151
|
Dai Y, Molazemhosseini A, Liu CC. In Vitro Quantified Determination of β-Amyloid 42 Peptides, a Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using a Simple, Cost-Effective Thin Gold Film Biosensor. BIOSENSORS-BASEL 2017; 7:bios7030029. [PMID: 28726727 PMCID: PMC5618035 DOI: 10.3390/bios7030029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/03/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
A simple in vitro biosensor for the detection of β-amyloid 42 in phosphate-buffered saline (PBS) and undiluted human serum was fabricated and tested based on our platform sensor technology. The bio-recognition mechanism of this biosensor was based on the effect of the interaction between antibody and antigen of β-amyloid 42 to the redox couple probe of K4Fe(CN)6 and K3Fe(CN)6. Differential pulse voltammetry (DPV) served as the transduction mechanism measuring the current output derived from the redox coupling reaction. The biosensor was a three-electrode electrochemical system, and the working and counter electrodes were 50 nm thin gold film deposited by a sputtering technique. The reference electrode was a thick-film printed Ag/AgCl electrode. Laser ablation technique was used to define the size and structure of the biosensor. Cost-effective roll-to-roll manufacturing process was employed in the fabrication of the biosensor, making it simple and relatively inexpensive. Self-assembled monolayers (SAM) of 3-Mercaptopropionic acid (MPA) was employed to covalently immobilize the thiol group on the gold working electrode. A carbodiimide conjugation approach using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) and N–hydroxysuccinimide (NHS) was undertaken for cross-linking antibody of β-amyloid 42 to the carboxylic groups on one end of the MPA. The antibody concentration of β-amyloid 42 used was 18.75 µg/mL. The concentration range of β-amyloid 42 in this study was from 0.0675 µg/mL to 0.5 µg/mL for both PBS and undiluted human serum. DPV measurements showed excellent response in this antigen concentration range. Interference study of this biosensor was carried out in the presence of Tau protein antigen. Excellent specificity of this β-amyloid 42 biosensor was demonstrated without interference from other species, such as T-tau protein.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Chemical & Biomolecular Engineering and Electronics Design Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Alireza Molazemhosseini
- Dip. Chimica Materiali e Ing. Chimica "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 MIlan, Italy.
| | - Chung Chiun Liu
- Department of Chemical & Biomolecular Engineering and Electronics Design Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
152
|
Bleiholder C, Bowers MT. The Solution Assembly of Biological Molecules Using Ion Mobility Methods: From Amino Acids to Amyloid β-Protein. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:365-386. [PMID: 28375705 PMCID: PMC6287953 DOI: 10.1146/annurev-anchem-071114-040304] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) methods are increasingly used to study noncovalent assemblies of peptides and proteins. This review focuses on the noncovalent self-assembly of amino acids and peptides, systems at the heart of the amyloid process that play a central role in a number of devastating diseases. Three different systems are discussed in detail: the 42-residue peptide amyloid-β42 implicated in the etiology of Alzheimer's disease, several amyloid-forming peptides with 6-11 residues, and the assembly of individual amino acids. We also discuss from a more fundamental perspective the processes that determine how quickly proteins and their assemblies denature when the analyte ion has been stripped of its solvent in an IMS-MS measurement and how to soften the measurement so that biologically meaningful data can be recorded.
Collapse
Affiliation(s)
- Christian Bleiholder
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306;
| | - Michael T Bowers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| |
Collapse
|
153
|
Wang D, Li S, Chen J, Liu L, Zhu X. The Effects of Astilbin on Cognitive Impairments in a Transgenic Mouse Model of Alzheimer's Disease. Cell Mol Neurobiol 2017; 37:695-706. [PMID: 27435287 PMCID: PMC11482085 DOI: 10.1007/s10571-016-0405-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023]
Abstract
Bioflavonoids are being utilised as neuroprotectants in the treatment of various neurological disorders, including Alzheimer's disease (AD). Astilbin, a bioflavanoid, has been reported to have potent neuroprotective effects, but its preventive effects on amyloid-β (Aβ)-induced, Alzheimer's disease-related, cognitive impairment, and the underlying mechanisms of these effects have not been well characterised. Five-month-old APPswe/PS1dE9 transgenic mice were randomly assigned to a vehicle group and two astilbin (either 20 or 40 mg/kg per day, intraperitoneally) groups. After 8 weeks of treatment, we observed beneficial effects of astilbin (40 mg/kg per day), including lessening learning and memory deficits and reducing plaque burden and Aβ levels. Furthermore, the expressions of both the cAMP responsive element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) were significantly increased and the disturbance of AKT/GSK-3β signalling pathway was markedly ameliorated in the hippocampus of astilbin-treated (40 mg/kg per day) group. Our data suggest that astilbin might be a potential therapeutic agent against AD.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, Building 6, Anhui, Jianxi District, Luoyang, 471003, China.
| | - Sanqiang Li
- Department of Biochemistry and Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang, China
| | - Jing Chen
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Jingba Road 2, Zhengzhou, 450014, China
| | - Ling Liu
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, Building 6, Anhui, Jianxi District, Luoyang, 471003, China
| | - Xiaoying Zhu
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, Building 6, Anhui, Jianxi District, Luoyang, 471003, China
| |
Collapse
|
154
|
Linh NH, Thu TTM, Tu L, Hu CK, Li MS. Impact of Mutations at C-Terminus on Structures and Dynamics of Aβ40 and Aβ42: A Molecular Simulation Study. J Phys Chem B 2017; 121:4341-4354. [DOI: 10.1021/acs.jpcb.6b12888] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nguyen Hoang Linh
- Institute for Computational Science and Technology
, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Biomedical
Engineering Department, University of Technology - VNU HCM
, 268 Ly Thuong
Kiet Street, District 10, Ho Chi Minh City, Vietnam
| | - Tran Thi Minh Thu
- Institute for Computational Science and Technology
, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Biomedical
Engineering Department, University of Technology - VNU HCM
, 268 Ly Thuong
Kiet Street, District 10, Ho Chi Minh City, Vietnam
| | - LyAnh Tu
- Institute for Computational Science and Technology
, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Biomedical
Engineering Department, University of Technology - VNU HCM
, 268 Ly Thuong
Kiet Street, District 10, Ho Chi Minh City, Vietnam
| | - Chin-Kun Hu
- Institute
of Physics, Academia Sinica
, 128 Academia Road Section 2, Taipei
11529, Taiwan
- National
Center for Theoretical Sciences, National Tsing Hua University
, 101 Kuang-Fu Road Section 2, Hsinch
30013, Taiwan
- Business
School, University of Shanghai for Science and Technology
, 334 Jun
Gong Road, Shanghai
200093, China
| | - Mai Suan Li
- Institute for Computational Science and Technology
, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Institute of Physics Polish Academy of Sciences
, Al. Lotnikow 32/46, 02-668
Warsaw, Poland
| |
Collapse
|
155
|
Huynh RA, Mohan C. Alzheimer's Disease: Biomarkers in the Genome, Blood, and Cerebrospinal Fluid. Front Neurol 2017; 8:102. [PMID: 28373857 PMCID: PMC5357660 DOI: 10.3389/fneur.2017.00102] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/01/2017] [Indexed: 01/20/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that slowly destroys memory and thinking skills, resulting in behavioral changes. It is estimated that nearly 36 million are affected globally with numbers reaching 115 million by 2050. AD can only be definitively diagnosed at autopsy since its manifestations of senile plaques and neurofibrillary tangles throughout the brain cannot yet be fully captured with current imaging technologies. Current AD therapeutics have also been suboptimal. Besides identifying markers that distinguish AD from controls, there has been a recent drive to identify better biomarkers that can predict the rates of cognitive decline and neocortical amyloid burden in those who exhibit preclinical, prodromal, or clinical AD. This review covers biomarkers of three main types: genes, cerebrospinal fluid-derived, and blood-derived biomarkers. Looking ahead, cutting-edge OMICs technologies, including proteomics and metabolomics, ought to be fully tapped in order to mine even better biomarkers for AD that are more predictive.
Collapse
Affiliation(s)
- Rose Ann Huynh
- Department of Biomedical Engineering, University of Houston , Houston, TX , USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston , Houston, TX , USA
| |
Collapse
|
156
|
Dutta M, Mattaparthi VSK. In silico investigation on the inhibition of Aβ 42 aggregation by Aβ 40 peptide by potential of mean force study. J Biomol Struct Dyn 2017; 36:741-752. [PMID: 28278027 DOI: 10.1080/07391102.2017.1296783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent experimental data revealed that small, soluble Amyloid beta (Aβ42) oligomers, especially dimers impair synaptic plasticity and memory leading to Alzheimer's disease. Here, we have studied dimerization of Aβ42/Aβ42 homo-dimer and Aβ40/Aβ42 hetero-dimer in terms of free energy profile by all-atom simulations using the ff99SB force field. We have found that in the presence of Aβ40 peptide, there exists a strong tendency to form a hetero-dimer with Aβ42 peptide, suggesting that a possible co-oligomerization. Furthermore, we have investigated the effects of Aβ40 on the Aβ42 peptide. Our study also shows that in presence of Aβ40, the beta-content of Aβ42 monomer is reduced. Additionally, certain residues important for bending in Aβ42 peptide attained an increased flexibility in the presence of Aβ40. The salt-bridge destabilization also manifested the impact of Aβ40 on Aβ42 peptide as a whole. Based on this, one may expect that Aβ40 inhibits the aggregation propensity of Aβ42. Moreover, the binding free energy obtained by the molecular mechanics-Poisson-Boltzmann surface area method also revealed a strong affinity between the two isoforms thereby suggests that Aβ40 binding induces conformational change in Aβ42. Our results suggest that co-oligomerization of Aβ isoforms may play a substantial role in Alzheimer's disease.
