151
|
Infiltration of proinflammatory m1 macrophages into the outer retina precedes damage in a mouse model of age-related macular degeneration. Int J Inflam 2013; 2013:503725. [PMID: 23533946 PMCID: PMC3606733 DOI: 10.1155/2013/503725] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/20/2012] [Accepted: 01/24/2013] [Indexed: 12/03/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness in the developed world. Oxidative stress and inflammation are implicated in AMD, but precise mechanisms remain poorly defined. Carboxyethylpyrrole (CEP) is an AMD-associated lipid peroxidation product. We previously demonstrated that mice immunized with CEP-modified albumin developed AMD-like degenerative changes in the outer retina. Here, we examined the kinetics of lesion development in immunized mice and the presence of macrophages within the interphotoreceptor matrix (IPM), between the retinal pigment epithelium and photoreceptor outer segments. We observed a significant and time-dependent increase in the number of macrophages in immunized mice relative to young age-matched controls prior to overt pathology. These changes were more pronounced in BALB/c mice than in C57BL/6 mice. Importantly, IPM-infiltrating macrophages were polarized toward the M1 phenotype but only in immunized mice. Moreover, when Ccr2-deficient mice were immunized, macrophages were not present in the IPM and no retinal lesions were observed, suggesting a deleterious role for these cells in our model. This work provides mechanistic evidence linking immune responses against oxidative damage with the presence of proinflammatory macrophages at sites of future AMD and experimentally demonstrates that manipulating immunity may be a target for modulating the development of AMD.
Collapse
|
152
|
Inflammation and oxidative stress in angiogenesis and vascular disease. J Mol Med (Berl) 2013; 91:323-8. [PMID: 23430240 DOI: 10.1007/s00109-013-1007-3] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 01/24/2023]
Abstract
Recent evidence suggests that processes of inflammation and angiogenesis are interconnected, especially in human pathologies. Newly formed blood vessels enable the continuous recruitment of inflammatory cells, which release a variety of proangiogenic cytokines, chemokines, and growth factors and further promote angiogenesis. These series of positive feedback loops ultimately create a vicious cycle that exacerbates inflammation, transforming it into the chronic process. Recently, this concept of reciprocity of angiogenesis and inflammation has been expanded to include oxidative stress as a novel mechanistic connection between inflammation-driven oxidation and neovascularization. Production of reactive oxygen species results from activation of immune cells by proinflammatory stimuli. As oxidative stress can lead to chronic inflammation by activating a variety of transcription factors including NF-κB, AP-1, and PPAR-γ, inflammation itself has a reciprocal relationship with oxidative stress. This review discusses the recent findings in the area bridging neovascularization and oxidation and highlights novel mechanisms of inflammation- and oxidative stress-driven angiogenesis.
Collapse
|
153
|
McDowell RE, McGeown JG, Stitt AW, Curtis TM. Therapeutic potential of targeting lipid aldehydes and lipoxidation end-products in the treatment of ocular disease. Future Med Chem 2013; 5:189-211. [PMID: 23360143 DOI: 10.4155/fmc.12.202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lipoxidation reactions and the subsequent accumulation of advanced lipoxidation end products (ALEs) have been implicated in the pathogenesis of many of the leading causes of visual impairment. Here, we begin by outlining some of the major lipid aldehydes produced through lipoxidation reactions, the ALEs formed upon their reaction with proteins, and the endogenous aldehyde metabolizing enzymes involved in protecting cells against lipoxidation mediated damage. Discussions are subsequently focused on the clinical and experimental evidence supporting the contribution of lipid aldehydes and ALEs in the development of ocular diseases. From these discussions, it is clear that inhibition of lipoxidation reactions and ALE formation could represent a new therapeutic avenue for the treatment of a broad range of ocular disorders. Current and emerging pharmacological strategies to prevent or neutralize the effects of lipid aldehydes and ALEs are therefore considered, with particular emphasis on the potential of these drugs for treatment of diseases of the eye.
Collapse
Affiliation(s)
- Rosemary E McDowell
- Centre for Vision & Vascular Science, Queen's University of Belfast, Institute of Clinical Sciences, The Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BA, Northern Ireland, UK
| | | | | | | |
Collapse
|
154
|
Abstract
Free radical-induced oxidation of membrane phospholipids generates complex mixtures of oxidized phospholipids (oxPLs). The combinatorial operation of a few dozen reaction types on a few dozen phospholipid structures results in the production of a dauntingly vast diversity of oxPL molecular species. Structural identification of the individual oxPL in these mixtures is a redoubtable challenge that is absolutely essential to allow determination of the biological activities of individual species. With an emphasis on cardiovascular consequences, this Review focuses on biological activities of oxPLs whose molecular structures are known and highlights 2 diametrically opposite approaches that were used to determine those structures, that is, (1) the classic approach from bioactivity of a complex mixture to isolation and structural characterization of the active molecule followed by confirmation of the structure by unambiguous chemical synthesis and (2) hypothesis of products that are likely to be generated by lipid oxidation, followed by synthesis, and then detection in vivo guided by the availability of authentic standards, and last, characterization of biological activities. Especially important for the application of the second paradigm is the capability of LC-MS/MS and derivatizations to selectively detect and quantify specific oxPL in complex mixtures, without the need for their isolation or complete separation. This technology can provide strong evidence for identity by comparisons with pure, well-characterized samples available by chemical syntheses. Those pure samples are critical for determining the biological activities attributable to specific molecular species of oxPLs in the complex mixtures generated in vivo as a consequence of oxidative stress.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
155
|
Kuo CH, Morohoshi K, Aye CC, Garoon RB, Collins A, Ono SJ. The role of TRB3 in mast cells sensitized with monomeric IgE. Exp Mol Pathol 2012; 93:408-15. [DOI: 10.1016/j.yexmp.2012.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
|
156
|
Panigrahi S, Ma Y, Hong L, Gao D, West XZ, Salomon RG, Byzova TV, Podrez EA. Engagement of platelet toll-like receptor 9 by novel endogenous ligands promotes platelet hyperreactivity and thrombosis. Circ Res 2012; 112:103-12. [PMID: 23071157 DOI: 10.1161/circresaha.112.274241] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE A prothrombotic state and increased platelet reactivity are common in pathophysiological conditions associated with oxidative stress and infections. Such conditions are associated with an appearance of altered-self ligands in circulation that can be recognized by Toll-like receptors (TLRs). Platelets express a number of TLRs, including TLR9; however, the role of TLR in platelet function and thrombosis is poorly understood. OBJECTIVE To investigate the biological activities of carboxy(alkylpyrrole) protein adducts, an altered-self ligand generated in oxidative stress, on platelet function and thrombosis. METHODS AND RESULTS In this study we show that carboxy(alkylpyrrole) protein adducts represent novel unconventional ligands for TLR9. Furthermore, using human and murine platelets, we demonstrate that carboxy(alkylpyrrole) protein adducts promote platelet activation, granule secretion, and aggregation in vitro and thrombosis in vivo via the TLR9/MyD88 pathway. Platelet activation by TLR9 ligands induces IRAK1 and AKT phosphorylation, and it is Src kinase-dependent. Physiological platelet agonists act synergistically with TLR9 ligands by inducing TLR9 expression on the platelet surface. CONCLUSIONS Our study demonstrates that platelet TLR9 is a functional platelet receptor that links oxidative stress, innate immunity, and thrombosis.
Collapse
Affiliation(s)
- Soumya Panigrahi
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, NB-5, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Morohoshi K, Ohbayashi M, Patel N, Chong V, Bird AC, Ono SJ. Identification of anti-retinal antibodies in patients with age-related macular degeneration. Exp Mol Pathol 2012; 93:193-9. [DOI: 10.1016/j.yexmp.2012.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 03/12/2012] [Indexed: 01/12/2023]
|
158
|
Jarrett SG, Boulton ME. Consequences of oxidative stress in age-related macular degeneration. Mol Aspects Med 2012; 33:399-417. [PMID: 22510306 PMCID: PMC3392472 DOI: 10.1016/j.mam.2012.03.009] [Citation(s) in RCA: 392] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 12/24/2022]
Abstract
The retina resides in an environment that is primed for the generation of reactive oxygen species (ROS) and resultant oxidative damage. The retina is one of the highest oxygen-consuming tissues in the human body. The highest oxygen levels are found in the choroid, but this falls dramatically across the outermost retina, creating a large gradient of oxygen towards the retina and inner segments of the photoreceptors which contain high levels of polyunsaturated fatty acids. This micro-environment together with abundant photosensitizers, visible light exposure and a high energy demand supports a highly oxidative milieu. However, oxidative damage is normally minimized by the presence of a range of antioxidant and efficient repair systems. Unfortunately, as we age oxidative damage increases, antioxidant capacity decreases and the efficiency of reparative systems become impaired. The result is retinal dysfunction and cell loss leading to visual impairment. It appears that these age-related oxidative changes are a hallmark of early age-related macular degeneration (AMD) which, in combination with hereditary susceptibility and other retinal modifiers, can progress to the pathology and visual morbidity associated with advanced AMD. This review reassesses the consequences of oxidative stress in AMD and strategies for preventing or reversing oxidative damage in retinal tissues.
