151
|
Regulation of c-Jun-NH2 Terminal Kinase and Extracellular-Signal Regulated Kinase in Human Platelets. Blood 1999. [DOI: 10.1182/blood.v94.11.3800.423k25_3800_3805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelets are an interesting model for studying the relationship betwen adhesion and mitogen-activated protein (MAP) kinase activation. We have recently shown that in platelets, ERK2 was activated by thrombin and downregulated by IIbβ3integrin engagement. Here we focused our attention on the c-Jun NH2-terminal kinases (JNKs) and their activation in conditions of platelet aggregation. We found that JNK1 was present in human platelets and was activated after thrombin induction. JNK1 phosphorylation was detected with low concentrations of thrombin (0.02 U/mL) and after 1 minute of thrombin-induced platelet aggregation. JNK1 activation was increased (fivefold) when fibrinogen binding to IIbβ3 integrin was inhibited by the Arg-Gly-Asp-Ser (RGDS) peptide or (Fab′)2 fragments of a monoclonal antibody specific for IIbβ3, demonstrating that, like ERK2, IIbβ3 integrin engagement negatively regulates JNK1 activation. Comparison of JNK1 activation by thrombin in stirred and unstirred platelets in the presence of RGDS peptide showed a positive regulation by stirring itself, independently of IIbβ3 integrin engagement, which was confirmed in a thrombasthenic patient lacking platelet IIbβ3. The same positive regulation by stirring was found for ERK2. These results suggest that MAP kinases (JNK1 and ERK2) are activated positively by thrombin and stirring. In conclusion, we found that JNK1 is present in platelets and can be activated after thrombin induction. Moreover, this is the first report showing that two different MAP kinases (ERK2 and JNK1) are regulated negatively by IIbβ3 engagement and positively by mechanical forces in platelets.
Collapse
|
152
|
Satomi Y, Miyamoto S, Gould MN. Induction of AP-1 activity by perillyl alcohol in breast cancer cells. Carcinogenesis 1999; 20:1957-61. [PMID: 10506111 DOI: 10.1093/carcin/20.10.1957] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Monoterpenes display chemopreventive and therapeutic activity in rat mammary tumor models. Monoterpenes can also inhibit cell growth and induce apoptosis of cultured cells. In this study, the monoterpene perillyl alcohol (POH) was found to induce transient expression of the c-jun and c-fos genes transcriptionally. POH also transiently induced phosphorylation of c-Jun protein. These events were associated with transcriptional activation of an AP-1-dependent reporter gene. These results suggest that POH might affect c-Jun activity via the Jun N-terminal kinase/stress-activated protein kinase pathway and modulate expression of AP-1 target genes.
Collapse
Affiliation(s)
- Y Satomi
- McArdle Laboratory for Cancer Research, Department of Pharmacology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | | | |
Collapse
|
153
|
Reardon DB, Contessa JN, Mikkelsen RB, Valerie K, Amir C, Dent P, Schmidt-Ullrich RK. Dominant negative EGFR-CD533 and inhibition of MAPK modify JNK1 activation and enhance radiation toxicity of human mammary carcinoma cells. Oncogene 1999; 18:4756-66. [PMID: 10467423 DOI: 10.1038/sj.onc.1202849] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Exposure of MDA-MB-231 human mammary carcinoma cells to an ionizing radiation dose of 2 Gy results in immediate activation and Tyr phosphorylation of the epidermal growth factor receptor (EGFR). Doxycycline induced expression of a dominant negative EGFR-CD533 mutant, lacking the COOH-terminal 533 amino acids, in MDA-TR15-EGFR-CD533 cells was used to characterize intracellular signaling responses following irradiation. Within 10 min, radiation