151
|
G9a regulates breast cancer growth by modulating iron homeostasis through the repression of ferroxidase hephaestin. Nat Commun 2017; 8:274. [PMID: 28819251 PMCID: PMC5561105 DOI: 10.1038/s41467-017-00350-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/23/2017] [Indexed: 01/16/2023] Open
Abstract
G9a, a H3K9 methyltransferase, shows elevated expression in many types of human cancers, particularly breast cancer. However, the tumorigenic mechanism of G9a is still far from clear. Here we report that G9a exerts its oncogenic function in breast cancer by repressing hephaestin and destruction cellular iron homeostasis. In the case of pharmacological inhibition or short hairpin RNA interference-mediated suppression of G9a, the expression and activity of hephaestin increases, leading to the observed decrease of intracellular labile iron content and the disturbance of breast cancer cell growth in vitro and in vivo. We also provide evidence that G9a interacts with HDAC1 and YY1 to form a multi-molecular complex that contributes to hephaestin silencing. Furthermore, high G9a expression and low hephaestin expression correlate with poor survival of breast cancer are investigated. All these suggest a G9a-dependent epigenetic program in the control of iron homeostasis and tumor growth in breast cancer. G9a is a histone methyltransferase highly expressed in several cancers including breast cancer. Here the authors propose a mechanism through which G9a promotes breast cancer by regulating iron metabolism through the repression of ferroxidase hephaestin.
Collapse
|
152
|
YM155 as an inhibitor of cancer stemness simultaneously inhibits autophosphorylation of epidermal growth factor receptor and G9a-mediated stemness in lung cancer cells. PLoS One 2017; 12:e0182149. [PMID: 28787001 PMCID: PMC5546577 DOI: 10.1371/journal.pone.0182149] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/13/2017] [Indexed: 11/19/2022] Open
Abstract
Cancer stem cell survival is the leading factor for tumor recurrence after tumor-suppressive treatments. Therefore, specific and efficient inhibitors of cancer stemness must be discovered for reducing tumor recurrence. YM155 has been indicated to significantly reduce stemness-derived tumorsphere formation. However, the pharmaceutical mechanism of YM155 against cancer stemness is unclear. This study investigated the potential mechanism of YM155 against cancer stemness in lung cancer. Tumorspheres derived from epidermal growth factor receptor (EGFR)-mutant HCC827 and EGFR wild-type A549 cells expressing higher cancer stemness markers (CD133, Oct4, and Nanog) were used as cancer stemness models. We observed that EGFR autophosphorylation (Y1068) was higher in HCC827- and A549-derived tumorspheres than in parental cells; this autophosphorylation induced tumorsphere formation by activating G9a-mediated stemness. Notably, YM155 inhibited tumorsphere formation by blocking the autophosphorylation of EGFR and the EGFR-G9a-mediated stemness pathway. The chemical and genetic inhibition of EGFR and G9a revealed the significant role of the EGFR-G9a pathway in maintaining the cancer stemness property. In conclusion, this study not only revealed that EGFR could trigger tumorsphere formation by elevating G9a-mediated stemness but also demonstrated that YM155 could inhibit this formation by simultaneously blocking EGFR autophosphorylation and G9a activity, thus acting as a potent agent against lung cancer stemness.
Collapse
|
153
|
Epigenetic regulation of starvation-induced autophagy in Drosophila by histone methyltransferase G9a. Sci Rep 2017; 7:7343. [PMID: 28779125 PMCID: PMC5544687 DOI: 10.1038/s41598-017-07566-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 06/30/2017] [Indexed: 11/13/2022] Open
Abstract
Epigenetics is now emerging as a key regulation in response to various stresses. We herein identified the Drosophila histone methyltransferase G9a (dG9a) as a key factor to acquire tolerance to starvation stress. The depletion of dG9a led to high sensitivity to starvation stress in adult flies, while its overexpression induced starvation stress resistance. The catalytic domain of dG9a was not required for starvation stress resistance. dG9a plays no apparent role in tolerance to other stresses including heat and oxidative stresses. Metabolomic approaches were applied to investigate global changes in the metabolome due to the loss of dG9a during starvation stress. The results obtained indicated that dG9a plays an important role in maintaining energy reservoirs including amino acid, trehalose, glycogen, and triacylglycerol levels during starvation. Further investigations on the underlying mechanisms showed that the depletion of dG9a repressed starvation-induced autophagy by controlling the expression level of Atg8a, a critical gene for the progression of autophagy, in a different manner to that in cancer cells. These results indicate a positive role for dG9a in starvation-induced autophagy.
Collapse
|
154
|
Abdel-Hafiz HA. Epigenetic Mechanisms of Tamoxifen Resistance in Luminal Breast Cancer. Diseases 2017; 5:E16. [PMID: 28933369 PMCID: PMC5622332 DOI: 10.3390/diseases5030016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is one of the most common cancers and the second leading cause of cancer death in the United States. Estrogen receptor (ER)-positive cancer is the most frequent subtype representing more than 70% of breast cancers. These tumors respond to endocrine therapy targeting the ER pathway including selective ER modulators (SERMs), selective ER downregulators (SERDs) and aromatase inhibitors (AIs). However, resistance to endocrine therapy associated with disease progression remains a significant therapeutic challenge. The precise mechanisms of endocrine resistance remain unclear. This is partly due to the complexity of the signaling pathways that influence the estrogen-mediated regulation in breast cancer. Mechanisms include ER modifications, alteration of coregulatory function and modification of growth factor signaling pathways. In this review, we provide an overview of epigenetic mechanisms of tamoxifen resistance in ER-positive luminal breast cancer. We highlight the effect of epigenetic changes on some of the key mechanisms involved in tamoxifen resistance, such as tumor-cell heterogeneity, ER signaling pathway and cancer stem cells (CSCs). It became increasingly recognized that CSCs are playing an important role in driving metastasis and tamoxifen resistance. Understanding the mechanism of tamoxifen resistance will provide insight into the design of novel strategies to overcome the resistance and make further improvements in breast cancer therapeutics.
Collapse
Affiliation(s)
- Hany A Abdel-Hafiz
- Department of Medicine/Endocrinology, School of Medicine, University of Colorado, Ms 8106 PO Box 6511, 12801 E 17th Avenue, Aurora, Denver, CO 80010, USA; Tel.: +1-303-724-1013; Fax: +1-303-724-3920.
| |
Collapse
|
155
|
Mori S, Hirano T, Takaguchi A, Fujiwara T, Okazaki Y, Kagechika H. Selective Reagent for Detection ofN-ε-Monomethylation of a Peptide Lysine Residue through SNAr Reaction. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shuichi Mori
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University (TMDU); 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062 Tokyo Japan
| | - Tomoya Hirano
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University (TMDU); 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062 Tokyo Japan
| | - Asuka Takaguchi
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University (TMDU); 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062 Tokyo Japan
| | - Takashi Fujiwara
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University (TMDU); 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062 Tokyo Japan
| | - Yusuke Okazaki
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University (TMDU); 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062 Tokyo Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University (TMDU); 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062 Tokyo Japan
| |
Collapse
|
156
|
Ma YN, Zhang HY, Fei LR, Zhang MY, Wang CC, Luo Y, Han YC. SATB2 suppresses non-small cell lung cancer invasiveness by G9a. Clin Exp Med 2017; 18:37-44. [DOI: 10.1007/s10238-017-0464-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/29/2017] [Indexed: 01/04/2023]
|
157
|
Structure based design, synthesis and activity studies of small hybrid molecules as HDAC and G9a dual inhibitors. Oncotarget 2017; 8:63187-63207. [PMID: 28968981 PMCID: PMC5609913 DOI: 10.18632/oncotarget.18730] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022] Open
Abstract
Aberrant enzymatic activities or expression profiles of epigenetic regulations are therapeutic targets for cancers. Among these, histone 3 lysine 9 methylation (H3K9Me2) and global de-acetylation on histone proteins are associated with multiple cancer phenotypes including leukemia, prostatic carcinoma, hepatocellular carcinoma and pulmonary carcinoma. Here, we report the discovery of the first small molecule capable of acting as a dual inhibitor targeting both G9a and HDAC. Our structure based design, synthesis, and screening for the dual activity of the small molecules led to the discovery of compound 14 which displays promising inhibition of both G9a and HDAC in low micro-molar range in cell based assays.