Collapse
Affiliation(s)
- Stuart G Jarrett
- Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
159
|
NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nat Med 2012; 18:791-8. [PMID: 22484808 DOI: 10.1038/nm.2717] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/27/2012] [Indexed: 01/14/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of central vision loss worldwide. Drusen accumulation is the major pathological hallmark common to both dry and wet AMD. Although activation of the immune system has been implicated in disease progression, the pathways involved are unclear. Here we show that drusen isolated from donor AMD eyes activates the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, causing secretion of interleukin-1b (IL-1b) and IL-18. Drusen component C1Q also activates the NLRP3 inflammasome. Moreover, the oxidative-stress-related protein-modification carboxyethylpyrrole (CEP), a biomarker of AMD, primes the inflammasome. We found cleaved caspase-1 and NLRP3 in activated macrophages in the retinas of mice immunized with CEP-adducted mouse serum albumin, modeling a dry-AMD–like pathology. We show that laser-induced choroidal neovascularization (CNV), a mouse model of wet AMD, is exacerbated in Nlrp3(-/-) but not Il1r1(-/-) mice, directly implicating IL-18 in the regulation of CNV development. These findings indicate a protective role for NLRP3 and IL-18 in the progression of AMD.
Collapse
|
160
|
Pennesi ME, Neuringer M, Courtney RJ. Animal models of age related macular degeneration. Mol Aspects Med 2012; 33:487-509. [PMID: 22705444 DOI: 10.1016/j.mam.2012.06.003] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations.
Collapse
Affiliation(s)
- Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
161
|
Gorin MB. Genetic insights into age-related macular degeneration: controversies addressing risk, causality, and therapeutics. Mol Aspects Med 2012; 33:467-86. [PMID: 22561651 DOI: 10.1016/j.mam.2012.04.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 01/19/2023]
Abstract
Age-related macular degeneration (AMD) is a common condition among the elderly population that leads to the progressive central vision loss and serious compromise of quality of life for its sufferers. It is also one of the few disorders for whom the investigation of its genetics has yielded rich insights into its diversity and causality and holds the promise of enabling clinicians to provide better risk assessments for individuals as well as to develop and selectively deploy new therapeutics to either prevent or slow the development of disease and lessen the threat of vision loss. The genetics of AMD began initially with the appreciation of familial aggregation and increase risk and expanded with the initial association of APOE variants with the disease. The first major breakthroughs came with family-based linkage studies of affected (and discordant) sibs, which identified a number of genetic loci and led to the targeted search of the 1q31 and 10q26 loci for associated variants. Three of the initial four reports for the CFH variant, Y402H, were based on regional candidate searches, as were the two initial reports of the ARMS2/HTRA1 locus variants. Case-control association studies initially also played a role in discovering the major genetic variants for AMD, and the success of those early studies have been used to fuel enthusiasm for the methodology for a number of diseases. Until 2010, all of the subsequent genetic variants associated with AMD came from candidate gene testing based on the complement factor pathway. In 2010, several large-scale genome-wide association studies (GWAS) identified genes that had not been previously identified. Much of this historical information is available in a number of recent reviews (Chen et al., 2010b; Deangelis et al., 2011; Fafowora and Gorin, 2012b; Francis and Klein, 2011; Kokotas et al., 2011). Large meta analysis of AMD GWAS has added new loci and variants to this collection (Chen et al., 2010a; Kopplin et al., 2010; Yu et al., 2011). This paper will focus on the ongoing controversies that are confronting AMD genetics at this time, rather than attempting to summarize this field, which has exploded in the past 5 years.
Collapse
Affiliation(s)
- Michael B Gorin
- Department of Ophthalmology, David Geffen School of Medicine, UC, Los Angeles, CA, USA.
| |
Collapse
|
162
|
Hunter A, Spechler PA, Cwanger A, Song Y, Zhang Z, Ying GS, Hunter AK, Dezoeten E, Dunaief JL. DNA methylation is associated with altered gene expression in AMD. Invest Ophthalmol Vis Sci 2012; 53:2089-105. [PMID: 22410570 DOI: 10.1167/iovs.11-8449] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Evidence suggests oxidative stress plays a role in the disease. To assess the potential contribution of epigenetic regulation of antioxidant genes relevant to AMD pathogenesis, we evaluated DNA methylation, a tissue-specific genetic modulation that affects gene expression. METHODS Using the Infinium HumanMethylation27 Illumina platform, we performed DNA bisulfite sequencing to compare the methylation status in postmortem retina pigment epithelium (RPE)/choroid between patients with AMD and age-matched controls. Gene expression was assessed with the Affymetrix Exon Array. TaqMan gene expression assays were used for relative quantification (RT-PCR) confirmation of the expression array results: Glutathione S-transferase isoform mu1 (GSTM1) and mu5 (GSTM5) promoter methylation was confirmed by CpG island bisulfite pyrosequencing. To assess protein levels and localization, we used Western analysis, immunohistochemistry, and immunofluorescence with murine and human samples. RESULTS The mRNA levels of GSTM1 and GSTM5 were significantly reduced in AMD versus age-matched controls in RPE/choroid and neurosensory retina (NSR), which corresponded to hypermethylation of the GSTM1 promoter. mRNA and protein levels were decreased (RPE to a greater extent than NSR) in AMD postmortem samples, irrespective of age. Immunohistochemistry and immunofluorescence confirm the presence of the enzymes in the NSR and RPE. CONCLUSIONS Comparison of DNA methylation, together with mRNA levels, revealed significant differences between AMD versus normal retinas. The evidence presented suggests that GSTM1 and GSTM5 undergo epigenetic repression in AMD RPE/choroid, which may increase susceptibility to oxidative stress in AMD retinas.
Collapse
Affiliation(s)
- Allan Hunter
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Coorey NJ, Shen W, Chung SH, Zhu L, Gillies MC. The role of glia in retinal vascular disease. Clin Exp Optom 2012; 95:266-81. [PMID: 22519424 DOI: 10.1111/j.1444-0938.2012.00741.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Retinal vascular diseases collectively represent a leading cause of blindness. Unsurprisingly, pathological characterisation and treatment of retinal 'vascular' diseases have primarily focused on the aetiology and consequences of vascular dysfunction. Far less research has addressed the contribution of neuronal and glial dysfunction to the disease process of retinal vascular disorders. Ample evidence now suggests that retinal vasculopathy only uncommonly occurs in isolation, usually existing in concert with neuropathy and gliopathy. Retinal glia (Müller cells, astrocytes and microglia) have been reported to exhibit morphological and functional changes in both early and advanced phases of almost every retinal vascular disease. It is anticipated that identifying the causes of glial activation and dysfunction, and their contribution to loss of vision in retinal vascular disease, will lead to a better understanding of retinal vascular diseases, which might ultimately be translated into novel clinical therapies.
Collapse
Affiliation(s)
- Nathan J Coorey
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | | | | | | | | |
Collapse
|
164
|
Handa JT. How does the macula protect itself from oxidative stress? Mol Aspects Med 2012; 33:418-35. [PMID: 22503691 DOI: 10.1016/j.mam.2012.03.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been hypothesized to contribute to the development of age-related macular degeneration (AMD), the most common cause of blindness in the United States. At present, there is no treatment for early disease. Reactive oxygen species (ROS) play a physiological role in the retinal pigment epithelium (RPE), a key cell type in this disease, but with excessive ROS, oxidative damage or excessive innate immune system activation can result. The RPE has developed a robust antioxidant system driven by the transcription factor Nrf2. Impaired Nrf2 signaling can lead to oxidative damage or activate the innate immune response, both of which can lead to RPE apoptosis, a defining change in AMD. Several mouse models simulating environmental stressors or targeting specific antioxidant enzymes such as superoxide dismutase or Nrf2, have simulated some of the features of AMD. While ROS are short-lived, oxidatively damaged molecules termed oxidation specific epitopes (OSEs), can be long-lived and a source of chronic stress that activates the innate immune system through pattern recognition receptors (PRRs). The macula accumulates a number of OSEs including carboxyethylpyrrole, malondialdehyde, 4-hydroxynonenal, and advanced glycation endproducts, as well as their respective neutralizing PRRs. Excessive accumulation of OSEs results in pathologic immune activation. For example, mice immunized with the carboxyethylpyrrole develop cardinal features of AMD. Regulating ROS in the RPE by modulating antioxidant systems or neutralizing OSEs through an appropriate innate immune response are potential modalities to treat or prevent early AMD.
Collapse
Affiliation(s)
- James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
165
|
Nagaraj RH, Linetsky M, Stitt AW. The pathogenic role of Maillard reaction in the aging eye. Amino Acids 2012; 42:1205-20. [PMID: 20963455 DOI: 10.1007/s00726-010-0778-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/25/2010] [Indexed: 12/31/2022]
Abstract
The proteins of the human eye are highly susceptible to the formation of advanced glycation end products (AGEs) from the reaction of sugars and carbonyl compounds. AGEs progressively accumulate in the aging lens and retina and accumulate at a higher rate in diseases that adversely affect vision such as, cataract, diabetic retinopathy and age-related macular degeneration. In the lens AGEs induce irreversible changes in structural proteins, which lead to lens protein aggregation and formation of high-molecular-weight aggregates that scatter light and impede vision. In the retina AGEs modify intra- and extracellular proteins that lead to an increase in oxidative stress and formation of pro-inflammatory cytokines, which promote vascular dysfunction. This review outlines recent advances in AGE research focusing on the mechanisms of their formation and their role in cataract and pathologies of the retina. The therapeutic action and pharmacological strategies of anti-AGE agents that can inhibit or prevent AGE formation in the eye are also discussed.
