNTPs better than the wild type, allowing sequencing reactions to be carried out at lowered ddNTP:dNTP ratios. Wild-type Pfu-Pol required a ddNTP:dNTP ratio of 30:1; values of 5:1 (Q472H), 1:3 (L490W), 1:5 (A486Y) and 5:1 (Y497A) were found with the four mutants; A486Y representing a 150-fold improvement over the wild type. A486, L490 and Y497 are on analpha-helix that lines the dNTP binding groove, but the side chains of the three amino acids point away from this groove; Q472 is in a loop that connects this alpha-helix to a second long helix. None of the four amino acids can contact the dNTP directly. Therefore, the increased selectivity for ddNTPs is likely to arise from two factors: (i) small overall changes in conformation that subtly alter the nucleotide triphosphate binding site such that ddNTPs become favoured; (ii) interference with a conformational change that may be critical both for the polymerisation step and discrimination between different nucleotide triphosphates.
Collapse
Affiliation(s)
- S J Evans
- Department of Biochemistry and Genetics, The University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
167
|
Abstract
Several decades of research have delineated the roles of many proteins central to DNA replication. Here we present a structural perspective of this work spanning the past 15 years and highlight several recent advances in the field.
Collapse
Affiliation(s)
- J L Keck
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
168
|
Zuccola HJ, Filman DJ, Coen DM, Hogle JM. The crystal structure of an unusual processivity factor, herpes simplex virus UL42, bound to the C terminus of its cognate polymerase. Mol Cell 2000; 5:267-78. [PMID: 10882068 DOI: 10.1016/s1097-2765(00)80422-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Herpes simplex virus DNA polymerase is a heterodimer composed of a catalytic subunit, Pol, and an unusual processivity subunit, UL42, which, unlike processivity factors such as PCNA, directly binds DNA. The crystal structure of a complex of the C-terminal 36 residues of Pol bound to residues 1-319 of UL42 reveals remarkable similarities between UL42 and PCNA despite contrasting biochemical properties and lack of sequence homology. Moreover, the Pol-UL42 interaction resembles the interaction between the cell cycle regulator p21 and PCNA. The structure and previous data suggest that the UL42 monomer interacts with DNA quite differently than does multimeric toroidal PCNA. The details of the structure lead to a model for the mechanism of UL42, provide the basis for drug design, and allow modeling of other proteins that lack sequence homology with UL42 or PCNA.
Collapse
Affiliation(s)
- H J Zuccola
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
169
|
Komori K, Ishino Y. Functional interdependence of DNA polymerizing and 3'-->5' exonucleolytic activities in Pyrococcus furiosus DNA polymerase I. PROTEIN ENGINEERING 2000; 13:41-7. [PMID: 10679529 DOI: 10.1093/protein/13.1.41] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pyrococcus furiosus DNA polymerase I (Pol BI) belongs to the family B (alpha-like) DNA polymerases and has a strong 3'-->5' exonucleolytic activity, in addition to its DNA polymerizing activity. To understand the relationship between the structure and function of this DNA polymerase, three deletion mutants, Delta1 (DeltaLeu746-Ser775), Delta2 (DeltaLeu717-Ser775) and Delta3 (DeltaHis672-Ser775), and two substituted mutants of Asp405, D405A and D405E, were constructed. These substitutions affected both the DNA polymerizing and the 3'-->5' exonucleolytic activities. The Delta1 mutant protein had DNA polymerizing activity with higher specific activity than that of the wild-type Pol BI, but retained only 10% of the exonucleolytic activity of the wild-type. The other two deletion mutants lost most of both activities. These results suggest that the DNA polymerizing and exonucleolytic activities are closely related to each other in the folded structure of this DNA polymerase, as proposed in the family B DNA polymerases.