Collapse
|
158
|
Xiong Y, Li F, Babault N, Wu H, Dong A, Zeng H, Chen X, Arrowsmith CH, Brown PJ, Liu J, Vedadi M, Jin J. Structure-activity relationship studies of G9a-like protein (GLP) inhibitors. Bioorg Med Chem 2017; 25:4414-4423. [PMID: 28662962 DOI: 10.1016/j.bmc.2017.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/10/2017] [Accepted: 06/13/2017] [Indexed: 02/01/2023]
Abstract
Given the high homology between the protein lysine methyltransferases G9a-like protein (GLP) and G9a, it has been challenging to develop potent and selective inhibitors for either enzyme. Recently, we reported two quinazoline compounds, MS0124 and MS012, as GLP selective inhibitors. To further investigate the structure-activity relationships (SAR) of the quinazoline scaffold, we designed and synthesized a range of analogs bearing different 2-amino substitutions and evaluated their inhibition potencies against both GLP and G9a. These studies led to the identification of two new GLP selective inhibitors, 13 (MS3748) and 17 (MS3745), with 59- and 65-fold higher potency for GLP over G9a, which were confirmed by isothermal titration calorimetry (ITC). Crystal structures of GLP and G9a in complex with 13 and 17 provide insight into the interactions of the inhibitors with both proteins. In addition, we generated GLP selective inhibitors bearing a quinoline core instead of the quinazoline core.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Nicolas Babault
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Xin Chen
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jing Liu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Jian Jin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
159
|
Poulard C, Bittencourt D, Wu DY, Hu Y, Gerke DS, Stallcup MR. A post-translational modification switch controls coactivator function of histone methyltransferases G9a and GLP. EMBO Rep 2017; 18:1442-1459. [PMID: 28615290 DOI: 10.15252/embr.201744060] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/10/2017] [Accepted: 05/16/2017] [Indexed: 11/09/2022] Open
Abstract
Like many transcription regulators, histone methyltransferases G9a and G9a-like protein (GLP) can act gene-specifically as coregulators, but mechanisms controlling this specificity are mostly unknown. We show that adjacent post-translational methylation and phosphorylation regulate binding of G9a and GLP to heterochromatin protein 1 gamma (HP1γ), formation of a ternary complex with the glucocorticoid receptor (GR) on chromatin, and function of G9a and GLP as coactivators for a subset of GR target genes. HP1γ is recruited by G9a and GLP to GR binding sites associated with genes that require G9a, GLP, and HP1γ for glucocorticoid-stimulated transcription. At the physiological level, G9a and GLP coactivator function is required for glucocorticoid activation of genes that repress cell migration in A549 lung cancer cells. Thus, regulated methylation and phosphorylation serve as a switch controlling G9a and GLP coactivator function, suggesting that this mechanism may be a general paradigm for directing specific transcription factor and coregulator actions on different genes.
Collapse
Affiliation(s)
- Coralie Poulard
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Danielle Bittencourt
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Dai-Ying Wu
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Yixin Hu
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Daniel S Gerke
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
160
|
Murn J, Shi Y. The winding path of protein methylation research: milestones and new frontiers. Nat Rev Mol Cell Biol 2017; 18:517-527. [PMID: 28512349 DOI: 10.1038/nrm.2017.35] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 1959, while analysing the bacterial flagellar proteins, Ambler and Rees observed an unknown species of amino acid that they eventually identified as methylated lysine. Over half a century later, protein methylation is known to have a regulatory role in many essential cellular processes that range from gene transcription to signal transduction. However, the road to this now burgeoning research field was obstacle-ridden, not least because of the inconspicuous nature of the methyl mark itself. Here, we chronicle the milestone achievements and discuss the future of protein methylation research.
Collapse
Affiliation(s)
- Jernej Murn
- Department of Cell Biology, Harvard Medical School, and the Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Yang Shi
- Department of Cell Biology, Harvard Medical School, and the Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
161
|
Wu Z, Connolly J, Biggar KK. Beyond histones - the expanding roles of protein lysine methylation. FEBS J 2017; 284:2732-2744. [DOI: 10.1111/febs.14056] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/05/2017] [Accepted: 03/07/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Zhouran Wu
- Department of Chemistry and Biochemistry; University of Regina; Canada
| | - Justin Connolly
- Institute of Biochemistry and Department of Biology; Carleton University; Ottawa Canada
| | - Kyle K. Biggar
- Institute of Biochemistry and Department of Biology; Carleton University; Ottawa Canada
| |
Collapse
|
162
|
Deimling SJ, Olsen JB, Tropepe V. The expanding role of the Ehmt2/G9a complex in neurodevelopment. NEUROGENESIS 2017; 4:e1316888. [PMID: 28596979 DOI: 10.1080/23262133.2017.1316888] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/22/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Epigenetic regulators play a crucial role in neurodevelopment. One such epigenetic complex, Ehmt1/2 (G9a/GLP), is essential for repressing gene transcription by methylating H3K9 in a highly tissue- and temporal-specific manner. Recently, data has emerged suggesting that this complex plays additional roles in regulating the activity of numerous other non-histone proteins. While much is known about the downstream effects of Ehmt1/2 function, evidence is only beginning to come to light suggesting the control of Ehmt1/2 function may be, at least in part, due to context-dependent binding partners. Here we review emerging roles for the Ehmt1/2 complex suggesting that it may play a much larger role than previously recognized, and discuss binding partners that we and others have recently characterized which act to coordinate its activity during early neurodevelopment.
Collapse
Affiliation(s)
- Steven J Deimling
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Jonathan B Olsen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Vincent Tropepe
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| |
Collapse
|
163
|
Sundriyal S, Chen PB, Lubin AS, Lueg GA, Li F, White AJP, Malmquist NA, Vedadi M, Scherf A, Fuchter MJ. Histone lysine methyltransferase structure activity relationships that allow for segregation of G9a inhibition and anti- Plasmodium activity. MEDCHEMCOMM 2017; 8:1069-1092. [PMID: 29308121 PMCID: PMC5708365 DOI: 10.1039/c7md00052a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/10/2017] [Indexed: 12/14/2022]
Abstract
Plasmodium falciparum HKMTs (PfHKMTs) play a key role in controlling Plasmodium gene expression and represent exciting new anti-malarial epigenetic targets. Using an inhibitor series derived from the diaminoquinazoline HKMT inhibitory chemotype, we have previously identified compounds with highly promising antimalarial activity, including irreversible asexual cycle blood stage-independent cytotoxic activity at nM concentrations, oral efficacy in in vivo models of disease, and the unprecedented ability to reactivate dormant liver stage parasites (hypnozoites). However, future development of this series will need to address host versus parasite selectivity, where inhibitory activity against human G9a is removed from the lead compounds, while maintaining potent anti-Plasmodium activity. Herein, we report an extensive study of the SAR of this series against both G9a and P. falciparum. We have identified key SAR features which demonstrate that high parasite vs. G9a selectivity can be achieved by selecting appropriate substituents at position 2, 4 and 7 of the quinazoline ring. We have also, in turn, discovered that potent G9a inhibitors can be identified by employing a 6-carbon 'Nle mimic' at position 7. Together, this data suggests that while broadly similar, the G9a and potential PfHKMT target(s) binding pockets and/or binding modes of the diaminoquinazoline analogues exhibit clear and exploitable differences. Based on this, we believe this scaffold to have clear potential for development into a novel anti-malarial therapeutic.
Collapse
Affiliation(s)
- Sandeep Sundriyal
- Department of Chemistry , Imperial College London , London SW7 2AZ , UK . ; ; Tel: +44 (0)2075945815
| | - Patty B Chen
- Unité Biologie des Interactions Hôte-Parasite , Département de Parasites et Insectes Vecteurs , Institut Pasteur , Paris 75015 , France
- CNRS ERL 9195 , Paris 75015 , France
- INSERM Unit U1201 , Paris 75015 , France
| | - Alexandra S Lubin
- Department of Chemistry , Imperial College London , London SW7 2AZ , UK . ; ; Tel: +44 (0)2075945815
| | - Gregor A Lueg
- Department of Chemistry , Imperial College London , London SW7 2AZ , UK . ; ; Tel: +44 (0)2075945815
| | - Fengling Li
- Structural Genomics Consortium , University of Toronto , Toronto , ON M5G 1L7 , Canada
| | - Andrew J P White
- Department of Chemistry , Imperial College London , London SW7 2AZ , UK . ; ; Tel: +44 (0)2075945815
| | - Nicholas A Malmquist
- Unité Biologie des Interactions Hôte-Parasite , Département de Parasites et Insectes Vecteurs , Institut Pasteur , Paris 75015 , France
- CNRS ERL 9195 , Paris 75015 , France
- INSERM Unit U1201 , Paris 75015 , France
| | - Masoud Vedadi
- Structural Genomics Consortium , University of Toronto , Toronto , ON M5G 1L7 , Canada
- Department of Pharmacology and Toxicology , University of Toronto , Toronto , ON M5S 1A8 , Canada
| | - Artur Scherf
- Unité Biologie des Interactions Hôte-Parasite , Département de Parasites et Insectes Vecteurs , Institut Pasteur , Paris 75015 , France
- CNRS ERL 9195 , Paris 75015 , France
- INSERM Unit U1201 , Paris 75015 , France
| | - Matthew J Fuchter
- Department of Chemistry , Imperial College London , London SW7 2AZ , UK . ; ; Tel: +44 (0)2075945815
| |
Collapse
|
164
|
Shagufta, Ahmad I. An insight into the therapeutic potential of quinazoline derivatives as anticancer agents. MEDCHEMCOMM 2017; 8:871-885. [PMID: 30108803 PMCID: PMC6072504 DOI: 10.1039/c7md00097a] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022]
Abstract
Cancer is one of the major causes of worldwide human mortality. A wide range of cytotoxic drugs are available on the market, and several compounds are in different phases of clinical trials. Many studies suggest that these cytotoxic molecules are also associated with different types of adverse side effects; therefore researchers around the globe are involved in the development of more efficient and safer anticancer drugs. In recent years, quinazoline and its derivatives have been considered as a novel class of cancer chemotherapeutic agents that show promising activity against different tumors. The aim of this article is to comprehensively review and highlight the recent developments concerning the anticancer activity of quinazoline derivatives as well as offer perspectives on the development of novel quinazoline derivatives as anticancer agents in the near future.
