151
|
de Beer M, Durbin D, Cai L, Jonas A, de Beer F, van der Westhuyzen D. Apolipoprotein A-I conformation markedly influences HDL interaction with scavenger receptor BI. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31693-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
152
|
Goti D, Hrzenjak A, Levak-Frank S, Frank S, van der Westhuyzen DR, Malle E, Sattler W. Scavenger receptor class B, type I is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL-associated vitamin E. J Neurochem 2001; 76:498-508. [PMID: 11208913 DOI: 10.1046/j.1471-4159.2001.00100.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is clearly established that an efficient supply to the brain of alpha-tocopherol (alphaTocH), the most biologically active member of the vitamin E family, is of the utmost importance for proper neurological functioning. Although the mechanism of uptake of alphaTocH into cells constituting the blood-brain barrier (BBB) is obscure, we previously demonstrated that high-density lipoprotein (HDL) plays a major role in the supply of alphaTocH to porcine brain capillary endothelial cells (pBCECs). Here we studied whether a porcine analogue of human and rodent scavenger receptor class B, type I mediates selective (without concomitant lipoprotein particle internalization) uptake of HDL-associated alphaTocH in a similar manner to that described for HDL-associated cholesteryl esters (CEs). In agreement with this hypothesis we observed that a major proportion of alphaTocH uptake by pBCECs occurred by selective uptake, exceeding HDL3 holoparticle uptake by up to 13-fold. The observation that selective uptake of HDL-associated CE exceeded HDL3 holoparticle up to fourfold suggested that a porcine analogue of SR-BI (pSR-BI) may be involved in lipid uptake at the BBB. In line with the observation of selective lipid uptake, RT-PCR and northern and western blot analyses revealed the presence of pSR-BI in cells constituting the BBB. Adenovirus-mediated overexpression of the human analogue of SR-BI (hSR-BI) in pBCECs resulted in a fourfold increase in selective HDL-associated alphaTocH uptake. In accordance with the proposed function of SR-BI, selective HDL-CE uptake was increased sixfold in Chinese hamster ovary cells stably transfected with murine SR-BI (mSR-BI). Most importantly stable mSR-BI overexpression mediated a twofold increase in HDL-associated [14C]alphaTocH selective uptake in comparison with control cells. In line with tracer experiments, mass transfer studies with unlabelled lipoproteins revealed that mSR-BI overexpression resulted in a twofold increase in endogenous HDL3-associated alphaTocH uptake. The results of this study indicate that SR-BI promotes the uptake of HDL-associated alphaTocH into cells constituting the BBB and plays an important role during the supply of the CNS with this indispensable micronutrient.
Collapse
Affiliation(s)
- D Goti
- Institute of Medical Biochemistry and Molecular Biology, Karl Franzens University Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
153
|
Trigatti BL, Rigotti A, Braun A. Cellular and physiological roles of SR-BI, a lipoprotein receptor which mediates selective lipid uptake. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1529:276-86. [PMID: 11111095 DOI: 10.1016/s1388-1981(00)00154-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
High-density lipoproteins (HDL) play an important role in protection against atherosclerosis by mediating reverse cholesterol transport - the transport of excess cholesterol from peripheral tissues to the liver for disposal. SR-BI is a cell surface receptor for HDL and other lipoproteins (LDL and VLDL) and mediates the selective uptake of lipoprotein cholesterol by cells. Overexpression or genetic ablation of SR-BI in mice revealed that it plays an important role in HDL metabolism and reverse cholesterol transport and protects against atherosclerosis in mouse models of the disease. If it plays a similar role in humans then it may be an attractive target for therapeutic intervention. We will review some of the recent advances in the understanding of SR-BI's physiological role and cellular function in lipoprotein metabolism.
Collapse
Affiliation(s)
- B L Trigatti
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
154
|
Williams DL, Temel RE, Connelly MA. Roles of scavenger receptor BI and APO A-I in selective uptake of HDL cholesterol by adrenal cells. Endocr Res 2000; 26:639-51. [PMID: 11196441 DOI: 10.3109/07435800009048584] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adrenal cells obtain cholesterol for steroid production via the selective uptake of cholesteryl ester (CE) from HDL particles, a process in which CE is transferred to the plasma membrane without degradation of the HDL particle. Although this process has been studied for two decades, only recently have the receptor and the HDL ligand been identified. Scavenger class B, type I, (SR-BI) is regulated by ACTH in adrenocortical cells in parallel with steroid production. Antibody to SR-BI blocks the uptake and utilization of HDL CE for steroid production in Y1-BS1 adrenal cells. The adrenal glands of SR-BI knockout mice are depleted in cholesterol providing complementary evidence that SR-BI is responsible for HDL CE accumulation in adrenal cells. SR-BI-mediated HDL CE selective uptake is a two-step process in which SR-BI first interacts with multiple sites in apoA-I with the amphipathic inverted alpha-helical repeat units of apoA-I serving as recognition motifs. This is followed by efficient CE transfer down its concentration gradient to the plasma membrane, a process requiring the extracellular domain of SR-BI. Other scavenger receptors bind HDL but do not afford the CE transfer step. Adrenal glands from apoA-I knockout mice lack CE stores, indicating that apoAI is essential for HDL selective uptake in vivo. ApoA-I knockout HDL particles bind normally to SR-BI but do not permit efficient CE transfer to the cell. These findings suggest that apoA-I has an important role in the transfer of HDL CE that goes beyond its function as a ligand for interaction with SR-BI.