Collapse
Affiliation(s)
- Mary Dutta
- a Department of Molecular Biology and Biotechnology , Tezpur University , Tezpur 784 028 , Assam , India
| | | |
Collapse
|
157
|
Specific interactions between amyloid-β peptides in an amyloid-β hexamer with three-fold symmetry: Ab initio fragment molecular orbital calculations in water. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.01.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
158
|
Fu L, Sun Y, Guo Y, Chen Y, Yu B, Zhang H, Wu J, Yu X, Kong W, Wu H. Comparison of neurotoxicity of different aggregated forms of Aβ40, Aβ42 and Aβ43 in cell cultures. J Pept Sci 2017; 23:245-251. [DOI: 10.1002/psc.2975] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/03/2017] [Accepted: 01/15/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Lu Fu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
| | - Yao Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
| | - Yongqing Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences; Jilin University; Changchun 130012 China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences; Jilin University; Changchun 130012 China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences; Jilin University; Changchun 130012 China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences; Jilin University; Changchun 130012 China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences; Jilin University; Changchun 130012 China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences; Jilin University; Changchun 130012 China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences; Jilin University; Changchun 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences; Jilin University; Changchun 130012 China
| |
Collapse
|
159
|
Zeng J, Li T, Gong M, Jiang W, Yang T, Chen J, Liu Y, Chen L. Marginal Vitamin A Deficiency Exacerbates Memory Deficits Following Aβ1-42 Injection in Rats. Curr Alzheimer Res 2017; 14:562-570. [PMID: 28017127 PMCID: PMC5421133 DOI: 10.2174/1567205013666161223162110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/09/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although clinical vitamin A deficiency (VAD), which is a public health problem developing throughout the world, has been well controlled, marginal vitamin A deficiency (MVAD) is far more prevalent, especially among pregnant women and preschool children in China. Increasing evidence suggests that VAD is involved in the pathogenesis of Alzheimer's disease (AD). However, whether MVAD, beginning early in life, increases the risk of developing AD has yet to be determined. OBJECTIVE The goal of this study was to investigate the long-term effects of MVAD on the pathogenesis of AD in rats. METHOD An MVAD model was generated from maternal MVAD rats and maintained with an MVAD diet after weaning. The males were bilaterally injected with aggregated amyloid β (Aβ)1-42 into the CA3 area of the hippocampus, and the AD-associated cognitive and neuropathological phenotypes were examined. RESULTS We found that MVAD feeding significantly aggravated Aβ1-42-induced learning and memory deficits in the Morris water maze test. MVAD did not induce the mRNA expression of retinoic acid receptors (RARs), a disintegrin and metalloprotease 10 (ADAM10) or insulin-degrading enzyme (IDE) in Aβ1-42-injected rats. Moreover, RARα and RARγ mRNA were positively correlated with ADAM10 mRNA, whereas RARβ mRNA was positively correlated with IDE mRNA. CONCLUSION Our study suggests that MVAD beginning from the embryonic period perturbs the ADassociated genes, resulting in an enhanced risk of developing AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Chen
- Address correspondence to this author at the No.136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014 P.R. China; Tel: 86-23-61966251; Fax: 86-23-61966253; E-mail:
| |
Collapse
|
160
|
Kim HY, Lee D, Ryu KY, Choi I. A gold nanoparticle-mediated rapid in vitro assay of anti-aggregation reagents for amyloid β and its validation. Chem Commun (Camb) 2017; 53:4449-4452. [DOI: 10.1039/c7cc00358g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A rapidin vitrocolorimetric method for screening anti-aggregation reagents of amyloid β is reported by using gold nanoparticles.
Collapse
Affiliation(s)
- Hye Young Kim
- Nanobiointerface Laboratory
- Department of Life Science
- University of Seoul
- Seoul 130-743
- Republic of Korea
| | - Donghee Lee
- Nanobiointerface Laboratory
- Department of Life Science
- University of Seoul
- Seoul 130-743
- Republic of Korea
| | - Kwon-Yul Ryu
- Nanobiointerface Laboratory
- Department of Life Science
- University of Seoul
- Seoul 130-743
- Republic of Korea
| | - Inhee Choi
- Nanobiointerface Laboratory
- Department of Life Science
- University of Seoul
- Seoul 130-743
- Republic of Korea
| |
Collapse
|
161
|
Tran J, Chang D, Hsu F, Wang H, Guo Z. Cross-seeding between Aβ40 and Aβ42 in Alzheimer's disease. FEBS Lett 2016; 591:177-185. [PMID: 27981583 DOI: 10.1002/1873-3468.12526] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 12/23/2022]
Abstract
Aβ42 is the major component of parenchymal plaques in the brain of Alzheimer's patients, while Aβ40 is the major component of cerebrovascular plaques. Since Aβ40 and Aβ42 coexist in the brain, understanding the interaction between Aβ40 and Aβ42 during their aggregation is important to delineate the molecular mechanism underlying Alzheimer's disease. Here, we present a rigorous and systematic study of the cross-seeding effects between Aβ40 and Aβ42. We show that Aβ40 fibril seeds can promote Aβ42 aggregation in a concentration-dependent manner, and vice versa. Our results also suggest that seeded aggregation and spontaneous aggregation may be two separate pathways. These findings may partly resolve conflicting observations in the literature regarding the cross-seeding effects between Aβ40 and Aβ42.
Collapse
Affiliation(s)
- Joyce Tran
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Dennis Chang
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Frederick Hsu
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Hongsu Wang
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Zhefeng Guo
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
162
|
Bode DC, Baker MD, Viles JH. Ion Channel Formation by Amyloid-β42 Oligomers but Not Amyloid-β40 in Cellular Membranes. J Biol Chem 2016; 292:1404-1413. [PMID: 27927987 DOI: 10.1074/jbc.m116.762526] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/24/2016] [Indexed: 12/23/2022] Open
Abstract
A central hallmark of Alzheimer's disease is the presence of extracellular amyloid plaques chiefly consisting of amyloid-β (Aβ) peptides in the brain interstitium. Aβ largely exists in two isoforms, 40 and 42 amino acids long, but a large body of evidence points to Aβ(1-42) rather than Aβ(1-40) as the cytotoxic form. One proposed mechanism by which Aβ exerts toxicity is the formation of ion channel pores that disrupt intracellular Ca2+ homeostasis. However, previous studies using membrane mimetics have not identified any notable difference in the channel forming properties between Aβ(1-40) and Aβ(1-42). Here, we tested whether a more physiological environment, membranes excised from HEK293 cells of neuronal origin, would reveal differences in the relative channel forming ability of monomeric, oligomeric, and fibrillar forms of both Aβ(1-40) and Aβ(1-42). Aβ preparations were characterized with transmission electron microscopy and thioflavin T fluorescence. Aβ was then exposed to the extracellular face of excised membranes, and transmembrane currents were monitored using patch clamp. Our data indicated that Aβ(1-42) assemblies in oligomeric preparations form voltage-independent, non-selective ion channels. In contrast, Aβ(1-40) oligomers, fibers, and monomers did not form channels. Ion channel conductance results suggested that Aβ(1-42) oligomers, but not monomers and fibers, formed three distinct pore structures with 1.7-, 2.1-, and 2.4-nm pore diameters. Our findings demonstrate that only Aβ(1-42) contains unique structural features that facilitate membrane insertion and channel formation, now aligning ion channel formation with the differential neurotoxic effect of Aβ(1-40) and Aβ(1-42) in Alzheimer's disease.
Collapse
Affiliation(s)
- David C Bode
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom and
| | - Mark D Baker
- the Blizard Institute, Centre for Neuroscience and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, 4 Newark Street, London E1 2AT, United Kingdom
| | - John H Viles
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom and
| |
Collapse
|
163
|
Kehoe PG, Wong S, Al Mulhim N, Palmer LE, Miners JS. Angiotensin-converting enzyme 2 is reduced in Alzheimer's disease in association with increasing amyloid-β and tau pathology. ALZHEIMERS RESEARCH & THERAPY 2016; 8:50. [PMID: 27884212 PMCID: PMC5123239 DOI: 10.1186/s13195-016-0217-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hyperactivity of the classical axis of the renin-angiotensin system (RAS), mediated by angiotensin II (Ang II) activation of the angiotensin II type 1 receptor (AT1R), is implicated in the pathogenesis of Alzheimer's disease (AD). Angiotensin-converting enzyme-2 (ACE-2) degrades Ang II to angiotensin 1-7 (Ang (1-7)) and counter-regulates the classical axis of RAS. We have investigated the expression and distribution of ACE-2 in post-mortem human brain tissue in relation to AD pathology and classical RAS axis activity. METHODS We measured ACE-2 activity by fluorogenic peptide substrate assay in mid-frontal cortex (Brodmann area 9) in a cohort of AD (n = 90) and age-matched non-demented controls (n = 59) for which we have previous data on ACE-1 activity, amyloid β (Aβ) level and tau pathology, as well as known ACE1 (rs1799752) indel polymorphism, apolipoprotein E (APOE) genotype, and cerebral amyloid angiopathy severity scores. RESULTS ACE-2 activity was significantly reduced in AD compared with age-matched controls (P < 0.0001) and correlated inversely with levels of Aβ (r = -0.267, P < 0.001) and phosphorylated tau (p-tau) pathology (r = -0.327, P < 0.01). ACE-2 was reduced in individuals possessing an APOE ε4 allele (P < 0.05) and was associated with ACE1 indel polymorphism (P < 0.05), with lower ACE-2 activity in individuals homozygous for the ACE1 insertion AD risk allele. ACE-2 activity correlated inversely with ACE-1 activity (r = -0.453, P < 0.0001), and the ratio of ACE-1 to ACE-2 was significantly elevated in AD (P < 0.0001). Finally, we show that the ratio of Ang II to Ang (1-7) (a proxy measure of ACE-2 activity indicating conversion of Ang II to Ang (1-7)) is reduced in AD. CONCLUSIONS Together, our findings indicate that ACE-2 activity is reduced in AD and is an important regulator of the central classical ACE-1/Ang II/AT1R axis of RAS, and also that dysregulation of this pathway likely plays a significant role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Patrick Gavin Kehoe
- Dementia Research Group, University of Bristol, Level 1, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Steffenny Wong
- Dementia Research Group, University of Bristol, Level 1, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Noura Al Mulhim
- Dementia Research Group, University of Bristol, Level 1, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Laura Elyse Palmer
- Dementia Research Group, University of Bristol, Level 1, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol, Level 1, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK.
| |
Collapse
|
164
|
Luczkowski M. “No screams and cries will convince us that white is white and black is black”, an ode to the defenders of amyloid cascade hypothesis of Alzheimer's disease. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
165
|
Chou RC, Kane M, Ghimire S, Gautam S, Gui J. Treatment for Rheumatoid Arthritis and Risk of Alzheimer's Disease: A Nested Case-Control Analysis. CNS Drugs 2016; 30:1111-1120. [PMID: 27470609 PMCID: PMC5585782 DOI: 10.1007/s40263-016-0374-z] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION It is increasingly becoming accepted that inflammation may play an important role in the pathogenesis of Alzheimer's disease (AD), as several immune-related genes have been associated with AD. Among these is tumor necrosis factor (TNF)-α, a proinflammatory cytokine known to play an important role in autoimmune disorders, including rheumatoid arthritis (RA). Although AD and RA appear to involve similar pathological mechanisms through the production of TNF-α, the relationship between AD and RA remains unknown. OBJECTIVE To determine the relative risk of AD among RA patients and non-RA patients, and whether anti-TNF therapy for RA was associated with a lower risk of AD in RA patients. METHODS We performed a nested case-control study of more than 8.5 million commercially insured adults (aged ≥18 years) in all 50 US states, Puerto Rico, and US Virgin Islands in the Verisk Health claims database. We derived a sub-cohort of subjects with a diagnosis of RA (controls), or RA and AD (cases), matching cases and controls based on age, sex, exposure assessment period, and methotrexate treatment. We also assessed relative risk of AD following exposure to standard RA therapies, including anti-TNF agents (infliximab, adalimumab, etanercept), methotrexate, prednisone, sulfasalazine, and rituximab. Odds ratios were adjusted for comorbidities, including coronary artery disease, diabetes mellitus, and peripheral vascular disease. RESULTS AD was more prevalent (p < 0.0001) among RA patients (0.79 %) than among those without RA (0.11 %). Chronic conditions such as coronary artery disease (odds ratio [OR] 1.48; 95 % confidence interval [CI] 1.04-2.05; p = 0.03), diabetes (OR 1.86; 95 % CI 1.32-2.62; p = 0.0004), and peripheral vascular disease (OR 1.61; 95 % CI 1.06-2.43; p = 0.02) significantly increased the relative risk of AD among RA patients. Exposure to anti-TNF agents as a class, but not other immunosuppressive drugs studied, was associated with lowered risk of AD among RA patients (unadjusted OR 0.44; 95 % CI 0.22-0.87; p = 0.02; adjusted OR 0.45; 95 % CI 0.23-0.90; p = 0.02). Sub-group analysis demonstrated that of the three anti-TNF agents studied, only etanercept (unadjusted OR, 0.33; 95 % CI 0.08-0.94; p = 0.03; adjusted OR 0.30; 95 % CI 0.08-0.89; p = 0.02) was associated with a decreased risk of AD in RA patients. CONCLUSION There is an increased risk of AD in the studied RA population. The relative risk of AD among RA subjects was lowered in those exposed to etanercept. Anti-TNF therapy with etanercept shows promise as a potential treatment for AD.