Collapse
Affiliation(s)
- Ram H Nagaraj
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
166
|
Brantley MA, Osborn MP, Sanders BJ, Rezaei KA, Lu P, Li C, Milne GL, Cai J, Sternberg P. Plasma biomarkers of oxidative stress and genetic variants in age-related macular degeneration. Am J Ophthalmol 2012; 153:460-467.e1. [PMID: 22035603 DOI: 10.1016/j.ajo.2011.08.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 10/15/2022]
Abstract
PURPOSE To compare plasma levels of oxidative stress biomarkers in patients with age-related macular degeneration (AMD) and controls and to evaluate a potential relationship between biochemical markers of oxidative stress and AMD susceptibility genotypes. DESIGN Prospective case-control study. METHODS Plasma levels of oxidative stress biomarkers were determined in 77 AMD patients and 75 controls recruited from a clinical practice. Cysteine, cystine (CySS), glutathione, isoprostane, and isofuran were measured, and participants were genotyped for polymorphisms in the complement factor H (CFH) and age-related maculopathy susceptibility 2 (ARMS2) genes. RESULTS CySS was elevated in cases compared with controls (P = .013). After adjustment for age, sex, and smoking, this association was not significant. In all participants, CySS levels were associated with the CFH polymorphism rs3753394 (P = .028) as well as an 8-allele CFH haplotype (P = .029) after correction for age, gender, and smoking. None of the other plasma markers was related to AMD status in our cohort. CONCLUSIONS Our investigation of the gene-environment interaction involved in AMD revealed a relationship between a plasma biomarker of oxidative stress, CySS, and CFH genotype. These data suggest a potential association between inflammatory regulators and redox status in AMD pathogenesis.
Collapse
|
167
|
Newman AM, Gallo NB, Hancox LS, Miller NJ, Radeke CM, Maloney MA, Cooper JB, Hageman GS, Anderson DH, Johnson LV, Radeke MJ. Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks. Genome Med 2012; 4:16. [PMID: 22364233 PMCID: PMC3372225 DOI: 10.1186/gm315] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/18/2012] [Accepted: 02/24/2012] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Please see related commentary: http://www.biomedcentral.com/1741-7015/10/21/abstract BACKGROUND Age-related macular degeneration (AMD) is a leading cause of blindness that affects the central region of the retinal pigmented epithelium (RPE), choroid, and neural retina. Initially characterized by an accumulation of sub-RPE deposits, AMD leads to progressive retinal degeneration, and in advanced cases, irreversible vision loss. Although genetic analysis, animal models, and cell culture systems have yielded important insights into AMD, the molecular pathways underlying AMD's onset and progression remain poorly delineated. We sought to better understand the molecular underpinnings of this devastating disease by performing the first comparative transcriptome analysis of AMD and normal human donor eyes. METHODS RPE-choroid and retina tissue samples were obtained from a common cohort of 31 normal, 26 AMD, and 11 potential pre-AMD human donor eyes. Transcriptome profiles were generated for macular and extramacular regions, and statistical and bioinformatic methods were employed to identify disease-associated gene signatures and functionally enriched protein association networks. Selected genes of high significance were validated using an independent donor cohort. RESULTS We identified over 50 annotated genes enriched in cell-mediated immune responses that are globally over-expressed in RPE-choroid AMD phenotypes. Using a machine learning model and a second donor cohort, we show that the top 20 global genes are predictive of AMD clinical diagnosis. We also discovered functionally enriched gene sets in the RPE-choroid that delineate the advanced AMD phenotypes, neovascular AMD and geographic atrophy. Moreover, we identified a graded increase of transcript levels in the retina related to wound response, complement cascade, and neurogenesis that strongly correlates with decreased levels of phototransduction transcripts and increased AMD severity. Based on our findings, we assembled protein-protein interactomes that highlight functional networks likely to be involved in AMD pathogenesis. CONCLUSIONS We discovered new global biomarkers and gene expression signatures of AMD. These results are consistent with a model whereby cell-based inflammatory responses represent a central feature of AMD etiology, and depending on genetics, environment, or stochastic factors, may give rise to the advanced AMD phenotypes characterized by angiogenesis and/or cell death. Genes regulating these immunological activities, along with numerous other genes identified here, represent promising new targets for AMD-directed therapeutics and diagnostics.
Collapse
Affiliation(s)
- Aaron M Newman
- Center for the Study of Macular Degeneration, Neuroscience Research Institute,
Biological Sciences 2 Building, University of California, Santa Barbara, CA
93106-5060, USA
- Current address: Institute for Stem Cell Biology and Regenerative Medicine,
Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305,
USA
| | - Natasha B Gallo
- Center for the Study of Macular Degeneration, Neuroscience Research Institute,
Biological Sciences 2 Building, University of California, Santa Barbara, CA
93106-5060, USA
| | - Lisa S Hancox
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins
Drive Iowa City, IA 52242-1109, USA
| | - Norma J Miller
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center,
University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132-5230,
USA
| | - Carolyn M Radeke
- Center for the Study of Macular Degeneration, Neuroscience Research Institute,
Biological Sciences 2 Building, University of California, Santa Barbara, CA
93106-5060, USA
| | - Michelle A Maloney
- Center for the Study of Macular Degeneration, Neuroscience Research Institute,
Biological Sciences 2 Building, University of California, Santa Barbara, CA
93106-5060, USA
| | - James B Cooper
- Molecular, Cellular, and Developmental Biology Department, Life Sciences Building,
University of California, Santa Barbara, CA 93106-9610, USA
| | - Gregory S Hageman
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center,
University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132-5230,
USA
| | - Don H Anderson
- Center for the Study of Macular Degeneration, Neuroscience Research Institute,
Biological Sciences 2 Building, University of California, Santa Barbara, CA
93106-5060, USA
| | - Lincoln V Johnson
- Center for the Study of Macular Degeneration, Neuroscience Research Institute,
Biological Sciences 2 Building, University of California, Santa Barbara, CA
93106-5060, USA
| | - Monte J Radeke
- Center for the Study of Macular Degeneration, Neuroscience Research Institute,
Biological Sciences 2 Building, University of California, Santa Barbara, CA
93106-5060, USA
| |
Collapse
|
168
|
Gu X, Salomon RG. Fragmentation of a linoleate-derived γ-hydroperoxy-α,β-unsaturated epoxide to γ-hydroxy- and γ-oxo-alkenals involves a unique pseudo-symmetrical diepoxycarbinyl radical. Free Radic Biol Med 2012; 52:601-606. [PMID: 22155057 PMCID: PMC3733989 DOI: 10.1016/j.freeradbiomed.2011.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/01/2011] [Accepted: 11/09/2011] [Indexed: 10/14/2022]
Abstract
Many of the pathological effects of lipid peroxidation are mediated by aldehydes generated through fragmentation of lipid peroxides. Among these aldehydes, the γ-hydroxy- and γ-oxo-α,β-alkenals, e.g., 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE), are especially prone to modifying proteins and DNA through covalent adduction. In addition the "mirror image" γ-hydroxy- and γ-oxo-α,β-alkenal phospholipids can serve as high-affinity ligands for biological receptors triggering pathology. Therefore, the mechanisms by which these aldehydes are generated in vivo are under intense scrutiny. We now report observations supporting the intermediacy of a unique pseudo-symmetrical diepoxycarbinyl radical that accounts for the coproduction of HNE, ONE, and their mirror image analogues 9-hydroxy-12-oxo-10(E)-dodecenoic acid and 9-keto-12-oxo-10-dodecenoic acid upon fragmentation of 13-hydroperoxy-cis-9,10-epoxyoctadeca-11-enoic acid.
Collapse
Affiliation(s)
- Xiaodong Gu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
169
|
Iannaccone A, Neeli I, Krishnamurthy P, Lenchik NI, Wan H, Gerling IC, Desiderio DM, Radic MZ. Autoimmune biomarkers in age-related macular degeneration: a possible role player in disease development and progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:11-6. [PMID: 22183309 DOI: 10.1007/978-1-4614-0631-0_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alessandro Iannaccone
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | |
Collapse
|
170
|
|
171
|
Serum autoantibody biomarkers for age-related macular degeneration and possible regulators of neovascularization. Exp Mol Pathol 2011; 92:64-73. [PMID: 22001380 DOI: 10.1016/j.yexmp.2011.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 11/23/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in industrial counties. Its pathogenesis is at least partially mediated by immunological factors, including a possible autoimmune response. To date, only a few antibodies have been identified in sera from patients with AMD. In order to reveal an autoantibody profile for AMD and identify biomarkers for progression of this disease, we have performed an antigen microarray analysis of serum samples from patients with AMD and healthy controls. Sera from the AMD groups contained high levels of IgG and IgM autoantibodies to some systemic antigens when compared to the normal group. Targeted antigens included cyclic nucleotide phosphodiesterase, phosphatidylserine (PS) and proliferating cell nuclear antigen. The IgG/IgM ratio for antibodies to PS was notably elevated in the AMD group compared to the normal group, and this ratio correlated best with the stage of AMD patients with an anti-PS ratio greater than the cut-off value had a 44-fold risk for advanced AMD with choroidal neovascularization. PS immunoreactivity was also elevated in AMD retina. Moreover, IgG autoantibodies purified from sera of AMD patients induced more tube formation on choroidal-retinal endothelial cells compared to those of healthy donors. Hence, sera from patients with AMD contain specific autoantibodies which may be used as biomarkers for AMD, and the IgG/M ratio for autoantibodies to PS might allow better monitoring of AMD progression.