Collapse
Affiliation(s)
- D L Williams
- Department of Pharmacological Sciences, University Medical Center, State University of New York at Stony Brook, 11794, USA
| | | | | |
Collapse
|
155
|
HDL modification by secretory phospholipase A2 promotes scavenger receptor class B type I interaction and accelerates HDL catabolism. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)31979-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
156
|
Chen W, Silver DL, Smith JD, Tall AR. Scavenger receptor-BI inhibits ATP-binding cassette transporter 1- mediated cholesterol efflux in macrophages. J Biol Chem 2000; 275:30794-800. [PMID: 10896940 DOI: 10.1074/jbc.m004552200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scavenger receptor BI (SR-BI) facilitates the efflux of cellular cholesterol to plasma high density lipoprotein (HDL). Recently, the ATP-binding cassette transporter 1 (ABC1) was identified as a key mediator of cholesterol efflux to apolipoproteins and HDL. The goal of the present study was to determine a possible interaction between the SR-BI and ABC1 cholesterol efflux pathways in macrophages. Free cholesterol efflux to HDL was increased ( approximately 2.2-fold) in SR-BI transfected RAW macrophages in association with increased SR-BI protein levels. Treatment of macrophages with 8-bromo-cAMP (cAMP) resulted in a 4.1-fold increase in ABC1 mRNA level and also increased cholesterol efflux to HDL (2.2-fold) and apoA-I (5.5-fold). However, in SR-BI transfected RAW cells, cAMP treatment produced a much smaller increment in cholesterol efflux to HDL (1.1-fold) or apoA-I (3.3-fold) compared with control cells. In macrophages loaded with cholesterol by acetyl-LDL treatment, SR-BI overexpression did not increase cholesterol efflux to HDL but did inhibit cAMP-mediated cholesterol efflux to apoA-I or HDL. SR-BI neutralizing antibody led to a dose- and time-dependent increase of cAMP-mediated cholesterol efflux in both SR-BI transfected and control cells, indicating that SR-BI inhibits ABC1-mediated cholesterol efflux even at low SR-BI expression level. Transfection of a murine ABC1 cDNA into 293 cells led to a 2.3-fold increase of cholesterol efflux to apoA-I, whereas co-transfection of SR-BI with ABC1 blocked this increase in cholesterol efflux. SR-BI and ABC1 appear to have distinct and competing roles in mediating cholesterol flux between HDL and macrophages. In nonpolarized cells, SR-BI promotes the reuptake of cholesterol actively effluxed by ABC1, creating a futile cycle.
Collapse
Affiliation(s)
- W Chen
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
157
|
Terpstra V, van Amersfoort ES, van Velzen AG, Kuiper J, van Berkel TJ. Hepatic and extrahepatic scavenger receptors: function in relation to disease. Arterioscler Thromb Vasc Biol 2000; 20:1860-72. [PMID: 10938005 DOI: 10.1161/01.atv.20.8.1860] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- V Terpstra
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, University of Leiden, Sylvius Laboratories, Leiden, the Netherlands
| | | | | | | | | |
Collapse
|
158
|
Krieger M. Charting the fate of the "good cholesterol": identification and characterization of the high-density lipoprotein receptor SR-BI. Annu Rev Biochem 2000; 68:523-58. [PMID: 10872459 DOI: 10.1146/annurev.biochem.68.1.523] [Citation(s) in RCA: 408] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Risk for cardiovascular disease due to atherosclerosis increases with increasing concentrations of low-density lipoprotein (LDL) cholesterol and is inversely proportional to the levels of high-density lipoprotein (HDL) cholesterol. The receptor-mediated control of plasma LDL levels has been well understood for over two decades and has been a focus for the pharmacologic treatment of hypercholesterolemia. In contrast, the first identification and characterization of a receptor that mediates cellular metabolism of HDL was only recently reported. This receptor, called scavenger receptor class B type I (SR-BI), is a fatty acylated glycoprotein that can cluster in caveolae-like domains on the surfaces of cultured cells. SR-BI mediates selective lipid uptake from HDL to cells. The mechanism of selective lipid uptake is fundamentally different from that of classic receptor-mediated endocytic uptake via coated pits and vesicles (e.g. the LDL receptor pathway) in that it involves efficient receptor-mediated transfer of the lipids, but not the outer shell proteins, from HDL to cells. In mice, SR-BI plays a key role in determining the levels of plasma HDL cholesterol and in mediating the regulated, selective delivery of HDL-cholesterol to steroidogenic tissues and the liver. Significant alterations in SR-BI expression can result in cardiovascular and reproductive disorders. SR-BI may play a similar role in humans; thus, modulation of its activity may provide the basis of future approaches to the treatment and prevention of atherosclerotic disease.
Collapse
Affiliation(s)
- M Krieger
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA.
| |
Collapse
|
159
|
Pussinen PJ, Karten B, Wintersperger A, Reicher H, McLean M, Malle E, Sattler W. The human breast carcinoma cell line HBL-100 acquires exogenous cholesterol from high-density lipoprotein via CLA-1 (CD-36 and LIMPII analogous 1)-mediated selective cholesteryl ester uptake. Biochem J 2000; 349:559-66. [PMID: 10880355 PMCID: PMC1221179 DOI: 10.1042/0264-6021:3490559] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aberrant cell proliferation is one of the hallmarks of carcinogenesis, and cholesterol is thought to play an important role during cell proliferation and cancer progression. In the present study we examined the pathways that could contribute to enhanced proliferation rates of HBL-100 cells in the presence of apolipoprotein E-depleted high-density lipoprotein subclass 3 (HDL(3)). When HBL-100 cells were cultivated in the presence of HDL(3) (up to 200 microg/ml HDL(3) protein), the growth rates and cellular cholesterol content were directly related to the concentrations of HDL(3) in the culture medium. In principle, two pathways can contribute to cholesterol/cholesteryl ester (CE) uptake from HDL(3), (i) holoparticle- and (ii) scavenger-receptor BI (SR-BI)-mediated selective uptake of HDL(3)-associated CEs. Northern- and Western-blot analyses revealed the expression of CLA-1 (CD-36 and LIMPII analogous 1), the human homologue of the rodent HDL receptor SR-BI. In line with CLA-1 expression, selective uptake of HDL(3)-CEs exceeded HDL(3)-holoparticle uptake between 12- and 58-fold. Competition experiments demonstrated that CLA-1 ligands (oxidized HDL, oxidized and acetylated low-density lipoprotein and phosphatidylserine) inhibited selective HDL(3)-CE uptake. In line with the ligand-binding specificity of CLA-1, phosphatidylcholine did not compete for selective HDL(3)-CE uptake. Selective uptake was regulated by the availability of exogenous cholesterol and PMA, but not by adrenocorticotropic hormone. HPLC analysis revealed that a substantial part of HDL(3)-CE, which was taken up selectively, was subjected to intracellular hydrolysis. A potential candidate facilitating extralysosomal hydrolysis of HDL(3)-CE is hormone-sensitive lipase, an enzyme which was identified in HBL-100 cells by Western blots. Our findings demonstrate that HBL-100 cells are able to acquire HDL-CEs via selective uptake. Subsequent partial hydrolysis by hormone-sensitive lipase could provide 'free' cholesterol that is available for the synthesis of cellular membranes during proliferation of cancer cells.