Collapse
Affiliation(s)
- Shagufta
- Department of Mathematics and Natural Sciences , School of Arts and Sciences , American University of Ras Al Khaimah , Ras Al Khaimah , United Arab Emirates . ;
| | - Irshad Ahmad
- Department of Mathematics and Natural Sciences , School of Arts and Sciences , American University of Ras Al Khaimah , Ras Al Khaimah , United Arab Emirates . ;
| |
Collapse
|
165
|
Zhang J, Yao D, Jiang Y, Huang J, Yang S, Wang J. Synthesis and biological evaluation of benzimidazole derivatives as the G9a Histone Methyltransferase inhibitors that induce autophagy and apoptosis of breast cancer cells. Bioorg Chem 2017; 72:168-181. [PMID: 28460359 DOI: 10.1016/j.bioorg.2017.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/19/2017] [Accepted: 04/13/2017] [Indexed: 01/06/2023]
Abstract
G9a (also known as KMT1C or EHMT2) is initially identified as a H3K9 methyltransferase that specifically mono- and dimethylates 'Lys-9' of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin. It is overexpressed in various human cancers and employed as a promising target in cancer therapy. We discovered a benzoxazole scaffold through virtual high-throughput screening, and designed, synthesized 24 derivatives and investigated for inhibition of G9a. After several rounds of kinase and anti-proliferative activity screening, we discovered a potent G9a antagonist (GA001) with an IC50 value of 1.32μM that could induce autophagy via AMPK in MCF7 cells. In addition, we found high concentration of GA001 could induce apoptosis via p21-Bim signal cascades in MCF7 cells. Our results highlight a new approach for the development of a novel drug targeting G9a with a potential to induce autophagy and apoptosis for future breast cancer therapy.
Collapse
Affiliation(s)
- Jin Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dahong Yao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingnan Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shilin Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jinhui Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
166
|
Gursoy-Yuzugullu O, Carman C, Serafim RB, Myronakis M, Valente V, Price BD. Epigenetic therapy with inhibitors of histone methylation suppresses DNA damage signaling and increases glioma cell radiosensitivity. Oncotarget 2017; 8:24518-24532. [PMID: 28445939 PMCID: PMC5421867 DOI: 10.18632/oncotarget.15543] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/07/2017] [Indexed: 01/09/2023] Open
Abstract
Radiation therapy is widely used to treat human malignancies, but many tumor types, including gliomas, exhibit significant radioresistance. Radiation therapy creates DNA double-strand breaks (DSBs), and DSB repair is linked to rapid changes in epigenetic modifications, including increased histone methylation. This increased histone methylation recruits DNA repair proteins which can then alter the local chromatin structure and promote repair. Consequently, combining inhibitors of specific histone methyltransferases with radiation therapy may increase tumor radiosensitivity, particularly in tumors with significant therapeutic resistance. Here, we demonstrate that inhibitors of the H4K20 methyltransferase SETD8 (UNC-0379) and the H3K9 methyltransferase G9a (BIX-01294) are effective radiosensitizers of human glioma cells. UNC-0379 blocked H4K20 methylation and reduced recruitment of the 53BP1 protein to DSBs, although this loss of 53BP1 caused only limited changes in radiosensitivity. In contrast, loss of H3K9 methylation through G9a inhibition with BIX-01294 increased radiosensitivity of a panel of glioma cells (SER2Gy range: 1.5 - 2.9). Further, loss of H3K9 methylation reduced DSB signaling dependent on H3K9, including reduced activation of the Tip60 acetyltransferase, loss of ATM signaling and reduced phosphorylation of the KAP-1 repressor. In addition, BIX-0194 inhibited DSB repair through both the homologous recombination and nonhomologous end-joining pathways. Inhibition of G9a and loss of H3K9 methylation is therefore an effective approach for increasing radiosensitivity of glioma cells. These results suggest that combining inhibitors of histone methyltransferases which are critical for DSB repair with radiation therapy may provide a new therapeutic route for sensitizing gliomas and other tumors to radiation therapy.
Collapse
Affiliation(s)
- Ozge Gursoy-Yuzugullu
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA 02215, USA
| | - Chelsea Carman
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA 02215, USA
| | | | - Marios Myronakis
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA 02215, USA
| | - Valeria Valente
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Rodovia Araraquara-Jaú, Campos Ville, SP, 14800-903, Brazil
| | - Brendan D. Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA 02215, USA
| |
Collapse
|
167
|
Abstract
![]()
Post-translational
modifications of histones by protein methyltransferases
(PMTs) and histone demethylases (KDMs) play an important role in the
regulation of gene expression and transcription and are implicated
in cancer and many other diseases. Many of these enzymes also target
various nonhistone proteins impacting numerous crucial biological
pathways. Given their key biological functions and implications in
human diseases, there has been a growing interest in assessing these
enzymes as potential therapeutic targets. Consequently, discovering
and developing inhibitors of these enzymes has become a very active
and fast-growing research area over the past decade. In this review,
we cover the discovery, characterization, and biological application
of inhibitors of PMTs and KDMs with emphasis on key advancements in
the field. We also discuss challenges, opportunities, and future directions
in this emerging, exciting research field.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Michael L Martini
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
168
|
Xiong Y, Li F, Babault N, Dong A, Zeng H, Wu H, Chen X, Arrowsmith CH, Brown PJ, Liu J, Vedadi M, Jin J. Discovery of Potent and Selective Inhibitors for G9a-Like Protein (GLP) Lysine Methyltransferase. J Med Chem 2017; 60:1876-1891. [PMID: 28135087 DOI: 10.1021/acs.jmedchem.6b01645] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
G9a-like protein (GLP) and G9a are highly homologous protein lysine methyltransferases (PKMTs) sharing approximately 80% sequence identity in their catalytic domains. GLP and G9a form a heterodimer complex and catalyze mono- and dimethylation of histone H3 lysine 9 and nonhistone substrates. Although they are closely related, GLP and G9a possess distinct physiological and pathophysiological functions. Thus, GLP or G9a selective small-molecule inhibitors are useful tools to dissect their distinct biological functions. We previously reported potent and selective G9a/GLP dual inhibitors including UNC0638 and UNC0642. Here we report the discovery of potent and selective GLP inhibitors including 4 (MS0124) and 18 (MS012), which are >30-fold and 140-fold selective for GLP over G9a and other methyltransferases, respectively. The cocrystal structures of GLP and G9a in the complex with either 4 or 18 displayed virtually identical binding modes and interactions, highlighting the challenges in structure-based design of selective inhibitors for either enzyme.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Nicolas Babault
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Xin Chen
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto , Toronto, Ontario M5G 2M9, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Jing Liu
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Jian Jin
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
169
|
Abstract
Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.
Collapse
Affiliation(s)
- Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Medicine, National University of Singapore, 14 Medical Drive #12-01, Singapore, 117599 Singapore
| |
Collapse
|
170
|
Abstract
Progression of cells through distinct phases of the cell cycle, and transition into out-of-cycling states, such as terminal differentiation and senescence, is accompanied by specific patterns of gene expression. These cell fate decisions are mediated not only by distinct transcription factors, but also chromatin modifiers that establish heritable epigenetic patterns. Lysine methyltransferases (KMTs) that mediate methylation marks on histone and non-histone proteins are now recognized as important regulators of gene expression in cycling and non-cycling cells. Among these, the SUV39 sub-family of KMTs, which includes SUV39H1, SUV39H2, G9a, GLP, SETDB1, and SETDB2, play a prominent role. In this review, we discuss their biochemical properties, sub-cellular localization and function in cell cycle, differentiation programs, and cellular senescence. We also discuss their aberrant expression in cancers, which exhibit de-regulation of cell cycle and differentiation.
Collapse
Affiliation(s)
- Vinay Kumar Rao
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Ananya Pal
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
171
|
Ghildiyal R, Sen E. Concerted action of histone methyltransferases G9a and PRMT-1 regulates PGC-1α-RIG-I axis in IFNγ treated glioma cells. Cytokine 2017; 89:185-193. [PMID: 26725954 DOI: 10.1016/j.cyto.2015.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/03/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022]
Abstract
IFNγ induced de-differentiation markers are negatively regulated by retinoic acid inducible gene (RIG-I) in glioma cells. In addition to RIG-I, IFNγ treatment increased H3K9me2; histone methyltransferases (HMTs) G9a and protein arginine methyltransferase-1 (PRMT-1) levels. While G9a inhibition further increased IFNγ induced RIG-I, PRMT-1 inhibition abrogated IFNγ elevated RIG-I levels. IFNγ induced Sp1 and NFκB served as negative regulators of RIG-I, with decreased occupancy of Sp1 and NFκB observed on the RIG-I promoter. A diminished H3K9Me2 enrichment was observed at the NFκB but not at Sp-1 binding site. IFNγ induced PPAR gamma coactivator-1 alpha (PGC-1α) positively regulated RIG-I; with PRMT-1 and G9a affecting PGC-1α in a counter-regulatory manner. These findings demonstrate how concerted action of HMTs aid PGC-1α driven RIG-I for the sustenance of glioma cells in a de-differentiated state.
