151
|
Carbon monoxide (CO) modulates hydrogen peroxide (H 2O 2)-mediated cellular dysfunction by targeting mitochondria in rabbit lens epithelial cells. Exp Eye Res 2018; 169:68-78. [PMID: 29407220 DOI: 10.1016/j.exer.2018.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/12/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023]
Abstract
Mitochondrial components are of great importance for the maintenance of lens transparency. In our previous work, we confirmed that carbon monoxide (CO) can protect human and rabbit lens epithelial cells (LECs) from hydrogen peroxide (H2O2)-mediated apoptosis, while the mechanism remains undefined. Because CO can bind to mitochondrial cytochrome c oxidase (COX), we evaluated the effect of CO on the regulation of mitochondrial biogenesis and function in H2O2-treated rabbit LECs. To evaluate mitochondrial biogenesis, several mitochondrial transcription factors (PGC-1α, NRF-1, and mtTFA) were detected by western blot analysis. To assess cellular metabolism, adenosine triphosphate (ATP) levels and COX enzymatic activity were measured. In addition, mitochondrial permeability transition pores (mPTP) opening, dissipation of mitochondrial membrane potential (ΔΨm), cytochrome c mitochondrial translocation, and apoptotic molecules were also detected to evaluate mitochondrial apoptosis pathway. Furthermore, the interaction of Bcl-2 and COX was assessed by co-immunoprecipitation. Finally, CO-mediated regulation of cellular function was detected in Bcl-2-knockdown cells. Our results confirmed that CO pretreatment restored H2O2-induced down-regulation of mitochondrial transcription factors expression, COX activity and ATP production. Moreover, CO pretreatment attenuated mPTP opening, ΔΨm loss, cytochrome c mitochondrial translocation, and activation of apoptotic molecules. Bcl-2 was identified to bind to COX, and silence of Bcl-2 expression prevented CO-regulated cellular metabolism and cytoprotection. These data suggest that CO modulates H2O2-induced cellular dysfunction by increasing mitochondrial biogenesis, enhancing cellular metabolism, and attenuating mitochondrial apoptosis cascade. Moreover, Bcl-2 expression was vital for CO to regulate cellular metabolism and cytoprotection in LECs.
Collapse
|
152
|
Extracellular acidification induces ROS- and mPTP-mediated death in HEK293 cells. Redox Biol 2017; 15:394-404. [PMID: 29331741 PMCID: PMC5767902 DOI: 10.1016/j.redox.2017.12.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022] Open
Abstract
The extracellular pH (pHe) is a key determinant of the cellular (micro)environment and needs to be maintained within strict boundaries to allow normal cell function. Here we used HEK293 cells to study the effects of pHe acidification (24 h), induced by mitochondrial inhibitors (rotenone, antimycin A) and/or extracellular HCl addition. Lowering pHe from 7.2 to 5.8 reduced cell viability by 70% and was paralleled by a decrease in cytosolic pH (pHc), hyperpolarization of the mitochondrial membrane potential (Δψ), increased levels of hydroethidine-oxidizing ROS and stimulation of protein carbonylation. Co-treatment with the antioxidant α-tocopherol, the mitochondrial permeability transition pore (mPTP) desensitizer cyclosporin A and Necrostatin-1, a combined inhibitor of Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and Indoleamine 2,3-dioxygenase (IDO), prevented acidification-induced cell death. In contrast, the caspase inhibitor zVAD.fmk and the ferroptosis inhibitor Ferrostatin-1 were ineffective. We conclude that extracellular acidification induces necroptotic cell death in HEK293 cells and that the latter involves intracellular acidification, mitochondrial functional impairment, increased ROS levels, mPTP opening and protein carbonylation. These findings suggest that acidosis of the extracellular environment (as observed in mitochondrial disorders, ischemia, acute inflammation and cancer) can induce cell death via a ROS- and mPTP opening-mediated pathogenic mechanism. Extracellular acidification induces mitochondrial dysfunction. Extracellular acidification increases intracellular ROS levels. Extracellular acidification stimulates protein carbonylation. Extracellular acidification induces mPTP opening- and ROS-dependent cell death. Acidosis-induced oxidative stress likely contributes to various pathologies.
Collapse
|
153
|
Abstract
Mitochondrial ATP generation by oxidative phosphorylation combines the stepwise oxidation by the electron transport chain (ETC) of the reducing equivalents NADH and FADH2 with the generation of ATP by the ATP synthase. Recent studies show that the ATP synthase is not only essential for the generation of ATP but may also contribute to the formation of the mitochondrial permeability transition pore (PTP). We present a model, in which the PTP is located within the c-subunit ring in the Fo subunit of the ATP synthase. Opening of the PTP was long associated with uncoupling of the ETC and the initiation of programmed cell death. More recently, it was shown that PTP opening may serve a physiologic role: it can transiently open to regulate mitochondrial signaling in mature cells, and it is open in the embryonic mouse heart. This review will discuss how the ATP synthase paradoxically lies at the center of both ATP generation and cell death.
Collapse
|
154
|
Scholpa NE, Schnellmann RG. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target. J Pharmacol Exp Ther 2017; 363:303-313. [PMID: 28935700 PMCID: PMC5676296 DOI: 10.1124/jpet.117.244806] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) is characterized by an initial trauma followed by a progressive cascade of damage referred to as secondary injury. A hallmark of secondary injury is vascular disruption leading to vasoconstriction and decreased oxygen delivery, which directly reduces the ability of mitochondria to maintain homeostasis and leads to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity, and oxidative stress, further exacerbating injury. Restoration of mitochondria dysfunction during the acute phases of secondary injury after SCI represents a potentially effective therapeutic strategy. This review discusses the past and present pharmacological options for the treatment of SCI as well as current research on mitochondria-targeted approaches. Increased antioxidant activity, inhibition of the mitochondrial permeability transition, alternate energy sources, and manipulation of mitochondrial morphology are among the strategies under investigation. Unfortunately, many of these tactics address single aspects of mitochondrial dysfunction, ultimately proving largely ineffective. Therefore, this review also examines the unexplored therapeutic efficacy of pharmacological enhancement of mitochondrial biogenesis, which has the potential to more comprehensively improve mitochondrial function after SCI.
Collapse
Affiliation(s)
- Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (N.E.S., R.G.S.); and Southern Arizona VA Health Care System, Tucson, Arizona (R.G.S.)
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (N.E.S., R.G.S.); and Southern Arizona VA Health Care System, Tucson, Arizona (R.G.S.)
| |
Collapse
|
155
|
Procoagulant platelets: generation, function, and therapeutic targeting in thrombosis. Blood 2017; 130:2171-2179. [DOI: 10.1182/blood-2017-05-787259] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/12/2017] [Indexed: 11/20/2022] Open
Abstract
Abstract
Current understanding of how platelets localize coagulation to wound sites has come mainly from studies of a subpopulation of activated platelets. In this review, we summarize data from the last 4 decades that have described these platelets with a range of descriptive titles and attributes. We identify striking overlaps in the reported characteristics of these platelets, which imply a single subpopulation of versatile platelets and thus suggest that their commonality requires unification of their description. We therefore propose the term procoagulant platelet as the unifying terminology. We discuss the agonist requirements and molecular drivers for the dramatic morphological transformation platelets undergo when becoming procoagulant. Finally, we provide perspectives on the biomarker potential of procoagulant platelets for thrombotic events as well as on the possible clinical benefits of inhibitors of carbonic anhydrase enzymes and the water channel Aquaporin-1 for targeting this subpopulation of platelets as antiprocoagulant antithrombotics.
Collapse
|
156
|
Springer JE, Visavadiya NP, Sullivan PG, Hall ED. Post-Injury Treatment with NIM811 Promotes Recovery of Function in Adult Female Rats after Spinal Cord Contusion: A Dose-Response Study. J Neurotrauma 2017; 35:492-499. [PMID: 28967329 DOI: 10.1089/neu.2017.5167] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial homeostasis is essential for maintaining cellular function and survival in the central nervous system (CNS). Mitochondrial function is significantly compromised after spinal cord injury (SCI) and is associated with accumulation of high levels of calcium, increased production of free radicals, oxidative damage, and eventually mitochondrial permeability transition (mPT). The formation of the mPT pore (mPTP) and subsequent mPT state are considered to be end stage events in the decline of mitochondrial integrity, and strategies that inhibit mPT can limit mitochondrial demise. Cyclosporine A (CsA) is thought to inhibit mPT by binding to cyclophilin D and has been shown to be effective in models of CNS injury. CsA, however, also inhibits calcineurin, which is responsible for its immunosuppressive properties. In the present study, we conducted a dose-response examination of NIM811, a nonimmunosuppressive CsA analog, on recovery of function and tissue sparing in a rat model of moderate to severe SCI. The results of our experiments revealed that NIM811 (10 mg/kg) significantly improved open field locomotor performance, while the two higher doses tested (20 and 40 mg/kg) significantly improved return of reflexive bladder control and significantly decreased the rostral-caudal extent of the lesion. Taken together, these results demonstrate the ability of NIM811 to improve recovery of function in SCI and support the role of protecting mitochondrial function as a potential therapeutic target.
Collapse
Affiliation(s)
- Joe E Springer
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center , Lexington, Kentucky
| | - Nishant P Visavadiya
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center , Lexington, Kentucky
| | - Patrick G Sullivan
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center , Lexington, Kentucky
| | - Edward D Hall
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center , Lexington, Kentucky
| |
Collapse
|
157
|
Beutner G, Alanzalon RE, Porter GA. Cyclophilin D regulates the dynamic assembly of mitochondrial ATP synthase into synthasomes. Sci Rep 2017; 7:14488. [PMID: 29101324 PMCID: PMC5670235 DOI: 10.1038/s41598-017-14795-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial electron transport is essential for oxidative phosphorylation (OXPHOS). Electron transport chain (ETC) activity generates an electrochemical gradient that is used by the ATP synthase to make ATP. ATP synthase is organized into supramolecular units called synthasomes that increase the efficiency of ATP production, while within ATP synthase is the cyclophilin D (CypD) regulated mitochondrial permeability transition pore (PTP). We investigated whether synthasomes are dynamic structures that respond to metabolic demands and whether CypD regulates this dynamic. Isolated heart mitochondria from wild-type (WT) and CypD knockout (KO) mice were treated to either stimulate OXPHOS or open the PTP. The presence and dynamics of mitochondrial synthasomes were investigated by native electrophoresis, immunoprecipitation, and sucrose density centrifugation. We show that stimulation of OXPHOS, inhibition of the PTP, or deletion of CypD increased high order synthasome assembly. In contrast, OXPHOS inhibition or PTP opening increased synthasome disassembly in WT, but not in CypD KO heart mitochondria. CypD activity also correlated with synthasome assembly in other tissues, such as liver and brain. We conclude that CypD not only regulates the PTP, but also regulates the dynamics of synthasome assembly depending on the bioenergetic state of the mitochondria.
