151
|
Abstract
Poly(ADP-ribosyl)ation is a post-translational modification of proteins. During this process, molecules of ADP-ribose are added successively on to acceptor proteins to form branched polymers. This modification is transient but very extensive in vivo, as polymer chains can reach more than 200 units on protein acceptors. The existence of the poly(ADP-ribose) polymer was first reported nearly 40 years ago. Since then, the importance of poly(ADP-ribose) synthesis has been established in many cellular processes. However, a clear and unified picture of the physiological role of poly(ADP-ribosyl)ation still remains to be established. The total dependence of poly(ADP-ribose) synthesis on DNA strand breaks strongly suggests that this post-translational modification is involved in the metabolism of nucleic acids. This view is also supported by the identification of direct protein-protein interactions involving poly(ADP-ribose) polymerase (113 kDa PARP), an enzyme catalysing the formation of poly(ADP-ribose), and key effectors of DNA repair, replication and transcription reactions. The presence of PARP in these multiprotein complexes, in addition to the actual poly(ADP-ribosyl)ation of some components of these complexes, clearly supports an important role for poly(ADP-ribosyl)ation reactions in DNA transactions. Accordingly, inhibition of poly(ADP-ribose) synthesis by any of several approaches and the analysis of PARP-deficient cells has revealed that the absence of poly(ADP-ribosyl)ation strongly affects DNA metabolism, most notably DNA repair. The recent identification of new poly(ADP-ribosyl)ating enzymes with distinct (non-standard) structures in eukaryotes and archaea has revealed a novel level of complexity in the regulation of poly(ADP-ribose) metabolism.
Collapse
|
152
|
Jacobson MK, Jacobson EL. Discovering new ADP-ribose polymer cycles: protecting the genome and more. Trends Biochem Sci 1999; 24:415-7. [PMID: 10542402 DOI: 10.1016/s0968-0004(99)01481-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- M K Jacobson
- Faculty of Pharmaceutical Sciences, Lucille P. Markey Cancer Center and Advanced Science and Technology Commercialization Center, University of Kentucky, Lexington, KY 40506, USA.
| | | |
Collapse
|
153
|
Winstall E, Affar EB, Shah R, Bourassa S, Scovassi IA, Poirier GG. Preferential perinuclear localization of poly(ADP-ribose) glycohydrolase. Exp Cell Res 1999; 251:372-8. [PMID: 10471322 DOI: 10.1006/excr.1999.4594] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transient nature of poly(ADP-ribosyl)ation, a posttranslational modification of nuclear proteins, is achieved by the enzyme poly(ADP-ribose) glycohydrolase (PARG) which hydrolyzes the poly(ADP-ribose) polymer into free ADP-ribose residues. To investigate the molecular size and localization of PARG, we developed a specific polyclonal antibody directed against the bovine PARG carboxy-terminal region. We found that PARG purified from bovine thymus was recognized as a 59-kDa protein, while Western blot analysis of total cell extracts revealed the presence of a unique 110-kDa protein. This 110-kDa PARG was mostly found in postnuclear extracts, whereas it was barely detectable in the nuclear fractions of COS7 cells. Further analysis by immunofluorescence revealed a cytoplasmic perinuclear distribution of PARG in COS7 cells overexpressing the bovine PARG cDNA. These results provide direct evidence that PARG is primarily a cytoplasmic enzyme and suggest that a very low amount of intranuclear PARG is required for poly(ADP-ribose) turnover.
Collapse
Affiliation(s)
- E Winstall
- Faculty of Medicine, Laval University Medical Research Center, Québec, G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|
154
|
Amé JC, Apiou F, Jacobson EL, Jacobson MK. Assignment of the poly(ADP-ribose) glycohydrolase gene (PARG) to human chromosome 10q11.23 and mouse chromosome 14B by in situ hybridization. CYTOGENETICS AND CELL GENETICS 1999; 85:269-70. [PMID: 10449915 DOI: 10.1159/000015310] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- J C Amé
- UPR 9003 du CNRS, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France.
| | | | | | | |
Collapse
|
155
|
Winstall E, Affar EB, Shah R, Bourassa S, Scovassi AI, Poirier GG. Poly(ADP-ribose) glycohydrolase is present and active in mammalian cells as a 110-kDa protein. Exp Cell Res 1999; 246:395-8. [PMID: 9925755 DOI: 10.1006/excr.1998.4321] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Poly(ADP-ribose) glycohydrolase (PARG) is the major enzyme responsible for the catabolism of poly(ADP-ribose), a reversible covalent-modifier of chromosomal proteins. Purification of PARG from many tissues revealed heterogeneity in activity and structure of this enzyme. To investigate PARG structure and localization, we developed a highly sensitive one-dimensional zymogram allowing us to analyze PARG activity in crude extracts of Cos-7, Jurkat, HL-60, and Molt-3 cells. In all extracts, a single PARG activity band corresponding to a protein of about 110 kDa was detected. This 110-kDa PARG activity was found mainly in cytoplasmic rather than in nuclear extracts of Cos-7 cells.