Collapse
Affiliation(s)
- Ruchi Ghildiyal
- National Brain Research Centre, Manesar 122 051, Haryana, India
| | - Ellora Sen
- National Brain Research Centre, Manesar 122 051, Haryana, India.
| |
Collapse
|
172
|
Carlson SM, Gozani O. Nonhistone Lysine Methylation in the Regulation of Cancer Pathways. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026435. [PMID: 27580749 DOI: 10.1101/cshperspect.a026435] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Proteins are regulated by an incredible array of posttranslational modifications (PTMs). Methylation of lysine residues on histone proteins is a PTM with well-established roles in regulating chromatin and epigenetic processes. The recent discovery that hundreds and likely thousands of nonhistone proteins are also methylated at lysine has opened a tremendous new area of research. Major cellular pathways involved in cancer, such as growth signaling and the DNA damage response, are regulated by lysine methylation. Although the field has developed quickly in recent years many fundamental questions remain to be addressed. We review the history and molecular functions of lysine methylation. We then discuss the enzymes that catalyze methylation of lysine residues, the enzymes that remove lysine methylation, and the cancer pathways known to be regulated by lysine methylation. The rest of the article focuses on two open questions that we suggest as a roadmap for future research. First is understanding the large number of candidate methyltransferase and demethylation enzymes whose enzymatic activity is not yet defined and which are potentially associated with cancer through genetic studies. Second is investigating the biological processes and cancer mechanisms potentially regulated by the multitude of lysine methylation sites that have been recently discovered.
Collapse
Affiliation(s)
- Scott M Carlson
- Department of Biology, Stanford University, Stanford, California 94305
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
173
|
Novel benzothiazine-piperazine derivatives by peptide-coupling as potential anti-proliferative agents. Bioorg Med Chem Lett 2016; 27:354-359. [PMID: 27964883 DOI: 10.1016/j.bmcl.2016.10.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/06/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
In an attempt to develop potential and selective anti-proliferative agents, a series of novel benzothiazine-piperazine derivatives 8a-i and 10a-g were synthesized by coupling of 2H-1,4-benzothiazin-3(4H)-one with various amines 7a-i and 9a-g in excellent yields and evaluated for their in vitro anti-proliferative activity against four cancer cell lines, HeLa (cervical), MIAPACA (pancreatic), MDA-MB-231 (breast) and IMR32 (neuroblastoma). In vitro inhibitory activity indicated that compounds 8a, 8d, 8g, 10a, 10b, 10e, 10f were found to be good anti-proliferative agents. Among them the derivatives 8g, 10e and 10f were found to be the most active members exhibiting remarkable growth inhibitory activity. Molecular docking was undertaken to investigate the probable binding mode and key active site interactions in HDAC8 and EHMT2 proteins. The docking results are complementary to the experimental results.
Collapse
|
174
|
Guo AS, Huang YQ, Ma XD, Lin RS. Mechanism of G9a inhibitor BIX‑01294 acting on U251 glioma cells. Mol Med Rep 2016; 14:4613-4621. [PMID: 27748874 PMCID: PMC5102021 DOI: 10.3892/mmr.2016.5815] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/16/2016] [Indexed: 11/11/2022] Open
Abstract
The present study aimed to investigate the differential expression and clinical significance of histone methyltransferase G9a, histone H3K9me2 and histone H3K9me1 in human brain glioma and adjacent tissue samples. It also aimed to observe the effect and mechanism of BIX-01294, as an inhibitor of methyltransferase G9a, on the proliferation, apoptosis, methylation of H3K9 and H3K27, and the acetylation in U251 glioma cells in vitro. The differential expression of methyltransferase G9a, histone H3K9me2 and histone H3K9me1 in in human brain glioma and adjacent tissues were analyzed by immunohistochemistry, a growth curve of U251 cells following treatment with BIX-01294 was determined using the MTT assay. In addition, the apoptosis percentage of U251 cells was analyzed by TUNEL assay and the expression levels of apoptosis-associated proteins, including B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-9 and caspase-3, and the acetylation of histones, including H3K27me1, H3K27me2 and H3 in U251 were analyzed by western blot following BIX-01294 treatment. The positive rate of G9a in glioma tissues was 86% (43/50), which was significantly different from 42% (21/50) in adjacent tissues (P<0.01). The positive rate of H3K9me2 in glioma tissues was 82% (41/50), which was significantly different from 38% (19/50) in adjacent tissues (χ2=18.38; P<0.01). The expression of G9a and H3K9me2 were associated with the World Health Organization (WHO) glioma grade. The positive rate of H3K9me1 in glioma tissues was 54% (27/50) and 44% (22/50) in adjacent tissues, though this result was not significantly different (χ2=1.21, P>0.05). BIX-01294 inhibited the proliferation of U251, downregulated expression of Bcl-2, and upregulated expression of Bax, caspase-3 and caspase-9, and induced apoptosis of U251. BIX-01294 downregulated H3K9me1, H3K9me2, H3K27me1 and H3K27me2, however, it did not affect the acetylation of H3K9me3 and H3. High expression of G9a and H3K9me2 in glioma tissue samples was associated with the WHO grade, which indicated that G9a and H3K9me2 may promote generation and development of glioma. BIX-01294 inhibited proliferation and induced apoptosis of glioma cells, changes in methylation of H3K9 and H3K27 resulting in conformational changes of chromosome may be an underlying mechanism. BIX-01294 may be a potential novel therapeutic agent in the treatment of glioma.
Collapse
Affiliation(s)
- Ai-Shun Guo
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Yi-Qun Huang
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Xu-Dong Ma
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Rui-Sheng Lin
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| |
Collapse
|
175
|
Chen WL, Wang ZH, Feng TT, Li DD, Wang CH, Xu XL, Zhang XJ, You QD, Guo XK. Discovery, design and synthesis of 6H-anthra[1,9-cd]isoxazol-6-one scaffold as G9a inhibitor through a combination of shape-based virtual screening and structure-based molecular modification. Bioorg Med Chem 2016; 24:6102-6108. [PMID: 27720557 DOI: 10.1016/j.bmc.2016.09.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/29/2023]
Abstract
Protein lysine methyltransferase G9a is widely considered as an appealing antineoplastic target. Herein we present an integrated workflow combining shape-based virtual screening and structure-based molecular modification for the identification of novel G9a inhibitors. The shape-based similarity screening through ROCS overlay on the basis of the structure of UNC0638 was performed to identify CPUY074001 contained a 6H-anthra[1,9-cd]isoxazol-6-one scaffold as a hit. Analysis of the binding mode of CPUY074001 with G9a and 3D-QSAR results, two series compounds were designed and synthesized. The derivatives were confirmed to be active by in vitro assay and the SAR was explored by docking stimulations. Besides, several analogues showed acceptable anti-proliferative effects against several cancer cell lines. Among them, CPUY074020 displayed potent dual G9a inhibitory activity and anti-proliferative activity. Furthermore, CPUY074020 induced cell apoptosis in a dose-dependent manner and displayed a significant decrease in dimethylation of H3K9. Simultaneously, CPUY074020 showed reasonable in vivo PK properties. Altogether, our workflow supplied a high efficient strategy in the identification of novel G9a inhibitors. Compounds reported here can serve as promising leads for further study.
Collapse
Affiliation(s)
- Wei-Lin Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi-Hui Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Tao-Tao Feng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Dong-Dong Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Chu-Hui Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Jin Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiao-Ke Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
176
|
Dysregulation of histone methyltransferases in breast cancer - Opportunities for new targeted therapies? Mol Oncol 2016; 10:1497-1515. [PMID: 27717710 DOI: 10.1016/j.molonc.2016.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 01/24/2023] Open
Abstract
Histone methyltransferases (HMTs) catalyze the methylation of lysine and arginine residues on histone tails and non-histone targets. These important post-translational modifications are exquisitely regulated and affect chromatin compaction and transcriptional programs leading to diverse biological outcomes. There is accumulating evidence that genetic alterations of several HMTs impinge on oncogenic or tumor-suppressor functions and influence both cancer initiation and progression. HMTs therefore represent an opportunity for therapeutic targeting in those patients with tumors in which HMTs are dysregulated, to reverse the histone marks and transcriptional programs associated with aggressive tumor behavior. In this review, we describe the known histone methyltransferases and their emerging roles in breast cancer tumorigenesis.
Collapse
|
177
|
Liu Q, Wang MW. Histone lysine methyltransferases as anti-cancer targets for drug discovery. Acta Pharmacol Sin 2016; 37:1273-1280. [PMID: 27397541 DOI: 10.1038/aps.2016.64] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Post-translational epigenetic modification of histones is controlled by a number of histone-modifying enzymes. Such modification regulates the accessibility of DNA and the subsequent expression or silencing of a gene. Human histone methyltransferases (HMTs)constitute a large family that includes histone lysine methyltransferases (HKMTs) and histone/protein arginine methyltransferases (PRMTs). There is increasing evidence showing a correlation between HKMTs and cancer pathogenesis. Here, we present an overview of representative HKMTs, including their biological and biochemical properties as well as the profiles of small molecule inhibitors for a comprehensive understanding of HKMTs in drug discovery.