exposure caused an immediate, transient activation of mitogen activated protein kinase (MAPK) which was completely blocked by expression of EGFR-CD533. The same radiation treatment also induced an immediate activation of the c-Jun-NH2-terminal kinase 1 (JNK1) pathway that was followed by an extended rise in kinase activity after 30 min. Expression of EGFR-CD533 did not block the immediate JNK1 response but completely inhibited the later activation. Treatment of MDA-TR15-EGFR-CD533 cells with the MEK1/2 inhibitor, PD98059, resulted in approximately 70% inhibition of radiation-induced MAPK activity, and potentiated the radiation-induced increase of immediate JNK1 activation twofold. Inhibition of Ras farnesylation with a concomitant inhibition of Ras function completely blocked radiation-induced MAPK and JNK1 activation. Modulation of EGFR and MAPK functions also altered overall cellular responses of growth and apoptosis. Induction of EGFR-CD533 or treatment with PD98059 caused a 3-5-fold increase in radiation toxicity in a novel repeated radiation exposure growth assay by interfering with cell proliferation and potentiating apoptosis. In summary, this data demonstrates that both MAPK and JNK1 activation in response to radiation occur through EGFR-dependent and -independent mechanisms, and are mediated by signaling through Ras. Furthermore, we have demonstrated that radiation-induced activation of EGFR results in downstream activation of MAPK which may affect the radiosensitivity of carcinoma cells.
Collapse
Affiliation(s)
- D B Reardon
- Department of Radiation Oncology, Massey Cancer Center, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
154
|
Reyland ME, Anderson SM, Matassa AA, Barzen KA, Quissell DO. Protein kinase C delta is essential for etoposide-induced apoptosis in salivary gland acinar cells. J Biol Chem 1999; 274:19115-23. [PMID: 10383415 DOI: 10.1074/jbc.274.27.19115] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have previously shown that parotid C5 salivary acinar cells undergo apoptosis in response to etoposide treatment as indicated by alterations in cell morphology, caspase-3 activation, DNA fragmentation, sustained activation of c-Jun N-terminal kinase, and inactivation of extracellular regulated kinases 1 and 2. Here we report that apoptosis results in the caspase-dependent cleavage of protein kinase C-delta (PKCdelta) to a 40-kDa fragment, the appearance of which correlates with a 9-fold increase in PKCdelta activity. To understand the function of activated PKCdelta in apoptosis, we have used the PKCdelta-specific inhibitor, rottlerin. Pretreatment of parotid C5 cells with rottlerin prior to the addition of etoposide blocks the appearance of the apoptotic morphology, the sustained activation of c-Jun N-terminal kinase, and inactivation of extracellular regulated kinases 1 and 2. Inhibition of PKCdelta also partially inhibits caspase-3 activation and DNA fragmentation. Immunoblot analysis shows that the PKCdelta cleavage product does not accumulate in parotid C5 cells treated with rottlerin and etoposide together, suggesting that the catalytic activity of PKCdelta may be required for cleavage. PKCalpha and PKCbeta1 activities also increase during etoposide-induced apoptosis. Inhibition of these two isoforms with Gö6976 slightly suppresses the apoptotic morphology, caspase-3 activation, and DNA fragmentation, but has no effect on the sustained activation of c-Jun N-terminal kinase or inactivation of extracellular regulated kinase 1 and 2. These data demonstrate that activation of PKCdelta is an integral and essential part of the apoptotic program in parotid C5 cells and that specific activated isoforms of PKC may have distinct functions in cell death.