Collapse
Affiliation(s)
- P J Pussinen
- Institute of Medical Biochemistry and Molecular Biology, University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
160
|
Relative importance of the LDL receptor and scavenger receptor class B in the β-VLDL-induced uptake and accumulation of cholesteryl esters by peritoneal macrophages. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32023-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
161
|
Abstract
There are epidemiological data and experimental animal models relating the development of premature atherosclerosis with defects of the reverse cholesterol transport (RCT) system. In this regard, the plasma concentrations of the high density lipoprotein (HDL) subfractions, of cholesteryl ester transfer protein (CETP), as well as the activity of the enzyme lecithin-cholesterol acyl transferase (LCAT) play critical roles. However, there has been plenty of evidence that atherosclerosis in diabetes mellitus (DM) is ascribed to a greater arterial wall cell uptake of modified apoB-containing lipoproteins whereas a primary or predominant defect of the RCT system is still a subject of debate. In other words, in spite of the fact that in DM the composition and rates of metabolism of the HDL particles are greatly altered and display a diminished in vitro efficiency to remove cell cholesterol, definitive in vivo demonstration of the importance of this fact in atherogenesis is lacking. Furthermore, the roles played by LCAT and CETP in RCT in DM are difficult to interpret because the in vitro procedures of measurement utilized have either been inadequate, or inappropriately interpreted. Knock-out or transgenic mice are much needed models to investigate the roles of LCAT, CETP, phospholipid transfer protein (PLTP), and of a CETP inhibitor in the development of atherosclerosis of experimental DM.
Collapse
Affiliation(s)
- E C Quintão
- Lipid Metabolism Laboratory (LIM 10), Hospital das Clínicas, The University of São Paulo Medical School, São Paulo, Brazil.
| | | | | |
Collapse
|
162
|
Ikemoto M, Arai H, Feng D, Tanaka K, Aoki J, Dohmae N, Takio K, Adachi H, Tsujimoto M, Inoue K. Identification of a PDZ-domain-containing protein that interacts with the scavenger receptor class B type I. Proc Natl Acad Sci U S A 2000; 97:6538-43. [PMID: 10829064 PMCID: PMC18651 DOI: 10.1073/pnas.100114397] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The scavenger receptor class B type I (SR-BI) mediates the selective uptake of cholesteryl esters from high-density lipoprotein (HDL) and cholesterol secretion into bile in the liver. In this study, we identified an SR-BI-associated protein from rat liver membrane extracts by using an affinity chromatography technique. This protein of 523 amino acids contains four PDZ domains and associates with the C terminus of SR-BI by using its N-terminal first PDZ domain. Therefore, we denoted this protein as CLAMP (C-terminal linking and modulating protein). CLAMP was located mostly in the sinusoidal membranes, whereas SR-BI was detected in both sinusoidal and canalicular membranes. After the solubilization of the liver membranes with Triton X-100, SR-BI was immunoprecipitated with anti-CLAMP monoclonal antibody, suggesting the association of these proteins in vivo. By coexpressing SR-BI with CLAMP in Chinese hamster ovary cells, we observed (i) the increase in the expression level of SR-BI, (ii) the reduction in the deacylation rate of the cholesteryl esters taken up from HDL, and (iii) the change in the intracellular distribution of fluorescent lipid 1,1'-dioctadecyl-3,3, 3',3'-tetramethylindocarbocyanine percholate taken up from HDL. Taken together, these data suggest that CLAMP, a four-PDZ-domain-containing protein, is associated with SR-BI in the liver sinusoidal plasma membranes and may modulate the intracellular transport and metabolism of cholesteryl esters taken up from HDL.
Collapse
Affiliation(s)
- M Ikemoto
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Gu X, Lawrence R, Krieger M. Dissociation of the high density lipoprotein and low density lipoprotein binding activities of murine scavenger receptor class B type I (mSR-BI) using retrovirus library-based activity dissection. J Biol Chem 2000; 275:9120-30. [PMID: 10734045 DOI: 10.1074/jbc.275.13.9120] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The murine class B, type I scavenger receptor (mSR-BI) is a receptor for both high density lipoprotein (HDL) and low density lipoprotein (LDL) and mediates selective, rather than endocytic, uptake of lipoprotein lipid. We have developed a "retrovirus library-based activity dissection" method to generate mSR-BI mutants in which some, but not all, of the activities of this multifunctional protein have been disrupted. This method employs three techniques: 1) efficient in vitro cDNA mutagenesis (here error-prone PCR was used), 2) efficient retroviral delivery and high expression of single mutant cDNAs into individual cells, and 3) isolation of infected cells expressing the desired mutant phenotype using high sensitivity positive/negative screening by two-color fluorescence-activated cell sorting. A set of mutants, all having arginine substitutions at two common sites (positions 402 or 401 and position 418), were isolated and characterized. Mutation at either site alone did not generate as strong a mutant phenotype (loss of DiI uptake from DiI-HDL) as did the double mutations. "Activity-dissected" double mutants were as effective as wild-type mSR-BI in functioning as LDL receptors, mediating high affinity LDL binding and uptake of metabolically active cholesterol from LDL, but they lost most of their corresponding HDL receptor activity. Thus, these mutants provide support for the proposal that the interaction of SR-BI with HDL differs from that with LDL. Examination of the in vivo function of such mutants may provide insights into the differential roles of the LDL and HDL receptor activities of SR-BI in normal lipoprotein metabolism and in SR-BI's ability to protect against atherosclerosis.