Collapse
|
178
|
GFI1 functions in transcriptional control and cell fate determination require SNAG domain methylation to recruit LSD1. Biochem J 2016; 473:3355-69. [PMID: 27480105 DOI: 10.1042/bcj20160558] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/01/2016] [Indexed: 12/27/2022]
Abstract
Proper hematopoietic cell fate decisions require co-ordinated functions of transcription factors, their associated co-regulators, and histone-modifying enzymes. Growth factor independence 1 (GFI1) is a zinc finger transcriptional repressor and master regulator of normal and malignant hematopoiesis. While several GFI1-interacting proteins have been described, how GFI1 leverages these relationships to carry out transcriptional repression remains unclear. Here, we describe a functional axis involving GFI1, SMYD2, and LSD1 that is a critical contributor to GFI1-mediated transcriptional repression. SMYD2 methylates lysine-8 (K8) within a -(8)KSKK(11)- motif embedded in the GFI1 SNAG domain. Methylation-defective GFI1 SNAG domain lacks repressor function due to failure of LSD1 recruitment and persistence of promoter H3K4 di-methyl marks. Methylation-defective GFI1 also fails to complement GFI1 depletion phenotypes in developing zebrafish and lacks pro-growth and survival functions in lymphoid leukemia cells. Our data show a discrete methylation event in the GFI1 SNAG domain that facilitates recruitment of LSD1 to enable transcriptional repression and co-ordinate control of hematopoietic cell fate in both normal and malignant settings.
Collapse
|
179
|
Human EHMT2/G9a activates p53 through methylation-independent mechanism. Oncogene 2016; 36:922-932. [PMID: 27452519 DOI: 10.1038/onc.2016.258] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/01/2016] [Accepted: 05/23/2016] [Indexed: 12/23/2022]
Abstract
p53 is a critical tumor suppressor in humans. It functions mostly as a transcriptional factor and its activity is regulated by numerous post-translational modifications. Among different covalent modifications found on p53 the most controversial one is lysine methylation. We found that human G9a (hG9a) unlike its mouse orthologue (mG9a) potently stimulated p53 transcriptional activity. Both ectopic and endogenous hG9a augmented p53-dependent transcription of pro-apoptotic genes, including Bax and Puma, resulting in enhanced apoptosis and reduced colony formation. Significantly, shRNA-mediated knockdown of hG9a attenuated p53-dependent activation of Puma. On the molecular level, hG9a interacted with histone acetyltransferase, p300/CBP, resulting in increased histone acetylation at the promoter of Puma. The bioinformatics data substantiated our findings showing that positive correlation between G9a and p53 expression is associated with better survival of lung cancer patients. Collectively, this study demonstrates that depending on the cellular and organismal context, orthologous proteins may exert both overlapping and opposing functions. Furthermore, this finding has important ramifications on the use of G9a inhibitors in combination with genotoxic drugs to treat p53-positive tumors.
Collapse
|
180
|
Gelato KA, Adler D, Ocker M, Haendler B. Targeting epigenetic regulators for cancer therapy: modulation of bromodomain proteins, methyltransferases, demethylases, and microRNAs. Expert Opin Ther Targets 2016; 20:783-799. [PMID: 26799480 DOI: 10.1517/14728222.2016.1134490] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/17/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Histone deacetylases (HDACs) and DNA methyltransferases (DNMTs) were the first epigenetic targets to be successfully addressed for cancer treatment, but more recently additional families of epigenetic modulators have been the subject of intense research. Potent inhibitors have been identified in several instances and have proven to be invaluable tools for studying these proteins in normal physiology and in disease. Some have now progressed to clinical studies in hematological and solid tumors, and encouraging early results have been reported. AREAS COVERED This article reviews recent advances regarding the roles of new epigenetic players beyond HDACs and DNMTs in cancer, and discusses the impact of selective chemical probes on unravelling their function. The emerging field of non-coding RNAs (ncRNAs) and ongoing clinical studies with epigenetic drugs and microRNAs (miRNAs) are also addressed. EXPERT OPINION The roles of different epigenetic factors in numerous cancers have been unraveled recently, leading to the initiation of clinical studies. With inhibitors of BET bromodomain proteins, the histone methyltransferases EZH2 and DOT1L, and the histone demethylase LSD1 progressing through clinical trials, and the recognition of the importance of ncRNAs as potential biomarkers and therapeutics, this bears the hope that novel epigenetic therapies will be approved soon.
Collapse
Affiliation(s)
- Kathy A Gelato
- a Global Drug Discovery , Bayer Pharma AG , Berlin , Germany
| | - David Adler
- a Global Drug Discovery , Bayer Pharma AG , Berlin , Germany
| | - Matthias Ocker
- a Global Drug Discovery , Bayer Pharma AG , Berlin , Germany
- b Department of Gastroenterology/Campus Benjamin Franklin , Charité-Universitätsmedizin Berlin , Berlin , Germany
| | | |
Collapse
|
181
|
Chen Y, Zhu WG. Biological function and regulation of histone and non-histone lysine methylation in response to DNA damage. Acta Biochim Biophys Sin (Shanghai) 2016; 48:603-16. [PMID: 27217472 DOI: 10.1093/abbs/gmw050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/21/2016] [Indexed: 02/07/2023] Open
Abstract
DNA damage response (DDR) signaling network is initiated to protect cells from various exogenous and endogenous damage resources. Timely and accurate regulation of DDR proteins is required for distinct DNA damage repair pathways. Post-translational modifications of histone and non-histone proteins play a vital role in the DDR factor foci formation and signaling pathway. Phosphorylation, ubiquitylation, SUMOylation, neddylation, poly(ADP-ribosyl)ation, acetylation, and methylation are all involved in the spatial-temporal regulation of DDR, among which phosphorylation and ubiquitylation are well studied. Studies in the past decade also revealed extensive roles of lysine methylation in response to DNA damage. Lysine methylation is finely regulated by plenty of lysine methyltransferases, lysine demethylases, and can be recognized by proteins with chromodomain, plant homeodomain, Tudor domain, malignant brain tumor domain, or proline-tryptophan-tryptophan-proline domain. In this review, we outline the dynamics and regulation of histone lysine methylation at canonical (H3K4, H3K9, H3K27, H3K36, H3K79, and H4K20) and non-canonical sites after DNA damage, and discuss their context-specific functions in DDR protein recruitment or extraction, chromatin environment establishment, and transcriptional regulation. We also present the emerging advances of lysine methylation in non-histone proteins during DDR.
Collapse
Affiliation(s)
- Yongcan Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China Peking University-Tsinghua University Center for Life Sciences, Beijing 100191, China
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China Peking University-Tsinghua University Center for Life Sciences, Beijing 100191, China School of Medicine, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
182
|
Kondengaden SM, Luo LF, Huang K, Zhu M, Zang L, Bataba E, Wang R, Luo C, Wang B, Li KK, Wang PG. Discovery of novel small molecule inhibitors of lysine methyltransferase G9a and their mechanism in leukemia cell lines. Eur J Med Chem 2016; 122:382-393. [PMID: 27393948 DOI: 10.1016/j.ejmech.2016.06.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 01/24/2023]
Abstract
Lysine methyltransferase G9a regulates the transcription of multiple genes by primarily catalyzing mono- and di-methylation of histone H3 lysine 9, as well as several non-histone lysine sites. An attractive therapeutic target in treating leukemia, knockout studies of G9a in mice have found dramatically slowed proliferation and self-renewal of acute myeloid leukemia (AML) cells due to the attenuation of HoxA9-dependent transcription. In this study, a series of compounds were identified as potential inhibitors through structure-based virtual screening. Among these compounds, a new G9a inhibitor, DCG066, was confirmed by in vitro biochemical, and cell based enzyme assays. DCG066 has a novel molecular scaffold unlike other G9a inhibitors presently available. Similar to G9a's histone substrate, DCG066 can bind directly to G9a and inhibit methyltransferase activity in vitro. In addition to suppressing G9a methyltransferase activity and reducing histone H3 methylation levels, DCG066 displays low cytotoxicity in leukemia cell lines with high levels of G9a expression, including K562. This work presents DCG066 as an inhibitor of G9a with a novel structure, providing both a lead in G9a inhibitor design and a means for probing the functionality of G9a.