Collapse
Affiliation(s)
- Gisela Beutner
- Department of Pediatrics (Cardiology), University of Rochester, Rochester, New York, 14642, United States
| | - Ryan E Alanzalon
- Department of Pediatrics (Cardiology), University of Rochester, Rochester, New York, 14642, United States
| | - George A Porter
- Department of Pediatrics (Cardiology), University of Rochester, Rochester, New York, 14642, United States.
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, 14642, United States.
- Department of Medicine (Aab Cardiovascular Research Institute), University of Rochester, Rochester, New York, 14642, United States.
| |
Collapse
|
158
|
Alharbi RA, Pandha HS, Simpson GR, Pettengell R, Poterlowicz K, Thompson A, Harrington K, El-Tanani M, Morgan R. Inhibition of HOX/PBX dimer formation leads to necroptosis in acute myeloid leukemia cells. Oncotarget 2017; 8:89566-89579. [PMID: 29163771 PMCID: PMC5685692 DOI: 10.18632/oncotarget.20023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022] Open
Abstract
The HOX genes encode a family of transcription factors that have key roles in both development and malignancy. Disrupting the interaction between HOX proteins and their binding partner, PBX, has been shown to cause apoptotic cell death in a range of solid tumors. However, despite HOX proteins playing a particularly significant role in acute myeloid leukemia (AML), the relationship between HOX gene expression and patient survival has not been evaluated (with the exception of HOXA9), and the mechanism by which HOX/PBX inhibition induces cell death in this malignancy is not well understood. In this study, we show that the expression of HOXA5, HOXB2, HOXB4, HOXB9, and HOXC9, but not HOXA9, in primary AML samples is significantly related to survival. Furthermore, the previously described inhibitor of HOX/PBX dimerization, HXR9, is cytotoxic to both AML-derived cell lines and primary AML cells from patients. The mechanism of cell death is not dependent on apoptosis but instead involves a regulated form of necrosis referred to as necroptosis. HXR9-induced necroptosis is enhanced by inhibitors of protein kinase C (PKC) signaling, and HXR9 combined with the PKC inhibitor Ro31 causes a significantly greater reduction in tumor growth compared to either reagent alone.
Collapse
Affiliation(s)
- Raed A. Alharbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Hardev S. Pandha
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Guy R. Simpson
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | | | - Alexander Thompson
- Division of Cancer and Stem Cells, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Kevin Harrington
- Targeted Therapy Team, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Mohamed El-Tanani
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Richard Morgan
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| |
Collapse
|
159
|
Huang ZL, Pandya D, Banta DK, Ansari MS, Oh U. Cyclophilin inhibitor NIM811 ameliorates experimental allergic encephalomyelitis. J Neuroimmunol 2017; 311:40-48. [PMID: 28789840 DOI: 10.1016/j.jneuroim.2017.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 11/30/2022]
Abstract
Cyclophilins have diverse functions that may affect the course of central nervous system (CNS) inflammatory disorders. Anti-inflammatory and neuroprotective mechanisms may be targeted by inhibition of cyclophilin A-dependent and cyclophilin D-dependent functions, respectively. We tested the effect of cyclophilin inhibition on CNS inflammation by administering N-methyl-4-isoleucine-cyclosporin (NIM811) to mice undergoing experimental allergic encephalomyelitis (EAE). Treatment with NIM811 resulted in significant reduction of EAE clinical severity. Analysis of mitochondrial calcium retention capacity and the course of EAE in cyclophilin D knockout mice indicated that the effect of NIM811 on EAE was not entirely cyclophilin D-dependent. NIM811-treated EAE animals showed reduction in interleukin-2 expression and reduction in CNS inflammatory infiltrates. These results indicate that anti-inflammatory rather than neuroprotective mechanisms associated with cyclophilins are likely involved in the mechanism of NIM811 in EAE.
Collapse
Affiliation(s)
- Zi L Huang
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Darshan Pandya
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Daisy K Banta
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Maryam S Ansari
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Unsong Oh
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
160
|
Nederlof R, van den Elshout MAM, Koeman A, Uthman L, Koning I, Eerbeek O, Weber NC, Hollmann MW, Zuurbier CJ. Cyclophilin D ablation is associated with increased end-ischemic mitochondrial hexokinase activity. Sci Rep 2017; 7:12749. [PMID: 28986541 PMCID: PMC5630626 DOI: 10.1038/s41598-017-13096-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/11/2017] [Indexed: 02/03/2023] Open
Abstract
Both the absence of cyclophilin D (CypD) and the presence of mitochondrial bound hexokinase II (mtHKII) protect the heart against ischemia/reperfusion (I/R) injury. It is unknown whether CypD determines the amount of mtHKII in the heart. We examined whether CypD affects mtHK in normoxic, ischemic and preconditioned isolated mouse hearts. Wild type (WT) and CypD-/- mouse hearts were perfused with glucose only and subjected to 25 min ischemia and reperfusion. At baseline, cytosolic and mtHK was similar between hearts. CypD ablation protected against I/R injury and increased ischemic preconditioning (IPC) effects, without affecting end-ischemic mtHK. When hearts were perfused with glucose, glutamine, pyruvate and lactate, the preparation was more stable and CypD ablation-resulted in more protection that was associated with increased mtHK activity, leaving little room for additional protection by IPC. In conclusion, in glucose only-perfused hearts, deletion of CypD is not associated with end-ischemic mitochondrial-HK binding. In contrast, in the physiologically more relevant multiple-substrate perfusion model, deletion of CypD is associated with an increased mtHK activity, possibly explaining the increased protection against I/R injury.
Collapse
Affiliation(s)
- Rianne Nederlof
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Mark A M van den Elshout
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Anneke Koeman
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Laween Uthman
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Iris Koning
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Otto Eerbeek
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nina C Weber
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Markus W Hollmann
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
161
|
Niedzwiecka K, Tisi R, Penna S, Lichocka M, Plochocka D, Kucharczyk R. Two mutations in mitochondrial ATP6 gene of ATP synthase, related to human cancer, affect ROS, calcium homeostasis and mitochondrial permeability transition in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:117-131. [PMID: 28986220 DOI: 10.1016/j.bbamcr.2017.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
The relevance of mitochondrial DNA (mtDNA) mutations in cancer process is still unknown. Since the mutagenesis of mitochondrial genome in mammals is not possible yet, we have exploited budding yeast S. cerevisiae as a model to study the effects of tumor-associated mutations in the mitochondrial MTATP6 gene, encoding subunit 6 of ATP synthase, on the energy metabolism. We previously reported that four mutations in this gene have a limited impact on the production of cellular energy. Here we show that two mutations, Atp6-P163S and Atp6-K90E (human MTATP6-P136S and MTATP6-K64E, found in prostate and thyroid cancer samples, respectively), increase sensitivity of yeast cells both to compounds inducing oxidative stress and to high concentrations of calcium ions in the medium, when Om45p, the component of porin complex in outer mitochondrial membrane (OM), was fused to GFP. In OM45-GFP background, these mutations affect the activation of yeast permeability transition pore (yPTP, also called YMUC, yeast mitochondrial unspecific channel) upon calcium induction. Moreover, we show that calcium addition to isolated mitochondria heavily induced the formation of ATP synthase dimers and oligomers, recently proposed to form the core of PTP, which was slower in the mutants. We show the genetic evidence for involvement of mitochondrial ATP synthase in calcium homeostasis and permeability transition in yeast. This paper is a first to show, although in yeast model organism, that mitochondrial ATP synthase mutations, which accumulate during carcinogenesis process, may be significant for cancer cell escape from apoptosis.
Collapse
Affiliation(s)
- Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Renata Tisi
- Dept. Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; Milan Center for Neuroscience, Milan, Italy
| | - Sara Penna
- Dept. Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Malgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Danuta Plochocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
162
|
Park I, Londhe AM, Lim JW, Park BG, Jung SY, Lee JY, Lim SM, No KT, Lee J, Pae AN. Discovery of non-peptidic small molecule inhibitors of cyclophilin D as neuroprotective agents in Aβ-induced mitochondrial dysfunction. J Comput Aided Mol Des 2017; 31:929-941. [PMID: 28913661 DOI: 10.1007/s10822-017-0067-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/08/2017] [Indexed: 11/26/2022]
Abstract
Cyclophilin D (CypD) is a mitochondria-specific cyclophilin that is known to play a pivotal role in the formation of the mitochondrial permeability transition pore (mPTP).The formation and opening of the mPTP disrupt mitochondrial homeostasis, cause mitochondrial dysfunction and eventually lead to cell death. Several recent studies have found that CypD promotes the formation of the mPTP upon binding to β amyloid (Aβ) peptides inside brain mitochondria, suggesting that neuronal CypD has a potential to be a promising therapeutic target for Alzheimer's disease (AD). In this study, we generated an energy-based pharmacophore model by using the crystal structure of CypD-cyclosporine A (CsA) complex and performed virtual screening of ChemDiv database, which yielded forty-five potential hit compounds with novel scaffolds. We further tested those compounds using mitochondrial functional assays in neuronal cells and identified fifteen compounds with excellent protective effects against Aβ-induced mitochondrial dysfunction. To validate whether these effects derived from binding to CypD, we performed surface plasmon resonance (SPR)-based direct binding assays with selected compounds and discovered compound 29 was found to have the equilibrium dissociation constants (KD) value of 88.2 nM. This binding affinity value and biological activity correspond well with our predicted binding mode. We believe that this study offers new insights into the rational design of small molecule CypD inhibitors, and provides a promising lead for future therapeutic development.