Collapse
Affiliation(s)
- X Gu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
164
|
Artl A, Marsche G, Lestavel S, Sattler W, Malle E. Role of serum amyloid A during metabolism of acute-phase HDL by macrophages. Arterioscler Thromb Vasc Biol 2000; 20:763-72. [PMID: 10712402 DOI: 10.1161/01.atv.20.3.763] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The serum amyloid A (SAA) family of proteins is encoded by multiple genes that display allelic variation and a high degree of homology in mammals. Triggered by inflammation after stimulation of hepatocytes by lymphokine-mediated processes, the concentrations of SAA may increase during the acute-phase reaction to levels 1000-fold greater than those found in the noninflammatory state. In addition to its role as an acute-phase reactant, SAA (104 amino acids, 12 kDa) is considered to be the precursor protein of secondary reactive amyloidosis, in which the N-terminal portion is incorporated into the bulk of amyloid fibrils. However, the association with lipoproteins of the high-density range and subsequent modulation of the metabolic properties of its physiological carrier appear to be the principal role of SAA. Because SAA may displace apolipoprotein A-I, the major protein component of native high density lipoprotein (HDL), during the acute-phase reaction, the present study was aimed at (1) investigating binding properties of native and acute-phase (SAA-enriched) HDL by J774 macrophages, (2) elucidating whether the presence of SAA on HDL particles affects selective uptake of HDL-associated cholesteryl esters, and (3) comparing cellular cholesterol efflux mediated by native and acute-phase HDL. Both the total and the specific binding at 4 degrees C of rabbit acute-phase HDL were approximately 2-fold higher than for native HDL. Nonlinear regression analysis revealed K(d) values of 7.0 x 10(-7) mol/L (native HDL) and 3.1 x 10(-7) mol/L (acute-phase HDL), respectively. The corresponding B(max) values were 203 ng of total lipoprotein per milligram of cell protein (native HDL) and 250 ng of total lipoprotein per milligram of cell protein (acute-phase HDL). At 37 degrees C, holoparticle turnover was slightly enhanced for acute-phase HDL, a fact reflected by 2-fold higher degradation rates. In contrast, the presence of SAA on HDL specifically increased (1. 7-fold) the selective uptake of HDL cholesteryl esters from acute-phase HDL by J774 macrophages, a widely used in vitro model to study foam cell formation and cholesterol efflux properties. Although ligand blotting experiments with solubilized J774 membrane proteins failed to identify the scavenger receptor-BI as a binding protein for both native and acute-phase HDL, 2 binding proteins with molecular masses of 100 and 72 kDa, the latter comigrating with CD55 (also termed decay-accelerating factor), were identified. During cholesterol efflux studies, it became apparent that the ability of acute-phase HDL with regard to cellular cholesterol removal was considerably lower than that for native HDL. This was reflected by a 1.7-fold increase in tau/2 values (22 versus 36 hours; native versus acute-phase HDL). Our observations of increased HDL cholesteryl ester uptake and reduced cellular cholesterol efflux (acute-phase versus native HDL) suggest that displacement of apolipoprotein A-I by SAA results in considerable altered metabolic properties of its main physiological carrier. These changes in the apolipoprotein moieties appear (at least in the in vitro system tested) to transform an originally antiatherogenic into a proatherogenic lipoprotein particle.
Collapse
Affiliation(s)
- A Artl
- Karl-Franzens University Graz, Medical Biochemistry, Graz, Austria
| | | | | | | | | |
Collapse
|
165
|
Reaven E, Zhan L, Nomoto A, Leers-Sucheta S, Azhar S. Expression and microvillar localization of scavenger receptor class B, type I (SR-BI) and selective cholesteryl ester uptake in Leydig cells from rat testis. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)34473-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
166
|
Abstract
The scavenger receptor class B, type I (SR-BI) is an HDL receptor that mediates selective cholesterol uptake from HDL to cells. In rodents, SR-BI has a critical influence on plasma HDL-cholesterol concentration and structure, the delivery of cholesterol to steroidogenic tissues, female fertility, and biliary cholesterol concentration. SR-BI can also serve as a receptor for non-HDL lipoproteins and appears to play an important role in reverse cholesterol transport. Recent studies involving the manipulation of SR-BI expression in mice, either using adenovirus-mediated or transgenic hepatic overexpression or using homologous recombination for complete functional ablation, indicate that the expression of SR-BI protects against atherosclerosis. If SR-BI has a similar activity in humans, it may become an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- M Krieger
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | |
Collapse
|
167
|
Ji Y, Wang N, Ramakrishnan R, Sehayek E, Huszar D, Breslow JL, Tall AR. Hepatic scavenger receptor BI promotes rapid clearance of high density lipoprotein free cholesterol and its transport into bile. J Biol Chem 1999; 274:33398-402. [PMID: 10559220 DOI: 10.1074/jbc.274.47.33398] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The clearance of free cholesterol from plasma lipoproteins by tissues is of major quantitative importance, but it is not known whether this is passive or receptor-mediated. Based on our finding that scavenger receptor BI (SR-BI) promotes free cholesterol (FC) exchange between high density lipoprotein (HDL) and cells, we tested whether SR-BI would effect FC movement in vivo using [(14)C]FC- and [(3)H]cholesteryl ester (CE)-labeled HDL in mice with increased (SR-BI transgenic (Tg)) or decreased (SR-BI attenuated (att)) hepatic SR-BI expression. The initial clearance of HDL FC was increased in SR-BI Tg mice by 72% and decreased in SR-BI att mice by 53%, but was unchanged in apoA-I knockout mice compared with wild-type mice. Transfer of FC to non-HDL and esterification of FC were minor and could not explain differences. The hepatic uptake of FC was increased in SR-BI Tg mice by 34% and decreased in SR-BI att mice by 22%. CE clearance and uptake gave similar results, but with much slower rates. The uptake of HDL FC and CE by SR-BI Tg primary hepatocytes was increased by 2.2- and 2.6-fold (1-h incubation), respectively, compared with control hepatocytes. In SR-BI Tg mice, the initial biliary secretion of [(14)C]FC was markedly increased, whereas increased [(3)H]FC appeared after a slight delay. Thus, in the mouse, a major portion of the clearance of HDL FC from plasma is mediated by SR-BI.