Collapse
Affiliation(s)
- E Winstall
- CHUL Research Center, CHUQ, Laval University, Sainte-Foy, Québec, G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|
156
|
Dantzer F, Schreiber V, Niedergang C, Trucco C, Flatter E, De La Rubia G, Oliver J, Rolli V, Ménissier-de Murcia J, de Murcia G. Involvement of poly(ADP-ribose) polymerase in base excision repair. Biochimie 1999; 81:69-75. [PMID: 10214912 DOI: 10.1016/s0300-9084(99)80040-6] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) is a zinc-finger DNA binding protein that detects and signals DNA strand breaks generated directly or indirectly by genotoxic agents. In response to these lesions, the immediate poly(ADP-ribosylation) of nuclear proteins converts DNA interruptions into intracellular signals that activate DNA repair or cell death programs. To elucidate the biological function of PARP in vivo, the mouse PARP gene was inactivated by homologous recombination to generate mice lacking a functional PARP gene. PARP knockout mice and the derived mouse embryonic fibroblasts (MEFs) were acutely sensitive to monofunctional alkylating agents and gamma-irradiation demonstrating that PARP is involved in recovery from DNA damage that triggers the base excision repair (BER) process. To address the issue of the role of PARP in BER, the ability of PARP-deficient mammalian cell extracts to repair a single abasic site present on a circular duplex plasmid molecule was tested in a standard in vitro repair assay. The results clearly demonstrate, for the first time, the involvement of PARP in the DNA synthesis step of the base excision repair process.
Collapse
Affiliation(s)
- F Dantzer
- UPR 9003-CNRS, Laboratoire conventionné avec le Commissariat à l'Energie Atomique, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch-Graffenstaden, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Shieh WM, Amé JC, Wilson MV, Wang ZQ, Koh DW, Jacobson MK, Jacobson EL. Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J Biol Chem 1998; 273:30069-72. [PMID: 9804757 DOI: 10.1074/jbc.273.46.30069] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) (EC 2.4.2.30), the only enzyme known to synthesize ADP-ribose polymers from NAD+, is activated in response to DNA strand breaks and functions in the maintenance of genomic integrity. Mice homozygous for a disrupted gene encoding PARP are viable but have severe sensitivity to gamma-radiation and alkylating agents. We demonstrate here that both 3T3 and primary embryo cells derived from PARP-/- mice synthesized ADP-ribose polymers following treatment with the DNA-damaging agent, N-methyl-N'-nitro-N-nitrosoguanidine, despite the fact that no PARP protein was detected in these cells. ADP-ribose polymers isolated from PARP-/- cells were indistinguishable from that of PARP+/+ cells by several criteria. First, they bound to a boronate resin selective for ADP-ribose polymers. Second, treatment of polymers with snake venom phosphodiesterase and alkaline phosphatase yielded ribosyladenosine, a nucleoside diagnostic for the unique ribosyl-ribosyl linkages of ADP-ribose polymers. Third, they were digested by treatment with recombinant poly(ADP-ribose) glycohydrolase, an enzyme highly specific for ADP-ribose polymers. Collectively, these data demonstrate that ADP-ribose polymers are formed in PARP-/- cells in a DNA damage-dependent manner. Because the PARP gene has been disrupted, these results suggest the presence of a previously unreported activity capable of synthesizing ADP-ribose polymers in PARP-/- cells.
Collapse
Affiliation(s)
- W M Shieh
- Department of Clinical Sciences, University of Kentucky, Lexington, Kentucky 40506-0286, USA
| | | | | | | | | | | | | |
Collapse
|
158
|
Trucco C, Oliver FJ, de Murcia G, Ménissier-de Murcia J. DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res 1998; 26:2644-9. [PMID: 9592149 PMCID: PMC147627 DOI: 10.1093/nar/26.11.2644] [Citation(s) in RCA: 265] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To investigate the physiological function of poly(ADP-ribose) polymerase (PARP), we used a gene targeting strategy to generate mice lacking a functional PARP gene. These PARP -/- mice were exquisitely sensitive to the monofunctional-alkylating agent N -methyl- N -nitrosourea (MNU) and gamma-irradiation. In this report, we have analysed the cause of this increased lethality using primary and/or spontaneously immortalized mouse embryonic fibroblasts (MEFs) derived from PARP -/- mice. We found that the lack of PARP renders cells significantly more sensitive to methylmethanesulfonate (MMS), causing cell growth retardation, G2/M accumulation and chromosome instability. An important delay in DNA strand-break resealing was observed following treatment with MMS. This severe DNA repair defect appears to be the primary cause for the observed cytoxicity of monofunctional-alkylating agents, leading to cell death occurring after G2/M arrest. Cell viability following MMS treatment could be fully restored after transient expression of the PARP gene. Altogether, these results unequivocally demonstrate that PARP is required for efficient base excision repair in vivo and strengthens the role of PARP as a survival factor following genotoxic stress.