Collapse
|
172
|
Salomon RG, Hong L, Hollyfield JG. Discovery of carboxyethylpyrroles (CEPs): critical insights into AMD, autism, cancer, and wound healing from basic research on the chemistry of oxidized phospholipids. Chem Res Toxicol 2011; 24:1803-16. [PMID: 21875030 DOI: 10.1021/tx200206v] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Basic research, exploring the hypothesis that 2-(ω-carboxyethyl)pyrrole (CEP) modifications of proteins are generated nonenzymatically in vivo is delivering a bonanza of molecular mechanistic insights into age-related macular degeneration, autism, cancer, and wound healing. CEPs are produced through covalent modification of protein lysyl ε-amino groups by γ-hydroxyalkenal phospholipids that are formed by oxidative cleavage of docosahexaenate-containing phospholipids. Chemical synthesis of CEP-modified proteins and the production of highly specific antibodies that recognize them preceded and facilitated their detection in vivo and enabled exploration of their biological occurrence and activities. This investigational approach, from the chemistry of biomolecules to disease phenotype, is proving to be remarkably productive.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078, USA.
| | | | | |
Collapse
|
173
|
Liu A, Lin Y, Terry R, Nelson K, Bernstein PS. Role of long-chain and very-long-chain polyunsaturated fatty acids in macular degenerations and dystrophies. ACTA ACUST UNITED AC 2011; 6:593-613. [PMID: 25324899 DOI: 10.2217/clp.11.41] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Macular degeneration is a progressive, bilateral eye disorder that damages the macula of the human eye. The most common form of macular degeneration is age-related macular degeneration (AMD), which is the leading cause of irreversible blindness in people older than 50 years in developed countries. Autosomal dominant Stargardt disease-3 (STGD3) is an inherited macular dystrophy that has clinical features similar to dry AMD, but occurs at a much earlier age. It is caused by a mutation in the elongation of very-long-chain fatty acids-like 4 (ELOVL4) gene, which is responsible for encoding the elongase enzyme that converts shorter chain fatty acids into C28-C38 very long-chain polyunsaturated fatty acids (VLCPUFAs, total number of carbons ≥24). Diets rich in long-chain polyunsaturated fatty acids (LCPUFAs) have inverse associations with the progression of AMD and STGD3, and a deficiency in retinal LCPUFAs and VLCPUFAs has been detected in AMD retinas and STGD3 animal models. This article systematically summarizes the roles of LCPUFAs and VLCPUFAs in AMD and STGD3, and discusses future research directions.
Collapse
Affiliation(s)
- Aihua Liu
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Yanhua Lin
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Ryan Terry
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Kelly Nelson
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
174
|
Gu X, Zhang W, Choi J, Li W, Chen X, Laird JM, Salomon RG. An (1)O2 route to γ-hydroxyalkenal phospholipids by vitamin E-induced fragmentation of hydroperoxydiene-derived endoperoxides. Chem Res Toxicol 2011; 24:1080-93. [PMID: 21568309 PMCID: PMC3141739 DOI: 10.1021/tx200093m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biologically active phospholipids that incorporate an oxidatively truncated acyl chain terminated by a γ-hydroxyalkenal are generated in vivo. The γ-hydroxyalkenal moiety protrudes from lipid bilayers like whiskers that serve as ligands for the scavenger receptor CD36, fostering endocytosis, e.g., of oxidatively damaged photoreceptor cell outer segments by retinal pigmented endothelial cells. They also covalently modify proteins generating carboxyalkyl pyrroles incorporating the ε-amino group of protein lysyl residues. We postulated that γ-hydroxyalkenals could be generated, e.g., in the eye, through fragmentation of hydroperoxy endoperoxides produced in the retina through reactions of singlet molecular oxygen with polyunsaturated phospholipids. Since phospholipid esters are far more abundant in the retina than free fatty acids, we examined the influence of a membrane environment on the fate of hydroperoxy endoperoxides. We now report that linoleate hydroperoxy endoperoxides in thin films and their phospholipid esters in biomimetic membranes fragment to γ-hydroxyalkenals, and fragmentation is stoichiometrically induced by vitamin E. The product distribution from fragmentation of the free acid in the homogeneous environment of a thin film is remarkably different from that from the corresponding phospholipid in a membrane. In the membrane, further oxidation of the initially formed γ-hydroxyalkenal to a butenolide is disfavored. A conformational preference for the γ-hydroxyalkenal, to protrude from the membrane into the aqueous phase, may protect it from oxidation induced by lipid hydroperoxides that remain buried in the lipophilic membrane core.
Collapse
Affiliation(s)
- Xiaodong Gu
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106
| | - Wujuan Zhang
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106
| | - Jaewoo Choi
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106
| | - Wei Li
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106
| | - Xi Chen
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106
| | - James M. Laird
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106
| | - Robert G. Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106
| |
Collapse
|
175
|
Buschini E, Piras A, Nuzzi R, Vercelli A. Age related macular degeneration and drusen: neuroinflammation in the retina. Prog Neurobiol 2011; 95:14-25. [PMID: 21740956 DOI: 10.1016/j.pneurobio.2011.05.011] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 12/19/2022]
Abstract
Inflammation protects from dangerous stimuli, restoring normal tissue homeostasis. Inflammatory response in the nervous system ("neuroinflammation") has distinct features, which are shared in several diseases. The retina is an immune-privileged site, and the tight balance of immune reaction can be disrupted and lead to age-related macular disease (AMD) and to its peculiar sign, the druse. Excessive activation of inflammatory and immunological cascade with subsequent induction of damage, persistent activation of resident immune cells, accumulation of byproducts that exceeds the normal capacity of clearance giving origin to a chronic local inflammation, alterations in the activation of the complement system, infiltration of macrophages, T-lymphocytes and mast-cells from the bloodstream, participate in the mechanisms which originate the drusen. In addition, aging of the retina and AMD involve also para-inflammation, by which immune cells react to persistent stressful stimuli generating low-grade inflammation, aimed at restoring function and maintaining tissue homeostasis by varying the set point in relation to the new altered conditions. This mechanism is also seen in the normal aging retina, but, in the presence of noxious stimuli as in AMD, it can become chronic and have an adverse outcome. Finally, autophagy may provide new insights to understand AMD pathology, due to its contribution in the removal of defective proteins. Therefore, the AMD retina can represent a valuable model to study neuroinflammation, its mechanisms and therapy in a restricted and controllable environment. Targeting these pathways could represent a new way to treat and prevent both exudative and dry forms of AMD.
Collapse
Affiliation(s)
- Elisa Buschini
- NICO, Neuroscience Institute of the Cavalieri Ottolenghi Foundation, University of Torino, Regione Gonzole 10, Orbassano (TO), Italy.
| | | | | | | |
Collapse
|
176
|
Charvet C, Liao WL, Heo GY, Laird J, Salomon RG, Turko IV, Pikuleva IA. Isolevuglandins and mitochondrial enzymes in the retina: mass spectrometry detection of post-translational modification of sterol-metabolizing CYP27A1. J Biol Chem 2011; 286:20413-22. [PMID: 21498512 PMCID: PMC3121529 DOI: 10.1074/jbc.m111.232546] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/04/2011] [Indexed: 11/06/2022] Open
Abstract
We report the first peptide mapping and sequencing of an in vivo isolevuglandin-modified protein. Mitochondrial cytochrome P450 27A1 (CYP27A1) is a ubiquitous multifunctional sterol C27-hydroxylase that eliminates cholesterol and likely 7-ketocholesterol from the retina and many other tissues. We investigated the post-translational modification of this protein with isolevuglandins, arachidonate oxidation products. Treatment of purified recombinant CYP27A1 with authentic iso[4]levuglandin E(2) (iso[4]LGE(2)) in vitro diminished enzyme activity in a time- and phospholipid-dependent manner. A multiple reaction monitoring protocol was then developed to identify the sites and extent of iso[4]LGE(2) adduction. CYP27A1 exhibited only three Lys residues, Lys(134), Lys(358), and Lys(476), that readily interact with iso[4]LGE(2) in vitro. Such selective modification enabled the generation of an internal standard, (15)N-labeled CYP27A1 modified with iso[4]LGE(2), for the subsequent analysis of a human retinal sample. Two multiple reaction monitoring transitions arising from the peptide AVLK(358)(-C(20)H(26)O(3))ETLR in the retinal sample were observed that co-eluted with the corresponding two (15)N transitions from the supplemented standard. These data demonstrate that modified CYP27A1 is present in the retina. We suggest that such protein modification impairs sterol elimination and likely has other pathological sequelae. We also propose that the post-translational modifications identified in CYP27A1 exemplify a general mechanism whereby oxidative stress and inflammation deleteriously affect protein function, contributing, for example, to cholesterol-rich lesions associated with age-related macular degeneration and cardiovascular disease. The proteomic protocols developed in this study are generally applicable to characterization of lipid-derived oxidative protein modifications occurring in vivo, including proteins bound to membranes.