Collapse
Affiliation(s)
- Y Ji
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
168
|
Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP. Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 1999; 19:7289-304. [PMID: 10523618 PMCID: PMC84723 DOI: 10.1128/mcb.19.11.7289] [Citation(s) in RCA: 787] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- E J Smart
- University of Kentucky, Department of Physiology, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Co-expression of scavenger receptor-BI and caveolin-1 is associated with enhanced selective cholesteryl ester uptake in THP-1 macrophages. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33410-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
170
|
Cao G, Zhao L, Stangl H, Hasegawa T, Richardson JA, Parker KL, Hobbs HH. Developmental and hormonal regulation of murine scavenger receptor, class B, type 1. Mol Endocrinol 1999; 13:1460-73. [PMID: 10478838 DOI: 10.1210/mend.13.9.0346] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The scavenger receptor, class B, type I (SR-BI), is the predominant receptor that supplies plasma cholesterol to steroidogenic tissues in rodents. We showed previously that steroidogenic factor-1 (SF-1) binds a sequence in the human SR-BI promoter whose integrity is required for high-level SR-BI expression in cultured adrenocortical tumor cells. We now provide in vivo evidence that SF-1 regulates SR-BI. During mouse embryogenesis, SR-BI mRNA was initially expressed in the genital ridge of both sexes and persisted in the developing testes but not ovary. This sexually dimorphic expression profile of SR-BI expression in the gonads mirrors that of SF-1. No SR-BI mRNA was detected in the gonadal ridge of day 11.5 SF-1 knockout embryos. Both SR-BI and SF-1 mRNA were expressed in the cortical cells of the nascent adrenal glands. These studies directly support SF-1 participating in the regulation of SR-BI in vivo. We examined the effect of cAMP on SR-BI mRNA and protein in mouse adrenocortical (Y1-BS1) and testicular carcinoma Leydig (MA-10) cells. The time courses of induction were strikingly similar to those described for other cAMP- and SF-1-regulated genes. Addition of lipoproteins reduced SR-BI expression in Y1-BS1 cells, an effect that was reversed by administration of cAMP analogs. SR-BI mRNA and protein were expressed at high levels in the adrenal glands of knockout mice lacking the steroidogenic acute regulatory protein; these mice have extensive lipid deposits in the adrenocortical cells and high circulating levels of ACTH. Taken together, these studies suggest that trophic hormones can override the suppressive effect of cholesterol on SR-BI expression, thus ensuring that steroidogenesis is maintained during stress.
Collapse
MESH Headings
- Adrenal Glands/embryology
- Adrenal Glands/metabolism
- Animals
- Animals, Newborn
- CD36 Antigens/genetics
- CD36 Antigens/metabolism
- Cholesterol/metabolism
- Cyclic AMP/analogs & derivatives
- Cyclic AMP/pharmacology
- DNA-Binding Proteins/genetics
- Embryo, Mammalian/metabolism
- Embryonic and Fetal Development/genetics
- Female
- Fushi Tarazu Transcription Factors
- Gene Expression Regulation, Developmental
- Genitalia/embryology
- Genitalia/metabolism
- Homeodomain Proteins
- Hormones/physiology
- Humans
- In Situ Hybridization
- Liver/embryology
- Liver/metabolism
- Male
- Membrane Proteins
- Mice
- Mice, Knockout
- Phosphoproteins/genetics
- Pregnancy
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear
- Receptors, Immunologic
- Receptors, Lipoprotein/genetics
- Receptors, Lipoprotein/metabolism
- Receptors, Scavenger
- Scavenger Receptors, Class B
- Steroidogenic Factor 1
- Transcription Factors/genetics
- Transcription, Genetic
- Tumor Cells, Cultured
- Urogenital System/metabolism
Collapse
Affiliation(s)
- G Cao
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, 75235, USA
| | | | | | | | | | | | | |
Collapse
|
171
|
Azhar S, Luo Y, Medicherla S, Reaven E. Upregulation of selective cholesteryl ester uptake pathway in mice with deletion of low-density lipoprotein receptor function. J Cell Physiol 1999; 180:190-202. [PMID: 10395289 DOI: 10.1002/(sici)1097-4652(199908)180:2<190::aid-jcp7>3.0.co;2-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study examines the effect of mutation of the low-density lipoprotein receptor (LDLR) on cholesterol metabolism, and especially lipoprotein-derived cholesteryl ester uptake, in murine ovarian granulosa cells. Although the tests were conducted on cells prepared by two different procedures, the results are similar. Deletion of LDLR function did not noticeably affect key enzymes of the steroidogenic pathway or affect progestin production and secretion in granulosa cells. No change was found in expression of LDL-related protein (LRP). These data suggested that cholesterol turnover in cells from the knockout animals is within normal limits and that the cells are not stressed to acquire more cholesterol. Both biochemical and morphological data indicate that unstimulated granulosa cells from LDLR-/- mice are nonetheless programmed to take in double the amount of lipoprotein-derived cholesteryl ester (via the selective cholesteryl ester uptake pathway) and to process (hydrolyze, re-esterify, or utilize) more than twofold the cholesteryl ester processed by cells from wildtype (LDLR+/+) animals. Bt2cAMP stimulation of the murine granulosa cells increases the mass of cholesteryl ester taken up by the selective pathway by an additional 38%. To determine to what extent this increase is related to high-density lipoprotein (HDL) scavenger receptor protein (SR-BI) or caveolin function, Western blots and immunohistochemical studies were performed under a variety of conditions. SR-BI levels are found to be low in unstimulated cells of both LDLR+/+ and LDLR-/- animals, but highly expressed (approximately 20-fold increase over basal levels) in stimulated (Bt2cAMP) cells of both animal models. Thus, the functional relationship between selective cholesteryl ester uptake and SR-BI receptor protein is not as tight as in previously reported studies, suggesting a requirement for other tissue factors. Caveolin expression did not change under any of the conditions tested and appears not to be functionally involved in this process.
Collapse
MESH Headings
- Animals
- Biological Transport/drug effects
- Biological Transport/physiology
- Boron Compounds/pharmacokinetics
- Bucladesine/pharmacology
- CD36 Antigens/analysis
- CD36 Antigens/genetics
- Caveolin 1
- Caveolins
- Cells, Cultured
- Cholesterol Esters/pharmacokinetics
- Cholesterol, HDL/pharmacokinetics
- Female
- Fluorescent Antibody Technique
- Gene Expression/physiology
- Granulosa Cells/chemistry
- Granulosa Cells/drug effects
- Granulosa Cells/metabolism
- Humans
- Iodine Radioisotopes
- Lipoproteins/metabolism
- Male
- Membrane Proteins/analysis
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Oligonucleotide Probes
- RNA, Messenger/analysis
- Receptors, Immunologic
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Receptors, Lipoprotein
- Receptors, Scavenger
- Reverse Transcriptase Polymerase Chain Reaction
- Scavenger Receptors, Class B
- Up-Regulation/genetics
Collapse
Affiliation(s)
- S Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, California 94304, USA
| | | | | | | |
Collapse
|
172
|
Williams DL, Connelly MA, Temel RE, Swarnakar S, Phillips MC, de la Llera-Moya M, Rothblat GH. Scavenger receptor BI and cholesterol trafficking. Curr Opin Lipidol 1999; 10:329-39. [PMID: 10482136 DOI: 10.1097/00041433-199908000-00007] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Scavenger receptor BI (SR-BI) mediates the selective uptake of HDL cholesteryl ester into steroidogenic cells and the liver and is a major determinant of the plasma HDL concentration in the mouse. Recent studies indicate that SR-BI also alters the metabolism of apolipoprotein B-containing particles and influences the development of atherosclerosis in several animal models. These results and the similar pattern of SR-BI expression in humans emphasize that it is important to learn how this receptor influences lipoprotein metabolism and atherosclerosis in people.