Collapse
Affiliation(s)
- K Komori
- Department of Molecular Biology, Biomolecular Engineering Research Institute (BERI), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
| | | |
Collapse
|
170
|
Selmer M, Al-Karadaghi S, Hirokawa G, Kaji A, Liljas A. Crystal structure of Thermotoga maritima ribosome recycling factor: a tRNA mimic. Science 1999; 286:2349-52. [PMID: 10600747 DOI: 10.1126/science.286.5448.2349] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ribosome recycling factor (RRF), together with elongation factor G (EF-G), catalyzes recycling of ribosomes after one round of protein synthesis. The crystal structure of RRF was determined at 2.55 angstrom resolution. The protein has an unusual fold where domain I is a long three-helix bundle and domain II is a three-layer beta/alpha/beta sandwich. The molecule superimposes almost perfectly with a transfer RNA (tRNA) except that the amino acid-binding 3' end is missing. The mimicry suggests that RRF interacts with the posttermination ribosomal complex in a similar manner to a tRNA, leading to disassembly of the complex. The structural arrangement of this mimicry is entirely different from that of other cases of less pronounced mimicry of tRNA so far described.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Crystallography, X-Ray
- Models, Molecular
- Molecular Mimicry
- Molecular Sequence Data
- Nucleic Acid Conformation
- Peptide Elongation Factor G/chemistry
- Protein Biosynthesis
- Protein Conformation
- Protein Folding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Proteins/chemistry
- Proteins/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/metabolism
- Ribosomal Proteins
- Ribosomes/metabolism
- Sequence Alignment
- Thermotoga maritima/chemistry
- Thermotoga maritima/metabolism
Collapse
Affiliation(s)
- M Selmer
- Molecular Biophysics, Center for Chemistry and Chemical Engineering, Lund University, Post Office Box 124, SE-22100 Lund, Sweden
| | | | | | | | | |
Collapse
|
171
|
Zhao Y, Jeruzalmi D, Moarefi I, Leighton L, Lasken R, Kuriyan J. Crystal structure of an archaebacterial DNA polymerase. Structure 1999; 7:1189-99. [PMID: 10545321 DOI: 10.1016/s0969-2126(00)80053-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Members of the Pol II family of DNA polymerases are responsible for chromosomal replication in eukaryotes, and carry out highly processive DNA replication when attached to ring-shaped processivity clamps. The sequences of Pol II polymerases are distinct from those of members of the well-studied Pol I family of DNA polymerases. The DNA polymerase from the archaebacterium Desulfurococcus strain Tok (D. Tok Pol) is a member of the Pol II family that retains catalytic activity at elevated temperatures. RESULTS The crystal structure of D. Tok Pol has been determined at 2.4 A resolution. The architecture of this Pol II type DNA polymerase resembles that of the DNA polymerase from the bacteriophage RB69, with which it shares less than approximately 20% sequence identity. As in RB69, the central catalytic region of the DNA polymerase is located within the 'palm' subdomain and is strikingly similar in structure to the corresponding regions of Pol I type DNA polymerases. The structural scaffold that surrounds the catalytic core in D. Tok Pol is unrelated in structure to that of Pol I type polymerases. The 3'-5' proofreading exonuclease domain of D. Tok Pol resembles the corresponding domains of RB69 Pol and Pol I type DNA polymerases. The exonuclease domain in D. Tok Pol is located in the same position relative to the polymerase domain as seen in RB69, and on the opposite side of the palm subdomain compared to its location in Pol I type polymerases. The N-terminal domain of D. Tok Pol has structural similarity to RNA-binding domains. Sequence alignments suggest that this domain is conserved in the eukaryotic DNA polymerases delta and epsilon. CONCLUSIONS The structure of D. Tok Pol confirms that the modes of binding of the template and extrusion of newly synthesized duplex DNA are likely to be similar in both Pol II and Pol I type DNA polymerases. However, the mechanism by which the newly synthesized product transits in and out of the proofreading exonuclease domain has to be quite different. The discovery of a domain that seems to be an RNA-binding module raises the possibility that Pol II family members interact with RNA.
Collapse
Affiliation(s)
- Y Zhao
- Laboratories of Molecular Biophysics The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
172
|
Kelman Z, Pietrokovski S, Hurwitz J. Isolation and characterization of a split B-type DNA polymerase from the archaeon Methanobacterium thermoautotrophicum deltaH. J Biol Chem 1999; 274:28751-61. [PMID: 10497247 DOI: 10.1074/jbc.274.40.28751] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe here the isolation and characterization of a B-type DNA polymerase (PolB) from the archaeon Methanobacterium thermoautotrophicum DeltaH. Uniquely, the catalytic domains of M. thermoautotrophicum PolB are encoded from two different genes, a feature that has not been observed as yet in other polymerases. The two genes were cloned, and the proteins were overexpressed in Escherichia coli and purified individually and as a complex. We demonstrate that both polypeptides are needed to form the active polymerase. Similar to other polymerases constituting the B-type family, PolB possesses both polymerase and 3'-5' exonuclease activities. We found that a homolog of replication protein A from M. thermoautotrophicum inhibits the PolB activity. The inhibition of DNA synthesis by replication protein A from M. thermoautotrophicum can be relieved by the addition of M. thermoautotrophicum homologs of replication factor C and proliferating cell nuclear antigen. The possible roles of PolB in M. thermoautotrophicum replication are discussed.
Collapse
Affiliation(s)
- Z Kelman
- Department of Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | |
Collapse
|