Collapse
Affiliation(s)
- M E Reyland
- Department of Basic Science and Oral Research, School of Dentistry, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | |
Collapse
|
155
|
Nishikawa A, Furukawa F, Kasahara K, Tanakamaru Z, Miyauchi M, Nakamura H, Ikeda T, Imazawa T, Hirose M. Failure of phenethyl isothiocyanate to inhibit hamster tumorigenesis induced by N-nitrosobis(2-oxopropyl)amine when given during the post-initiation phase. Cancer Lett 1999; 141:109-15. [PMID: 10454250 DOI: 10.1016/s0304-3835(99)00089-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The chemopreventive influence of phenethyl isothiocyanate (PEITC) during the post-initiation stage was investigated in the N-nitrosobis(2-oxopropyl)amine (BOP)-initiated hamster tumorigenesis model. A total of 120 female 5-week-old hamsters were divided into six groups. Animals in groups 1-3, each consisting of 30 hamsters, were injected twice, subcutaneously, with BOP 7 days apart to effect initiation. Starting 1 week after the second BOP injection, hamsters in groups 1 and 2 were fed diets supplemented with 6 micromol/g and 3 micromol/g of PEITC, respectively, for 51 weeks. Animals in group 3 received a basal diet as an initiation positive control. Animals in groups 4-6, each consisting of ten hamsters, were given 6 micromol/g or 3 micromol/g of PEITC alone, or were non-treated, matched negative controls for groups 1-3. At the termination of experimental week 52, the incidences and multiplicities of neoplastic lesions in the target organs including the pancreas, lung, liver and kidney were found to be comparable among the BOP-treated groups. The values for pancreatic adenocarcinomas as well as dysplastic lesions tended to increase although without statistical significance. Taken together with our previous finding that PEITC dramatically inhibited the initiation phase of BOP-induced pancreatic and lung tumorigenesis in hamsters, it can be concluded that PEITC specifically exerts chemopreventive effects only when given concomitantly with the carcinogen.
Collapse
Affiliation(s)
- A Nishikawa
- Division of Pathology, National Institute of Health Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Shifrin VI, Anderson P. Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J Biol Chem 1999; 274:13985-92. [PMID: 10318810 DOI: 10.1074/jbc.274.20.13985] [Citation(s) in RCA: 314] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The trichothecene family of mycotoxins inhibit protein synthesis by binding to the ribosomal peptidyltransferase site. Inhibitors of the peptidyltransferase reaction (e.g. anisomycin) can trigger a ribotoxic stress response that activates c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinases, components of a signaling cascade that regulates cell survival in response to stress. We have found that selected trichothecenes strongly activate JNK/p38 kinases and induce rapid apoptosis in Jurkat T cells. Although the ability of individual trichothecenes to inhibit protein synthesis and activate JNK/p38 kinases are dissociable, both effects contribute to the induction of apoptosis. Among trichothecenes that strongly activate JNK/p38 kinases, induction of apoptosis increases linearly with inhibition of protein synthesis. Among trichothecenes that strongly inhibit protein synthesis, induction of apoptosis increases linearly with activation of JNK/p38 kinases. Trichothecenes that inhibit protein synthesis without activating JNK/p38 kinases inhibit the function (i.e. activation of JNK/p38 kinases and induction of apoptosis) of apoptotic trichothecenes and anisomycin. Harringtonine, a structurally unrelated protein synthesis inhibitor that competes with trichothecenes (and anisomycin) for ribosome binding, also inhibits the activation of JNK/p38 kinases and induction of apoptosis by trichothecenes and anisomycin. Taken together, these results implicate the peptidyltransferase site as a regulator of both JNK/p38 kinase activation and apoptosis.