Collapse
Affiliation(s)
- Insun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ashwini M Londhe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Ji Woong Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Converging Science and Technology, KyungHee University, Seoul, 02447, Republic of Korea
| | - Beoung-Geon Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Center for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Hwarangno 14- gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Seo Yun Jung
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jae Yeol Lee
- Department of Converging Science and Technology, KyungHee University, Seoul, 02447, Republic of Korea
| | - Sang Min Lim
- Center for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Hwarangno 14- gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Kyoung Tai No
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul, 02844, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
- Department of Converging Science and Technology, KyungHee University, Seoul, 02447, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
163
|
Mechanistic Role of mPTP in Ischemia-Reperfusion Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:169-189. [PMID: 28551787 DOI: 10.1007/978-3-319-55330-6_9] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute myocardial infarction (MI) is a major cause of death and disability worldwide. The treatment of choice for reducing ischemic injury and limiting infarct size (IS) in patients with ST-segment elevation MI (STEMI) is timely and effective myocardial reperfusion via primary percutaneous coronary intervention (PCI). However, myocardial reperfusion itself may induce further cardiomyocyte death, a phenomenon known as reperfusion injury (RI). The opening of a large pore in the mitochondrial membrane, namely, the mitochondrial permeability transition pore (mPTP), is widely recognized as the final step of RI and is responsible for mitochondrial and cardiomyocyte death. Although myocardial reperfusion interventions continue to improve, there remain no effective therapies for preventing RI due to incomplete knowledge regarding RI components and mechanisms and to premature translations of findings from animals to humans. In the last year, increasing amounts of data describing mPTP components, structure, regulation and function have surfaced. These data may be crucial for gaining a better understanding of RI genesis and for planning future trials evaluating new cardioprotective strategies. In this chapter, we review the role of the mPTP in RI pathophysiology and report on recent studies investigating its structure and components. Finally, we provide a brief overview of principal cardioprotective strategies and their pitfalls.
Collapse
|
164
|
Abstract
Ca2+ is a ubiquitous intracellular messenger that controls diverse cellular functions but can become toxic and cause cell death. Selective control of specific targets depends on spatiotemporal patterning of the calcium signal and decoding it by multiple, tunable, and often strategically positioned Ca2+-sensing elements. Ca2+ is detected by specialized motifs on proteins that have been biochemically characterized decades ago. However, the field of Ca2+ sensing has been reenergized by recent progress in fluorescent technology, genetics, and cryo-EM. These approaches exposed local Ca2+-sensing mechanisms inside organelles and at the organellar interfaces, revealed how Ca2+ binding might work to open some channels, and identified human mutations and disorders linked to a variety of Ca2+-sensing proteins. Here we attempt to place these new developments in the context of intracellular calcium homeostasis and signaling.
Collapse
Affiliation(s)
- Rafaela Bagur
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics and Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics and Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
165
|
He J, Carroll J, Ding S, Fearnley IM, Walker JE. Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase. Proc Natl Acad Sci U S A 2017; 114:9086-9091. [PMID: 28784775 PMCID: PMC5576841 DOI: 10.1073/pnas.1711201114] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membranes of mitochondria can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane and ATP synthesis, and cell death. Pore opening can be inhibited by cyclosporin A mediated via cyclophilin D. It has been proposed that the pore is associated with the dimeric ATP synthase and the oligomycin sensitivity conferral protein (OSCP), a component of the enzyme's peripheral stalk, provides the site at which cyclophilin D interacts. Subunit b contributes a central α-helical structure to the peripheral stalk, extending from near the top of the enzyme's catalytic domain and crossing the membrane domain of the enzyme via two α-helices. We investigated the possible involvement of the subunit b and the OSCP in the PTP by generating clonal cells, HAP1-Δb and HAP1-ΔOSCP, lacking the membrane domain of subunit b or the OSCP, respectively, in which the corresponding genes, ATP5F1 and ATP5O, had been disrupted. Both cell lines preserve the characteristic properties of the PTP; therefore, the membrane domain of subunit b does not contribute to the PTP, and the OSCP does not provide the site of interaction with cyclophilin D. The membrane subunits ATP6, ATP8, and subunit c have been eliminated previously from possible participation in the PTP; thus, the only subunits of ATP synthase that could participate in pore formation are e, f, g, diabetes-associated protein in insulin-sensitive tissues (DAPIT), and the 6.8-kDa proteolipid.
Collapse
Affiliation(s)
- Jiuya He
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Joe Carroll
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Shujing Ding
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Ian M Fearnley
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - John E Walker
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
166
|
Lemoine S, Pillot B, Augeul L, Rabeyrin M, Varennes A, Normand G, Baetz D, Ovize M, Juillard L. Dose and timing of injections for effective cyclosporine A pretreatment before renal ischemia reperfusion in mice. PLoS One 2017; 12:e0182358. [PMID: 28796779 PMCID: PMC5552114 DOI: 10.1371/journal.pone.0182358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 07/17/2017] [Indexed: 11/26/2022] Open
Abstract
Background There is experimental evidence that lethal ischemia-reperfusion injury (IRI) is largely due to mitochondrial permeability transition pore (mPTP) opening, which can be prevented by cyclosporine A (CsA). The aim of our study is to show that a higher dose of CsA (10 mg/kg) injected just before ischemia or a lower dose of CsA (3 mg/kg) injected further in advance of ischemia (1 h) protects the kidneys and improves mitochondrial function. Methods All mice underwent a right unilateral nephrectomy followed by 30 min clamping of the left renal artery. Mice in the control group did not receive any pharmacological treatment. Mice in the three groups treated by CsA were injected at different times and with different doses, namely 3 mg/kg 1 h or 10 min before ischemia or 10 mg/kg 10 min before ischemia. After 24 h of reperfusion, the plasma creatinine level were measured, the histological score was assessed and mitochondria were isolated to calculate the calcium retention capacity (CRC) and level of oxidative phosphorylation. Results Mortality and renal function was significantly higher in the CsA 10 mg/kg-10 min and CsA 3mg/kg-1 h groups than in the CsA 3mg/kg-10 min group. Likewise, the CRC was significantly higher in the former two groups than in the latter, suggesting that the improved renal function was due to a longer delay in the opening of the mPTP. Oxidative phosphorylation levels were also higher 24 h after reperfusion in the protected groups. Conclusions Our results suggest that the protection afforded by CsA is likely limited by its availability. The dose and timing of the injections are therefore crucial to ensure that the treatment is effective, but these findings may prove challenging to apply in practice.
Collapse
Affiliation(s)
- Sandrine Lemoine
- Université Lyon1, Inserm 1060CarMeN, Lyon, France
- Renal function unit, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Nephrology department, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- * E-mail:
| | - Bruno Pillot
- Université Lyon1, Inserm 1060CarMeN, Lyon, France
| | | | - Maud Rabeyrin
- Anatomopathology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Annie Varennes
- Biology department, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Gabrielle Normand
- Université Lyon1, Inserm 1060CarMeN, Lyon, France
- Nephrology department, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | | | - Michel Ovize
- Université Lyon1, Inserm 1060CarMeN, Lyon, France
- Cardiovascular Explorations, Hospices Civils de Lyon, Louis Pradel Hospital, Lyon, France
| | - Laurent Juillard
- Université Lyon1, Inserm 1060CarMeN, Lyon, France
- Nephrology department, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
167
|
Javadov S, Jang S, Parodi-Rullán R, Khuchua Z, Kuznetsov AV. Mitochondrial permeability transition in cardiac ischemia-reperfusion: whether cyclophilin D is a viable target for cardioprotection? Cell Mol Life Sci 2017; 74:2795-2813. [PMID: 28378042 PMCID: PMC5977999 DOI: 10.1007/s00018-017-2502-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Growing number of studies provide strong evidence that the mitochondrial permeability transition pore (PTP), a non-selective channel in the inner mitochondrial membrane, is involved in the pathogenesis of cardiac ischemia-reperfusion and can be targeted to attenuate reperfusion-induced damage to the myocardium. The molecular identity of the PTP remains unknown and cyclophilin D is the only protein commonly accepted as a major regulator of the PTP opening. Therefore, cyclophilin D is an attractive target for pharmacological or genetic therapies to reduce ischemia-reperfusion injury in various animal models and humans. Most animal studies demonstrated cardioprotective effects of PTP inhibition; however, a recent large clinical trial conducted by international groups demonstrated that cyclosporine A, a cyclophilin D inhibitor, failed to protect the heart in patients with myocardial infarction. These studies, among others, raise the question of whether cyclophilin D, which plays an important physiological role in the regulation of cell metabolism and mitochondrial bioenergetics, is a viable target for cardioprotection. This review discusses previous studies to provide comprehensive information on the physiological role of cyclophilin D as well as PTP opening in the cell that can be taken into consideration for the development of new PTP inhibitors.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico.
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico
| | - Rebecca Parodi-Rullán
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, Puerto Rico
| | - Zaza Khuchua
- Cincinnati Children's Research Foundation, University of Cincinnati, 240 Albert Sabin Way, Cincinnati, OH, 54229, USA
| | - Andrey V Kuznetsov
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
168
|
Warnsmann V, Meyer N, Hamann A, Kögel D, Osiewacz HD. A novel role of the mitochondrial permeability transition pore in (-)-gossypol-induced mitochondrial dysfunction. Mech Ageing Dev 2017; 170:45-58. [PMID: 28684269 DOI: 10.1016/j.mad.2017.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/07/2017] [Accepted: 06/30/2017] [Indexed: 01/22/2023]
Abstract
Gossypol, a natural polyphenolic compound from cotton seeds, is known to trigger different forms of cell death in various types of cancer. Gossypol acts as a Bcl-2 inhibitor that induces apoptosis in apoptosis-competent cells. In apoptosis-resistant cancers such as glioblastoma, it triggers a non-apoptotic type of cell death associated with increased oxidative stress, mitochondrial depolarisation and fragmentation. In order to investigate the impact of gossypol on mitochondrial function, the mitochondrial permeability transition pore and on oxidative stress in more detail, we used the aging model Podospora anserina that lacks endogenous Bcl-2 proteins. We found that treatment with gossypol selectively increases hydrogen peroxide levels and impairs mitochondrial respiration in P. anserina, apoptosis-deficient Bax/Bak double knockout mouse embryonal fibroblasts and glioblastoma cells. Significantly, we provide evidence that CYPD-mediated opening of the mPTP is required for gossypol-induced mitochondrial dysfunction, autophagy and cell death during organismic aging of P. anserina and in glioblastoma cells. Overall, these data provide new insights into the role of the mPTP and autophagy in the antitumor effects of gossypol, a natural compound that is clinically developed for the treatment of cancer.