Collapse
Affiliation(s)
- Shukkoor M Kondengaden
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Liu-Fei Luo
- State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University, Shanghai, China
| | - Kenneth Huang
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Mengyuan Zhu
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Lanlan Zang
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Eudoxie Bataba
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Runling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Binghe Wang
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Keqin Kathy Li
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University, Shanghai, China.
| | - Peng George Wang
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
183
|
Song Y, Wu F, Wu J. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. J Hematol Oncol 2016; 9:49. [PMID: 27316347 PMCID: PMC4912745 DOI: 10.1186/s13045-016-0279-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022] Open
Abstract
Post-translational methylation of histone lysine or arginine residues plays important roles in gene regulation and other physiological processes. Aberrant histone methylation caused by a gene mutation, translocation, or overexpression can often lead to initiation of a disease such as cancer. Small molecule inhibitors of such histone modifying enzymes that correct the abnormal methylation could be used as novel therapeutics for these diseases, or as chemical probes for investigation of epigenetics. Discovery and development of histone methylation modulators are in an early stage and undergo a rapid expansion in the past few years. A number of highly potent and selective compounds have been reported, together with extensive preclinical studies of their biological activity. Several compounds have been in clinical trials for safety, pharmacokinetics, and efficacy, targeting several types of cancer. This review summarizes the biochemistry, structures, and biology of cancer-relevant histone methylation modifying enzymes, small molecule inhibitors and their preclinical and clinical antitumor activities. Perspectives for targeting histone methylation for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Yongcheng Song
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Fangrui Wu
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jingyu Wu
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
184
|
Bonito NA, Borley J, Wilhelm-Benartzi CS, Ghaem-Maghami S, Brown R. Epigenetic Regulation of the Homeobox Gene MSX1 Associates with Platinum-Resistant Disease in High-Grade Serous Epithelial Ovarian Cancer. Clin Cancer Res 2016; 22:3097-3104. [PMID: 26763252 PMCID: PMC4849558 DOI: 10.1158/1078-0432.ccr-15-1669] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/24/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Although high-grade serous ovarian cancer (HGSOC) is frequently chemoresponsive, a proportion of patients do not respond to platinum-based chemotherapy at presentation or have progression-free survival (PFS) of less than 6 months. Validated predictive biomarkers of lack of response would enable alternative treatment stratification for these patients and identify novel mechanisms of intrinsic resistance. Our aim was to identify DNA methylation biomarkers of poor response to chemotherapy and demonstrate involvement of the associated gene in platinum drug cell sensitivity. EXPERIMENTAL DESIGN DNA methylation was investigated in independent tumor cohorts using Illumina HumanMethylation arrays and gene expression by Affymetrix arrays and qRT-PCR. The role of Msh homeobox 1 (MSX1) in drug sensitivity was investigated by gene reintroduction and siRNA knockdown of ovarian cancer cell lines. RESULTS CpG sites at contiguous genomic locations within the MSX1 gene have significantly lower levels of methylation in independent cohorts of HGSOC patients, which recur by 6 months compared with after 12 months (P < 0.05, q < 0.05, n = 78), have poor RECIST response (P < 0.05, q < 0.05, n = 61), and are associated with PFS in an independent cohort (n = 146). A decrease in methylation at these CpG sites correlates with decreased MSX1 gene expression. MSX1 expression is associated with PFS (HR, 0.92; 95% CI, 0.85-0.99; P = 0.029; n = 309). Cisplatin-resistant ovarian cancer cell lines have reduced MSX1 expression, and MSX1 overexpression leads to cisplatin sensitization, increased apoptosis, and increased cisplatin-induced p21 expression. CONCLUSIONS Hypomethylation of CpG sites within the MSX1 gene is associated with resistant HGSOC disease at presentation and identifies expression of MSX1 as conferring platinum drug sensitivity. Clin Cancer Res; 22(12); 3097-104. ©2016 AACR.
Collapse
Affiliation(s)
- Nair A. Bonito
- Department of Surgery & Cancer, Imperial College London, London W12 0NN, UK
| | - Jane Borley
- Department of Surgery & Cancer, Imperial College London, London W12 0NN, UK
| | | | | | - Robert Brown
- Department of Surgery & Cancer, Imperial College London, London W12 0NN, UK
- Institute of Cancer Research, Sutton, London SM2 5NG, UK
| |
Collapse
|
185
|
Ramadoss S, Guo G, Wang CY. Lysine demethylase KDM3A regulates breast cancer cell invasion and apoptosis by targeting histone and the non-histone protein p53. Oncogene 2016; 36:47-59. [PMID: 27270439 PMCID: PMC5140781 DOI: 10.1038/onc.2016.174] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/18/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
Abstract
Invasive growth and apoptosis resistance of breast cancer cells are associated with metastasis and disease relapse. Here we identified that the lysine-specific demethylase KDM3A played a dual role in breast cancer cell invasion and apoptosis by demethylating histone and the non-histone protein p53, respectively. While inducing pro-invasive genes by erasing repressive histone H3 lysine 9 methylation, KDM3A promotes chemoresistance by demethylating p53. KDM3A suppressed pro-apoptotic functions of p53 by erasing p53-K372me1 as this methylation site is crucial for the stability of chromatin-bound p53. Unexpectedly, depletion of KDM3A was capable of reactivating mutated p53 to induce the expression of pro-apoptotic genes in breast cancer with mutant p53. Moreover, KDM3A knockdown also potently inhibited tumorigenic potentials of breast cancer stem-like cells and rendered them sensitive to apoptosis induced by chemotherapeutic drugs. Taken together, our results suggest that KDM3A might be a potential therapeutic target for human breast cancer treatment and prevention.
Collapse
Affiliation(s)
- S Ramadoss
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - G Guo
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - C-Y Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, UCLA, Los Angeles, CA, USA
| |
Collapse
|
186
|
Zhang RH, Judson RN, Liu DY, Kast J, Rossi FMV. The lysine methyltransferase Ehmt2/G9a is dispensable for skeletal muscle development and regeneration. Skelet Muscle 2016; 6:22. [PMID: 27239264 PMCID: PMC4882833 DOI: 10.1186/s13395-016-0093-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022] Open
Abstract
Background Euchromatic histone-lysine N-methyltransferase 2 (G9a/Ehmt2) is the main enzyme responsible for the apposition of H3K9 di-methylation on histones. Due to its dual role as an epigenetic regulator and in the regulation of non-histone proteins through direct methylation, G9a has been implicated in a number of biological processes relevant to cell fate control. Recent reports employing in vitro cell lines indicate that Ehmt2 methylates MyoD to repress its transcriptional activity and therefore its ability to induce differentiation of activated myogenic cells. Methods To further investigate the importance of G9a in modulating myogenic regeneration in vivo, we crossed Ehmt2floxed mice to animals expressing Cre recombinase from the Myod locus, resulting in efficient knockout in the entire skeletal muscle lineage (Ehmt2ΔmyoD). Results Surprisingly, despite a dramatic drop in the global levels of H3K9me2, knockout animals did not show any developmental phenotype in muscle size and appearance. Consistent with this finding, purified Ehmt2ΔmyoD satellite cells had rates of activation and proliferation similar to wild-type controls. When induced to differentiate in vitro, Ehmt2 knockout cells differentiated with kinetics similar to those of control cells and demonstrated normal capacity to form myotubes. After acute muscle injury, knockout mice regenerated as efficiently as wildtype. To exclude possible compensatory mechanisms elicited by the loss of G9a during development, we restricted the knockout within adult satellite cells by crossing Ehmt2floxed mice to Pax7CreERT2 and also found normal muscle regeneration capacity. Conclusions Thus, Ehmt2 and H3K9me2 do not play significant roles in skeletal muscle development and regeneration in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0093-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Regan-Heng Zhang
- The Biomedical Research Centre, The University of British Columbia, Vancouver, Canada
| | - Robert N Judson
- The Biomedical Research Centre, The University of British Columbia, Vancouver, Canada
| | - David Y Liu
- The Biomedical Research Centre, The University of British Columbia, Vancouver, Canada
| | - Jürgen Kast
- The Biomedical Research Centre, The University of British Columbia, Vancouver, Canada
| | - Fabio M V Rossi
- The Biomedical Research Centre, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
187
|
S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3. Proc Natl Acad Sci U S A 2016; 113:6182-7. [PMID: 27185940 DOI: 10.1073/pnas.1605523113] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lysine to methionine (K-to-M) mutations in genes encoding histone H3 are thought to drive a subset of pediatric brain and bone cancers. These high-frequency K-to-M mutations occur at sites of methylation on histone H3, and tumors containing the mutant histones exhibit a global loss of specific histone methylation marks. Previous studies showed that K-to-M mutant histones, also known as oncohistones, are potent orthosteric inhibitors of specific Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain methyltransferases. However, the biochemical and biophysical details of the interaction between K-to-M mutant histones and the respective SET domain methyltransferases are currently unknown. Here, we use the histone H3K9-directed methyltransferase G9a as a model to explore the mechanism of inhibition by K-to-M oncohistones. X-ray cocrystal structures revealed that the K9M residue of histone H3 occupies the active site cavity of G9a, and kinetic analysis indicates competitive inhibition of G9a by histone H3K9M. Additionally, we find that the cofactor S-adenosyl methionine (SAM) is necessary for stable interaction between G9a and H3K9M histone. Consistent with the formation of a ternary complex, we find that the inhibitory peptide is uncompetitive with regard to SAM. These data and others indicate that K-to-M oncohistones promote global loss of specific lysine methylation through sequestration and inhibition of SAM-bound SET domain methyltransferases.
Collapse
|
188
|
Fiszbein A, Giono LE, Quaglino A, Berardino BG, Sigaut L, von Bilderling C, Schor IE, Enriqué Steinberg JH, Rossi M, Pietrasanta LI, Caramelo JJ, Srebrow A, Kornblihtt AR. Alternative Splicing of G9a Regulates Neuronal Differentiation. Cell Rep 2016; 14:2797-808. [PMID: 26997278 DOI: 10.1016/j.celrep.2016.02.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/25/2016] [Accepted: 02/12/2016] [Indexed: 01/08/2023] Open
Abstract
Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10) through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10(+) isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation.