Collapse
Affiliation(s)
- V I Shifrin
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
157
|
Zhou G, Lee SC, Yao Z, Tan TH. Hematopoietic progenitor kinase 1 is a component of transforming growth factor beta-induced c-Jun N-terminal kinase signaling cascade. J Biol Chem 1999; 274:13133-8. [PMID: 10224067 DOI: 10.1074/jbc.274.19.13133] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-Jun N-terminal kinase (JNK) signaling pathway is involved in transforming growth factor beta (TGF-beta) signaling in a variety of cell systems. We report here that hematopoietic progenitor kinase 1 (HPK1), a novel Ste20-like protein serine/threonine kinase, serves as an upstream mediator for the TGF-beta-activated JNK1 cascade in 293T cells. TGF-beta treatment resulted in a time-dependent activation of HPK1, which was accompanied by similar kinetics of JNK1 activation. The activation of JNK1 by TGF-beta was abrogated by a kinase-defective HPK1 mutant but not by a kinase-defective mutant of kinase homologous to Ste20/Sps1. This result indicates that HPK1 is specifically required for TGF-beta-induced activation of JNK1. We also found that TGF-beta-induced JNK1 activation was blocked by a kinase-defective mutant of TGF-beta-activated kinase 1 (TAK1). In addition, interaction between HPK1 and TAK1 was observed in transient transfection assays, and this interaction was enhanced by TGF-beta treatment. Both stress-activated protein kinase/extracellular signal-regulated kinase kinase (SEK) and mitogen-activated protein kinase kinase 7 (MKK7) are immediate upstream activators of JNK1. Although SEK and MKK7 acted downstream of TAK1, only a kinase-defective SEK mutant blocked TGF-beta-induced activation of JNK1, indicating that the TGF-beta signal is relayed solely through SEK, but not MKK7, in vivo. Furthermore, TGF-beta-induced activating protein 1 activation was blocked by a HPK1 mutant, as well as by TAK1 and SEK mutants. Taken together, these studies establish a potential cascade of TGF-beta-activated interacting kinases beginning with HPK1, a Ste20 homolog, and ending in JNK1 activation: HPK1 --> TAK1 --> SEK --> JNK1.
Collapse
Affiliation(s)
- G Zhou
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
158
|
Chen YR, Tan TH. Lack of correlation in JNK activation and p53-dependent Fas expression induced by apoptotic stimuli. Biochem Biophys Res Commun 1999; 256:595-9. [PMID: 10080943 DOI: 10.1006/bbrc.1999.0383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Induction of Fas expression by DNA-damaging agents is dependent on the expression of functional p53, and has been suggested to play an important role in apoptosis induction. JNK (c-Jun N-terminal kinase), which is capable of phosphorylating p53, is also involved in apoptotic signaling induced by various apoptotic stimuli. Here, we report that although Fas induction is closely linked to the expression of wild type p53, it is not correlated with JNK activation induced by apoptotic stimuli. JNK activation does not necessarily lead to Fas expression, even in cells containing wild type p53. In addition, Fas expression can be induced without significant JNK activation. Furthermore, induction of Fas expression is not sufficient for apoptosis induction; however, it may sensitize cells to Fas-ligation induced apoptosis.
Collapse
Affiliation(s)
- Y R Chen
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | |
Collapse
|
159
|
Wang TH, Popp DM, Wang HS, Saitoh M, Mural JG, Henley DC, Ichijo H, Wimalasena J. Microtubule dysfunction induced by paclitaxel initiates apoptosis through both c-Jun N-terminal kinase (JNK)-dependent and -independent pathways in ovarian cancer cells. J Biol Chem 1999; 274:8208-16. [PMID: 10075725 DOI: 10.1074/jbc.274.12.8208] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antineoplastic agent paclitaxel (TaxolTM), a microtubule stabilizing agent, is known to arrest cells at the G2/M phase of the cell cycle and induce apoptosis. We and others have recently demonstrated that paclitaxel also activates the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) signal transduction pathway in various human cell types, however, no clear role has been established for JNK/SAPK in paclitaxel-induced apoptosis. To further examine the role of JNK/SAPK signaling cascades in apoptosis resulting from microtubular dysfunction induced by paclitaxel, we have coexpressed dominant negative (dn) mutants of signaling proteins of the JNK/SAPK pathway (Ras, ASK1, Rac, JNKK, and JNK) in human ovarian cancer cells with a selectable marker to analyze the apoptotic characteristics of cells expressing dn vectors following exposure to paclitaxel. Expression of these dn signaling proteins had no effect on Bcl-2 phosphorylation, yet inhibited apoptotic changes induced by paclitaxel up to 16 h after treatment. Coexpression of these dn signaling proteins had no protective effect after 48 h of paclitaxel treatment. Our data indicate that: (i) activated JNK/SAPK acts upstream of membrane changes and caspase-3 activation in paclitaxel-initiated apoptotic pathways, independently of cell cycle stage, (ii) activated JNK/SAPK is not responsible for paclitaxel-induced phosphorylation of Bcl-2, and (iii) apoptosis resulting from microtubule damage may comprise multiple mechanisms, including a JNK/SAPK-dependent early phase and a JNK/SAPK-independent late phase.