Collapse
Affiliation(s)
- Verena Warnsmann
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt 'Macromolecular Complexes', Department of Biosciences, J. W. Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Nina Meyer
- Experimental Neurosurgery, Goethe University Hospital, Heinrich-Hoffmann-Str. 7, 60528 Frankfurt, Germany
| | - Andrea Hamann
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt 'Macromolecular Complexes', Department of Biosciences, J. W. Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Goethe University Hospital, Heinrich-Hoffmann-Str. 7, 60528 Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt 'Macromolecular Complexes', Department of Biosciences, J. W. Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
169
|
Ca 2+ ionophores are not suitable for inducing mPTP opening in murine isolated adult cardiac myocytes. Sci Rep 2017; 7:4283. [PMID: 28655872 PMCID: PMC5487341 DOI: 10.1038/s41598-017-04618-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/17/2017] [Indexed: 11/08/2022] Open
Abstract
Opening of the mitochondrial permeability transition pore (mPTP) plays a major role in cell death during cardiac ischaemia-reperfusion. Adult isolated rodent cardiomyocytes are valuable cells to study the effect of drugs targeting mPTP. This study investigated whether the use of Ca2+ ionophores (A23187, ionomycin and ETH129) represent a reliable model to study inhibition of mPTP opening in cardiomyocytes. We monitored mPTP opening using the calcein/cobalt fluorescence technique in adult rat and wild type or cyclophilin D (CypD) knock-out mice cardiomyocytes. Cells were either treated with Ca2+ ionophores or subjected to hypoxia followed by reoxygenation. The ionophores induced mPTP-dependent swelling in isolated mitochondria. A23187, but not ionomycin, induced a decrease in calcein fluorescence. This loss could not be inhibited by CypD deletion and was explained by a direct interaction between A23187 and cobalt. ETH129 caused calcein loss, mitochondrial depolarization and cell death but CypD deletion did not alleviate these effects. In the hypoxia-reoxygenation model, CypD deletion delayed both mPTP opening and cell death occurring at the time of reoxygenation. Thus, Ca2+ ionophores are not suitable to induce CypD-dependent mPTP opening in adult murine cardiomyocytes. Hypoxia-reoxygenation conditions appear therefore as the most reliable model to investigate mPTP opening in these cells.
Collapse
|
170
|
Abstract
Current models theorizing on what the mitochondrial permeability transition (mPT) pore is made of, implicate the c-subunit rings of ATP synthase complex. However, two very recent studies, one on atomistic simulations and in the other disrupting all genes coding for the c subunit disproved those models. As a consequence of this, the structural elements of the pore remain unknown. The purpose of the present short-review is to (i) briefly review the latest findings, (ii) serve as an index for more comprehensive reviews regarding mPT specifics, (iii) reiterate on the potential pitfalls while investigating mPT in conjunction to bioenergetics, and most importantly (iv) suggest to those in search of mPT pore identity, to also look elsewhere.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Hungary.
| |
Collapse
|
171
|
Pihán P, Carreras-Sureda A, Hetz C. BCL-2 family: integrating stress responses at the ER to control cell demise. Cell Death Differ 2017. [PMID: 28622296 DOI: 10.1038/cdd.2017.82] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the last decade, the endoplasmic reticulum (ER) has emerged as a central organelle regulating the core mitochondrial apoptosis pathway. At the ER membrane, a variety of stress signals are integrated toward determining cell fate, involving a complex cross talk between key homeostatic pathways including the unfolded protein response, autophagy, calcium signaling and mitochondrial bioenergetics. In this context, key regulators of cell death of the BCL-2 and TMBIM/BI-1 family of proteins have relevant functions as stress rheostats mediated by the formation of distinct protein complexes that regulate the switch between adaptive and proapoptotic phases under stress. Here, we overview recent advances on our molecular understanding of how the apoptotic machinery integrates stress signals toward cell fate decisions upstream of the mitochondrial gateway of death.
Collapse
Affiliation(s)
- Philippe Pihán
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Amado Carreras-Sureda
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA 94945, USA.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA 02115, USA
| |
Collapse
|
172
|
Bioenergetics dysfunction, mitochondrial permeability transition pore opening and lipid peroxidation induced by hydrogen sulfide as relevant pathomechanisms underlying the neurological dysfunction characteristic of ethylmalonic encephalopathy. Biochim Biophys Acta Mol Basis Dis 2017. [PMID: 28624490 DOI: 10.1016/j.bbadis.2017.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hydrogen sulfide (sulfide) accumulates at high levels in brain of patients with ethylmalonic encephalopathy (EE). In the present study, we evaluated whether sulfide could disturb energy and redox homeostasis, and induce mitochondrial permeability transition (mPT) pore opening in rat brain aiming to better clarify the neuropathophysiology of EE. Sulfide decreased the activities of citrate synthase and aconitase in rat cerebral cortex mitochondria, and of creatine kinase (CK) in rat cerebral cortex, striatum and hippocampus supernatants. Glutathione prevented sulfide-induced CK activity decrease in the cerebral cortex. Sulfide also diminished mitochondrial respiration in cerebral cortex homogenates, and dissipated mitochondrial membrane potential (ΔΨm) and induced swelling in the presence of calcium in brain mitochondria. Alterations in ΔΨm and swelling caused by sulfide were prevented by the combination of ADP and cyclosporine A, and by ruthenium red, indicating the involvement of mPT in these effects. Furthermore, sulfide increased the levels of malondialdehyde in cerebral cortex supernatants, which was prevented by resveratrol and attenuated by glutathione, and of thiol groups in a medium devoid of brain samples. Finally, we verified that sulfide did not alter cell viability and DCFH oxidation in cerebral cortex slices, primary cortical astrocyte cultures and SH-SY5Y cells. Our data provide evidence that bioenergetics disturbance and lipid peroxidation along with mPT pore opening are involved in the pathophysiology of brain damage observed in EE.
Collapse
|
173
|
Parodi-Rullán RM, Chapa-Dubocq X, Rullán PJ, Jang S, Javadov S. High Sensitivity of SIRT3 Deficient Hearts to Ischemia-Reperfusion Is Associated with Mitochondrial Abnormalities. Front Pharmacol 2017; 8:275. [PMID: 28559847 PMCID: PMC5432544 DOI: 10.3389/fphar.2017.00275] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/02/2017] [Indexed: 12/31/2022] Open
Abstract
Aim: Sirtuins are NAD+-dependent deacetylases that regulate cell metabolism through protein acetylation/deacetylation, and SIRT3 is the major deacetylase among mitochondrial isoforms. Here, we elucidated the possible role of acetylation of cyclophilin D, a key regulator of the mitochondrial permeability transition pore (mPTP), in mitochondria-mediated cardiac dysfunction induced by ischemia-reperfusion (IR) in wild type (WT) and SIRT3 knockout (SIRT3-/-) mice. Materials and Methods: Isolated and Langendorff-mode perfused hearts of WT and SIRT3-/- mice were subjected to 25-min global ischemia followed by 60-min of reperfusion in the presence or absence of the mPTP inhibitor, sanglifehrin A (SfA). Results: Analysis of mitochondrial sirtuins demonstrated that SIRT3 deficiency upregulated SIRT4 with no effect on SIRT5 expression. Hearts of SIRT3-/- mice exhibited significantly less recovery of cardiac function at the end of IR compared to WT mice. Intact (non-perfused) SIRT3-/- hearts exhibited an increased rate of Ca2+-induced swelling in mitochondria as an indicator of mPTP opening. However, there was no difference in mPTP opening and cyclophilin D acetylation between WT and SIRT3-/- hearts subjected to IR injury. Ca2+-stimulated H2O2 production was significantly higher in SIRT3-/- mitochondria that was prevented by SfA. Superoxide dismutase activity was lower in SIRT3-/- heart mitochondria subjected to IR which correlated with an increase in protein carbonylation. However, mitochondrial DNA integrity was not affected in SIRT3-/- hearts after IR. Conclusion: SIRT3 deficiency exacerbates cardiac dysfunction during post-ischemic recovery, and increases mPTP opening and ROS generation without oxidative damage to mitochondrial proteins and DNA.
Collapse
Affiliation(s)
- Rebecca M Parodi-Rullán
- Department of Physiology, University of Puerto Rico School of Medicine, San JuanPR, United States
| | - Xavier Chapa-Dubocq
- Department of Physiology, University of Puerto Rico School of Medicine, San JuanPR, United States
| | - Pedro J Rullán
- Department of Physiology, University of Puerto Rico School of Medicine, San JuanPR, United States
| | - Sehwan Jang
- Department of Physiology, University of Puerto Rico School of Medicine, San JuanPR, United States
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San JuanPR, United States
| |
Collapse
|
174
|
Giorgio V, Burchell V, Schiavone M, Bassot C, Minervini G, Petronilli V, Argenton F, Forte M, Tosatto S, Lippe G, Bernardi P. Ca 2+ binding to F-ATP synthase β subunit triggers the mitochondrial permeability transition. EMBO Rep 2017; 18:1065-1076. [PMID: 28507163 DOI: 10.15252/embr.201643354] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 01/28/2023] Open
Abstract
F-ATP synthases convert the electrochemical energy of the H+ gradient into the chemical energy of ATP with remarkable efficiency. Mitochondrial F-ATP synthases can also undergo a Ca2+-dependent transformation to form channels with properties matching those of the permeability transition pore (PTP), a key player in cell death. The Ca2+ binding site and the mechanism(s) through which Ca2+ can transform the energy-conserving enzyme into a dissipative structure promoting cell death remain unknown. Through in vitro, in vivo and in silico studies we (i) pinpoint the "Ca2+-trigger site" of the PTP to the catalytic site of the F-ATP synthase β subunit and (ii) define a conformational change that propagates from the catalytic site through OSCP and the lateral stalk to the inner membrane. T163S mutants of the β subunit, which show a selective decrease in Ca2+-ATP hydrolysis, confer resistance to Ca2+-induced, PTP-dependent death in cells and developing zebrafish embryos. These findings are a major advance in the molecular definition of the transition of F-ATP synthase to a channel and of its role in cell death.