Collapse
Affiliation(s)
- Richard C Chou
- Section of Rheumatology, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA.
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| | - Michael Kane
- Division of Rheumatology, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Shiva Gautam
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Harvard CTSC Biostatistics Program, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, NH, USA
| |
Collapse
|
166
|
Bourgade K, Dupuis G, Frost EH, Fülöp T. Anti-Viral Properties of Amyloid-β Peptides. J Alzheimers Dis 2016; 54:859-878. [DOI: 10.3233/jad-160517] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Karine Bourgade
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gilles Dupuis
- Department of Biochemistry, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H. Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Tamàs Fülöp
- Department of Medicine, Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
167
|
Chung JK, Nakajima S, Plitman E, Iwata Y, Uy D, Gerretsen P, Caravaggio F, Chakravarty MM, Graff-Guerrero A. Β-Amyloid Burden is Not Associated with Cognitive Impairment in Schizophrenia: A Systematic Review. Am J Geriatr Psychiatry 2016; 24:923-39. [PMID: 27526990 PMCID: PMC5026886 DOI: 10.1016/j.jagp.2016.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 01/28/2016] [Accepted: 03/30/2016] [Indexed: 12/31/2022]
Abstract
Current literature suggests that the pathology of schizophrenia (SCZ) has developmental origins. However, the neurodevelopmental theory of SCZ cannot solely explain progressive neurodegenerative processes in the illness. There is evidence of accelerated cognitive decline and increased risk of dementia in elderly patients with SCZ. Investigating β-amyloid (Aβ), we conducted a systematic review focusing on Aβ in patients with SCZ. An OVID literature search using PsychINFO, Medline, and Embase databases was conducted, looking for studies that compared Aβ levels between patients with SCZ and either elderly control subjects, patients with Alzheimer disease (AD), or patients with other psychiatric illnesses. Among 14 identified studies, 11 compared Aβ between SCZ and elderly control subjects, 7 between SCZ and AD, and 3 between SCZ and other psychiatric illnesses. As a result, no evidence was found suggesting that Aβ levels differ in patients with SCZ from elderly control subjects or patients with other psychiatric illnesses. All seven studies reported lower cortical Aβ in patients with SCZ than patients with AD. Furthermore, three of the four studies, which investigated the relationship between Aβ and cognitive impairment in SCZ, observed no association between two factors. The limitations of the included studies are small sample sizes, the inclusion of cerebrospinal fluid Aβ or postmortem plaques rather than cortical Aβ assessment in vivo, and the investigation of different brain regions. In conclusion, Aβ deposition is not associated with cognitive decline in late-life SCZ. Future studies should investigate other neurodegenerative indicators in SCZ to better understand the pathophysiologic mechanisms underlying this illness.
Collapse
Affiliation(s)
- Jun Ku Chung
- Institute of Medical Science, Faculty of Medicine, University of Toronto,Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada
| | - Shinichiro Nakajima
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada,Department of Psychiatry, University of Toronto, Toronto, Canada,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Canada
| | - Eric Plitman
- Institute of Medical Science, Faculty of Medicine, University of Toronto,Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Danielle Uy
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada,Department of Psychiatry, University of Toronto, Toronto, Canada,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Canada
| | - Fernando Caravaggio
- Institute of Medical Science, Faculty of Medicine, University of Toronto,Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada
| | - M. Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada,Department of Psychiatry and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Ariel Graff-Guerrero
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Multimodal Imaging Group-Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan.
| |
Collapse
|
168
|
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
169
|
Shinohara M, Murray ME, Frank RD, Shinohara M, DeTure M, Yamazaki Y, Tachibana M, Atagi Y, Davis MD, Liu CC, Zhao N, Painter MM, Petersen RC, Fryer JD, Crook JE, Dickson DW, Bu G, Kanekiyo T. Impact of sex and APOE4 on cerebral amyloid angiopathy in Alzheimer's disease. Acta Neuropathol 2016; 132:225-234. [PMID: 27179972 DOI: 10.1007/s00401-016-1580-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 12/26/2022]
Abstract
Cerebral amyloid angiopathy (CAA) often coexists with Alzheimer's disease (AD). APOE4 is a strong genetic risk factor for both AD and CAA. Sex-dependent differences have been shown in AD as well as in cerebrovascular diseases. Therefore, we examined the effects of APOE4, sex, and pathological components on CAA in AD subjects. A total of 428 autopsied brain samples from pathologically confirmed AD cases were analyzed. CAA severity was histologically scored in inferior parietal, middle frontal, motor, superior temporal and visual cortexes. In addition, subgroups with severe CAA (n = 60) or without CAA (n = 39) were subjected to biochemical analysis of amyloid-β (Aβ) and apolipoprotein E (apoE) by ELISA in the temporal cortex. After adjusting for age, Braak neurofibrillary tangle stage and Thal amyloid phase, we found that overall CAA scores were higher in males than females. Furthermore, carrying one or more APOE4 alleles was associated with higher overall CAA scores. Biochemical analysis revealed that the levels of detergent-soluble and detergent-insoluble Aβ40, and insoluble apoE were significantly elevated in individuals with severe CAA or APOE4. The ratio of Aβ40/Aβ42 in insoluble fractions was also increased in the presence of CAA or APOE4, although it was negatively associated with male sex. Levels of insoluble Aβ40 were positively associated with those of insoluble apoE, which were strongly influenced by CAA status. Pertaining to insoluble Aβ42, the levels of apoE correlated regardless of CAA status. Our results indicate that sex and APOE genotypes differentially influence the presence and severity of CAA in AD, likely by affecting interaction and aggregation of Aβ40 and apoE.
Collapse
|
170
|
Tycko R. Molecular Structure of Aggregated Amyloid-β: Insights from Solid-State Nuclear Magnetic Resonance. Cold Spring Harb Perspect Med 2016; 6:a024083. [PMID: 27481836 PMCID: PMC4968170 DOI: 10.1101/cshperspect.a024083] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Amyloid-β (Aβ) peptides aggregate to form polymorphic amyloid fibrils and a variety of intermediate assemblies, including oligomers and protofibrils, both in vitro and in human brain tissue. Since the beginning of the 21st century, considerable progress has been made to characterize the molecular structures of Aβ aggregates. Full molecular structural models based primarily on data from measurements using solid-state nuclear magnetic resonance (ssNMR) have been developed for several in vitro Aβ fibrils and one metastable protofibril. Partial structural characterization of other aggregation intermediates has been achieved. One full structural model for fibrils derived from brain tissue has also been reported. Future work is likely to focus on additional structures from brain tissue and on further clarification of nonfibrillar Aβ aggregates.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520
| |
Collapse
|
171
|
Atomic-resolution structure of a disease-relevant Aβ(1-42) amyloid fibril. Proc Natl Acad Sci U S A 2016; 113:E4976-84. [PMID: 27469165 DOI: 10.1073/pnas.1600749113] [Citation(s) in RCA: 668] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Amyloid-β (Aβ) is present in humans as a 39- to 42-amino acid residue metabolic product of the amyloid precursor protein. Although the two predominant forms, Aβ(1-40) and Aβ(1-42), differ in only two residues, they display different biophysical, biological, and clinical behavior. Aβ(1-42) is the more neurotoxic species, aggregates much faster, and dominates in senile plaque of Alzheimer's disease (AD) patients. Although small Aβ oligomers are believed to be the neurotoxic species, Aβ amyloid fibrils are, because of their presence in plaques, a pathological hallmark of AD and appear to play an important role in disease progression through cell-to-cell transmissibility. Here, we solved the 3D structure of a disease-relevant Aβ(1-42) fibril polymorph, combining data from solid-state NMR spectroscopy and mass-per-length measurements from EM. The 3D structure is composed of two molecules per fibril layer, with residues 15-42 forming a double-horseshoe-like cross-β-sheet entity with maximally buried hydrophobic side chains. Residues 1-14 are partially ordered and in a β-strand conformation, but do not display unambiguous distance restraints to the remainder of the core structure.
Collapse
|
172
|
Miners JS, Clarke P, Love S. Clusterin levels are increased in Alzheimer's disease and influence the regional distribution of Aβ. Brain Pathol 2016; 27:305-313. [PMID: 27248362 DOI: 10.1111/bpa.12392] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022] Open
Abstract
Clusterin, also known as apoJ, is a lipoprotein abundantly expressed within the CNS. It regulates Aβ fibril formation and toxicity and facilitates amyloid-β (Aβ) transport across the blood-brain barrier. Genome-wide association studies have shown variations in the clusterin gene (CLU) to influence the risk of developing sporadic Alzheimer's disease (AD). To explore whether clusterin modulates the regional deposition of Aβ, we measured levels of soluble (NP40-extracted) and insoluble (guanidine-HCl-extracted) clusterin, Aβ40 and Aβ42 by sandwich ELISA in brain regions with a predilection for amyloid pathology-mid-frontal cortex (MF), cingulate cortex (CC), parahippocampal cortex (PH), and regions with little or no pathology-thalamus (TH) and white matter (WM). Clusterin level was highest in regions with plaque pathology (MF, CC, PH and PC), approximately mirroring the regional distribution of Aβ. It was significantly higher in AD than controls, and correlated positively with Aβ42 and insoluble Aβ40. Soluble clusterin level rose significantly with severity of cerebral amyloid angiopathy, and in MF and PC regions was highest in APOE ɛ4 homozygotes. In the TH and WM (areas with little amyloid pathology) clusterin was unaltered in AD and did not correlate with Aβ level. There was a significant positive correlation between the concentration of clusterin and the regional levels of insoluble Aβ42; however, the molar ratio of clusterin : Aβ42 declined with insoluble Aβ42 level in a region-dependent manner, being lowest in regions with predilection for Aβ plaque pathology. Under physiological conditions, clusterin reduces aggregation and promotes clearance of Aβ. Our findings indicate that in AD, clusterin increases, particularly in regions with most abundant Aβ, but because the increase does not match the rising level of Aβ42, the molar ratio of clusterin : Aβ42 in those regions falls, probably contributing to Aβ deposition within the tissue.