Collapse
Affiliation(s)
- T H Wang
- Department of Obstetrics and Gynecology, Graduate School of Medicine, University of Tennessee Medical Center, Knoxville, Tennessee 37920, USA
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Yao Z, Zhou G, Wang XS, Brown A, Diener K, Gan H, Tan TH. A novel human STE20-related protein kinase, HGK, that specifically activates the c-Jun N-terminal kinase signaling pathway. J Biol Chem 1999; 274:2118-25. [PMID: 9890973 DOI: 10.1074/jbc.274.4.2118] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast serine/threonine kinase STE20 activates a signaling cascade that includes STE11 (mitogen-activated protein kinase kinase kinase), STE7 (mitogen-activated protein kinase kinase), and FUS3/KSS1 (mitogen-activated protein kinase) in response to signals from both Cdc42 and the heterotrimeric G proteins associated with transmembrane pheromone receptors. Using degenerate polymerase chain reaction, we have isolated a human cDNA encoding a protein kinase homologous to STE20. This protein kinase, designated HPK/GCK-like kinase (HGK), has nucleotide sequences that encode an open reading frame of 1165 amino acids with 11 kinase subdomains. HGK was a serine/threonine protein kinase that specifically activated the c-Jun N-terminal kinase (JNK) signaling pathway when transfected into 293T cells, but it did not stimulate either the extracellular signal-regulated kinase or p38 kinase pathway. HGK also increased AP-1-mediated transcriptional activity in vivo. HGK-induced JNK activation was inhibited by the dominant-negative MKK4 and MKK7 mutants. The dominant-negative mutant of TAK1, but not MEKK1 or MAPK upstream kinase (MUK), strongly inhibited HGK-induced JNK activation. TNF-alpha activated HGK in 293T cells, as well as the dominant-negative HGK mutants, inhibited TNF-alpha-induced JNK activation. These results indicate that HGK, a novel activator of the JNK pathway, may function through TAK1, and that the HGK --> TAK1 --> MKK4, MKK7 --> JNK kinase cascade may mediate the TNF-alpha signaling pathway.
Collapse
Affiliation(s)
- Z Yao
- Amgen, Inc., Boulder, Colorado 80301, USA
| | | | | | | | | | | | | |
Collapse
|
161
|
Müller A, Günther D, Düx F, Naumann M, Meyer TF, Rudel T. Neisserial porin (PorB) causes rapid calcium influx in target cells and induces apoptosis by the activation of cysteine proteases. EMBO J 1999; 18:339-52. [PMID: 9889191 PMCID: PMC1171129 DOI: 10.1093/emboj/18.2.339] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The porin (PorB) of Neisseria gonorrhoeae is an intriguing bacterial factor owing to its ability to translocate from the outer bacterial membrane into host cell membranes where it modulates the infection process. Here we report on the induction of programmed cell death after prolonged infection of epithelial cells with pathogenic Neisseria species. The underlying mechanism we propose includes translocation of the porin, a transient increase in cytosolic Ca2+ and subsequent activation of the Ca2+ dependent protease calpain as well as proteases of the caspase family. Blocking the porin channel by ATP eliminates the Ca2+ signal and also abolishes its pro-apoptotic function. The neisserial porins share structural and functional homologies with the mitochondrial voltage-dependent anion channels (VDAC). The neisserial porin may be an analogue or precursor of the ancient permeability transition pore, the putative central regulator of apoptosis.