Collapse
Affiliation(s)
- Valentina Giorgio
- Department of Biomedical Sciences, University of Padova, Padova, Italy .,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| | - Victoria Burchell
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Schiavone
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Claudio Bassot
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Valeria Petronilli
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| | | | - Michael Forte
- Vollum Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Silvio Tosatto
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| | - Giovanna Lippe
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy .,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| |
Collapse
|
175
|
Giorgio V, Guo L, Bassot C, Petronilli V, Bernardi P. Calcium and regulation of the mitochondrial permeability transition. Cell Calcium 2017; 70:56-63. [PMID: 28522037 DOI: 10.1016/j.ceca.2017.05.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022]
Abstract
Recent years have seen renewed interest in the permeability transition pore, a high conductance channel responsible for permeabilization of the inner mitochondrial membrane, a process that leads to depolarization and Ca2+ release. Transient openings may be involved in physiological Ca2+ homeostasis while long-lasting openings may trigger and/or execute cell death. In this review we specifically focus (i) on the hypothesis that the PTP forms from the F-ATP synthase and (ii) on the mechanisms through which Ca2+ can reversibly switch this energy-conserving nanomachine into an energy-dissipating device.
Collapse
Affiliation(s)
- Valentina Giorgio
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy
| | - Lishu Guo
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy
| | - Claudio Bassot
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy
| | - Valeria Petronilli
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| |
Collapse
|
176
|
Traba J, Sack MN. The role of caloric load and mitochondrial homeostasis in the regulation of the NLRP3 inflammasome. Cell Mol Life Sci 2017; 74:1777-1791. [PMID: 27942750 PMCID: PMC5391300 DOI: 10.1007/s00018-016-2431-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/21/2016] [Accepted: 12/05/2016] [Indexed: 01/21/2023]
Abstract
Sterile inflammation is a cornerstone of immune activation in obesity and type 2 Diabetes Mellitus. The molecular underpinnings of this inflammation include nutrient excess-mediated activation of the innate immune NLRP3 inflammasome. At the same time, disruption of mitochondrial integrity is emerging as an integral control node in NLRP3 inflammasome activation and is also associated with caloric overload conditions including obesity and diabetes. Conversely, caloric restriction and fasting mimetic interventions alleviate these caloric excess-linked diseases and reduce inflammation and the NLRP3 inflammasome. The objective of this review is to integrate the findings linking mitochondrial integrity to the activation of the NLRP3 inflammasome and to evaluate how caloric restriction or caloric restriction mimetic compounds may play a role in attenuating the NLRP3 inflammasome and sterile inflammation.
Collapse
Affiliation(s)
- Javier Traba
- Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, NIH, 10-CRC, Room 5-3150, 10 Center Drive, Bethesda, MD, 20892-1454, USA
| | - Michael N Sack
- Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, NIH, 10-CRC, Room 5-3150, 10 Center Drive, Bethesda, MD, 20892-1454, USA.
| |
Collapse
|
177
|
Vereczki V, Mansour J, Pour-Ghaz I, Bodnar I, Pinter O, Zelena D, Oszwald E, Adam-Vizi V, Chinopoulos C. Cyclophilin D regulates lifespan and protein expression of aging markers in the brain of mice. Mitochondrion 2017; 34:115-126. [PMID: 28288917 DOI: 10.1016/j.mito.2017.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 01/19/2017] [Accepted: 03/09/2017] [Indexed: 01/15/2023]
Abstract
Cyclophilin D (cypD) modulates the properties of the permeability transition pore, a phenomenon implicated in the manifestation of many diseases including aging. Here, we examined the effects of partial or complete deletion of cypD on i) lifespan, ii) forebrain protein expression of 18 aging markers as well as regional expression of GFAP, mGluR1, and alpha-synuclein, and iii) behaviour of aged (>24month) male and female mice. Both male and female cypD heterozygous but not KO mice exhibited increased lifespans compared to WT littermates, associated with alterations in the protein expression of some markers, albeit without exhibiting changes in behaviour.
Collapse
Affiliation(s)
- Viktoria Vereczki
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Josef Mansour
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Budapest, Hungary
| | - Issa Pour-Ghaz
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Budapest, Hungary
| | - Ibolya Bodnar
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Otto Pinter
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dora Zelena
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Erzsebet Oszwald
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory for Neurobiochemistry, Budapest, Hungary
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Budapest, Hungary.
| |
Collapse
|
178
|
Liu XX, Wang CY, Luo C, Sheng JQ, Wu D, Hu BJ, Wang JH, Hong YJ. Characterization of cyclophilin D in freshwater pearl mussel ( Hyriopsis schlegelii). Zool Res 2017; 38:103-109. [PMID: 28409506 PMCID: PMC5396027 DOI: 10.24272/j.issn.2095-8137.2017.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
Cyclophilin D (referred to as HsCypD) was obtained from the freshwater pearl mussel (Hyriopsis schlegelii). The full-length cDNA was 2 671 bp, encoding a protein consisting of 367 amino acids. HsCypD was determined to be a hydrophilic intracellular protein with 10 phosphorylation sites and four tetratricopeptide repeat (TPR) domains, but no signal peptide. The core sequence region YKGCIFHRIIKDFMVQGG is highly conserved in vertebrates and invertebrates. Phylogenetic tree analysis indicated that CypD from all species had a common origin, and HsCypD had the closest phylogenetic relationship with CypD from Lottia gigantea. The constitutive mRNA expression levels of HsCypD exhibited tissue-specific patterns, with the highest level detected in the intestines, followed by the gonads, and the lowest expression found in the hemocytes.
Collapse
Affiliation(s)
- Xiu-Xiu Liu
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Cheng-Yuan Wang
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Chun Luo
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Jun-Qing Sheng
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Di Wu
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Bei-Juan Hu
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Jun-Hua Wang
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Yi-Jiang Hong
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China; Key Laboratory of Aquatic Animals Resources and Utilization of Jiangxi, Nanchang University, Nanchang Jiangxi 330031, China.
| |
Collapse
|
179
|
Gedik N, Maciel L, Schulte C, Skyschally A, Heusch G, Kleinbongard P. Cardiomyocyte mitochondria as targets of humoral factors released by remote ischemic preconditioning. Arch Med Sci 2017; 13:448-458. [PMID: 28261301 PMCID: PMC5332452 DOI: 10.5114/aoms.2016.61789] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/30/2016] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Remote ischemic preconditioning (RIPC) reduces myocardial infarct size, and protection can be transferred with plasma to other individuals, even across species. Mitochondria are the end-effectors of cardioprotection by local ischemic conditioning maneuvers. We have now analyzed mitochondrial function in response to RIPC. MATERIAL AND METHODS Plasma from pigs undergoing placebo or RIPC (infarct size reduction by 67% in RIPC pigs compared to placebo) was transferred to isolated perfused rat hearts subjected to 30 min global ischemia followed by 120 min reperfusion for infarct size measurement. Additional experiments were terminated at 10 min reperfusion to isolate mitochondria for functional measurements. Effects of RIPC pig plasma were compared to local ischemic preconditioning (IPC) or to infusion of tumor necrosis factor α (TNF-α). RESULTS Ischemia/reperfusion (I/R) induced an infarct of 41 ±2% of total ventricular mass. Placebo pig plasma did not affect infarct size (38 ±1, p = 0.13). The RIPC pig plasma reduced infarct size (27 ±2, p < 0.001), as did IPC (20 ±1, p < 0.001) and TNF-α (28 ±2, p < 0.001). Associated with cardioprotection, reductions of mitochondrial adenosine diphosphate (ADP)-stimulated respiration, adenosine triphosphate (ATP) production and calcium retention capacity (CRC) by I/R and placebo pig plasma were prevented by RIPC pig plasma, as they were by IPC and TNF-α. Mitochondrial reactive oxygen species production (nmol H2O2/100 µg protein) induced by I/R (272 ±34) was comparable in response to placebo pig plasma (234 ±28, p = 0.37) and was reduced by RIPC pig plasma (83 ±15, p < 0.001) as well as by IPC (78 ±21, p < 0.001) and TNF-α (125 ±42, p = 0.002). CONCLUSIONS In rat myocardium, mitochondria are an intracellular target of protection induced by humoral factors retrieved from pigs undergoing RIPC.
Collapse
Affiliation(s)
- Nilguen Gedik
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen, Medical School, Essen, Germany
| | - Leonardo Maciel
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen, Medical School, Essen, Germany
- Laboratory of Cardiac Electrophysiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christiane Schulte
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen, Medical School, Essen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen, Medical School, Essen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen, Medical School, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen, Medical School, Essen, Germany
| |
Collapse
|
180
|
Xie J, Li Q, Ding X, Gao Y. GSK1059615 kills head and neck squamous cell carcinoma cells possibly via activating mitochondrial programmed necrosis pathway. Oncotarget 2017; 8:50814-50823. [PMID: 28881606 PMCID: PMC5584207 DOI: 10.18632/oncotarget.15135] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022] Open
Abstract
This study tested the anti-head and neck squamous cell carcinoma (HNSCC) cell activity by GSK1059615, a novel PI3K and mTOR dual inhibitor. GSK1059615 inhibited survival and proliferation of established (SCC-9, SQ20B and A253 lines) and primary human HNSCC cells. GSK1059615 blocked PI3K-AKT-mTOR activation in HNSCC cells. Intriguingly, GSK1059615 treatment in HNSCC cells failed to provoke apoptosis, but induced programmed necrosis. The latter was tested by mitochondria depolarization, ANT-1-cyclophilin-D mitochondrial association and lactate dehydrogenase (LDH) release. Reversely, mPTP blockers (sanglifehrin A, cyclosporin A and bongkrekic acid) or cyclophilin-D shRNA dramatically alleviated GSK1059615-induced SCC-9 cell death. Further studies demonstrated that GSK1059615 i.p. injection suppressed SCC-9 tumor growth in nude mice, which was compromised with co-administration with cyclosporin A. Thus, targeting PI3K-AKT-mTOR pathway by GSK1059615 possibly provokes programmed necrosis pathway to kill HNSCC cells.