Collapse
Affiliation(s)
- Ana Fiszbein
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Ciudad Universitaria Pabellón II, C1428EHA Buenos Aires, Argentina
| | - Luciana E Giono
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Ciudad Universitaria Pabellón II, C1428EHA Buenos Aires, Argentina
| | - Ana Quaglino
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Ciudad Universitaria Pabellón II, C1428EHA Buenos Aires, Argentina
| | - Bruno G Berardino
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA Buenos Aires, Argentina
| | - Lorena Sigaut
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA-CONICET, Cuidad Universitaria Pabellón I, C1428EHA Buenos Aires, Argentina
| | - Catalina von Bilderling
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA-CONICET, Cuidad Universitaria Pabellón I, C1428EHA Buenos Aires, Argentina
| | - Ignacio E Schor
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Ciudad Universitaria Pabellón II, C1428EHA Buenos Aires, Argentina
| | - Juliana H Enriqué Steinberg
- Instituto de Investigación en Biomedicina de Buenos Aires CONICET, Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina
| | - Mario Rossi
- Instituto de Investigación en Biomedicina de Buenos Aires CONICET, Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina
| | - Lía I Pietrasanta
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA-CONICET, Cuidad Universitaria Pabellón I, C1428EHA Buenos Aires, Argentina; Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Cuidad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Julio J Caramelo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA Buenos Aires, Argentina; Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Anabella Srebrow
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Ciudad Universitaria Pabellón II, C1428EHA Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Ciudad Universitaria Pabellón II, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
189
|
G9a-mediated methylation of ERα links the PHF20/MOF histone acetyltransferase complex to hormonal gene expression. Nat Commun 2016; 7:10810. [PMID: 26960573 PMCID: PMC4792926 DOI: 10.1038/ncomms10810] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/24/2016] [Indexed: 12/19/2022] Open
Abstract
The euchromatin histone methyltransferase 2 (also known as G9a) methylates histone H3K9 to repress gene expression, but it also acts as a coactivator for some nuclear receptors. The molecular mechanisms underlying this activation remain elusive. Here we show that G9a functions as a coactivator of the endogenous oestrogen receptor α (ERα) in breast cancer cells in a histone methylation-independent manner. G9a dimethylates ERα at K235 both in vitro and in cells. Dimethylation of ERαK235 is recognized by the Tudor domain of PHF20, which recruits the MOF histone acetyltransferase (HAT) complex to ERα target gene promoters to deposit histone H4K16 acetylation promoting active transcription. Together, our data suggest the molecular mechanism by which G9a functions as an ERα coactivator. Along with the PHF20/MOF complex, G9a links the crosstalk between ERα methylation and histone acetylation that governs the epigenetic regulation of hormonal gene expression. The histone methyltransferase G9a methylates histone H3K9 to repress gene expression, but it also acts as a coactivator for some nuclear receptors. Here, Zhang et al. show that methylation of ERα by G9a recruits the PHF20/MOF complex that deposits histone H4K16 acetylation promoting active transcription.
Collapse
|
190
|
Bai K, Cao Y, Huang C, Chen J, Zhang X, Jiang Y. Association of Histone Methyltransferase G9a and Overall Survival After Liver Resection of Patients With Hepatocellular Carcinoma With a Median Observation of 40 Months. Medicine (Baltimore) 2016; 95:e2493. [PMID: 26765460 PMCID: PMC4718286 DOI: 10.1097/md.0000000000002493] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Approximately 50% of patients with hepatocellular carcinoma (HCC) reside in China. HCC is associated with very high mortality compared with other cancers. Although numerous factors influence the survival of patients with HCC who undergo liver resection, the role of the tumor biomarker histone methyltransferase (G9a) is unknown.We enrolled 350 patients with HCC who underwent liver resection and followed them for 40 months. Patients' clinicopathologic characteristics were acquired from medical records, and overall survival was determined using multiple methods. We conducted an immunohistochemical analysis of study G9a expression in HCC tissues. We used χ test to evaluate the significance of the relationships between G9a and other factors and Cox proportional hazards regression to estimate the hazard ratios and 95% confidence intervals.The levels of alpha-fetoprotein were significantly higher in patients with G9a-positive tumors. TNM stage, elevated alpha-fetoprotein level, and G9a overexpression were associated with worse outcomes.High expression of G9a was associated with worse outcomes, indicating that G9a may serve as a prognostic biomarker for patients with HCC who undergo surgical resection. Because of its role in cell proliferation, G9a represents a potential therapeutic target.
Collapse
Affiliation(s)
- Kai Bai
- From the Department of Hepatobiliary Surgery, Fuzong Clinical College, Fujian Medical University, Fuzhou City, Fujian Province, China
| | | | | | | | | | | |
Collapse
|
191
|
AHN MJ, JEONG SG, CHO GW. Antisenescence activity of G9a inhibitor BIX01294 on human bone marrow mesenchymal stromal cells. Turk J Biol 2016. [DOI: 10.3906/biy-1507-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
192
|
Lu TX, Young KH, Xu W, Li JY. TP53 dysfunction in diffuse large B-cell lymphoma. Crit Rev Oncol Hematol 2016; 97:47-55. [PMID: 26315382 DOI: 10.1016/j.critrevonc.2015.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/05/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022] Open
Abstract
The aberrations of TP53 gene and dysregulation of the TP53 pathway are important in the pathogenesis of many human cancers, including malignant lymphomas, especially for diffuse large B cell lymphoma (DLBCL). By regulating many downstream target genes or molecules, TP53 governs major defenses against tumor growth and promotes cellular DNA repair, apoptosis, autophagy, cell cycle arrest, signaling, transcription, immune or inflammatory responses and metabolism. Dysfunction of TP53, including microRNA regulations, copy number alterations of TP53 pathway and TP53 itself, dysregulation of TP53 regulators, and somatic mutations by abnormal TP53 function modes, play an important role in lymphoma generation, progression and invasion. The role of TP53 in DLBCL has been widely explored recently. In this review, we summarized recent advances on different mechanisms of TP53 in DLBCL and new therapeutic approaches to overcome TP53 inactivation.
Collapse
Affiliation(s)
- Ting-Xun Lu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77072, USA
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
193
|
Zhang X, Huang Y, Shi X. Emerging roles of lysine methylation on non-histone proteins. Cell Mol Life Sci 2015; 72:4257-72. [PMID: 26227335 PMCID: PMC11114002 DOI: 10.1007/s00018-015-2001-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/27/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
Lysine methylation is a common posttranslational modification (PTM) of histones that is important for the epigenetic regulation of transcription and chromatin in eukaryotes. Increasing evidence demonstrates that in addition to histones, lysine methylation also occurs on various non-histone proteins, especially transcription- and chromatin-regulating proteins. In this review, we will briefly describe the histone lysine methyltransferases (KMTs) that have a broad spectrum of non-histone substrates. We will use p53 and nuclear receptors, especially estrogen receptor alpha, as examples to discuss the dynamic nature of non-histone protein lysine methylation, the writers, erasers, and readers of these modifications, and the crosstalk between lysine methylation and other PTMs in regulating the functions of the modified proteins. Understanding the roles of lysine methylation in normal cells and during development will shed light on the complex biology of diseases associated with the dysregulation of lysine methylation on both histones and non-histone proteins.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yaling Huang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The Genes and Development and the Epigenetics and Molecular Carcinogenesis Graduate Programs, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
194
|
Tong Q, Mazur SJ, Rincon-Arano H, Rothbart SB, Kuznetsov DM, Cui G, Liu WH, Gete Y, Klein BJ, Jenkins L, Mer G, Kutateladze AG, Strahl BD, Groudine M, Appella E, Kutateladze TG. An acetyl-methyl switch drives a conformational change in p53. Structure 2015; 23:322-31. [PMID: 25651062 DOI: 10.1016/j.str.2014.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 10/24/2022]
Abstract
Individual posttranslational modifications (PTMs) of p53 mediate diverse p53-dependent responses; however, much less is known about the combinatorial action of adjacent modifications. Here, we describe crosstalk between the early DNA damage response mark p53K382me2 and the surrounding PTMs that modulate binding of p53 cofactors, including 53BP1 and p300. The 1.8 Å resolution crystal structure of the tandem Tudor domain (TTD) of 53BP1 in complex with p53 peptide acetylated at K381 and dimethylated at K382 (p53K381acK382me2) reveals that the dual PTM induces a conformational change in p53. The α-helical fold of p53K381acK382me2 positions the side chains of R379, K381ac, and K382me2 to interact with TTD concurrently, reinforcing a modular design of double PTM mimetics. Biochemical and nuclear magnetic resonance analyses show that other surrounding PTMs, including phosphorylation of serine/threonine residues of p53, affect association with TTD. Our findings suggest a novel PTM-driven conformation switch-like mechanism that may regulate p53 interactions with binding partners.