Collapse
Affiliation(s)
- J Scott Miners
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Polly Clarke
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Seth Love
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, United Kingdom
| |
Collapse
|
173
|
Aβ40 Reduces P-Glycoprotein at the Blood-Brain Barrier through the Ubiquitin-Proteasome Pathway. J Neurosci 2016; 36:1930-41. [PMID: 26865616 DOI: 10.1523/jneurosci.0350-15.2016] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Failure to clear amyloid-β (Aβ) from the brain is in part responsible for Aβ brain accumulation in Alzheimer's disease (AD). A critical protein for clearing Aβ across the blood-brain barrier is the efflux transporter P-glycoprotein (P-gp) in the luminal plasma membrane of the brain capillary endothelium. P-gp is reduced at the blood-brain barrier in AD, which has been shown to be associated with Aβ brain accumulation. However, the mechanism responsible for P-gp reduction in AD is not well understood. Here we focused on identifying critical mechanistic steps involved in reducing P-gp in AD. We exposed isolated rat brain capillaries to 100 nm Aβ40, Aβ40, aggregated Aβ40, and Aβ42. We observed that only Aβ40 triggered reduction of P-gp protein expression and transport activity levels; this occurred in a dose- and time-dependent manner. To identify the steps involved in Aβ-mediated P-gp reduction, we inhibited protein ubiquitination, protein trafficking, and the ubiquitin-proteasome system, and monitored P-gp protein expression, transport activity, and P-gp-ubiquitin levels. Thus, exposing brain capillaries to Aβ40 triggers ubiquitination, internalization, and proteasomal degradation of P-gp. These findings may provide potential therapeutic targets within the blood-brain barrier to limit P-gp degradation in AD and improve Aβ brain clearance. SIGNIFICANCE STATEMENT The mechanism reducing blood-brain barrier P-glycoprotein (P-gp) in Alzheimer's disease is poorly understood. In the present study, we focused on defining this mechanism. We demonstrate that Aβ40 drives P-gp ubiquitination, internalization, and proteasome-dependent degradation, reducing P-gp protein expression and transport activity in isolated brain capillaries. These findings may provide potential therapeutic avenues within the blood-brain barrier to limit P-gp degradation in Alzheimer's disease and improve Aβ brain clearance.
Collapse
|
174
|
Mehta PD, Patrick BA, Barshatzky M, Mehta SP, Frackowiak J, Mazur-Kolecka B, Miller DL. Generation of Rabbit Monoclonal Antibody to Amyloid-β38 (Aβ38): Increased Plasma Aβ38 Levels in Down Syndrome. J Alzheimers Dis 2016; 46:1021-32. [PMID: 26402629 DOI: 10.3233/jad-142592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Secreted soluble amyloid-β (Aβ)38 is the second most prominent Aβ form next to Aβ40, and is found in cerebrospinal fluid (CSF) and blood. Recent studies have shown the importance of quantitation of CSF Aβ38 levels in combination with those of Aβ40 and Aβ42 to support the diagnosis of Alzheimer's disease (AD), and other neurodegenerative diseases, and to facilitate drug discovery studies. However, the availability of reliable and specific Aβ38 monoclonal antibody is limited. Our first aim was to generate and partially characterize rabbit monoclonal antibody (RabmAb) to Aβ38. The antibody was specific to Aβ38, since it did not react with Aβ37, Aβ39, Aβ40, or Aβ42 in ELISA or immunoblotting. The antibody was sensitive enough to measure Aβ38 levels in plasma. Our second aim was to quantitate Aβ38 levels in plasma from older Down syndrome (DS) persons and age-matched controls. Persons with DS (35 years and older) have neuropathological changes characteristic of AD. Studies have shown that plasma Aβ40 and Aβ42 levels are higher in older persons with DS than in controls. However, none examined Aβ38 levels in DS. Our quantitation data showed that, like Aβ40 and Aβ42 plasma levels, Aβ38 plasma levels were higher in DS than in controls. Longitudinal studies will determine whether plasma Aβ38 levels in combination with levels of Aβ40 and Aβ42 are useful to predict early signs of AD in DS.
Collapse
|
175
|
Iljina M, Garcia GA, Dear AJ, Flint J, Narayan P, Michaels TCT, Dobson CM, Frenkel D, Knowles TPJ, Klenerman D. Quantitative analysis of co-oligomer formation by amyloid-beta peptide isoforms. Sci Rep 2016; 6:28658. [PMID: 27346247 PMCID: PMC4921824 DOI: 10.1038/srep28658] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/07/2016] [Indexed: 01/01/2023] Open
Abstract
Multiple isoforms of aggregation-prone proteins are present under physiological conditions and have the propensity to assemble into co-oligomers with different properties from self-oligomers, but this process has not been quantitatively studied to date. We have investigated the amyloid-β (Aβ) peptide, associated with Alzheimer’s disease, and the aggregation of its two major isoforms, Aβ40 and Aβ42, using a statistical mechanical modelling approach in combination with in vitro single-molecule fluorescence measurements. We find that at low concentrations of Aβ, corresponding to its physiological abundance, there is little free energy penalty in forming co-oligomers, suggesting that the formation of both self-oligomers and co-oligomers is possible under these conditions. Our model is used to predict the oligomer concentration and size at physiological concentrations of Aβ and suggests the mechanisms by which the ratio of Aβ42 to Aβ40 can affect cell toxicity. An increased ratio of Aβ42 to Aβ40 raises the fraction of oligomers containing Aβ42, which can increase the hydrophobicity of the oligomers and thus promote deleterious binding to the cell membrane and increase neuronal damage. Our results suggest that co-oligomers are a common form of aggregate when Aβ isoforms are present in solution and may potentially play a significant role in Alzheimer’s disease.
Collapse
Affiliation(s)
- Marija Iljina
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Gonzalo A Garcia
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Alexander J Dear
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Jennie Flint
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Priyanka Narayan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Thomas C T Michaels
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
176
|
Pirici D, Stanaszek L, Garz C, Niklass S, Heinze HJ, Kalinski T, Attems J, Schreiber S. Common Impact of Chronic Kidney Disease and Brain Microhemorrhages on Cerebral Aβ Pathology in SHRSP. Brain Pathol 2016; 27:169-180. [PMID: 27062392 DOI: 10.1111/bpa.12384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/04/2016] [Accepted: 03/30/2016] [Indexed: 01/03/2023] Open
Abstract
While chronic kidney disease seems to be an independent risk factor for cognitive decline, its impact on cerebral amyloid-β (Aβ) depositions, one hallmark of Alzheimer's Disease (AD) pathology, has not been investigated. Utilizing 80 male nontransgenic spontaneously hypertensive stroke prone rats (SHRSP) at various ages (12 to 44 weeks), tubulointerstitial renal damage, prevalence of cerebral microhemorrhages and Aβ accumulations were quantified. Using age-adjusted general linear models we investigated the main and interaction effects of renal damage and cerebral microhemorrhages on cerebral Aβ load. In addition, using post mortem human brain tissue of 16 stroke patients we examined the co-localization of perivascular Aβ deposits and small vessel wall damage. Statistical models revealed an age-independent main effect of tubulointerstitial kidney damage on brain Aβ accumulations, which was reinforced by the consecutive presence of cerebral microhemorrhages. Moreover, cerebral microhemorrhages independently predicted brain Aβ burden in SHRSP. In up to 69% of all human cases perivascular Aβ deposits were detected in the direct vicinity of small vessel wall damage. Our results support the associations between vascular pathology and Aβ deposition, and demonstrate a relationship between chronic kidney disease and cerebral Aβ pathology. Hence, our data suggest that prevention of chronic renal damage may reduce cerebral Aβ pathology.
Collapse
Affiliation(s)
- Daniel Pirici
- Department of Research Methodology, University of Medicine and Pharmacy of Craiova, Petru Rares Street 2, Craiova, 200349, Romania
| | - Luiza Stanaszek
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Strasse 44, Magdeburg, 39120, Germany.,Mossakowski Medical Research Centre PAS, Pawińskiego 5, Warsaw, 02-106, Poland
| | - Cornelia Garz
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Strasse 44, Magdeburg, 39120, Germany.,Department of Neurology, Otto-von-Guericke University, Leipziger Strasse 44, Magdeburg, 39120, Germany
| | - Solveig Niklass
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Strasse 44, Magdeburg, 39120, Germany.,Department of Neurology, Otto-von-Guericke University, Leipziger Strasse 44, Magdeburg, 39120, Germany
| | - Hans-Jochen Heinze
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Strasse 44, Magdeburg, 39120, Germany.,Department of Neurology, Otto-von-Guericke University, Leipziger Strasse 44, Magdeburg, 39120, Germany
| | - Thomas Kalinski
- Department of Pathology, Otto-von-Guericke University, Leipziger Strasse 44, Magdeburg, 39120, Germany
| | - Johannes Attems
- Campus for Ageing and Vitality, Institute of Neuroscience and Newcastle University Institute for Ageing, Newcastle upon Tyne, NE4 5PL, UK
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Strasse 44, Magdeburg, 39120, Germany.,Department of Neurology, Otto-von-Guericke University, Leipziger Strasse 44, Magdeburg, 39120, Germany
| |
Collapse
|
177
|
Donner L, Fälker K, Gremer L, Klinker S, Pagani G, Ljungberg LU, Lothmann K, Rizzi F, Schaller M, Gohlke H, Willbold D, Grenegard M, Elvers M. Platelets contribute to amyloid-β aggregation in cerebral vessels through integrin αIIbβ3-induced outside-in signaling and clusterin release. Sci Signal 2016; 9:ra52. [PMID: 27221710 DOI: 10.1126/scisignal.aaf6240] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is a vascular dysfunction disorder characterized by deposits of amyloid-β (Aβ) in the walls of cerebral vessels. CAA and Aβ deposition in the brain parenchyma contribute to dementia and Alzheimer's disease (AD). We investigated the contribution of platelets, which accumulate at vascular Aβ deposits, to CAA. We found that synthetic monomeric Aβ40 bound through its RHDS (Arg-His-Asp-Ser) sequence to integrin αIIbβ3, which is the receptor for the extracellular matrix protein fibrinogen, and stimulated the secretion of adenosine diphosphate (ADP) and the chaperone protein clusterin from platelets. Clusterin promoted the formation of fibrillar Aβ aggregates, and ADP acted through its receptors P2Y1 and P2Y12 on platelets to enhance integrin αIIbβ3 activation, further increasing the secretion of clusterin and Aβ40 binding to platelets. Platelets from patients with Glanzmann's thrombasthenia, a bleeding disorder in which platelets have little or dysfunctional αIIbβ3, indicated that the abundance of this integrin dictated Aβ-induced clusterin release and platelet-induced Aβ aggregation. The antiplatelet agent clopidogrel, which irreversibly inhibits P2Y12, inhibited Aβ aggregation in platelet cultures; in transgenic AD model mice, this drug reduced the amount of clusterin in the circulation and the incidence of CAA. Our findings indicate that activated platelets directly contribute to CAA by promoting the formation of Aβ aggregates and that Aβ, in turn, activates platelets, creating a feed-forward loop. Thus, antiplatelet therapy may alleviate fibril formation in cerebral vessels of AD patients.