Collapse
Affiliation(s)
- C Trucco
- UPR 9003 du Centre National de la Recherche Scientifique, Laboratoire Conventionné avec le Commissariat à l'Energie Atomique, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, F-67400 Illkirch-Graffenstad, France
| | | | | | | |
Collapse
|
159
|
Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 1998; 18:3563-71. [PMID: 9584196 PMCID: PMC108937 DOI: 10.1128/mcb.18.6.3563] [Citation(s) in RCA: 682] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Poly(ADP-ribose) polymerase (PARP; EC 2.4.2.30) is a zinc-finger DNA-binding protein that detects and signals DNA strand breaks generated directly or indirectly by genotoxic agents. In response to these breaks, the immediate poly(ADP-ribosyl)ation of nuclear proteins involved in chromatin architecture and DNA metabolism converts DNA damage into intracellular signals that can activate DNA repair programs or cell death options. To have greater insight into the physiological function of this enzyme, we have used the two-hybrid system to find genes encoding proteins putatively interacting with PARP. We have identified a physical association between PARP and the base excision repair (BER) protein XRCC1 (X-ray repair cross-complementing 1) in the Saccharomyces cerevisiae system, which was further confirmed to exist in mammalian cells. XRCC1 interacts with PARP by its central region (amino acids 301 to 402), which contains a BRCT (BRCA1 C terminus) module, a widespread motif in DNA repair and DNA damage-responsive cell cycle checkpoint proteins. Overexpression of XRCC1 in Cos-7 or HeLa cells dramatically decreases PARP activity in vivo, reinforcing the potential protective function of PARP at DNA breaks. Given that XRCC1 is also associated with DNA ligase III via a second BRCT module and with DNA polymerase beta, our results provide strong evidence that PARP is a member of a BER multiprotein complex involved in the detection of DNA interruptions and possibly in the recruitment of XRCC1 and its partners for efficient processing of these breaks in a coordinated manner. The modular organizations of these interactors, associated with small conserved domains, may contribute to increasing the efficiency of the overall pathway.
Collapse
Affiliation(s)
- M Masson
- UPR 9003 du Centre National de la Recherche Scientifique, Cancérogenèse et Mutagenèse Moléculaire et Structurale, Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch-Graffenstaden, France
| | | | | | | | | | | |
Collapse
|
160
|
Varlet P, Bidon N, Noël G, DeMurcia G, Salamero J, Averbeck D. [Radiation-induced DNA fragmentation evaluated by anti-poly(ADP-ribose)immunolabeling in CHO cells. Standardization with pulsed-field electrophoresis]. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1998; 321:313-8. [PMID: 9766197 DOI: 10.1016/s0764-4469(98)80057-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The poly (ADP-ribose) polymerase is an ubiquitous nuclear protein capable of binding specifically to DNA strand breaks. It synthesizes ADP-ribose polymers proportionally to DNA breaks. The actual method of reference to determine DNA double strand breaks is pulsed-field gel electrophoresis, but this requires many cells. It thus appeared of interest to use poly (ADP-ribos)ylation to follow and estimate gamma-ray-induced DNA fragmentation at the level of isolated cells after gamma-irradiation in chinese hamster ovary cells (CHO-K1). The results obtained by the immunolabelling technique of ADP-ribose polymers were compared to those obtained by pulsed-field gel electrophoresis. They show that poly (ADP-ribos)ylation reflects the occurrence of radiation-induced DNA strand breaks. A clear relationship exists between the amount of ADP-ribose polymers detected and DNA double strand breaks after gamma-irradiation.
Collapse
Affiliation(s)
- P Varlet
- Laboratoire d'anatomo-pathologic, hôpital Sainte-Anne, Paris, France
| | | | | | | | | | | |
Collapse
|
161
|
Poly(ADP-Ribose) Polymerase Is Required for Maintenance of Genomic Integrity During Base Excision Repair. DNA Repair (Amst) 1998. [DOI: 10.1007/978-3-642-48770-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|