Collapse
Affiliation(s)
- D L Williams
- Department of Pharmacological Sciences, University Medical Centre, State University of New York at Stony Brook, 11794, USA.
| | | | | | | | | | | | | |
Collapse
|
173
|
Febbraio M, Abumrad NA, Hajjar DP, Sharma K, Cheng W, Pearce SF, Silverstein RL. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J Biol Chem 1999; 274:19055-62. [PMID: 10383407 DOI: 10.1074/jbc.274.27.19055] [Citation(s) in RCA: 609] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A null mutation in the scavenger receptor gene CD36 was created in mice by targeted homologous recombination. These mice produced no detectable CD36 protein, were viable, and bred normally. A significant decrease in binding and uptake of oxidized low density lipoprotein was observed in peritoneal macrophages of null mice as compared with those from control mice. CD36 null animals had a significant increase in fasting levels of cholesterol, nonesterified free fatty acids, and triacylglycerol. The increase in cholesterol was mainly within the high density lipoprotein fraction, while the increase in triacylglycerol was within the very low density lipoprotein fraction. Null animals had lower fasting serum glucose levels when compared with wild type controls. Uptake of 3H-labeled oleate was significantly reduced in adipocytes from null mice. However, the decrease was limited to the low ratios of fatty acid:bovine serum albumin, suggesting that CD36 was necessary for the high affinity component of the uptake process. The data provide evidence for a functional role for CD36 in lipoprotein/fatty acid metabolism that was previously underappreciated.
Collapse
Affiliation(s)
- M Febbraio
- Division of Hematology/Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
174
|
Mingpeng S, Zongli W. The protective role of high-density lipoproteins in atherosclerosis. Exp Gerontol 1999; 34:539-48. [PMID: 10817809 DOI: 10.1016/s0531-5565(99)00034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Serum high-density lipoprotein level is known to be correlated inversely with the incidence and mortality rates of ischemic heart disease. Although some reports pointed out that in case of hyperalphalipoproteinemia, lesions in the coronary arteries were occasionally found, it is also noticed that in very rare condition, no atheromatous lesions found even in patients with hereditary alphalipoprotein deficiency (Funke et al., 1991). However, clinical surveys have confirmed that high high-density-lipoprotein cholesterol level is favorable in preventing the development of atheroclerotic lesion and high-density lipoprotein together with apolipoprotein AI are currently considered to be the most reliable parameters in predicting the development of atherosclerosis in hyperlipidemia.
Collapse
Affiliation(s)
- S Mingpeng
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and College of Basic Medicine, Peking Union Medical College, Beijing, China.
| | | |
Collapse
|
175
|
Svensson PA, Johnson MS, Ling C, Carlsson LM, Billig H, Carlsson B. Scavenger receptor class B type I in the rat ovary: possible role in high density lipoprotein cholesterol uptake and in the recognition of apoptotic granulosa cells. Endocrinology 1999; 140:2494-500. [PMID: 10342834 DOI: 10.1210/endo.140.6.6693] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of high density lipoprotein cholesterol. SR-BI is expressed at high levels in the ovary, indicating that it plays a role in the delivery of cholesterol as substrate for steroid hormone production. However, SR-BI also binds anionic phospholipids with high affinity and could therefore be involved in the recognition of apoptotic cells. In this study we have characterized the expression of SR-BI in rat ovarian follicles undergoing atresia. Atretic follicles with cells undergoing apoptosis were identified by in situ DNA end labeling, and SR-BI expression was determined by in situ hybridization and immunohistochemistry. SR-BI was expressed in thecal cells at all stages of follicular development, including atretic follicles, and in corpus luteum. Isolated apoptotic granulosa cells (but not viable granulosa cells) bound annexin V, indicating that they display anionic phospholipids on the cell surface. Transfection of COS-7 cells with an expression vector carrying the rat SR-BI complementary DNA resulted in increased binding to apoptotic granulosa cells (46 +/- 2% of the SR-BI-expressing cells bound at least one granulosa cell compared with 24 +/- 3% for the mock-transfected cells; P < 0.0001), whereas the binding to viable granulosa cells was unchanged. Apoptotic granulosa cells also bound to isolated thecal shells. We conclude that thecal cells of both nonatretic and atretic follicles express SR-BI. The location of SR-BI expression in the ovary supports a role of this receptor in the uptake of high density lipoprotein cholesterol. In addition, our data suggest that SR-BI mediates the recognition of apoptotic granulosa cells by the surrounding thecal cells and that it therefore may play a role in the remodeling of atretic follicles to secondary interstitial cells.
Collapse
Affiliation(s)
- P A Svensson
- Department of Internal Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | | | | | | | | | | |
Collapse
|
176
|
Rothblat GH, de la Llera-Moya M, Atger V, Kellner-Weibel G, Williams DL, Phillips MC. Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32113-1] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
177
|
Graf GA, Connell PM, van der Westhuyzen DR, Smart EJ. The class B, type I scavenger receptor promotes the selective uptake of high density lipoprotein cholesterol ethers into caveolae. J Biol Chem 1999; 274:12043-8. [PMID: 10207027 DOI: 10.1074/jbc.274.17.12043] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The uptake of cholesterol esters from high density lipoproteins (HDLs) is characterized by the initial movement of cholesterol esters into a reversible plasma membrane pool. Cholesterol esters are subsequently internalized to a nonreversible pool. Unlike the uptake of cholesterol from low density lipoproteins, cholesterol ester uptake from HDL does not involve the internalization and degradation of the particle and is therefore termed selective. The class B, type I scavenger receptor (SR-BI) has been identified as an HDL receptor and shown to mediate selective cholesterol ester uptake. SR-BI is localized to cholesterol- and sphingomyelin-rich microdomains called caveolae. Caveolae are directly involved in cholesterol trafficking. Therefore, we tested the hypothesis that caveolae are acceptors for HDL-derived cholesterol ether (CE). Our studies demonstrate that in Chinese hamster ovary cells expressing SR-BI, >80% of the plasma membrane associated CE is present in caveolae after 7.5 min of selective cholesterol ether uptake. We also show that excess, unlabeled HDL can extract the radiolabeled CE from caveolae, demonstrating that caveolae constitute a reversible plasma membrane pool of CE. Furthermore, 50% of the caveolae-associated CE can be chased into a nonreversible pool. We conclude that caveolae are acceptors for HDL-derived cholesterol ethers, and that caveolae constitute a reversible, plasma membrane pool of cholesterol ethers.