Collapse
Affiliation(s)
- Jing Xie
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Quan Li
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xi Ding
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunyun Gao
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
181
|
Hurst S, Hoek J, Sheu SS. Mitochondrial Ca 2+ and regulation of the permeability transition pore. J Bioenerg Biomembr 2017; 49:27-47. [PMID: 27497945 PMCID: PMC5393273 DOI: 10.1007/s10863-016-9672-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/31/2016] [Indexed: 02/06/2023]
Abstract
The mitochondrial permeability transition pore was originally described in the 1970's as a Ca2+ activated pore and has since been attributed to the pathogenesis of many diseases. Here we evaluate how each of the current models of the pore complex fit to what is known about how Ca2+ regulates the pore, and any insight that provides into the molecular identity of the pore complex. We also discuss the central role of Ca2+ in modulating the pore's open probability by directly regulating processes, such as ATP/ADP balance through the tricarboxylic acid cycle, electron transport chain, and mitochondrial membrane potential. We review how Ca2+ influences second messengers such as reactive oxygen/nitrogen species production and polyphosphate formation. We discuss the evidence for how Ca2+ regulates post-translational modification of cyclophilin D including phosphorylation by glycogen synthase kinase 3 beta, deacetylation by sirtuins, and oxidation/ nitrosylation of key residues. Lastly we introduce a novel view into how Ca2+ activated proteolysis through calpains in the mitochondria may be a driver of sustained pore opening during pathologies such as ischemia reperfusion injury.
Collapse
Affiliation(s)
- Stephen Hurst
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA
| | - Jan Hoek
- Mitocare Center for Mitochondria Research, Department of Pathology Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA.
| |
Collapse
|
182
|
Amigo I, Menezes‐Filho SL, Luévano‐Martínez LA, Chausse B, Kowaltowski AJ. Caloric restriction increases brain mitochondrial calcium retention capacity and protects against excitotoxicity. Aging Cell 2017; 16:73-81. [PMID: 27619151 PMCID: PMC5242290 DOI: 10.1111/acel.12527] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2016] [Indexed: 01/09/2023] Open
Abstract
Caloric restriction (CR) protects against many cerebral pathological conditions that are associated with excitotoxic damage and calcium overload, although the mechanisms are still poorly understood. Here we show that CR strongly protects against excitotoxic insults in vitro and in vivo in a manner associated with significant changes in mitochondrial function. CR increases electron transport chain activity, enhances antioxidant defenses, and favors mitochondrial calcium retention capacity in the brain. These changes are accompanied by a decrease in cyclophilin D activity and acetylation and an increase in Sirt3 expression. This suggests that Sirt3-mediated deacetylation and inhibition of cyclophilin D in CR promote the inhibition of mitochondrial permeability transition, resulting in enhanced mitochondrial calcium retention. Altogether, our results indicate that enhanced mitochondrial calcium retention capacity underlies the beneficial effects of CR against excitotoxic conditions. This protection may explain the many beneficial effects of CR in the aging brain.
Collapse
Affiliation(s)
- Ignacio Amigo
- Departamento de BioquímicaInstituto de QuímicaUniversidade de São PauloSão PauloBrazil
| | | | | | - Bruno Chausse
- Departamento de BioquímicaInstituto de QuímicaUniversidade de São PauloSão PauloBrazil
| | - Alicia J. Kowaltowski
- Departamento de BioquímicaInstituto de QuímicaUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
183
|
Shoshan-Barmatz V, De S. Mitochondrial VDAC, the Na +/Ca 2+ Exchanger, and the Ca 2+ Uniporter in Ca 2+ Dynamics and Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:323-347. [PMID: 29594867 DOI: 10.1007/978-3-319-55858-5_13] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondrial Ca2+ uptake and release play pivotal roles in cellular physiology by regulating intracellular Ca2+ signaling, energy metabolism, and cell death. Ca2+ transport across the inner and outer mitochondrial membranes (IMM, OMM, respectively), is mediated by several proteins, including the voltage-dependent anion channel 1 (VDAC1) in the OMM, and the mitochondrial Ca2+ uniporter (MCU) and Na+-dependent mitochondrial Ca2+ efflux transporter, (the NCLX), both in the IMM. By transporting Ca2+ across the OMM to the mitochondrial inner-membrane space (IMS), VDAC1 allows Ca2+ access to the MCU, facilitating transport of Ca2+ to the matrix, and also from the IMS to the cytosol. Intra-mitochondrial Ca2+ controls energy production and metabolism by modulating critical enzymes in the tricarboxylic acid (TCA) cycle and fatty acid oxidation. Thus, by transporting Ca2+, VDAC1 plays a fundamental role in regulating mitochondrial Ca2+ homeostasis, oxidative phosphorylation, and Ca2+ crosstalk among mitochondria, cytoplasm, and the endoplasmic reticulum (ER). VDAC1 has also been recognized as a key protein in mitochondria-mediated apoptosis, and apoptosis stimuli induce overexpression of the protein in a Ca2+-dependent manner. The overexpressed VDAC1 undergoes oligomerization leading to the formation of a channel, through which apoptogenic agents can be released. Here, we review the roles of VDAC1 in mitochondrial Ca2+ homeostasis, in apoptosis, and in diseases associated with mitochondria dysfunction.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Soumasree De
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
184
|
|
185
|
Feng G, Liu B, Hou T, Wang X, Cheng H. Mitochondrial Flashes: Elemental Signaling Events in Eukaryotic Cells. Handb Exp Pharmacol 2017; 240:403-422. [PMID: 28233181 DOI: 10.1007/164_2016_129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mitochondrial flashes (mitoflashes) are recently discovered mitochondrial activity which reflects chemical and electrical excitation of the organelle. Emerging evidence indicates that mitoflashes represent highly regulated, elementary signaling events that play important roles in physiological and pathophysiological processes in eukaryotes. Furthermore, they are regulated by mitochondrial ROS, Ca2+, and protons, and are intertwined with mitochondrial metabolic processes. As such, targeting mitoflash activity may provide a novel means for the control of mitochondrial metabolism and signaling in health and disease. In this brief review, we summarize salient features and mechanisms of biogenesis of mitoflashes, and synthesize data on mitoflash biology in the context of metabolism, cell differentiation, stress response, disease, and ageing.
Collapse
Affiliation(s)
- Gaomin Feng
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Beibei Liu
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Tingting Hou
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xianhua Wang
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
| |
Collapse
|
186
|
|
187
|
Ederoth P, Grins E, Dardashti A, Brondén B, Metzsch C, Erdling A, Nozohoor S, Mokhtari A, Hansson MJ, Elmér E, Algotsson L, Jovinge S, Bjursten H. Ciclosporin to Protect Renal function In Cardiac Surgery (CiPRICS): a study protocol for a double-blind, randomised, placebo-controlled, proof-of-concept study. BMJ Open 2016; 6:e012299. [PMID: 27979834 PMCID: PMC5168697 DOI: 10.1136/bmjopen-2016-012299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) after cardiac surgery is common and results in increased morbidity and mortality. One possible mechanism for AKI is ischaemia-reperfusion injury caused by the extracorporeal circulation (ECC), resulting in an opening of the mitochondrial permeability transition pore (mPTP) in the kidneys, which can lead to cell injury or cell death. Ciclosporin may block the opening of mPTP if administered before the ischaemia-reperfusion injury. We hypothesised that ciclosporin given before the start of ECC in cardiac surgery can decrease the degree of AKI. METHODS AND ANALYSIS Ciclosporin to Protect Renal function In Cardiac Surgery (CiPRICS) study is an investigator-initiated double-blind, randomised, placebo-controlled, parallel design, single-centre study performed at a tertiary university hospital. The primary objective is to assess the safety and efficacy of ciclosporin to limit the degree of AKI in patients undergoing coronary artery bypass grafting surgery. We aim to evaluate 150 patients with a preoperative estimated glomerular filtration rate of 15-90 mL/min/1.73 m2. Study patients are randomised in a 1:1 ratio to receive study drug 2.5 mg/kg ciclosporin or placebo as an intravenous injection after anaesthesia induction but before start of surgery. The primary end point consists of relative P-cystatin C changes from the preoperative day to postoperative day 3. The primary variable will be tested using an analysis of covariance method. Secondary end points include evaluation of P-creatinine and biomarkers of kidney, heart and brain injury. ETHICS AND DISSEMINATION The trial is conducted in compliance with the current version of the Declaration of Helsinki and the International Council for Harmonisation (ICH) Good Clinical Practice guidelines E6 (R1) and was approved by the Regional Ethical Review Board, Lund and the Swedish Medical Products Agency (MPA). Written and oral informed consent is obtained before enrolment into the study. TRIAL REGISTRATION NUMBER NCT02397213; Pre-results.
Collapse
Affiliation(s)
- Per Ederoth
- Department of Anesthesiology and Intensive Care, Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - Edgars Grins
- Department of Anesthesiology and Intensive Care, Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - Alain Dardashti
- Department of Anesthesiology and Intensive Care, Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - Björn Brondén
- Department of Anesthesiology and Intensive Care, Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - Carsten Metzsch
- Department of Anesthesiology and Intensive Care, Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - André Erdling
- Department of Anesthesiology and Intensive Care, Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - Shahab Nozohoor
- Department of Cardiothoracic Surgery, Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - Arash Mokhtari
- Department of Cardiothoracic Surgery, Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - Magnus J Hansson
- Department of Mitochondrial Medicine, Clinical Sciences, Lund University, Lund, Sweden
| | - Eskil Elmér
- Department of Mitochondrial Medicine, Clinical Sciences, Lund University, Lund, Sweden
| | - Lars Algotsson
- Department of Anesthesiology and Intensive Care, Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - Stefan Jovinge
- Fredrik Meijer Heart and Vascular Institute Spectrum Health, MI US Van Andel Institute, Grand Rapids, Michigan, USA
- Cardiovascular Institute, Stanford University, Stanford, California, USA
| | - Henrik Bjursten
- Department of Cardiothoracic Surgery, Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
188
|
Abstract
As the heart is an energy-demanding organ, impaired cardiac energy metabolism and mitochondrial function have been inexorably linked to cardiac dysfunction. There is a growing recognition that mitochondrial dysfunction contributes to impaired myocardial energetics and increased oxidative stress in cardiomyopathies, cardiac ischemic damage and heart failure (HF), and mitochondrial permeability transition pore opening has been reported a critical trigger of myocyte death and myocardial remodeling. It is well established that mitochondria play pivotal roles in intracellular signaling in both cell death as well as in cardioprotective pathways. Moreover, recent studies have shown that defects in mitochondrial dynamics affecting biogenesis and turnover are linked to cardiac senescence and HF. Accordingly, there has been an increasing interest in targeting mitochondria for HF therapy. This article reviews the background and recent evidence of mitochondrial involvement in several types of cell death (apoptosis, necrosis and autophagy) occurring in HF. In addition, potential strategies for targeting mitochondria are examined, and their utility in HF therapy considered.