Collapse
Affiliation(s)
- Qiong Tong
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sharlyn J Mazur
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hector Rincon-Arano
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Scott B Rothbart
- Department of Biochemistry and Biophysics and the Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Dmitry M Kuznetsov
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Wallace H Liu
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Yantenew Gete
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lisa Jenkins
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Andrei G Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics and the Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Mark Groudine
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Radiation Oncology, University Washington School of Medicine, Seattle, WA 98109, USA
| | - Ettore Appella
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
195
|
Simon JM, Parker JS, Liu F, Rothbart SB, Ait-Si-Ali S, Strahl BD, Jin J, Davis IJ, Mosley AL, Pattenden SG. A Role for Widely Interspaced Zinc Finger (WIZ) in Retention of the G9a Methyltransferase on Chromatin. J Biol Chem 2015; 290:26088-102. [PMID: 26338712 PMCID: PMC4646261 DOI: 10.1074/jbc.m115.654459] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/23/2015] [Indexed: 11/06/2022] Open
Abstract
G9a and GLP lysine methyltransferases form a heterodimeric complex that is responsible for the majority of histone H3 lysine 9 mono- and di-methylation (H3K9me1/me2). Widely interspaced zinc finger (WIZ) associates with the G9a-GLP protein complex, but its role in mediating lysine methylation is poorly defined. Here, we show that WIZ regulates global H3K9me2 levels by facilitating the interaction of G9a with chromatin. Disrupting the association of G9a-GLP with chromatin by depleting WIZ resulted in altered gene expression and protein-protein interactions that were distinguishable from that of small molecule-based inhibition of G9a/GLP, supporting discrete functions of the G9a-GLP-WIZ chromatin complex in addition to H3K9me2 methylation.
Collapse
Affiliation(s)
- Jeremy M Simon
- From the Carolina Institute for Developmental Disabilities, Department of Cell Biology and Physiology, and the Department of Genetics, Curriculum in Bioinformatics and Computational Biology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joel S Parker
- the Department of Genetics and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Feng Liu
- the Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599
| | - Scott B Rothbart
- the Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Slimane Ait-Si-Ali
- the Laboratoire Epigénétique et Destin Cellulaire, UMR7216, CNRS, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Brian D Strahl
- the Lineberger Comprehensive Cancer Center, the Curriculum in Genetics and Molecular Biology, and the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jian Jin
- the Department of Structural and Chemical Biology, the Department of Oncological Sciences, and the Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ian J Davis
- the Department of Genetics, the Lineberger Comprehensive Cancer Center, the Department of Pediatrics, and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and
| | - Amber L Mosley
- the Department of Biochemistry and Molecular Biology and the Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Samantha G Pattenden
- the Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599,
| |
Collapse
|
196
|
Lee JY, Lee SH, Heo SH, Kim KS, Kim C, Kim DK, Ko JJ, Park KS. Novel Function of Lysine Methyltransferase G9a in the Regulation of Sox2 Protein Stability. PLoS One 2015; 10:e0141118. [PMID: 26492085 PMCID: PMC4619656 DOI: 10.1371/journal.pone.0141118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 10/05/2015] [Indexed: 01/24/2023] Open
Abstract
G9a is a lysine methyltransferase (KMTase) for histone H3 lysine 9 that plays critical roles in a number of biological processes. Emerging evidence suggests that aberrant expression of G9a contributes to tumor metastasis and maintenance of a malignant phenotype in cancer by inducing epigenetic silencing of tumor suppressor genes. Here, we show that G9a regulates Sox2 protein stability in breast cancer cells. When G9a lysine methyltransferase activity was chemically inhibited in the ER(+) breast cancer cell line MCF7, Sox2 protein levels were decreased. In addition, ectopic overexpression of G9a induced accumulation of Sox2. Changes in cell migration, invasion, and mammosphere formation by MCF7 cells were correlated with the activity or expression level of G9a. Ectopic expression of G9a also increased Sox2 protein levels in another ER(+) breast cancer cell line, ZR-75-1, whereas it did not affect Sox2 expression in MDA-MB-231 cells, an ER(-) breast cancer cell line, or in glioblastoma cell lines. Furthermore, treatment of mouse embryonic stem cells with a KMT inhibitor, BIX-01294, resulted in a rapid reduction in Sox2 protein expression despite increased Sox2 transcript levels. This finding suggests that G9a has a novel function in the regulation of Sox2 protein stability in a cell type-dependent manner.
Collapse
Affiliation(s)
- Jae-Young Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Se-Hwan Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Sun-Hee Heo
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Kwang-Soo Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Changhoon Kim
- Department of Biomedical Science, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea
| | - Dae-Kwan Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Jeong-Jae Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
- * E-mail:
| |
Collapse
|
197
|
Carr SM, Poppy Roworth A, Chan C, La Thangue NB. Post-translational control of transcription factors: methylation ranks highly. FEBS J 2015; 282:4450-65. [PMID: 26402372 DOI: 10.1111/febs.13524] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/04/2015] [Accepted: 09/21/2015] [Indexed: 01/31/2023]
Abstract
Methylation of lysine and arginine residues on histones has long been known to determine both chromatin structure and gene expression. In recent years, the methylation of non-histone proteins has emerged as a prevalent modification which impacts on diverse processes such as cell cycle control, DNA repair, senescence, differentiation, apoptosis and tumourigenesis. Many of these non-histone targets represent transcription factors, cell signalling molecules and tumour suppressor proteins. Evidence now suggests that the dysregulation of methyltransferases, demethylases and reader proteins is involved in the development of many diseases, including cancer, and several of these proteins represent potential therapeutic targets for small molecule compounds, fuelling a recent surge in chemical inhibitor design. Such molecules will greatly help us to understand the role of methylation in both health and disease.
Collapse
Affiliation(s)
- Simon M Carr
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | - A Poppy Roworth
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | - Cheryl Chan
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | | |
Collapse
|
198
|
Histone methyltransferase SETDB1 regulates liver cancer cell growth through methylation of p53. Nat Commun 2015; 6:8651. [PMID: 26471002 PMCID: PMC5426523 DOI: 10.1038/ncomms9651] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/16/2015] [Indexed: 11/12/2022] Open
Abstract
SETDB1 is a histone H3K9 methyltransferase that has a critical role in early development. It is located within a melanoma susceptibility locus and facilitates melanoma formation. However, the mechanism by which SETDB1 regulates tumorigenesis remains unknown. Here we report the molecular interplay between SETDB1 and the well-known hotspot gain-of-function (GOF) TP53 R249S mutation. We show that in hepatocellular carcinoma (HCC) SETDB1 is overexpressed with moderate copy number gain, and GOF TP53 mutations including R249S associate with this overexpression. Inactivation of SETDB1 in HCC cell lines bearing the R249S mutation suppresses cell growth. The TP53 mutation status renders cancer cells dependent on SETDB1. Moreover, SETDB1 forms a complex with p53 and catalyses p53K370 di-methylation. SETDB1 attenuation reduces the p53K370me2 level, which subsequently leads to increased recognition and degradation of p53 by MDM2. Together, we provide both genetic and biochemical evidence for a mechanism by which SETDB1 regulates cancer cell growth via methylation of p53. SETDB1 is a histone methyltransferase and a role for the protein has been proposed in cancer. Here, the authors show that SETDB1 contributes to hepatocellular cancer by preferably forming a complex with mutant p53, resulting in di-methylation of a critical lysine residue and stabilization of the protein.
Collapse
|
199
|
Successful strategies in the discovery of small-molecule epigenetic modulators with anticancer potential. Future Med Chem 2015; 7:2243-61. [DOI: 10.4155/fmc.15.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
As a class, epigenetic enzymes have been identified as clear targets for cancer therapeutics based on their broad hyperactivity in solid and hematological malignancies. The search for effective inhibitors of histone writers and of histone erasers has been a focus of drug discovery efforts both in academic and pharmaceutical laboratories and has led to the identification of some promising leads. This review focuses on the discovery strategies and preclinical evaluation studies of a subset of the more advanced compounds that target histone writers or histone erasers. The specificity and anticancer potential of these small molecules is discussed within the context of their development pipeline.
Collapse
|
200
|
Casciello F, Windloch K, Gannon F, Lee JS. Functional Role of G9a Histone Methyltransferase in Cancer. Front Immunol 2015; 6:487. [PMID: 26441991 PMCID: PMC4585248 DOI: 10.3389/fimmu.2015.00487] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Post-translational modifications of DNA and histones are epigenetic mechanisms, which affect the chromatin structure, ultimately leading to gene expression changes. A number of different epigenetic enzymes are actively involved in the addition or the removal of various covalent modifications, which include acetylation, methylation, phosphorylation, ubiquitination, and sumoylation. Deregulation of these processes is a hallmark of cancer. For instance, G9a, a histone methyltransferase responsible for histone H3 lysine 9 (H3K9) mono- and dimethylation, has been observed to be upregulated in different types of cancer and its overexpression has been associated with poor prognosis. Key roles played by these enzymes in various diseases have led to the hypothesis that these molecules represent valuable targets for future therapies. Several small molecule inhibitors have been developed to specifically block the epigenetic activity of these enzymes, representing promising therapeutic tools in the treatment of human malignancies, such as cancer. In this review, the role of one of these epigenetic enzymes, G9a, is discussed, focusing on its functional role in regulating gene expression as well as its implications in cancer initiation and progression. We also discuss important findings from recent studies using epigenetic inhibitors in cell systems in vitro as well as experimental tumor growth and metastasis assays in vivo.
Collapse
Affiliation(s)
- Francesco Casciello
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia ; School of Natural Sciences, Griffith University , Nathan, QLD , Australia
| | - Karolina Windloch
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia
| | - Frank Gannon
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia
| | - Jason S Lee
- Control of Gene Expression Laboratory, QIMR Berghofer Medical Research Institute , Herston, QLD , Australia ; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology , Kelvin Grove, QLD , Australia ; School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane, QLD , Australia
| |
Collapse
|