Collapse
Affiliation(s)
- G A Graf
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536-0084, USA
| | | | | | | |
Collapse
|
178
|
Fluiter K, Sattler W, De Beer MC, Connell PM, van der Westhuyzen DR, van Berkel TJ. Scavenger receptor BI mediates the selective uptake of oxidized cholesterol esters by rat liver. J Biol Chem 1999; 274:8893-9. [PMID: 10085133 DOI: 10.1074/jbc.274.13.8893] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High density lipoprotein (HDL) can protect low density lipoprotein (LDL) against oxidation. Oxidized cholesterol esters from LDL can be transferred to HDL and efficiently and selectively removed from the blood circulation by the liver and adrenal in vivo. In the present study, we investigated whether scavenger receptor BI (SR-BI) is responsible for this process. At 30 min after injection, the selective uptake of oxidized cholesterol esters from HDL for liver and adrenal was 2.3- and 2.6-fold higher, respectively, than for native cholesterol esters, whereas other tissues showed no significant difference. The selective uptake of oxidized cholesterol esters from HDL by isolated liver parenchymal cells could be blocked for 75% by oxidized LDL and for 50% by phosphatidylserine liposomes, both of which are known substrates of SR-BI. In vivo uptake of oxidized cholesterol esters from HDL by parenchymal cells decreased by 64 and 81% when rats were treated with estradiol and a high cholesterol diet, respectively, whereas Kupffer cells showed 660 and 475% increases, respectively. These contrasting changes in oxidized cholesterol ester uptake were accompanied by similar contrasting changes in SR-BI expression of parenchymal and Kupffer cells. The rates of SR-BI-mediated selective uptake of oxidized and native cholesterol esters were analyzed in SR-BI-transfected Chinese hamster ovary cells. SR-BI-mediated selective uptake was 3.4-fold higher for oxidized than for native cholesterol esters (30 min of incubation). It is concluded that in addition to the selective uptake of native cholesterol esters, SR-BI is responsible for the highly efficient selective uptake of oxidized cholesterol esters from HDL and thus forms an essential mediator in the HDL-associated protection system for atherogenic oxidized cholesterol esters.
Collapse
Affiliation(s)
- K Fluiter
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, University of Leiden, Sylvius Laboratories, P. O. Box 9503, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
179
|
Shiratsuchi A, Kawasaki Y, Ikemoto M, Arai H, Nakanishi Y. Role of class B scavenger receptor type I in phagocytosis of apoptotic rat spermatogenic cells by Sertoli cells. J Biol Chem 1999; 274:5901-8. [PMID: 10026214 DOI: 10.1074/jbc.274.9.5901] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat Sertoli cells phagocytose apoptotic spermatogenic cells, which consist mostly of spermatocytes, in primary culture by recognizing phosphatidylserine (PS) exposed on the surface of degenerating spermatogenic cells. We compared the mode of phagocytosis using spermatogenic cells at different stages of spermatogenesis. Spermatogenic cells were separated into several groups based on their ploidy, with purities of 60-90%. When the fractionated spermatogenic cell populations were subjected to a phagocytosis assay, cells with ploidies of 1n, 2n, and 4n were almost equally phagocytosed by Sertoli cells. All the cell populations exposed PS on the cell surface, and phagocytosis of all cell populations was similarly inhibited by the addition of PS-containing liposomes. Class B scavenger receptor type I (SR-BI), a candidate for the PS receptor, was detected in Sertoli cells. Overexpression of the rat SR-BI cDNA increased the PS-mediated phagocytic activity of Sertoli cell-derived cell lines. Moreover, phagocytosis of spermatogenic cells by Sertoli cells was inhibited in the presence of an anti-SR-BI antibody. Finally, the addition of high density lipoprotein, a ligand specific for SR-BI, decreased both phagocytosis of spermatogenic cells and incorporation of PS-containing liposomes by Sertoli cells. In conclusion, SR-BI functions at least partly as a PS receptor, enabling Sertoli cells to recognize and phagocytose apoptotic spermatogenic cells at all stages of differentiation.
Collapse
Affiliation(s)
- A Shiratsuchi
- Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan
| | | | | | | | | |
Collapse
|
180
|
|
181
|
Reaven E, Lua Y, Nomoto A, Temel R, Williams DL, van der Westhuyzen DR, Azhar S. The selective pathway and a high-density lipoprotein receptor (SR-BI) in ovarian granulosa cells of the mouse. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1436:565-76. [PMID: 9989286 DOI: 10.1016/s0005-2760(98)00169-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We recently reported that rat luteinized ovary tissue and primary cultures of rat ovarian granulosa cells reveal a remarkably tight functional correlation between expressed selective uptake of lipoprotein cholesteryl esters and the expression of an HDL receptor protein, scavenger receptor, class B, type I (SR-BI). In the current study, we examine these same processes in C57 mouse granulosa cells and report a different correlation. Unlike the rat cells, non-hormone stimulated mouse granulosa cells are able to effectively carry out their selective pathway functions and secrete HDL-derived progestins despite low levels of SR-BI and barely detectable levels of SR-BII (an isoform of SR-BI). Once stimulated with trophic hormones or Bt2cAMP, small (30-40%) increases are observed in selective pathway functions, but major (approximately 20-fold) increases are seen in SR-BI and SR-BII expression: thus, relatively little is gained in selective cholesteryl ester uptake by mouse granulosa cells even though SR-BI and SR-BII levels are greatly increased. The importance of the HDL receptor proteins to the selective pathway remains clear, however, since a significant portion of the selective process in both basal and stimulated granulosa cells is inhibitable by the use of blocking antibody. Another surface protein, caveolin, previously reported to co-localize with SR-BI in mouse cells shows no change in expression during periods when SR-BI/BII levels are undergoing major shifts.