Collapse
Affiliation(s)
- Lili Donner
- Department of Clinical and Experimental Hemostasis, Hemotherapy and Transfusion Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Knut Fälker
- Cardiovascular Research Centre, Örebro University, SE-701 82 Örebro, Sweden
| | - Lothar Gremer
- Institute of Physical Biology, Heinrich Heine University, 40225 Düsseldorf, Germany. Institute of Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
| | - Stefan Klinker
- Institute of Physical Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Giulia Pagani
- Institute for Pharmaceutical and Medicinal Chemistry, Department of Mathematics and Natural Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Liza U Ljungberg
- Cardiovascular Research Centre, Örebro University, SE-701 82 Örebro, Sweden
| | - Kimberley Lothmann
- Institute of Physical Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Federica Rizzi
- Department of Biomedical, Biotechnological, and Translation Sciences, University of Parma, Via Volturno 39/a, 43126 Parma, Italy. Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy. National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | - Martin Schaller
- Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Department of Mathematics and Natural Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Physical Biology, Heinrich Heine University, 40225 Düsseldorf, Germany. Institute of Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
| | - Magnus Grenegard
- Cardiovascular Research Centre, Örebro University, SE-701 82 Örebro, Sweden
| | - Margitta Elvers
- Department of Clinical and Experimental Hemostasis, Hemotherapy and Transfusion Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
178
|
Longitudinal noninvasive magnetic resonance imaging of brain microhemorrhages in BACE inhibitor-treated APP transgenic mice. Neurobiol Aging 2016; 45:50-60. [PMID: 27459925 DOI: 10.1016/j.neurobiolaging.2016.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/12/2016] [Accepted: 05/10/2016] [Indexed: 12/16/2022]
Abstract
Currently, several immunotherapies and BACE (Beta Site APP Cleaving Enzyme) inhibitor approaches are being tested in the clinic for the treatment of Alzheimer's disease. A crucial mechanism-related safety concern is the exacerbation of microhemorrhages, which are already present in the majority of Alzheimer patients. To investigate potential safety liabilities of long-term BACE inhibitor therapy, we used aged amyloid precursor protein (APP) transgenic mice (APP23), which robustly develop cerebral amyloid angiopathy. T2*-weighted magnetic resonance imaging (MRI), a translational method applicable in preclinical and clinical studies, was used for the detection of microhemorrhages throughout the entire brain, with subsequent histological validation. Three-dimensional reconstruction based on in vivo MRI and serial Perls' stained sections demonstrated a one-to-one matching of the lesions thus allowing for their histopathological characterization. MRI detected small Perls' positive areas with a high spatial resolution. Our data demonstrate that volumetric assessment by noninvasive MRI is well suited to monitor cerebral microhemorrhages in vivo. Furthermore, 3 months treatment of aged APP23 with the potent BACE-inhibitor NB-360 did not exacerbate microhemorrhages in contrast to Aβ-antibody β1. These results substantiate the safe use of BACE inhibitors regarding microhemorrhages in long-term clinical studies for the treatment of Alzheimer's disease.
Collapse
|
179
|
Terrill-Usery SE, Colvin BA, Davenport RE, Nichols MR. Aβ40 has a subtle effect on Aβ42 protofibril formation, but to a lesser degree than Aβ42 concentration, in Aβ42/Aβ40 mixtures. Arch Biochem Biophys 2016; 597:1-11. [PMID: 27013205 PMCID: PMC4841699 DOI: 10.1016/j.abb.2016.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/07/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
Abstract
Recent findings suggest that the senile plaques in Alzheimer's disease may contain soluble amyloid-β peptide (Aβ) fibril precursors along with insoluble fibrils. These soluble Aβ species, including oligomers and protofibrils, have been well-studied in vitro and are formed via non-covalent self-assembly of Aβ monomers. While both 40- and 42-residue forms of Aβ are observed in the human body, the majority of the Aβ aggregation work has been conducted on Aβ42 or Aβ40 separately, with relatively few investigations of mixtures. In order to study the effect of different combinations of Aβ40 and Aβ42 on protofibril formation, mixtures of either dry solid peptide, or purified Aβ40 and Aβ42 monomer solutions were mixed together and protofibril/monomer distributions were quantified. Increases in the Aβ42/Aβ40 ratio increased protofibril formation but the presence of Aβ40 in the mixed Aβ solutions had a significant negative impact on protofibril formation compared to equivalent solutions of pure Aβ42. Protofibril size was less affected, but β-sheet structure increased with protofibrils formed from higher Aβ42/Aβ40 ratio solutions. Direct measurement of Aβ42/Aβ40 ratios by C-terminal-selective ELISA found very little Aβ40 incorporated into protofibrils. The cumulative data emphasizes the critical importance of Aβ42, yet establishes Aβ40 as a regulator of Aβ42 aggregation.
Collapse
Affiliation(s)
- Shana E Terrill-Usery
- Department of Chemistry and Biochemistry, Center for Nanoscience, University of Missouri, St. Louis, USA
| | - Benjamin A Colvin
- Department of Chemistry and Biochemistry, Center for Nanoscience, University of Missouri, St. Louis, USA
| | - Richard E Davenport
- Department of Chemistry and Biochemistry, Center for Nanoscience, University of Missouri, St. Louis, USA
| | - Michael R Nichols
- Department of Chemistry and Biochemistry, Center for Nanoscience, University of Missouri, St. Louis, USA.
| |
Collapse
|
180
|
Li SS, Lin CW, Wei KC, Huang CY, Hsu PH, Liu HL, Lu YJ, Lin SC, Yang HW, Ma CCM. Non-invasive screening for early Alzheimer's disease diagnosis by a sensitively immunomagnetic biosensor. Sci Rep 2016; 6:25155. [PMID: 27112198 PMCID: PMC4844990 DOI: 10.1038/srep25155] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/12/2016] [Indexed: 01/28/2023] Open
Abstract
Amyloid-beta peptide 1–42 (Aβ42) is considered as a reliable biomarker for the early diagnosis of Alzheimer’s disease (AD). Thus, it is urgent to develop a simple and efficient method for the detection of Aβ42. In this work, a reusable biosensor based on magnetic nitrogen-doped graphene (MNG) modified Au electrode for the detection of Aβ42 has been developed. The antibodies of Aβ 1–28 (Aβab) are used as the specific biorecognition element for Aβ42 that were conjugated on the surface of MNG. In the presence of magnetic nanoparticles on MNG, the electrode coating material, the biosensor can be quickly constructed, without requiring an electrode drying process, which reduce the analysis time and is convenient for proceeding to detection. The reusable biosensor with good reproducibility and stability was linear within the range from 5 pg mL−1 to 800 pg mL−1, covering the cut-off level of Aβ42 and a detection limit of 5 pg mL−1 had been achieved. Furthermore, the fabricated biosensor for Aβ42 detection not only improves the detection performance but also reduces the cost and shortens the response time, demonstrating its potential in diagnosing applications.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan, ROC
| | - Chih-Wen Lin
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan, ROC
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, 5 Fu-shing Road, Kuei-Shan, Tao-Yuan 33305, Taiwan, ROC
| | - Chiung-Yin Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, 5 Fu-shing Road, Kuei-Shan, Tao-Yuan 33305, Taiwan, ROC
| | - Po-Hung Hsu
- Department of Electrical Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 33302, Taiwan, ROC
| | - Hao-Li Liu
- Department of Electrical Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 33302, Taiwan, ROC
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, 5 Fu-shing Road, Kuei-Shan, Tao-Yuan 33305, Taiwan, ROC
| | - Sheng-Chi Lin
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan, ROC
| | - Hung-Wei Yang
- Institute of Medical Science and Technology, National Sun Yat-sen University, No.70, Lianhai Road, Gushan District, Kaohsiung 80424, Taiwan, ROC
| | - Chen-Chi M Ma
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan, ROC
| |
Collapse
|
181
|
Boopathi S, Kolandaivel P. Study on the inter- and intra-peptide salt-bridge mechanism of Aβ23-28 oligomer interaction with small molecules: QM/MM method. MOLECULAR BIOSYSTEMS 2016; 11:2031-41. [PMID: 25973904 DOI: 10.1039/c5mb00066a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Amyloid β (Aβ) peptides have long been known to be a potential candidate for the onset of Alzheimer's disease (AD). The biophysical properties of Aβ42 peptide aggregates are of significant importance for the amyloid cascade mechanism of AD. It is necessary to design an inhibitor using small molecules to reduce the aggregation process in Aβ42 peptides. Attention has been given to use the natural products as anti-aggregation compounds, directly targeting Aβ peptides. Polyphenols have been extensively studied as a class of amyloid inhibitors. 9,10-Anthraquinone (AQ) is present in abundance in medicinal plants (rhubarb), the Trp-Pro-Tyr (TPT) peptide has been found in the venom of the black mamba snake, and the morin molecule is naturally present in wine and green tea; several other polyphenol derivatives are under clinical trials to develop anti-neurodegenerative drugs. In vitro and in vivo results strongly suggest that AQ and morin molecules are potential inhibitors of Aβ aggregation; however, the detailed understanding of the inhibition mechanism remains largely unknown. The formation of Aβ fibrils and oligomers requires a conformational change from α-helix to β-sheet, which occurs due to the formation of a salt-bridge between Asp(23) and Lys(28) residues. The present study focused on investigating the salt-bridge mechanism in the monomer, dimer and oligomer of the Aβ23-28 peptide during the interaction with TPT, morin and AQ molecules. Interaction energy and natural bond orbital analyses have been carried out using the ONIOM(M05-2X/6-31++G(d,p):UFF) method. The QM/MM studies have been performed to study the mechanism of salt-bridge formation during the inhibition process of amyloid β protein aggregation. The TPT molecule, which binds with the Asp(23) and Lys(28) residues of Aβ, prevents the salt-bridge formation between Asp(23) and Lys(28) residues and consequently the probability of the formation of Aβ fibrils is reduced.