Collapse
Affiliation(s)
- Casey Charvet
- From the Departments of Ophthalmology and Visual Sciences and
| | - Wei-Li Liao
- the Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, and
| | - Gun-Young Heo
- From the Departments of Ophthalmology and Visual Sciences and
| | - James Laird
- Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | | | - Illarion V. Turko
- the Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, and
- the Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | | |
Collapse
|
177
|
Radu RA, Hu J, Yuan Q, Welch DL, Makshanoff J, Lloyd M, McMullen S, Travis GH, Bok D. Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration. J Biol Chem 2011; 286:18593-601. [PMID: 21464132 PMCID: PMC3099675 DOI: 10.1074/jbc.m110.191866] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 03/22/2011] [Indexed: 11/06/2022] Open
Abstract
Accumulation of vitamin A-derived lipofuscin fluorophores in the retinal pigment epithelium (RPE) is a pathologic feature of recessive Stargardt macular dystrophy, a blinding disease caused by dysfunction or loss of the ABCA4 transporter in rods and cones. Age-related macular degeneration, a prevalent blinding disease of the elderly, is strongly associated with mutations in the genes for complement regulatory proteins (CRP), causing chronic inflammation of the RPE. Here we explore the possible relationship between lipofuscin accumulation and complement activation in vivo. Using the abca4(-/-) mouse model for recessive Stargardt, we investigated the role of lipofuscin fluorophores (A2E-lipofuscin) on oxidative stress and complement activation. We observed higher expression of oxidative-stress genes and elevated products of lipid peroxidation in eyes from abca4(-/-) versus wild-type mice. We also observed higher levels of complement-activation products in abca4(-/-) RPE cells. Unexpectedly, expression of multiple CRPs, which protect cells from attack by the complement system, were lower in abca4(-/-) versus wild-type RPE. To test whether acute exposure of healthy RPE cells to A2E-lipofuscin affects oxidative stress and expression of CRPs, we fed cultured fetal-derived human RPE cells with rod outer segments from wild-type or abca4(-/-) retinas. In contrast to RPE cells in abca4(-/-) mice, human RPE cells exposed to abca4(-/-) rod outer segments adaptively increased expression of both oxidative-stress and CRP genes. These results suggest that A2E accumulation causes oxidative stress, complement activation, and down-regulation of protective CRP in the Stargardt mouse model. Thus, Stargardt disease and age-related macular degeneration may both be caused by chronic inflammation of the RPE.
Collapse
Affiliation(s)
- Roxana A Radu
- Jules Stein Eye Institute, the Department of Ophthalmology, University of California, Los Angeles School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
|
179
|
Kishan AU, Modjtahedi BS, Martins EN, Modjtahedi SP, Morse LS. Lipids and age-related macular degeneration. Surv Ophthalmol 2011; 56:195-213. [PMID: 21439604 DOI: 10.1016/j.survophthal.2010.08.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 08/29/2010] [Accepted: 08/31/2010] [Indexed: 01/17/2023]
Abstract
Given the considerable public health burden imposed by age-related macular degeneration (AMD), much effort has been directed towards elucidating principles of pathogenesis in order to identify risk factors and develop preventive measures and treatments. Together with epidemiological evidence linking cardiovascular risk factors with AMD risk and basic science work examining the role of lipid metabolism in AMD, numerous human studies have assayed a potential relationship between dietary lipids and the development of AMD. We examine the evidence for a role for lipid metabolism in AMD, highlighting key basic biochemical principles, work in animal models, and relevant human studies. The topics of lipoprotein modulation and omega-3 fatty acid intake receive special attention from both a basic science and clinical study standpoint. The evidence suggests that consumption of omega-3 fatty acids, perhaps in concert with antioxidants, may constitute a rational preventative strategy against AMD development, though, absent an appropriately developed double-blind, randomized control trial, insufficient data exist to recommend implementation in the clinical setting at this time.
Collapse
|
180
|
Stahl A, Krohne TU, Sapieha P, Chen J, Hellstrom A, Chew E, Holz FG, Smith LEH. Lipid metabolites in the pathogenesis and treatment of neovascular eye disease. Br J Ophthalmol 2011; 95:1496-501. [PMID: 21421650 DOI: 10.1136/bjo.2010.194241] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipids and lipid metabolites have long been known to play biological roles that go beyond energy storage and membrane structure. In age-related macular degeneration and diabetes, for example, dysregulation of lipid metabolism is closely associated with disease onset and progression. At the same time, some lipids and their metabolites can exert beneficial effects in the same disorders. This review summarises our current knowledge of the contributions of lipids to both the pathogenesis and treatment of neovascular eye disease. The clinical entities covered are exudative age-related macular degeneration, diabetic retinopathy and retinopathy of prematurity, with a special emphasis on the potential therapeutic effects of ω3- (also known as n-3) polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Andreas Stahl
- Department of Ophthalmology, Harvard Medical School, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Rohrer B, Coughlin B, Kunchithapautham K, Long Q, Tomlinson S, Takahashi K, Holers VM. The alternative pathway is required, but not alone sufficient, for retinal pathology in mouse laser-induced choroidal neovascularization. Mol Immunol 2011; 48:e1-8. [PMID: 21257205 PMCID: PMC3063365 DOI: 10.1016/j.molimm.2010.12.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/02/2010] [Accepted: 12/30/2010] [Indexed: 12/30/2022]
Abstract
Human genetic studies have demonstrated that polymorphisms in different complement proteins can increase the risk for developing AMD. There are three pathways of complement activation, classical (CP), alternative (AP), and lectin (LP), which all activate a final common pathway. Proteins encoded by the AMD risk genes participate in the AP (CFB), CP/LP (C2), or in the AP and final common pathway (C3). Here we tested which pathway is essential in mouse laser-induced CNV. CNV was analyzed using single complement pathway knockouts (i.e., eliminating one complement pathway at a time), followed by a double knockout in which only the AP is present, and the CP and LP are disabled, using molecular, histological and electrophysiological outcomes. First, single-gene knockouts were analyzed and compared to wild type mice; C1q(-/-) (no CP), MBL(-/-) (no LP), and CFB(-/-) (no AP). Six days after the laser-induced lesion, mice without a functional AP had reduced CNV progression (P<0.001) and preserved ERG amplitudes, whereas those without a functional CP or LP were indistinguishable from the wild type controls (P>0.3). Second, AP-only mice (C1q(-/-)MBL(-/-)) were as protected from developing CNV as the CFB(-/-) mice. The degree of pathology in each strain correlated with protein levels of the angiogenic and anti-angiogenic protein VEGF and PEDF, respectively, as well as levels of terminal pathway activation product C5a, and C9. The analysis of complement activation pathways in mouse laser-induced CNV allows for the following conclusions. Comparing the single pathway knockouts with those having only a functional AP showed: (1) that AP activation is necessary, but not alone sufficient for injury; and (2) that initial complement activation proceeds via both the LP and CP. Thus, these data indicate an important role for the AP in the generation of complement-dependent injury in the RPE and choroid via amplification of CP- and LP-initiated complement activation. Improving our understanding of the local regulation of this pathway in the eye is essential for developing improved treatment approaches for AMD.
Collapse
Affiliation(s)
- Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, United States.
| | | | | | | | | | | | | |
Collapse
|
182
|
Wang Y, Wang VM, Chan CC. The role of anti-inflammatory agents in age-related macular degeneration (AMD) treatment. Eye (Lond) 2011; 25:127-39. [PMID: 21183941 PMCID: PMC3044916 DOI: 10.1038/eye.2010.196] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/03/2010] [Accepted: 11/03/2010] [Indexed: 12/30/2022] Open
Abstract
Although age-related macular degeneration (AMD) is not a classic inflammatory disease like uveitis, inflammation has been found to have an important role in disease pathogenesis and progression. Innate immunity and autoimmune components, such as complement factors, chemokines, cytokines, macrophages, and ocular microglia, are believed to be heavily involved in AMD development. Targeting these specific inflammatory molecules has recently been explored in an attempt to better understand and treat AMD. Although antivascular endothelial growth factor therapy is the first line of defence against neovascular AMD, anti-inflammatory agents such as corticosteroids, nonsteroidal anti-inflammatory drugs (NSAIDs), immunosuppressive agents (eg, methotrexate and rapamycin), and biologics (eg, infliximab, daclizumab, and complement inhibitors) may provide an adjunct or alternative mechanism to suppress the inflammatory processes driving AMD progression. Further investigation is required to evaluate the long-term safety and efficacy of these drugs for both neovascular and non-neovascular AMD.
Collapse
Affiliation(s)
- Y Wang
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - V M Wang
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - C-C Chan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
183
|
Ardeljan D, Tuo J, Chan CC. Carboxyethylpyrrole plasma biomarkers in age-related macular degeneration. DRUG FUTURE 2011; 36:712-718. [PMID: 23847393 DOI: 10.1358/dof.2011.036.09.1678338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Age-related macular degeneration causes irreversible central blindness in people over the age of 50 and is increasing in prevalence among elderly populations. There are currently limited treatment options available for the exudative form of the disease and no formal treatments for the geographic atrophy form aside from lifestyle change and incorporation of antioxidant supplements in the diet. As such, it is important to be able to assess high-risk AMD patients as early as possible in order to prescribe preventative measures. Carboxyethylpyrrole (CEP) is a promising plasma biomarker suited to this purpose. Both CEP immunoreactivity levels as well as anti-CEP autoantibody titers are significantly elevated in AMD patients and thus provide the potential to assess AMD susceptibility with approximately 80% accuracy when evaluated alongside genomic AMD markers. Moreover, strong evidence implicates CEP as functionally related to AMD pathogenesis, a role which must be explored further. This avenue of research will foster improved understanding of the disease itself and perhaps reveal better therapeutic targets and options. Further research into the role of CEP in AMD pathogenesis and the application of CEP as an AMD biomarker is merited.