Collapse
Affiliation(s)
- E Reaven
- Education and Clinical Center, VA Palo Alto Health Care System, CA 94304, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Connelly MA, Klein SM, Azhar S, Abumrad NA, Williams DL. Comparison of class B scavenger receptors, CD36 and scavenger receptor BI (SR-BI), shows that both receptors mediate high density lipoprotein-cholesteryl ester selective uptake but SR-BI exhibits a unique enhancement of cholesteryl ester uptake. J Biol Chem 1999; 274:41-7. [PMID: 9867808 DOI: 10.1074/jbc.274.1.41] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scavenger receptor BI (SR-BI) mediates the selective uptake of high density lipoprotein (HDL) cholesteryl ester (CE), a process by which HDL CE is taken into the cell without internalization and degradation of the HDL particle. The biochemical mechanism by which SR-BI mediates the selective uptake of HDL CE is poorly understood. Given that CE transfer will occur to some extent from HDL to protein-free synthetic membranes, one hypothesis is that the role of SR-BI is primarily to tether HDL close to the cell surface to facilitate CE transfer from the particle to the plasma membrane. In the present study, this hypothesis was tested by comparing the selective uptake of HDL CE mediated by mouse SR-BI (mSR-BI) with that mediated by rat CD36 (rCD36), a closely related class B scavenger receptor. Both mSR-BI and rCD36 bind HDL with high affinity, and both receptors mediate HDL CE selective uptake. However, SR-BI mediates selective uptake of HDL CE with a 7-fold greater efficiency than rCD36. HDL CE selective uptake mediated by rCD36 is dependent on HDL binding to the receptor, since a mutation that blocks HDL binding also blocks HDL CE selective uptake. These data lead us to hypothesize that one component of HDL CE selective uptake is the tethering of HDL particles to the cell surface. To explore the molecular domains responsible for the greater efficiency of selective uptake by mSR-BI, we compared binding and selective uptake among mSR-BI, scavenger receptor BII, and various chimeric receptors formed from mSR-BI and rCD36. The results show that the extracellular domain of mSR-BI is essential for efficient HDL CE uptake, but the C-terminal cytoplasmic tail also has a major influence on the selective uptake process.
Collapse
Affiliation(s)
- M A Connelly
- Department of Pharmacological Sciences, University Medical Center, State University at Stony Brook, Stony Brook, New York, 11794-8651, USA
| | | | | | | | | |
Collapse
|
183
|
Gu X, Trigatti B, Xu S, Acton S, Babitt J, Krieger M. The efficient cellular uptake of high density lipoprotein lipids via scavenger receptor class B type I requires not only receptor-mediated surface binding but also receptor-specific lipid transfer mediated by its extracellular domain. J Biol Chem 1998; 273:26338-48. [PMID: 9756864 DOI: 10.1074/jbc.273.41.26338] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The class B type I scavenger receptor, (SR-BI), is a member of the CD36 superfamily of proteins and is a physiologically relevant, high affinity cell surface high density lipoprotein (HDL) receptor that mediates selective lipid uptake. The mechanism of selective lipid uptake is fundamentally different from that of classic receptor-mediated uptake via coated pits and vesicles (e.g. the low density lipoprotein receptor pathway) in that it involves efficient transfer of the lipids, but not the outer shell proteins, from HDL to cells. The abilities of SR-BI and CD36, both of which are class B scavenger receptors, to bind HDL and mediate cellular uptake of HDL-associated lipid when transiently expressed in COS cells were examined. For these experiments, the binding of HDL to cells was assessed using either 125I- or Alexa (a fluorescent dye)-HDL in which the apolipoproteins on the surface of the HDL particles were covalently modified. Lipid transfer was measured using HDL noncovalently labeled by the fluorescent lipid 1,1'-dioctadecyl-3,3, 3',3'-tetramethylindocarbocyanine perchlorate. Although both mSR-BI and human CD36 (hCD36) could mediate the binding of HDL in a punctate pattern across the surfaces of cells, only mSR-BI efficiently mediated the transfer of lipid to the cells. Analysis of point mutants established that the major sites of fatty acylation of mSR-BI are Cys462 and Cys470 and that fatty acylation is not required for receptor clustering, HDL binding, or efficient lipid transfer. Generation of mSR-BI/hCD36 domain swap chimeras showed that the differences in lipid uptake activities between mSR-BI and hCD36 were not due to differences between their two sets of transmembrane and cytoplasmic domains but rather result from differences in their large extracellular loop domains. These results show that high affinity binding to a cell surface receptor is not sufficient to ensure efficient cellular lipid uptake from HDL. Thus, SR-BI-mediated binding combined with SR-BI-dependent facilitated transfer of lipid from the HDL particle to the cell appears to be the most likely mechanism for the bulk of the selective uptake of cholesteryl esters from HDL to the liver and steroidogenic tissues.
Collapse
Affiliation(s)
- X Gu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
184
|
Greaves DR, Gough PJ, Gordon S. Recent progress in defining the role of scavenger receptors in lipid transport, atherosclerosis and host defence. Curr Opin Lipidol 1998; 9:425-32. [PMID: 9812196 DOI: 10.1097/00041433-199810000-00006] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Scavenger receptors bind and internalize modified lipoproteins. There are several different classes of scavenger receptors in mammalian cells and their relative contribution to lipid transport in normal physiology and pathological conditions such as atherosclerosis has been the subject of intense investigation. Mice with a disruption in the macrophage scavenger receptor SR-A gene exhibit a reduced size of atherosclerotic lesions and also exhibit an enhanced susceptibility to pathogens and endotoxic shock. In addition to their role in lipid transport, scavenger receptors play important roles in host defence and in the regulation of acquired immunity. Recent progress in delineating the mechanisms by which oxidized LDL effects changes in gene expression will be reviewed.
Collapse
Affiliation(s)
- D R Greaves
- Sir William Dunn School of Pathology, University of Oxford, UK.
| | | | | |
Collapse
|
185
|
|