Collapse
|
189
|
Briston T, Lewis S, Koglin M, Mistry K, Shen Y, Hartopp N, Katsumata R, Fukumoto H, Duchen MR, Szabadkai G, Staddon JM, Roberts M, Powney B. Identification of ER-000444793, a Cyclophilin D-independent inhibitor of mitochondrial permeability transition, using a high-throughput screen in cryopreserved mitochondria. Sci Rep 2016; 6:37798. [PMID: 27886240 PMCID: PMC5122887 DOI: 10.1038/srep37798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/02/2016] [Indexed: 12/19/2022] Open
Abstract
Growing evidence suggests persistent mitochondrial permeability transition pore (mPTP) opening is a key pathophysiological event in cell death underlying a variety of diseases. While it has long been clear the mPTP is a druggable target, current agents are limited by off-target effects and low therapeutic efficacy. Therefore identification and development of novel inhibitors is necessary. To rapidly screen large compound libraries for novel mPTP modulators, a method was exploited to cryopreserve large batches of functionally active mitochondria from cells and tissues. The cryopreserved mitochondria maintained respiratory coupling and ATP synthesis, Ca2+ uptake and transmembrane potential. A high-throughput screen (HTS), using an assay of Ca2+-induced mitochondrial swelling in the cryopreserved mitochondria identified ER-000444793, a potent inhibitor of mPTP opening. Further evaluation using assays of Ca2+-induced membrane depolarisation and Ca2+ retention capacity also indicated that ER-000444793 acted as an inhibitor of the mPTP. ER-000444793 neither affected cyclophilin D (CypD) enzymatic activity, nor displaced of CsA from CypD protein, suggesting a mechanism independent of CypD inhibition. Here we identified a novel, CypD-independent inhibitor of the mPTP. The screening approach and compound described provides a workflow and additional tool to aid the search for novel mPTP modulators and to help understand its molecular nature.
Collapse
Affiliation(s)
- Thomas Briston
- UCL Collaboration Research Group, NGM-PCU, Eisai Ltd., Hatfield, UK
| | - Sian Lewis
- UCL Collaboration Research Group, NGM-PCU, Eisai Ltd., Hatfield, UK
| | - Mumta Koglin
- UCL Collaboration Research Group, NGM-PCU, Eisai Ltd., Hatfield, UK
| | - Kavita Mistry
- UCL Collaboration Research Group, NGM-PCU, Eisai Ltd., Hatfield, UK
| | - Yongchun Shen
- Next Generation Systems CFU, Eisai Inc., Andover, MA, USA
| | - Naomi Hartopp
- UCL Collaboration Research Group, NGM-PCU, Eisai Ltd., Hatfield, UK
| | | | - Hironori Fukumoto
- NGM-PCU, Eisai Co. Ltd., Tsukuba Research Laboratories, Tsukuba, Japan
| | - Michael R. Duchen
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, University College London, London, UK
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - James M. Staddon
- UCL Collaboration Research Group, NGM-PCU, Eisai Ltd., Hatfield, UK
| | - Malcolm Roberts
- UCL Collaboration Research Group, NGM-PCU, Eisai Ltd., Hatfield, UK
| | - Ben Powney
- UCL Collaboration Research Group, NGM-PCU, Eisai Ltd., Hatfield, UK
| |
Collapse
|
190
|
Zulian A, Schiavone M, Giorgio V, Bernardi P. Forty years later: Mitochondria as therapeutic targets in muscle diseases. Pharmacol Res 2016; 113:563-573. [PMID: 27697642 DOI: 10.1016/j.phrs.2016.09.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 11/22/2022]
Abstract
The hypothesis that mitochondrial dysfunction can be a general mechanism for cell death in muscle diseases is 40 years old. The key elements of the proposed pathogenetic sequence (cytosolic Ca2+ overload followed by excess mitochondrial Ca2+ uptake, functional and then structural damage of mitochondria, energy shortage, worsened elevation of cytosolic Ca2+ levels, hypercontracture of muscle fibers, cell necrosis) have been confirmed in amazing detail by subsequent work in a variety of models. The explicit implication of the hypothesis was that it "may provide the basis for a more rational treatment for some conditions even before their primary causes are known" (Wrogemann and Pena, 1976, Lancet, 1, 672-674). This prediction is being fulfilled, and the potential of mitochondria as pharmacological targets in muscle diseases may soon become a reality, particularly through inhibition of the mitochondrial permeability transition pore and its regulator cyclophilin D.
Collapse
Affiliation(s)
- Alessandra Zulian
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Schiavone
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Valentina Giorgio
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paolo Bernardi
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
191
|
Wang H, Zheng S, Liu M, Jia C, Wang S, Wang X, Xue S, Guo Y. The Effect of Propofol on Mitochondrial Fission during Oxygen-Glucose Deprivation and Reperfusion Injury in Rat Hippocampal Neurons. PLoS One 2016; 11:e0165052. [PMID: 27788177 PMCID: PMC5082830 DOI: 10.1371/journal.pone.0165052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/05/2016] [Indexed: 11/18/2022] Open
Abstract
The neuroprotective role of propofol in transient global and focal cerebral ischemia reperfusion (I/R) animal model has recently been highlighted. However, no studies have conducted to explore the relationship between mitochondrial fission/fusion and I/R injury under the intervention of propofol. Moreover, neuroprotective mechanism of propofol is yet unclear. Culturing primary hippocampal cells were subjected to oxygen-glucose deprivation and re-oxygenation (OGD/R) model, as a model of cerebral I/R in vitro. Methods CCK-8 assay was used to test the effect of propofol on cell viability. We examined the effect of propofol on mitochondrial ultrastructure and mitochondrial fission evoked by OGD/R with transmission electron microscopy and immunofluorescence assay. To investigate possible neuroprotective mechanisms, the authors then examined whether propofol could inhibit calcium-overload, calcineurin (CaN) activation and the phosphorylation of dynamin-related protein 1 (Drp1) during the period of OGD/R, as well as the combination of Drp1-ser 637 and fission 1 (Fis1) protein by immunofluorescence assay, ELISA and double-labeling immunofluorescence analysis. Finally, the expression of Drp1-ser 637 and Fis1, apoptosis inducing factor (AIF) and cytochrome C (Cyt C) were detected by western blot. When added in culture media during OGD period, propofol (0.1μM-50μM) could alleviate neurons injury and protect mitochondrial ultrastructure, meanwhile inhibit mitochondrial fission. Furthermore, the concentration of intracellular free Ca2+, CaN activition and the phosphorylation of Drp1-ser637 were suppressed, as well as the translocation and combination of Drp1-ser 637 and Fis1. The authors also found that the expression of Cyt C, AIF, Drp1-ser637 and Fis1 were down-regulated. Notably, high dose of propofol (100μM-200μM) were confirmed to decrease the survival of neurons based on results of cell viability. Propofol could inhibit mitochondrial fission and mitochondrial apoptotic pathway evoked by OGD/R in rat hippocampal neurons, which may be via depressing calcium-overload.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Huangdao, Qingdao, Shandong Province, China
| | - Shengfa Zheng
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Huangdao, Qingdao, Shandong Province, China
| | - Maodong Liu
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Huangdao, Qingdao, Shandong Province, China
| | - Changxin Jia
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Huangdao, Qingdao, Shandong Province, China
| | - Shilei Wang
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Huangdao, Qingdao, Shandong Province, China
- * E-mail:
| | - Xue Wang
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Huangdao, Qingdao, Shandong Province, China
| | - Sha Xue
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Huangdao, Qingdao, Shandong Province, China
| | - Yunliang Guo
- Department of Anesthesiology, People's Hospital of Rizhao, Rizhao, Shandong Province, China
| |
Collapse
|
192
|
Biasutto L, Azzolini M, Szabò I, Zoratti M. The mitochondrial permeability transition pore in AD 2016: An update. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2515-30. [PMID: 26902508 DOI: 10.1016/j.bbamcr.2016.02.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
Abstract
Over the past 30years the mitochondrial permeability transition - the permeabilization of the inner mitochondrial membrane due to the opening of a wide pore - has progressed from being considered a curious artifact induced in isolated mitochondria by Ca(2+) and phosphate to a key cell-death-inducing process in several major pathologies. Its relevance is by now universally acknowledged and a pharmacology targeting the phenomenon is being developed. The molecular nature of the pore remains to this day uncertain, but progress has recently been made with the identification of the FOF1 ATP synthase as the probable proteic substrate. Researchers sharing this conviction are however divided into two camps: these believing that only the ATP synthase dimers or oligomers can form the pore, presumably in the contact region between monomers, and those who consider that the ring-forming c subunits in the FO sector actually constitute the walls of the pore. The latest development is the emergence of a new candidate: Spastic Paraplegia 7 (SPG7), a mitochondrial AAA-type membrane protease which forms a 6-stave barrel. This review summarizes recent developments of research on the pathophysiological relevance and on the molecular nature of the mitochondrial permeability transition pore. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Michele Azzolini
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biology, Viale G. Colombo 3, 35121 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
193
|
Wang W, Gong G, Wang X, Wei-LaPierre L, Cheng H, Dirksen R, Sheu SS. Mitochondrial Flash: Integrative Reactive Oxygen Species and pH Signals in Cell and Organelle Biology. Antioxid Redox Signal 2016; 25:534-549. [PMID: 27245241 PMCID: PMC5035371 DOI: 10.1089/ars.2016.6739] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/27/2016] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Recent breakthroughs in mitochondrial research have advanced, reshaped, and revolutionized our view of the role of mitochondria in health and disease. These discoveries include the development of novel tools to probe mitochondrial biology, the molecular identification of mitochondrial functional proteins, and the emergence of new concepts and mechanisms in mitochondrial function regulation. The discovery of "mitochondrial flash" activity has provided unique insights not only into real-time visualization of individual mitochondrial redox and pH dynamics in live cells but has also advanced understanding of the excitability, autonomy, and integration of mitochondrial function in vivo. RECENT ADVANCES The mitochondrial flash is a transient and stochastic event confined within an individual mitochondrion and is observed in a wide range of organisms from plants to Caenorhabditis elegans to mammals. As flash events involve multiple transient concurrent changes within the mitochondrion (e.g., superoxide, pH, and membrane potential), a number of different mitochondrial targeted fluorescent indicators can detect flash activity. Accumulating evidence indicates that flash events reflect integrated snapshots of an intermittent mitochondrial process arising from mitochondrial respiration chain activity associated with the transient opening of the mitochondrial permeability transition pore. CRITICAL ISSUES We review the history of flash discovery, summarize current understanding of flash biology, highlight controversies regarding the relative roles of superoxide and pH signals during a flash event, and bring forth the integration of both signals in flash genesis. FUTURE DIRECTIONS Investigations using flash as a biomarker and establishing its role in cell signaling pathway will move the field forward. Antioxid. Redox Signal. 25, 534-549.