Collapse
Affiliation(s)
- Daniel Ardeljan
- Immunopathology Section, Laboratory of Immunology National Eye Institute, National Institutes of Health
| | | | | |
Collapse
|
184
|
Beattie JR, Pawlak AM, Boulton ME, Zhang J, Monnier VM, McGarvey JJ, Stitt AW. Multiplex analysis of age‐related protein and lipid modifications in human Bruch's membrane. FASEB J 2010. [DOI: 10.1096/fj.10.166090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- J. Renwick Beattie
- Centre for Vision and Vascular Science, School of Medicine and Dentistry Belfast UK
| | - Anna M. Pawlak
- Centre for Vision and Vascular Science, School of Medicine and Dentistry Belfast UK
| | | | - Jianye Zhang
- Department of PathologyCase Western Reserve University Cleveland Ohio USA
| | - Vincent M. Monnier
- Department of PathologyCase Western Reserve University Cleveland Ohio USA
| | - John J. McGarvey
- School of Chemistry and Chemical Engineering, Queen's University Belfast Belfast UK
| | - Alan W. Stitt
- Centre for Vision and Vascular Science, School of Medicine and Dentistry Belfast UK
| |
Collapse
|
185
|
West XZ, Malinin NL, Merkulova AA, Tischenko M, Kerr BA, Borden EC, Podrez EA, Salomon RG, Byzova TV. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 2010; 467:972-6. [PMID: 20927103 PMCID: PMC2990914 DOI: 10.1038/nature09421] [Citation(s) in RCA: 340] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 08/13/2010] [Indexed: 01/22/2023]
Abstract
Reciprocity of inflammation, oxidative stress and neovascularization is emerging as an important mechanism underlying numerous processes from tissue healing and remodelling to cancer progression. Whereas the mechanism of hypoxia-driven angiogenesis is well understood, the link between inflammation-induced oxidation and de novo blood vessel growth remains obscure. Here we show that the end products of lipid oxidation, ω-(2-carboxyethyl)pyrrole (CEP) and other related pyrroles, are generated during inflammation and wound healing and accumulate at high levels in ageing tissues in mice and in highly vascularized tumours in both murine and human melanoma. The molecular patterns of carboxyalkylpyrroles are recognized by Toll-like receptor 2 (TLR2), but not TLR4 or scavenger receptors on endothelial cells, leading to an angiogenic response that is independent of vascular endothelial growth factor. CEP promoted angiogenesis in hindlimb ischaemia and wound healing models through MyD88-dependent TLR2 signalling. Neutralization of endogenous carboxyalkylpyrroles impaired wound healing and tissue revascularization and diminished tumour angiogenesis. Both TLR2 and MyD88 are required for CEP-induced stimulation of Rac1 and endothelial migration. Taken together, these findings establish a new function of TLR2 as a sensor of oxidation-associated molecular patterns, providing a key link connecting inflammation, oxidative stress, innate immunity and angiogenesis.
Collapse
Affiliation(s)
- Xiaoxia Z West
- Department of Molecular Cardiology, J. J. Jacobs Center for Thrombosis and Vascular Biology, NB50, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world. It is a multifactorial disease, and current therapy predominantly limits damage only when it has already occurred. The macula is a source of high metabolic activity, and is therefore exposed to correspondingly high levels of reactive oxygen species (ROS). With age, the balance between production of ROS and local antioxidant levels is shifted, and damage ensues. Systemic ROS and antioxidant levels in AMD reflect these local processes. Genetic studies investigating mutations in antioxidant genes in AMD are inconclusive and further studies are indicated, especially to determine the role of mitochondria. Oral antioxidant supplements could be beneficial, and diet modification may help. Future treatments might either increase antioxidant capacity or reduce the production of ROS, using methods such as genetic manipulation. This article reviews the role of oxidative stress in AMD and the potential therapies that might have a role in preventing the blindness resulting from this disease.
Collapse
|
187
|
Rutar M, Provis JM, Valter K. Brief exposure to damaging light causes focal recruitment of macrophages, and long-term destabilization of photoreceptors in the albino rat retina. Curr Eye Res 2010; 35:631-43. [PMID: 20597649 DOI: 10.3109/02713681003682925] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To characterize the long-term spatiotemporal features of light-mediated retinal degeneration. METHODS Sprague-Dawley rats were exposed to 1000 lux for 24 h, then kept in dim light (5 lux), for up to 56 days. Animals were killed at 0, 3, 7, 28, and 56 days post-exposure, and retinas were prepared for immunohistochemistry. Outer nuclear layer (ONL) thickness and TUNEL labeling were used to quantify photoreceptor death. Antibodies to opsins, glial fibrillary acidic protein (GFAP), fibroblast growth factor-2 (FGF-2), and ED1 were used to assess the retina. RESULTS At 0 days post-exposure, we detected photoreceptor death 2 mm superior to the optic disc (the "hotspot"), and ED1-positive macrophages in the retinal vasculature and underlying choroid. By 3 days, the ONL was thinner and there was gliosis in the outer retina, where ED1 positive macrophages were also present. Few ED1 positive cells remained at 28 days. At 56 days, there were TUNEL-positive nuclei in the penumbra, and increased FGF-2, and GFAP expression by Müller cells (MCs). In inferior retina, outer segment length was initially reduced, but recovered to near-normal by 28 days. CONCLUSIONS Short exposure to damaging light destabilizes the retina adjacent to a hotspot of degeneration, so that the damaged region expands in size over time. Recruitment of macrophages is associated with the early phase of damage, but not with the longer term photoreceptor loss in the penumbra. Features of the focal and progressive retinal damage in this model are reminiscent of the progression of age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Matt Rutar
- Research School of Biology, The Australian National University, Canberra ACT 0200, Australia.
| | | | | |
Collapse
|
188
|
Liu A, Chang J, Lin Y, Shen Z, Bernstein PS. Long-chain and very long-chain polyunsaturated fatty acids in ocular aging and age-related macular degeneration. J Lipid Res 2010; 51:3217-29. [PMID: 20688753 DOI: 10.1194/jlr.m007518] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Retinal long-chain PUFAs (LC-PUFAs, C(12)-C(22)) play important roles in normal human retinal function and visual development, and some epidemiological studies of LC-PUFA intake suggest a protective role against the incidence of advanced age-related macular degeneration (AMD). On the other hand, retinal very long-chain PUFAs (VLC-PUFAs, C(n>22)) have received much less attention since their identification decades ago, due to their minor abundance and more difficult assays, but recent discoveries that defects in VLC-PUFA synthetic enzymes are associated with rare forms of inherited macular degenerations have refocused attention on their potential roles in retinal health and disease. We thus developed improved GC-MS methods to detect LC-PUFAs and VLC-PUFAs, and we then applied them to the study of their changes in ocular aging and AMD. With ocular aging, some VLC-PUFAs in retina and retinal pigment epithelium (RPE)/choroid peaked in middle age. Compared with age-matched normal donors, docosahexaenoic acid, adrenic acid, and some VLC-PUFAs in AMD retina and RPE/choroid were significantly decreased, whereas the ratio of n-6/n-3 PUFAs was significantly increased. All these findings suggest that deficiency of LC-PUFAs and VLC-PUFAs, and/or an imbalance of n-6/n-3 PUFAs, may be involved in AMD pathology.
Collapse
Affiliation(s)
- Aihua Liu
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | |
Collapse
|
189
|
Beattie JR, Pawlak AM, Boulton ME, Zhang J, Monnier VM, McGarvey JJ, Stitt AW. Multiplex analysis of age-related protein and lipid modifications in human Bruch's membrane. FASEB J 2010; 24:4816-24. [PMID: 20686107 DOI: 10.1096/fj.10-166090] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging of the human retina is characterized by progressive pathology, which can lead to vision loss. This progression is believed to involve reactive metabolic intermediates reacting with constituents of Bruch's membrane, significantly altering its physiochemical nature and function. We aimed to replace a myriad of techniques following these changes with one, Raman spectroscopy. We used multiplexed Raman spectroscopy to analyze the age-related changes in 7 proteins, 3 lipids, and 8 advanced glycation/lipoxidation endproducts (AGEs/ALEs) in 63 postmortem human donors. We provided an important database for Raman spectra from a broad range of AGEs and ALEs, each with a characteristic fingerprint. Many of these adducts were shown for the first time in human Bruch's membrane and are significantly associated with aging. The study also introduced the previously unreported up-regulation of heme during aging of Bruch's membrane, which is associated with AGE/ALE formation. Selection of donors ranged from ages 32 to 92 yr. We demonstrated that Raman spectroscopy can identify and quantify age-related changes in a single nondestructive measurement, with potential to measure age-related changes in vivo. We present the first directly recorded evidence of the key role of heme in AGE/ALE formation.
Collapse
Affiliation(s)
- J Renwick Beattie
- Centre for Vision and Vascular Science, School of Medicine and Dentistry, Queen's University Belfast, Belfast, UK
| | | | | | | | | | | | | |
Collapse
|
190
|
Karlstetter M, Ebert S, Langmann T. Microglia in the healthy and degenerating retina: insights from novel mouse models. Immunobiology 2010; 215:685-91. [PMID: 20573418 DOI: 10.1016/j.imbio.2010.05.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 05/20/2010] [Indexed: 12/24/2022]
Abstract
In contrast to the tremendous amount of research data from the central nervous system, relatively little is known about microglial homeostasis in the retina. This may be explained by a strong research bias towards important brain pathologies including Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis. In addition, there are specific technical limitations which hampered the analysis of retinal microglia, including their relatively small number in ocular tissue. The lack of experimental tools also prevented direct visualization and molecular analysis of this specialized neuronal macrophage population. Over the last few years, this situation has changed considerably as more and more retinal disorders have come into focus. Many rare monogenic forms as well as more prevalent complex disorders, in particular the age-related macular degeneration involves innate immune mechanisms. As a consequence, new genetic and experimental mouse models have been developed that mimic various forms of human retinal degeneration. In conjunction with these disease models, novel macrophage/microglia-specific reporter mice were established that allow the monitoring of retinal microglia in situ and in vivo. This review summarizes recent findings from these mouse models and thereby provides an overview of microglial homeostasis in the healthy and degenerating retina. Based on this knowledge, microglia-targeted therapies are envisioned which could delay or attenuate degenerative retinal disease.