Collapse
|
182
|
Hsu PJ, Shou H, Benzinger T, Marcus D, Durbin T, Morris JC, Sheline YI. Amyloid burden in cognitively normal elderly is associated with preferential hippocampal subfield volume loss. J Alzheimers Dis 2016; 45:27-33. [PMID: 25428255 DOI: 10.3233/jad-141743] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The earliest sites of brain atrophy in Alzheimer's disease are in the medial temporal lobe, following widespread cerebral cortical amyloid deposition. We assessed 74 cognitively normal participants with clinical measurements, amyloid-β-PET imaging, MRI, and a newly developed technique for MRI-based hippocampal subfield segmentation to determine the differential association of amyloid deposition and hippocampal subfield volume. Compared to amyloid-negative participants, amyloid-positive participants had significantly smaller hippocampal tail, presubiculum, subiculum, and total hippocampal gray matter volumes. We conclude that, prior to the development of cognitive impairment, atrophy in particular hippocampal subfields occurs preferentially with amyloid-β accumulation.
Collapse
Affiliation(s)
- Phillip J Hsu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Haochang Shou
- Departments of Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Tammie Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tony Durbin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yvette I Sheline
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA Departments of Radiology, Neurology, and Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
183
|
Gu L, Tran J, Jiang L, Guo Z. A new structural model of Alzheimer's Aβ42 fibrils based on electron paramagnetic resonance data and Rosetta modeling. J Struct Biol 2016; 194:61-7. [PMID: 26827680 DOI: 10.1016/j.jsb.2016.01.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/24/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Abstract
Brain deposition of Aβ in the form of amyloid plaques is a pathological hallmark of Alzheimer's disease. There are two major species of Aβ in the brain: Aβ42 and Aβ40. Although Aβ40 is several-fold more abundant than Aβ42 in soluble form, Aβ42 is the major component of amyloid plaques. Structural knowledge of Aβ42 fibrils is important both for understanding the process of Aβ aggregation and for designing fibril-targeting drugs. Here we report site-specific structural information of Aβ42 fibrils at 22 residue positions based on electron paramagnetic resonance data. In combination with structure prediction program Rosetta, we modeled Aβ42 fibril structure at atomic resolution. Our Aβ42 fibril model consists of four parallel in-register β-sheets: βN (residues ∼7-13), β1 (residues ∼17-20), β2 (residues ∼32-36), and βC (residues 39-41). The region of β1-loop-β2 in Aβ42 fibrils adopts similar structure as that in Aβ40 fibrils. This is consistent with our cross seeding data that Aβ42 fibril seeds shortened the lag phase of Aβ40 fibrillization. On the other hand, Aβ42 fibrils contain a C-terminal β-arc-β motif with a special turn, termed "arc", at residues 37-38, which is absent in Aβ40 fibrils. Our results can explain both the higher aggregation propensity of Aβ42 and the importance of Aβ42 to Aβ40 ratio in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Lei Gu
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Joyce Tran
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Lin Jiang
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Zhefeng Guo
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
184
|
Pi J, Long Y, Huang N, Cheng Y, Zheng H. A sandwich immunoassay for detection of Aβ1-42 based on quantum dots. Talanta 2016; 146:10-5. [DOI: 10.1016/j.talanta.2015.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
|
185
|
BU T, ZAKO T, MAEDA M. Dark Field Microscopic Sensitive Detection of Amyloid Fibrils Using Gold Nanoparticles Modified with Antibody. ANAL SCI 2016; 32:307-11. [DOI: 10.2116/analsci.32.307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tong BU
- Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo
- Bioengineering Laboratory, RIKEN Institute
| | | | - Mizuo MAEDA
- Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo
- Bioengineering Laboratory, RIKEN Institute
| |
Collapse
|
186
|
Dorey A, Perret-Liaudet A, Tholance Y, Fourier A, Quadrio I. Cerebrospinal Fluid Aβ40 Improves the Interpretation of Aβ42 Concentration for Diagnosing Alzheimer's Disease. Front Neurol 2015; 6:247. [PMID: 26640457 PMCID: PMC4661235 DOI: 10.3389/fneur.2015.00247] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/11/2015] [Indexed: 01/01/2023] Open
Abstract
The combination of decreased amyloid β42 (Aβ42) and increased total tau proteins (T-Tau) and phosphorylated tau (P-Tau) in cerebrospinal fluid (CSF) has recently been considered as a biological diagnostic criterion of Alzheimer’s disease (AD). Previous studies showed significant heterogeneity in CSF Aβ42 levels to discriminate AD from non-AD patients. It was also suggested that the CSF amyloid peptide β42/β40 ratio has better diagnostic performance than Aβ42 alone. The objective of the present study was to investigate the potential added value of determining CSF amyloid β40 peptide (Aβ40) for biological diagnosis of AD when CSF Aβ42 levels failed. CSF AD biomarkers were run in 2,171 samples from 1,499 AD and 672 non-AD patients. The following pathologic thresholds were used to define an AD-positive CSF biomarker profile: T-Tau ≥ 400 ng/L, P-Tau181 ≥ 60 ng/L, and Aβ42 ≤ 700 ng/L. CSF Aβ40 was assayed in AD patients with CSF Aβ42 levels above 700 ng/L and non-AD patients with CSF Aβ42 levels below 700 ng/L. CSF Aβ40 levels were higher in AD than non-AD patients. The receiver operator characteristic curves of CSF Aβ40 and the Aβ42/Aβ40 ratio defined AD cut-off values at 12,644 ng/L and 0.06, respectively. In AD patients with non-pathological CSF Aβ42, CSF Aβ40 concentration was able to correct 76.2% of cases when expressed as CSF Aβ42/Aβ40 ratio and 94.7% of cases when used alone. Using CSF Aβ42 and then CSF Aβ40, the percentage of misinterpreted AD patients fell to 1.0%. CSF Aβ40 concentration improved interpretation of Aβ42 level for the diagnosis of AD. CSF Aβ40 alone showed better diagnostic performance than the amyloid peptide Aβ42/Aβ40 ratio. The added value of determining CSF Aβ40 in AD diagnosis now needs confirming in a cohort of definite AD patients and to be completed with novel amyloid cascade biomarkers.
Collapse
Affiliation(s)
- Aline Dorey
- Center for Memory Resources and Research, Hospices Civils de Lyon, Charpennes Hospital, Lyon 1 University , Villeurbanne , France ; Neurochemistry Unit, Biochemistry Department, Hospices Civils de Lyon, Groupement Hospitalier Est , Bron , France
| | - Armand Perret-Liaudet
- Center for Memory Resources and Research, Hospices Civils de Lyon, Charpennes Hospital, Lyon 1 University , Villeurbanne , France ; Neurochemistry Unit, Biochemistry Department, Hospices Civils de Lyon, Groupement Hospitalier Est , Bron , France ; BioRaN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University , Bron , France
| | - Yannick Tholance
- Neurochemistry Unit, Biochemistry Department, Hospices Civils de Lyon, Groupement Hospitalier Est , Bron , France ; WAKE Team, Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Lyon 1 University , Lyon , France
| | - Anthony Fourier
- Neurochemistry Unit, Biochemistry Department, Hospices Civils de Lyon, Groupement Hospitalier Est , Bron , France ; BioRaN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University , Bron , France
| | - Isabelle Quadrio
- Neurochemistry Unit, Biochemistry Department, Hospices Civils de Lyon, Groupement Hospitalier Est , Bron , France ; BioRaN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University , Bron , France
| |
Collapse
|
187
|
Dammers C, Gremer L, Reiß K, Klein AN, Neudecker P, Hartmann R, Sun N, Demuth HU, Schwarten M, Willbold D. Structural Analysis and Aggregation Propensity of Pyroglutamate Aβ(3-40) in Aqueous Trifluoroethanol. PLoS One 2015; 10:e0143647. [PMID: 26600248 PMCID: PMC4658145 DOI: 10.1371/journal.pone.0143647] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/06/2015] [Indexed: 12/23/2022] Open
Abstract
A hallmark of Alzheimer's disease (AD) is the accumulation of extracellular amyloid-β (Aβ) plaques in the brains of patients. N-terminally truncated pyroglutamate-modified Aβ (pEAβ) has been described as a major compound of Aβ species in senile plaques. pEAβ is more resistant to degradation, shows higher toxicity and has increased aggregation propensity and β-sheet stabilization compared to non-modified Aβ. Here we characterized recombinant pEAβ(3-40) in aqueous trifluoroethanol (TFE) solution regarding its aggregation propensity and structural changes in comparison to its non-pyroglutamate-modified variant Aβ(1-40). Secondary structure analysis by circular dichroism spectroscopy suggests that pEAβ(3-40) shows an increased tendency to form β-sheet-rich structures in 20% TFE containing solutions where Aβ(1-40) forms α-helices. Aggregation kinetics of pEAβ(3-40) in the presence of 20% TFE monitored by thioflavin-T (ThT) assay showed a typical sigmoidal aggregation in contrast to Aβ(1-40), which lacks ThT positive structures under the same conditions. Transmission electron microscopy confirms that pEAβ(3-40) aggregated to large fibrils and high molecular weight aggregates in spite of the presence of the helix stabilizing co-solvent TFE. High resolution NMR spectroscopy of recombinantly produced and uniformly isotope labeled [U-15N]-pEAβ(3-40) in TFE containing solutions indicates that the pyroglutamate formation affects significantly the N-terminal region, which in turn leads to decreased monomer stability and increased aggregation propensity.
Collapse
Affiliation(s)
- Christina Dammers
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Lothar Gremer
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Kerstin Reiß
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Antonia N. Klein
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Philipp Neudecker
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Rudolf Hartmann
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Na Sun
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, 06120, Halle (Saale), Germany
| | - Melanie Schwarten
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
188
|
Plasma and cerebrospinal fluid amyloid-β levels in late-life depression: A systematic review and meta-analysis. J Psychiatr Res 2015; 69:35-41. [PMID: 26343592 PMCID: PMC5102150 DOI: 10.1016/j.jpsychires.2015.07.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/16/2015] [Accepted: 07/23/2015] [Indexed: 12/15/2022]
Abstract
This study aimed to evaluate differences in plasma and cerebrospinal fluid (CSF) levels of Aβ peptides in older adults with late-life depression compared to non-depressed older controls. We conducted a systematic review and meta-analysis of the literature using PubMed, Web of science and Scopus databases with no search limits for publication dates or languages. Two independent reviewers extracted data and assessed quality. Six hundred references were retrieved, and we included 12 studies in the meta-analysis after eligibility screening. Older adults with late-life depression (LLD) had a higher plasma Aβ40:Aβ42 ratio compared to non-depressed participants (SMD = 1.10, CI95% [0.28; 1.96], p = 0.01), and marginally significant reduction of CSF Aβ42 levels (SMD = -1.12, CI95% [-2.47; 0.22], p = 0.1). The present results evidence that older adults with depression have significant differences in Aβ metabolism, in the same direction observed in individuals with AD. These differences in the Aβ metabolism may help identify a subgroup of subjects with LLD at higher risk of developing AD.