Collapse
Affiliation(s)
- Wang Wang
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, Washington
| | - Guohua Gong
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, Washington
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Robert Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Shey-Shing Sheu
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
194
|
Kramer P, Jung AT, Hamann A, Osiewacz HD. Cyclophilin D Is Involved in the Regulation of Autophagy and Affects the Lifespan of P. anserina in Response to Mitochondrial Oxidative Stress. Front Genet 2016; 7:165. [PMID: 27683587 PMCID: PMC5021683 DOI: 10.3389/fgene.2016.00165] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/02/2016] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial permeability transition pore plays a key role in programmed cell death and the induction of autophagy. Opening of the pore is regulated by the mitochondrial peptidyl prolyl-cis, trans-isomerase cyclophilin D (CYPD). Previously it was shown in the aging model organism Podospora anserina that PaCYPD abundance increases during aging and that PaCypD overexpressors are characterized by accelerated aging. Here, we describe a role of PaCYPD in the regulation of autophagy. We found that the accelerated aging phenotype observed in a strain overexpressing PaCypD is not metacaspase-dependent but is accompanied by an increase of general autophagy and mitophagy, the selective autophagic degradation of mitochondria. It thus is linked to what has been defined as "autophagic cell death" or "type II" programmed cell death. Moreover, we found that the previously demonstrated age-related induction of autophagy in wild-type aging depends on the presence of PaCYPD. Deletion of PaCypD leads to a decrease in autophagy in later stages of age and under paraquat-mediated oxidative stress. Finally, we report that PaCYPD is also required for mitohormesis, the beneficial effect of mild mitochondrial stress. Thus, PaCYPD plays a key role in the context-dependent regulation of pathways leading to pro-survival and pro-death effects of autophagy.
Collapse
Affiliation(s)
- Piet Kramer
- Department of Biosciences, Molecular Developmental Biology, Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, J. W. Goethe University Frankfurt, Germany
| | - Alexander T Jung
- Department of Biosciences, Molecular Developmental Biology, Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, J. W. Goethe University Frankfurt, Germany
| | - Andrea Hamann
- Department of Biosciences, Molecular Developmental Biology, Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, J. W. Goethe University Frankfurt, Germany
| | - Heinz D Osiewacz
- Department of Biosciences, Molecular Developmental Biology, Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, J. W. Goethe University Frankfurt, Germany
| |
Collapse
|
195
|
Brustovetsky N. Mutant Huntingtin and Elusive Defects in Oxidative Metabolism and Mitochondrial Calcium Handling. Mol Neurobiol 2016; 53:2944-2953. [PMID: 25941077 PMCID: PMC4635103 DOI: 10.1007/s12035-015-9188-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/22/2015] [Indexed: 01/13/2023]
Abstract
Elongation of a polyglutamine (polyQ) stretch in huntingtin protein (Htt) is linked to Huntington's disease (HD) pathogenesis. The mutation in Htt correlates with neuronal dysfunction in the striatum and cerebral cortex and eventually leads to neuronal cell death. The exact mechanisms of the injurious effect of mutant Htt (mHtt) on neurons are not completely understood but might include aberrant gene transcription, defective autophagy, abnormal mitochondrial biogenesis, anomalous mitochondrial dynamics, and trafficking. In addition, deficiency in oxidative metabolism and defects in mitochondrial Ca(2+) handling are considered essential contributing factors to neuronal dysfunction in HD and, consequently, in HD pathogenesis. Since the discovery of the mutation in Htt, the questions whether mHtt affects oxidative metabolism and mitochondrial Ca(2+) handling and, if it does, what mechanisms could be involved were in focus of numerous investigations. However, despite significant research efforts, the detrimental effect of mHtt and the mechanisms by which mHtt might impair oxidative metabolism and mitochondrial Ca(2+) handling remain elusive. In this paper, I will briefly review studies aimed at clarifying the consequences of mHtt interaction with mitochondria and discuss experimental results supporting or arguing against the mHtt effects on oxidative metabolism and mitochondrial Ca(2+) handling.
Collapse
Affiliation(s)
- Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Dr., Medical Science Bldg 547, Indianapolis, IN, 46202, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
196
|
|
197
|
Ying Y, Padanilam BJ. Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis? Cell Mol Life Sci 2016; 73:2309-24. [PMID: 27048819 PMCID: PMC5490387 DOI: 10.1007/s00018-016-2202-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022]
Abstract
In contrast to apoptosis and autophagy, necrotic cell death was considered to be a random, passive cell death without definable mediators. However, this dogma has been challenged by recent developments suggesting that necrotic cell death can also be a regulated process. Regulated necrosis includes multiple cell death modalities such as necroptosis, parthanatos, ferroptosis, pyroptosis, and mitochondrial permeability transition pore (MPTP)-mediated necrosis. Several distinctive executive molecules, particularly residing on the mitochondrial inner and outer membrane, amalgamating to form the MPTP have been defined. The c-subunit of the F1F0ATP synthase on the inner membrane and Bax/Bak on the outer membrane are considered to be the long sought components that form the MPTP. Opening of the MPTP results in loss of mitochondrial inner membrane potential, disruption of ATP production, increased ROS production, organelle swelling, mitochondrial dysfunction and consequent necrosis. Cyclophilin D, along with adenine nucleotide translocator and the phosphate carrier are considered to be important regulators involved in the opening of MPTP. Increased production of ROS can further trigger other necrotic pathways mediated through molecules such as PARP1, leading to irreversible cell damage. This review examines the roles of PARP1 and cyclophilin D in necrotic cell death. The hierarchical role of p53 in regulation and integration of key components of signaling pathway to elicit MPTP-mediated necrosis and ferroptosis is explored. In the context of recent insights, the indistinct role of necroptosis signaling in tubular necrosis after ischemic kidney injury is scrutinized. We conclude by discussing the participation of p53, PARP1 and cyclophilin D and their overlapping pathways to elicit MPTP-mediated necrosis and ferroptosis in acute kidney injury.
Collapse
Affiliation(s)
- Yuan Ying
- Department of Cellular and Integrative Physiology, 985850 University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, 985850 University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
- Department of Internal Medicine, Division of Nephrology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
198
|
Tajeddine N. How do reactive oxygen species and calcium trigger mitochondrial membrane permeabilisation? Biochim Biophys Acta Gen Subj 2016; 1860:1079-88. [DOI: 10.1016/j.bbagen.2016.02.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
199
|
cis-4-Decenoic and decanoic acids impair mitochondrial energy, redox and Ca(2+) homeostasis and induce mitochondrial permeability transition pore opening in rat brain and liver: Possible implications for the pathogenesis of MCAD deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1363-1372. [PMID: 27240720 DOI: 10.1016/j.bbabio.2016.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/17/2016] [Accepted: 05/25/2016] [Indexed: 12/31/2022]
Abstract
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is biochemically characterized by tissue accumulation of octanoic (OA), decanoic (DA) and cis-4-decenoic (cDA) acids, as well as by their carnitine by-products. Untreated patients present episodic encephalopathic crises and biochemical liver alterations, whose pathophysiology is poorly known. We investigated the effects of OA, DA, cDA, octanoylcarnitine (OC) and decanoylcarnitine (DC) on critical mitochondrial functions in rat brain and liver. DA and cDA increased resting respiration and diminished ADP- and CCCP-stimulated respiration and complexes II-III and IV activities in both tissues. The data indicate that these compounds behave as uncouplers and metabolic inhibitors of oxidative phosphorylation. Noteworthy, metabolic inhibition was more evident in brain as compared to liver. DA and cDA also markedly decreased mitochondrial membrane potential, NAD(P)H content and Ca(2+) retention capacity in Ca(2+)-loaded brain and liver mitochondria. The reduction of Ca(2+) retention capacity was more pronounced in liver and totally prevented by cyclosporine A and ADP, as well as by ruthenium red, demonstrating the involvement of mitochondrial permeability transition (mPT) and Ca(2+). Furthermore, cDA induced lipid peroxidation in brain and liver mitochondria and increased hydrogen peroxide formation in brain, suggesting the participation of oxidative damage in cDA-induced alterations. Interestingly, OA, OC and DC did not alter the evaluated parameters, implying lower toxicity for these compounds. Our results suggest that DA and cDA, in contrast to OA and medium-chain acylcarnitines, disturb important mitochondrial functions in brain and liver by multiple mechanisms that are possibly involved in the neuropathology and liver alterations observed in MCAD deficiency.
Collapse
|
200
|
Izzo V, Bravo-San Pedro JM, Sica V, Kroemer G, Galluzzi L. Mitochondrial Permeability Transition: New Findings and Persisting Uncertainties. Trends Cell Biol 2016; 26:655-667. [PMID: 27161573 DOI: 10.1016/j.tcb.2016.04.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/15/2022]
Abstract
Several insults cause the inner mitochondrial membrane to abruptly lose osmotic homeostasis, hence initiating a regulated variant of cell death known as 'mitochondrial permeability transition' (MPT)-driven necrosis. MPT provides an etiological contribution to several human disorders characterized by the acute loss of post-mitotic cells, including cardiac and cerebral ischemia. Nevertheless, the precise molecular determinants of MPT remain elusive, which considerably hampers the development of clinically implementable cardio- or neuroprotective strategies targeting this process. We summarize recent findings shedding new light on the supramolecular entity that mediates MPT, the so-called 'permeability transition pore complex' (PTPC). Moreover, we discuss hitherto unresolved controversies on MPT and analyze the major obstacles that still preclude the complete understanding and therapeutic targeting of this process.
Collapse
Affiliation(s)
- Valentina Izzo
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France
| | - José Manuel Bravo-San Pedro
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France
| | - Valentina Sica
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Faculté de Medicine, Université Paris Sud/Paris XI, 94270 Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden.
| | - Lorenzo Galluzzi
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.
| |
Collapse
|