Collapse
Affiliation(s)
- Marcus Karlstetter
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | | | | |
Collapse
|
191
|
Hollyfield JG, Perez VL, Salomon RG. A hapten generated from an oxidation fragment of docosahexaenoic acid is sufficient to initiate age-related macular degeneration. Mol Neurobiol 2010; 41:290-8. [PMID: 20221855 PMCID: PMC3844284 DOI: 10.1007/s12035-010-8110-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/15/2010] [Indexed: 01/16/2023]
Abstract
The protein adduct carboxyethylpyrrole (CEP) is present in age-related macular degeneration (AMD) eye tissue and in the blood of AMD patients at higher levels than found in age-matched non-AMD tissues. Autoantibodies to CEP are also higher in AMD blood samples than in controls. To test the hypothesis that this hapten is causally involved in initiating an inflammatory response in AMD, we immunized C57BL/6J mice with mouse serum albumin (MSA) adducted with CEP. Immunized mice develop antibodies to CEP, fix complement component-3 in Bruch's membrane, accumulate drusen below the retinal pigment epithelium during aging, show decreased a- and b-wave amplitudes in response to light, and develop lesions in the retinal pigment epithelium mimicking geographic atrophy, the blinding end-stage condition characteristic of the dry form of AMD. Inflammatory cells are present in the region of lesions and may be actively involved in the pathology observed. We conclude that early immunization of mice with CEP-adducted MSA sensitizes these animals to the ongoing production of CEP adducts in the outer retina where DHA is abundant and the conditions for oxidative damage are permissive. In response to this early sensitization, the immune system mounts a complement-mediated attack on the cells of the outer retina where CEP adducts are formed. This animal model for AMD is the first that was developed from an inflammatory signal discovered in eye tissue and blood from AMD patients. It provides a novel opportunity for dissecting the early pathology of AMD and the immune response contributing to this disorder. The availability of a mouse with a mechanistically based AMD-like disease that progresses rapidly is highly desirable. Such a model will allow for the efficient preclinical testing of the much-needed therapeutics quickly and inexpensively.
Collapse
Affiliation(s)
- Joe G Hollyfield
- Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.
| | | | | |
Collapse
|
192
|
Yuan X, Gu X, Crabb JS, Yue X, Shadrach K, Hollyfield JG, Crabb JW. Quantitative proteomics: comparison of the macular Bruch membrane/choroid complex from age-related macular degeneration and normal eyes. Mol Cell Proteomics 2010; 9:1031-46. [PMID: 20177130 PMCID: PMC2877969 DOI: 10.1074/mcp.m900523-mcp200] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/19/2010] [Indexed: 11/29/2022] Open
Abstract
A quantitative proteomics analysis of the macular Bruch membrane/choroid complex was pursued for insights into the molecular mechanisms of age-related macular degeneration (AMD). Protein in trephine samples from the macular region of 10 early/mid-stage dry AMD, six advanced dry AMD, eight wet AMD, and 25 normal control post-mortem eyes was analyzed by LC MS/MS iTRAQ (isobaric tags for relative and absolute quantitation) technology. A total of 901 proteins was quantified, including 556 proteins from > or =3 AMD samples. Most proteins differed little in amount between AMD and control samples and therefore reflect the proteome of normal macular tissues of average age 81. A total of 56 proteins were found to be elevated and 43 were found to be reduced in AMD tissues relative to controls. Analysis by category of disease progression revealed up to 16 proteins elevated or decreased in each category. About 60% of the elevated proteins are involved in immune response and host defense, including many complement proteins and damage-associated molecular pattern proteins such as alpha-defensins 1-3, protein S100s, crystallins, histones, and galectin-3. Four retinoid processing proteins were elevated only in early/mid-stage AMD, supporting a role for retinoids in AMD initiation. Proteins uniquely decreased in early/mid-stage AMD implicate hematologic malfunctions and weakened extracellular matrix integrity and cellular interactions. Galectin-3, a receptor for advanced glycation end products, was the most significantly elevated protein in advanced dry AMD, supporting a role for advanced glycation end products in dry AMD progression. The results endorse inflammatory processes in both early and advanced AMD pathology, implicate different pathways of progression to advanced dry and wet AMD, and provide a new database for hypothesis-driven and discovery-based studies of AMD.
Collapse
Affiliation(s)
- Xianglin Yuan
- From the ‡Cole Eye Institute and
- §Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Xiaorong Gu
- From the ‡Cole Eye Institute and
- §Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - John S. Crabb
- From the ‡Cole Eye Institute and
- §Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Xiuzhen Yue
- From the ‡Cole Eye Institute and
- §Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Karen Shadrach
- From the ‡Cole Eye Institute and
- §Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Joe G. Hollyfield
- From the ‡Cole Eye Institute and
- §Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
- ¶Departments of Ophthalmology and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106
| | - John W. Crabb
- From the ‡Cole Eye Institute and
- §Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
- ‖Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, and
- ¶Departments of Ophthalmology and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
193
|
Abstract
Age-related macular degeneration (AMD) is the most prevalent form of irreversible blindness worldwide in the elderly population. The pathology of dry AMD consists of macular degeneration of photoreceptors and the RPE, lipofuscin (A2E) accumulation, and drusen formation. Mice have been widely used for generating models that simulate human AMD features for investigating the pathogenesis, treatment and prevention of the disease. Although the mouse has no macula, focal atrophy of photoreceptors and RPE, lipofuscin accumulation, and increased A2E can develop in aged mouse eyes. However, drusen are rarely seen in mice because of their simpler Bruch's membrane and different process of lipofuscin extrusion compared with humans. Thus, analyzing basal deposits at the ultrastructural level and understanding the ultrastructural pathologic differences between various mouse AMD models are critical to comprehending the significance of research findings and response to possible therapeutic options for dry AMD. Based on the multifactorial pathogenesis of AMD, murine dry AMD models can be classified into three groups. First, genetically engineered mice that target genes related to juvenile macular dystrophies are the most common models, and they include abcr(-/-) (Stargardt disease), transgenic ELOVL4 (Stargardt-3 dominant inheritary disease), Efemp1(R345W/R345W) (Doyne honeycomb retinal dystrophy), and Timp3(S156C/S156C) (Sorsby fundus dystrophy) mice. Other murine models target genes relevant to AMD, including inflammatory genes such as Cfh(-/-), Ccl2(-/-), Ccr2(-/-), Cx3cr1(-/-), and Ccl2(-/-)/cx3cr1(-/-), oxidative stress associated genes such as Sod1(-/-) and Sod2 knockdown, metabolic pathway genes such as neprilysin(-/-) (amyloid beta), transgenic mcd/mcd (cathepsin D), Cp(-/-)/Heph(-/Y) (ferroxidase ceruloplasmin/hepaestin, iron metabolism), and transgenic ApoE4 on high fat and high cholesterol diet (lipid metabolism). Second, mice have also been immunologically manipulated by immunization with carboxyethylpyrrole (CEP), an oxidative fragment of DHA found in drusen, and found to present with dry AMD features. Third, natural mouse strains such as arrd2/arrd2 (Mdm gene mutation) and the senescence accelerated mice (SAM) spontaneously develop features of dry AMD like photoreceptor atrophy and thickening of Bruch's membrane. All the aforementioned models develop retinal lesions with various features that simulate dry AMD lesions: focal photoreceptor degeneration, abnormal RPE with increased lipofuscin, basal infolding, decreased melanosomes and degeneration. However, Bruch's membrane changes are less common. Most mice develop retinal lesions at an older age (6-24 months, depending on the models), while the Ccl2(-/-)/cx3cr1(-/-) mice develop lesions by 4-6 weeks. Although murine models present various degrees of retinal and/or RPE degeneration, classical drusen is extremely rare. Using electron microscopy, small drusenoid deposits are found between RPE and Bruch's membrane in a few models including Efemp1(R345W/R345W), Ccl2(-/-)/cx3cr1(-/-), neprilysin(-/-), transgenic mcd/mcd, and ApoE4 transgenic mice on a high fat diet. High A2E levels are measured in the retinas of abcr(-/-), transgenic ELOVL4, and Ccl2(-/-)/cx3cr1(-/-) mice. In summary, murine models provide useful tools for studying AMD pathogenesis and evaluating novel therapies for this disease. This review compares the major dry AMD murine models and discusses retinal pathology at the ultrastructural level.
Collapse
Affiliation(s)
- Hema L. Ramkumar
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, 20611, USA
| | - Jun Zhang
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
- Histology Core, National Eye Institute, National Institute of Health, Bethesda, MD 20892-1857, USA
| | - Chi-Chao Chan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA
| |
Collapse
|
194
|
Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS. Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 2010; 11:273-84. [PMID: 20212494 DOI: 10.1038/nrg2717] [Citation(s) in RCA: 470] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The retina provides exquisitely sensitive vision that relies on the integrity of a uniquely vulnerable cell, the photoreceptor (PR). The genetic and mechanistic causes of retinal degeneration due to PR cell death--which occurs in conditions such as retinitis pigmentosa and age-related macular degeneration--are being successfully dissected. Over one hundred loci, some containing common variants but most containing rare variants, are implicated in the genetic architecture of this complex trait. This genetic heterogeneity results in equally diverse disease mechanisms that affect almost every aspect of PR function but converge on a common cell death pathway. Although genetic and mechanistic diversity creates challenges for therapy, some approaches--particularly gene-replacement therapy--are showing considerable promise.