Collapse
|
189
|
Sun X, Chen WD, Wang YD. β-Amyloid: the key peptide in the pathogenesis of Alzheimer's disease. Front Pharmacol 2015; 6:221. [PMID: 26483691 PMCID: PMC4588032 DOI: 10.3389/fphar.2015.00221] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/17/2015] [Indexed: 12/20/2022] Open
Abstract
The amyloid β peptide (Aβ) is a critical initiator that triggers the progression of Alzheimer's Disease (AD) via accumulation and aggregation, of which the process may be caused by Aβ overproduction or perturbation clearance. Aβ is generated from amyloid precursor protein through sequential cleavage of β- and γ-secretases while Aβ removal is dependent on the proteolysis and lysosome degradation system. Here, we overviewed the biogenesis and toxicity of Aβ as well as the regulation of Aβ production and clearance. Moreover, we also summarized the animal models correlated with Aβ that are essential in AD research. In addition, we discussed current immunotherapeutic approaches targeting Aβ to give some clues for exploring the more potentially efficient drugs for treatment of AD.
Collapse
Affiliation(s)
- Xiaojuan Sun
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University Kaifeng, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University Kaifeng, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology Beijing, China
| |
Collapse
|
190
|
Patterson BW, Elbert DL, Mawuenyega KG, Kasten T, Ovod V, Ma S, Xiong C, Chott R, Yarasheski K, Sigurdson W, Zhang L, Goate A, Benzinger T, Morris JC, Holtzman D, Bateman RJ. Age and amyloid effects on human central nervous system amyloid-beta kinetics. Ann Neurol 2015; 78:439-53. [PMID: 26040676 PMCID: PMC4546566 DOI: 10.1002/ana.24454] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/20/2015] [Accepted: 05/31/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Age is the single greatest risk factor for Alzheimer's disease (AD), with the incidence doubling every 5 years after age 65. However, our understanding of the mechanistic relationship between increasing age and the risk for AD is currently limited. We therefore sought to determine the relationship between age, amyloidosis, and amyloid-beta (Aβ) kinetics in the central nervous system (CNS) of humans. METHODS Aβ kinetics were analyzed in 112 participants and compared to the ages of participants and the amount of amyloid deposition. RESULTS We found a highly significant correlation between increasing age and slowed Aβ turnover rates (2.5-fold longer half-life over five decades of age). In addition, we found independent effects on Aβ42 kinetics specifically in participants with amyloid deposition. Amyloidosis was associated with a higher (>50%) irreversible loss of soluble Aβ42 and a 10-fold higher Aβ42 reversible exchange rate. INTERPRETATION These findings reveal a mechanistic link between human aging and the risk of amyloidosis, which may be owing to a dramatic slowing of Aβ turnover, increasing the likelihood of protein misfolding that leads to deposition. Alterations in Aβ kinetics associated with aging and amyloidosis suggest opportunities for diagnostic and therapeutic strategies. More generally, this study provides an example of how changes in protein turnover kinetics can be used to detect physiological and pathophysiological changes and may be applicable to other proteinopathies.
Collapse
Affiliation(s)
- Bruce W Patterson
- Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Donald L Elbert
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Kwasi G Mawuenyega
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Tom Kasten
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Vitaliy Ovod
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Shengmei Ma
- Department of Biostatistics, Washington University in St. Louis, St. Louis, MO
| | - Chengjie Xiong
- Department of Biostatistics, Washington University in St. Louis, St. Louis, MO
- Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Robert Chott
- Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Kevin Yarasheski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Wendy Sigurdson
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Lily Zhang
- Hope Center for Neurological Disorders, Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Alison Goate
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO
- Hope Center for Neurological Disorders, Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Tammie Benzinger
- Department of Radiology, Washington University in St. Louis, St. Louis, MO
- Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - John C Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - David Holtzman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Hope Center for Neurological Disorders, Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Randall J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Hope Center for Neurological Disorders, Department of Neurology, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
191
|
Hirabayashi A, Shindo Y, Oka K, Takahashi D, Toshima K. Photodegradation of amyloid β and reduction of its cytotoxicity to PC12 cells using porphyrin derivatives. Chem Commun (Camb) 2015; 50:9543-6. [PMID: 25012260 DOI: 10.1039/c4cc03791j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A purpose-designed porphyrin-peptide hybrid effectively degraded amyloid β monomer and oligomers associated with Alzheimer's disease. Degradation was achieved using light irradiation in the absence of any additives and under neutral conditions. Moreover, the hybrid effectively neutralized the cytotoxicity of amyloid β in PC12 cells upon photoirradiation.
Collapse
Affiliation(s)
- Ayumi Hirabayashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | | | | | | | | |
Collapse
|
192
|
Abstract
Our understanding of the molecular structures of amyloid fibrils that are associated with neurodegenerative diseases, of mechanisms by which disease-associated peptides and proteins aggregate into fibrils, and of structural properties of aggregation intermediates has advanced considerably in recent years. Detailed molecular structural models for certain fibrils and aggregation intermediates are now available. It is now well established that amyloid fibrils are generally polymorphic at the molecular level, with a given peptide or protein being capable of forming a variety of distinct, self-propagating fibril structures. Recent results from structural studies and from studies involving cell cultures, transgenic animals, and human tissue provide initial evidence that molecular structural variations in amyloid fibrils and related aggregates may correlate with or even produce variations in disease development. This article reviews our current knowledge of the structural and mechanistic aspects of amyloid formation, as well as current evidence for the biological relevance of structural variations.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
193
|
Jung JI, Price AR, Ladd TB, Ran Y, Park HJ, Ceballos-Diaz C, Smithson LA, Hochhaus G, Tang Y, Akula R, Ba S, Koo EH, Shapiro G, Felsenstein KM, Golde TE. Cholestenoic acid, an endogenous cholesterol metabolite, is a potent γ-secretase modulator. Mol Neurodegener 2015; 10:29. [PMID: 26169917 PMCID: PMC4501119 DOI: 10.1186/s13024-015-0021-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/29/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Amyloid-β (Aβ) 42 has been implicated as the initiating molecule in the pathogenesis of Alzheimer's disease (AD); thus, therapeutic strategies that target Aβ42 are of great interest. γ-Secretase modulators (GSMs) are small molecules that selectively decrease Aβ42. We have previously reported that many acidic steroids are GSMs with potencies ranging in the low to mid micromolar concentration with 5β-cholanic acid being the most potent steroid identified GSM with half maximal effective concentration (EC50) of 5.7 μM. RESULTS We find that the endogenous cholesterol metabolite, 3β-hydroxy-5-cholestenoic acid (CA), is a steroid GSM with enhanced potency (EC50 of 250 nM) relative to 5β-cholanic acid. CA i) is found in human plasma at ~100-300 nM concentrations ii) has the typical acidic GSM signature of decreasing Aβ42 and increasing Aβ38 levels iii) is active in in vitro γ-secretase assay iv) is made in the brain. To test if CA acts as an endogenous GSM, we used Cyp27a1 knockout (Cyp27a1-/-) and Cyp7b1 knockout (Cyp7b1-/-) mice to investigate if manipulation of cholesterol metabolism pathways relevant to CA formation would affect brain Aβ42 levels. Our data show that Cyp27a1-/- had increased brain Aβ42, whereas Cyp7b1-/- mice had decreased brain Aβ42 levels; however, peripheral dosing of up to 100 mg/kg CA did not affect brain Aβ levels. Structure-activity relationship (SAR) studies with multiple known and novel CA analogs studies failed to reveal CA analogs with increased potency. CONCLUSION These data suggest that CA may act as an endogenous GSM within the brain. Although it is conceptually attractive to try and increase the levels of CA in the brain for prevention of AD, our data suggest that this will not be easily accomplished.
Collapse
Affiliation(s)
- Joo In Jung
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Ashleigh R Price
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Thomas B Ladd
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Yong Ran
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Hyo-Jin Park
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Carolina Ceballos-Diaz
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Lisa A Smithson
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Günther Hochhaus
- College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| | - Yufei Tang
- College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| | | | - Saritha Ba
- SAI Life Sciences Ltd., Turkapally, AP500078, India.
| | - Edward H Koo
- Department of Neuroscience, University of California, La Jolla, San Diego, CA, 92093, USA.
- Departments of Medicine and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore.
| | | | - Kevin M Felsenstein
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
194
|
Ishimura H, Kadoya R, Suzuki T, Murakawa T, Shulga S, Kurita N. Specific interactions between amyloid-β peptide and curcumin derivatives: Ab initio molecular simulations. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
195
|
Xiao Y, Ma B, McElheny D, Parthasarathy S, Long F, Hoshi M, Nussinov R, Ishii Y. Aβ(1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer's disease. Nat Struct Mol Biol 2015; 22:499-505. [PMID: 25938662 PMCID: PMC4476499 DOI: 10.1038/nsmb.2991] [Citation(s) in RCA: 659] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/15/2015] [Indexed: 12/19/2022]
Abstract
Increasing evidence has suggested that formation and propagation of misfolded aggregates of 42-residue human amyloid β (Aβ(1-42)), rather than of the more abundant Aβ(1-40), provokes the Alzheimer's disease cascade. However, structural details of misfolded Aβ(1-42) have remained elusive. Here we present the atomic model of an Aβ(1-42) amyloid fibril, from solid-state NMR (ssNMR) data. It displays triple parallel-β-sheet segments that differ from reported structures of Aβ(1-40) fibrils. Remarkably, Aβ(1-40) is incompatible with the triple-β-motif, because seeding with Aβ(1-42) fibrils does not promote conversion of monomeric Aβ(1-40) into fibrils via cross-replication. ssNMR experiments suggest that C-terminal Ala42, absent in Aβ(1-40), forms a salt bridge with Lys28 to create a self-recognition molecular switch that excludes Aβ(1-40). The results provide insight into the Aβ(1-42)-selective self-replicating amyloid-propagation machinery in early-stage Alzheimer's disease.