Collapse
Affiliation(s)
- A Müller
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, Monbijoustrasse 2, 10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
162
|
Lee LF, Li G, Templeton DJ, Ting JP. Paclitaxel (Taxol)-induced gene expression and cell death are both mediated by the activation of c-Jun NH2-terminal kinase (JNK/SAPK). J Biol Chem 1998; 273:28253-60. [PMID: 9774447 DOI: 10.1074/jbc.273.43.28253] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Paclitaxel (Taxol) is a novel anti-cancer drug that has shown efficacy toward several malignant tumors, particularly ovarian tumors. We reported previously that paclitaxel can induce interleukin (IL)-8 promoter activation in subgroups of ovarian cancer through the activation of both AP-1 and nuclear factor kappaB. Further analysis of paclitaxel analogs indicates that the degree of IL-8 induction by analysis correlates with the extent of cell death; however, IL-8 itself is not the cause of cell death. This suggests that pathways that lead to IL-8 and cell death may overlap, although IL-8 per se does not kill tumor cells. To decipher the upstream signals for paclitaxel-induced transcriptional activation and cell death, we studied the involvement of protein kinases that lead to the activation of AP-1, specifically the c-Jun NH2-terminal kinase (JNK1), p38, and the extracellular signal-regulated kinase 1 (ERK1). The role of IkappaB in paclitaxel-induced cell death was also analyzed. Paclitaxel activated JNK, and to a lesser degree p38, but not ERK1. Paclitaxel-induced IL-8 promoter activation was inhibited by dominant-inhibitory mutants of JNK, p38, and the super-repressor form of IkappaBalpha, but not by dominant-inhibitory forms of ERK1. Dominant-inhibitory mutants of JNK1 also greatly reduced paclitaxel-induced cell death, and the kinetics of JNK induction was closely followed by DNA fragmentation. These results indicate (i) that paclitaxel activates the JNK signaling pathway and (ii) that JNK activation is a common point of paclitaxel-induced gene induction and cell death.
Collapse
Affiliation(s)
- L F Lee
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | |
Collapse
|
163
|
Manna SK, Aggarwal BB. IL-13 Suppresses TNF-Induced Activation of Nuclear Factor-κB, Activation Protein-1, and Apoptosis. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.6.2863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
IL-13 is known to suppress the production of inflammatory cytokines such as TNF. Whether IL-13 also modulates the biologic effects of TNF is not known. In the present report we examined the effect of IL-13 on TNF-induced activation of nuclear transcription factors NF-κB and activation protein-1 (AP-1) and apoptosis. Pretreatment of cells with IL-13 blocked TNF-induced NF-κB activation, nuclear translocation of p65 subunit, and degradation of IκBα. IL-13 also inhibited NF-κB activation by LPS, okadaic acid, H2O2, and ceramide. TNF-induced NF-κB-dependent gene transcription was also blocked by IL-13. TNF-induced activation of another nuclear transcription factor, AP-1, was suppressed by IL-13. The activation of N-terminal c-Jun kinase and mitogen-activated protein kinase kinase, implicated in the regulation of AP-1 and NF-κB, was also down-regulated by IL-13. TNF-mediated cytotoxicity and activation of caspase-3 were abolished by IL-13. The inhibitory effects of IL-13 on TNF were sensitive to H-7, neomycin, and wortmannin, suggesting that the pathway consisting of protein kinase C, phosphatidylinositol 3-kinase, and phospholipase C must be involved in IL-13 signaling. Thus, overall, these results demonstrate that IL-13 is a potent inhibitor of TNF-mediated activation of NF-κB, AP-1, and apoptosis, which may contribute to its previously described immunosuppressive and anti-inflammatory effects.
Collapse
Affiliation(s)
- Sunil K. Manna
- Cytokine Research Laboratory, Department of Molecular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Bharat B. Aggarwal
- Cytokine Research Laboratory, Department of Molecular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|