Collapse
Affiliation(s)
- Yiling Xiao
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Buyong Ma
- Cancer and Inflammation Program, Leidos Biomedical Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Dan McElheny
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Fei Long
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Minako Hoshi
- 1] Institute of Biomedical Research and Innovation, Kobe, Japan. [2] Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ruth Nussinov
- 1] Cancer and Inflammation Program, Leidos Biomedical Research, National Cancer Institute at Frederick, Frederick, Maryland, USA. [2] Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoshitaka Ishii
- 1] Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA. [2] Center for Structural Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
196
|
Yokoyama H, Okazaki K, Imai D, Yamashina Y, Takeda R, Naghavi N, Ota A, Hirasawa Y, Miyagawa T. The effect of cognitive-motor dual-task training on cognitive function and plasma amyloid β peptide 42/40 ratio in healthy elderly persons: a randomized controlled trial. BMC Geriatr 2015; 15:60. [PMID: 26018225 PMCID: PMC4446802 DOI: 10.1186/s12877-015-0058-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 05/20/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Physical activity reduces the incidence and progression of cognitive impairment. Cognitive-motor dual-task training, which requires dividing attention between cognitive tasks and exercise, may improve various cognitive domains; therefore, we examined the effect of dual-task training on the executive functions and on plasma amyloid β peptide (Aβ) 42/40 ratio, a potent biomarker of Alzheimer's disease, in healthy elderly people. METHODS Twenty-seven sedentary elderly people participated in a 12-week randomized, controlled trial. The subjects assigned to the dual-task training (DT) group underwent a specific cognitive-motor dual-task training, and then the clinical outcomes, including cognitive functions by the Modified Mini-Mental State (3MS) examination and the Trail-Making Test (TMT), and the plasma Aβ 42/40 ratio following the intervention were compared with those of the control single-task training (ST) group by unpaired t-test. RESULTS Among 27 participants, 25 completed the study. The total scores in the 3MS examination as well as the muscular strength of quadriceps were equally improved in both groups after the training. The specific cognitive domains, "registration & recall", "attention", "verbal fluency & understanding", and "visuospatial skills" were significantly improved only in the DT group. Higher scores in "attention", "verbal fluency & understanding", and "similarities" were found in the DT group than in the ST group at post-intervention. The absolute changes in the total (8.5 ± 1.6 vs 2.4 ± 0.9, p = 0.004, 95 % confidence interval (CI) 0.75-3.39) and in the scores of "attention" (1.9 ± 0.5 vs -0.2 ± 0.4, p = 0.004, 95 % CI 2.25-9.98) were greater in the DT group than in the ST group. We found no changes in the TMT results in either group. Plasma Aβ 42/40 ratio decreased in both groups following the training (ST group: 0.63 ± 0.13 to 0.16 ± 0.03, p = 0.001; DT group: 0.60 ± 0.12 to 0.25 ± 0.06, p = 0.044), although the pre- and post-intervention values were not different between the groups for either measure. CONCLUSIONS Cognitive-motor dual-task training was more beneficial than single-task training alone in improving broader domains of cognitive functions of elderly persons, and the improvement was not directly due to modulating Aβ metabolism.
Collapse
Affiliation(s)
- Hisayo Yokoyama
- Osaka City University Graduate School of Medicine, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka City, Japan.
| | - Kazunobu Okazaki
- Osaka City University Graduate School of Medicine, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka City, Japan.
| | - Daiki Imai
- Osaka City University Graduate School of Medicine, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka City, Japan.
| | - Yoshihiro Yamashina
- Osaka City University Graduate School of Medicine, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka City, Japan.
| | - Ryosuke Takeda
- Osaka City University Graduate School of Medicine, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka City, Japan.
| | - Nooshin Naghavi
- Osaka City University Graduate School of Medicine, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka City, Japan.
| | - Akemi Ota
- Osaka City University Graduate School of Medicine, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka City, Japan.
| | - Yoshikazu Hirasawa
- Osaka City University Graduate School of Medicine, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka City, Japan.
| | - Toshiaki Miyagawa
- Osaka City University Graduate School of Medicine, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka City, Japan.
| |
Collapse
|
197
|
Nichols MR, Colvin BA, Hood EA, Paranjape GS, Osborn DC, Terrill-Usery SE. Biophysical Comparison of Soluble Amyloid-β(1–42) Protofibrils, Oligomers, and Protofilaments. Biochemistry 2015; 54:2193-204. [DOI: 10.1021/bi500957g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michael R. Nichols
- Department of Chemistry and
Biochemistry and Center for Nanoscience, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Benjamin A. Colvin
- Department of Chemistry and
Biochemistry and Center for Nanoscience, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Elizabeth A. Hood
- Department of Chemistry and
Biochemistry and Center for Nanoscience, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Geeta S. Paranjape
- Department of Chemistry and
Biochemistry and Center for Nanoscience, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - David C. Osborn
- Department of Chemistry and
Biochemistry and Center for Nanoscience, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Shana E. Terrill-Usery
- Department of Chemistry and
Biochemistry and Center for Nanoscience, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
198
|
Pivtoraiko VN, Abrahamson EE, Leurgans SE, DeKosky ST, Mufson EJ, Ikonomovic MD. Cortical pyroglutamate amyloid-β levels and cognitive decline in Alzheimer's disease. Neurobiol Aging 2015; 36:12-9. [PMID: 25048160 PMCID: PMC4268150 DOI: 10.1016/j.neurobiolaging.2014.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/12/2014] [Accepted: 06/19/2014] [Indexed: 02/02/2023]
Abstract
Posterior cingulate cortex (PCC) accumulates amyloid-β (Aβ) early in Alzheimer's disease (AD). The relative concentrations of full-length Aβ and truncated, pyroglutamate-modified Aβ (NpE3) forms, and their correlations to cognitive dysfunction in AD, are unknown. We quantified AβNpE3-42, AβNpE3-40, Aβ1-42, and Aβ1-40 concentrations in soluble (nonfibrillar) and insoluble (fibrillar) pools in PCC from subjects with an antemortem clinical diagnosis of no cognitive impairment, mild cognitive impairment, or mild-moderate AD. In clinical AD, increased PCC concentrations of Aβ were observed for all Aβ forms in the insoluble pool but only for Aβ1-42 in the soluble pool. Lower Mini-Mental State Exam and episodic memory scores correlated most strongly with higher concentrations of soluble and insoluble Aβ1-42. Greater neuropathology severity by Consortium to Establish a Registry for Alzheimer's Disease and National Institute on Aging-Reagan pathologic criteria was associated with higher concentrations of all measured Aβ forms, except soluble AβNpE3-40. Low concentrations of soluble pyroglutamate Aβ across clinical groups likely reflect its rapid sequestration into plaques, thus, the conversion to fibrillar Aβ may be a therapeutic target.
Collapse
Affiliation(s)
| | - Eric E Abrahamson
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL
| | - Steven T DeKosky
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Elliott J Mufson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
199
|
Jung JI, Premraj S, Cruz PE, Ladd TB, Kwak Y, Koo EH, Felsenstein KM, Golde TE, Ran Y. Independent relationship between amyloid precursor protein (APP) dimerization and γ-secretase processivity. PLoS One 2014; 9:e111553. [PMID: 25350374 PMCID: PMC4211736 DOI: 10.1371/journal.pone.0111553] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/28/2014] [Indexed: 12/26/2022] Open
Abstract
Altered production of β-amyloid (Aβ) from the amyloid precursor protein (APP) is closely associated with Alzheimer's disease (AD). APP has a number of homo- and hetero-dimerizing domains, and studies have suggested that dimerization of β-secretase derived APP carboxyl terminal fragment (CTFβ, C99) impairs processive cleavage by γ-secretase increasing production of long Aβs (e.g., Aβ1-42, 43). Other studies report that APP CTFβ dimers are not γ-secretase substrates. We revisited this issue due to observations made with an artificial APP mutant referred to as 3xK-APP, which contains three lysine residues at the border of the APP ectodomain and transmembrane domain (TMD). This mutant, which dramatically increases production of long Aβ, was found to form SDS-stable APP dimers, once again suggesting a mechanistic link between dimerization and increased production of long Aβ. To further evaluate how multimerization of substrate affects both initial γ-secretase cleavage and subsequent processivity, we generated recombinant wild type- (WT) and 3xK-C100 substrates, isolated monomeric, dimeric and trimeric forms of these proteins, and evaluated both ε-cleavage site utilization and Aβ production. These show that multimerization significantly impedes γ-secretase cleavage, irrespective of substrate sequence. Further, the monomeric form of the 3xK-C100 mutant increased long Aβ production without altering the initial ε-cleavage utilization. These data confirm and extend previous studies showing that dimeric substrates are not efficient γ-secretase substrates, and demonstrate that primary sequence determinants within APP substrate alter γ-secretase processivity.
Collapse
Affiliation(s)
- Joo In Jung
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sasha Premraj
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
- College of Pharmacy, University of Florida, Gainesville, Florida, United States of America
| | - Pedro E. Cruz
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Thomas B. Ladd
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Yewon Kwak
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
| | - Edward H. Koo
- Department of Neuroscience, University of California San Diego, La Jolla, California, United States of America
| | - Kevin M. Felsenstein
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Todd E. Golde
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Yong Ran
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
200
|
Miners JS, Palmer JC, Tayler H, Palmer LE, Ashby E, Kehoe PG, Love S. Aβ degradation or cerebral perfusion? Divergent effects of multifunctional enzymes. Front Aging Neurosci 2014; 6:238. [PMID: 25309424 PMCID: PMC4160973 DOI: 10.3389/fnagi.2014.00238] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/20/2014] [Indexed: 12/17/2022] Open
Abstract
There is increasing evidence that deficient clearance of β-amyloid (Aβ) contributes to its accumulation in late-onset Alzheimer disease (AD). Several Aβ-degrading enzymes, including neprilysin (NEP), endothelin-converting enzyme (ECE), and angiotensin-converting enzyme (ACE) reduce Aβ levels and protect against cognitive impairment in mouse models of AD. In post-mortem human brain tissue we have found that the activity of these Aβ-degrading enzymes rise with age and increases still further in AD, perhaps as a physiological response that helps to minimize the build-up of Aβ. ECE-1/-2 and ACE are also rate-limiting enzymes in the production of endothelin-1 (ET-1) and angiotensin II (Ang II), two potent vasoconstrictors, increases in the levels of which are likely to contribute to reduced blood flow in AD. This review considers the possible interdependence between Aβ-degrading enzymes, ischemia and Aβ in AD: ischemia has been shown to increase Aβ production both in vitro and in vivo, whereas increased Aβ probably enhances ischemia by vasoconstriction, mediated at least in part by increased ECE and ACE activity. In contrast, NEP activity may help to maintain cerebral perfusion, by reducing the accumulation of Aβ in cerebral blood vessels and lessening its toxicity to vascular smooth muscle cells. In assessing the role of Aβ-degrading proteases in the pathogenesis of AD and, particularly, their potential as therapeutic agents, it is important to bear in mind the multifunctional nature of these enzymes and to consider their effects on other substrates and pathways.
Collapse
Affiliation(s)
- J Scott Miners
- Dementia Research Group, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol Bristol, UK
| | - Jennifer C Palmer
- Dementia Research Group, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol Bristol, UK
| | - Hannah Tayler
- Dementia Research Group, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol Bristol, UK
| | - Laura E Palmer
- Dementia Research Group, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol Bristol, UK
| | - Emma Ashby
- Dementia Research Group, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol Bristol, UK
| | - Patrick G Kehoe
- Dementia Research Group, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol Bristol, UK
| | - Seth Love
- Dementia Research Group, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol Bristol, UK
| |
Collapse
|