Collapse
Affiliation(s)
- Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK.
| | | | | | | |
Collapse
|
195
|
Sparrow JR, Wu Y, Kim CY, Zhou J. Phospholipid meets all-trans-retinal: the making of RPE bisretinoids. J Lipid Res 2010; 51:247-61. [PMID: 19666736 PMCID: PMC2803227 DOI: 10.1194/jlr.r000687] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 08/07/2009] [Indexed: 12/21/2022] Open
Abstract
The lipid phase of the photoreceptor outer segment membrane is essential to the photon capturing and signaling functions of rhodopsin. Rearrangement of phospholipids in the bilayer accompanies the formation of the active intermediates of rhodopsin following photon absorption. Furthermore, evidence for the formation of a condensation product between the photolyzed chromophore all-trans-retinal and phosphatidylethanolamine indicates that phospholipid may also participate in the movement of the retinoid in the membrane. The downside of these interactions is the formation of bisretinoid-phosphatidylethanolamine compounds that accumulate in retinal pigment epithelial cells with age and that are particularly abundant in some retinal disorders. The propensity of these compounds to negatively impact on the cells has been linked to the pathogenesis of some retinal disorders including juvenile onset recessive Stargardt disease and age-related macular degeneration.
Collapse
Affiliation(s)
- Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
196
|
Oxidative stress and the ubiquitin proteolytic system in age-related macular degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 664:447-56. [PMID: 20238046 DOI: 10.1007/978-1-4419-1399-9_51] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AMD is a leading cause of irreversible vision loss in people over 60 years of age. Although the pathogenesis of this disease is multifactorial, clinical studies have revealed that oxidative damage is a significant etiological factor. The ubiquitin proteolytic system (UPS) plays a major cytoprotective role in the retina. It accomplishes this largely by degrading oxidatively-damaged proteins to prevent their toxic accumulation. In this review, we discuss numerous features of the UPS in the retina and propose various ways that components of the UPS can be harnessed for therapeutic intervention in AMD. We discuss published work describing the distribution of various UPS enzymes in different retinal cell types and present new findings describing the localization of the class III ubiquitin conjugating enzymes. These enzymes are functional homologues of a pair of yeast enzymes that mediate the degradation of misfolded and oxidatively-damaged proteins. We also discuss recent work showing that only newly synthesized proteins which have incurred oxidative damage are targeted for degradation by the UPS whereas the turnover of oxidatively-damaged, long-lived proteins is largely unchanged. Additionally, we review recent work describing how polyubiquitylation influences the sorting of damaged proteins into one of two novel intracellular compartments. Finally, we discuss how the UPS modulates the stability and activity of Nrf2, the major anti-oxidant transcription factor in the retina.
Collapse
|
197
|
Proteomic and genomic biomarkers for age-related macular degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 664:411-7. [PMID: 20238042 DOI: 10.1007/978-1-4419-1399-9_47] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Toward early detection of susceptibility to age-related macular degeneration (AMD), we quantified plasma carboxyethylpyrrole (CEP) oxidative protein modifications and CEP autoantibodies by ELISA in 916 AMD and 488 control donors. Mean CEP adduct and autoantibody levels were elevated in AMD plasma by ∼60 and ∼30%, respectively, and the odds ratio for both CEP markers elevated was ∼3-fold greater in AMD than in control patients. Genotyping was performed for AMD risk polymorphisms associated with age-related maculopathy susceptibility 2 (ARMS2), high-temperature requirement factor A1 (HTRA1), complement factor H (CFH), and complement C3. The AMD risk predicted for those exhibiting elevated CEP markers and risk genotypes was 2- to 3-fold greater than the risk based on genotype alone. AMD donors carrying the ARMS2 and HTRA1 risk alleles were the most likely to exhibit elevated CEP markers. Receiver operating characteristic curves suggest that CEP markers alone can discriminate between AMD and control plasma donors with ∼76% accuracy and in combination with genomic markers, provide up to ∼80% discrimination accuracy. CEP plasma biomarkers, particularly in combination with genomic markers, offer a potential early warning system for predicting susceptibility to this blinding disease.
Collapse
|
198
|
Abstract
By its action on rhodopsin, light triggers the well-known visual transduction cascade, but can also induce cell damage and death through phototoxic mechanisms - a comprehensive understanding of which is still elusive despite more than 40 years of research. Herein, we integrate recent experimental findings to address several hypotheses of retinal light damage, premised in part on the close anatomical and metabolic relationships between the photoreceptors and the retinal pigment epithelium. We begin by reviewing the salient features of light damage, recently joined by evidence for retinal remodeling which has implications for the prognosis of recovery of function in retinal degenerations. We then consider select factors that influence the progression of the damage process and the extent of visual cell loss. Traditional, genetically modified, and emerging animal models are discussed, with particular emphasis on cone visual cells. Exogenous and endogenous retinal protective factors are explored, with implications for light damage mechanisms and some suggested avenues for future research. Synergies are known to exist between our long term light environment and photoreceptor cell death in retinal disease. Understanding the molecular mechanisms of light damage in a variety of animal models can provide valuable insights into the effects of light in clinical disorders and may form the basis of future therapies to prevent or delay visual cell loss.
Collapse
|
199
|
Li W, Laird JM, Lu L, Roychowdhury S, Nagy LE, Zhou R, Crabb JW, Salomon RG. Isolevuglandins covalently modify phosphatidylethanolamines in vivo: detection and quantitative analysis of hydroxylactam adducts. Free Radic Biol Med 2009; 47:1539-52. [PMID: 19751823 PMCID: PMC2783230 DOI: 10.1016/j.freeradbiomed.2009.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 08/31/2009] [Accepted: 09/03/2009] [Indexed: 11/17/2022]
Abstract
Levuglandins (LGs) and isolevuglandins (isoLGs, also called "isoketals" or "isoKs") are extraordinarily reactive products of cyclooxygenase- and free radical-induced oxidation of arachidonates. We now report the detection in vivo and quantitative analysis of LG/isoLG adducts that incorporate the amino group of phosphatidylethanolamines (PEs) into LG/isoLG-hydroxylactams. Notably, LC-MS/MS detection of these hydroxylactams is achieved with samples that are an order of magnitude smaller and sample processing is much simpler and less time consuming than required for measuring protein-derived LG/isoLG-lysyl lactams. A key feature of our protocol is treatment of biological phospholipid extracts with phospholipase A(2) to generate mainly 1-palmitoyl-2-lysoPE-hydroxylactams from heterogeneous mixtures of phospholipids with a variety of acyl groups on the 2 position. Over 160% higher mean levels of LG/isoLG-PE-hydroxylactam (P<0.001) were detected in liver from chronic ethanol-fed mice (32.4+/-6.3 ng/g, n=6) compared to controls (12.1+/-1.5 ng/g, n=4), and mean levels in plasma from patients with age-related macular degeneration (5.2+/-0.4 ng/ml, n=15) were elevated approximately 53% (P<0.0001) compared to those of healthy volunteers (3.4+/-0.1 ng/ml, n=15). Just as LG/isoLG-protein adducts provide a dosimeter of oxidative injury, this study suggests that LG/isoLG-PE-hydroxylactams are potential biomarkers for assessing risk for oxidative stress-stimulated diseases.
Collapse
Affiliation(s)
- Wei Li
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - James M. Laird
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Liang Lu
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | | | - Laura E. Nagy
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio
- Department of Pathobiology, Cleveland Clinic Foundation, Cleveland, Ohio
- Department of Gastroenterology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Rong Zhou
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - John W. Crabb
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Robert G. Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
200
|
Morohoshi K, Goodwin AM, Ohbayashi M, Ono SJ. Autoimmunity in retinal degeneration: autoimmune retinopathy and age-related macular degeneration. J Autoimmun 2009; 33:247-54. [PMID: 19846275 DOI: 10.1016/j.jaut.2009.09.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Autoantibody production is associated with a variety of ocular disorders, including autoimmune retinopathy (AIR) and age-related macular degeneration (AMD). A breakdown of immunologic tolerance (ocular immune privilege), including the blood-retinal barrier, anti-immune and anti-inflammatory proteins, and anterior chamber-associated immune deviation may play important roles in these disorders. Although the exact triggers for ocular autoimmunity are unknown, autoimmune targeting of retinal tissue is clearly associated with and may contribute to the pathogenesis of both AIR and AMD. Autoantibody production has long been associated with AIR, a collection of disorders that includes cancer-associated retinopathy, melanoma-associated retinopathy and non-paraneoplastic autoimmune retinopathy. A growing body of evidence indicates that AMD pathogenesis, too, involves ocular inflammation and autoimmunity. Identification and quantification of autoantibodies produced in patients with AIR and AMD may assist with diagnosis, prognosis, and choice of treatments. Animal models that allow investigation of ocular autoimmunity will also be needed to better understand the disease processes and to develop novel therapies. In this review we discuss ocular immune privilege and potential mechanisms of autoimmunity in the eye. We describe how autoimmunity relates to the pathogenesis of AIR and AMD. We explain how the antigen microarray technique is used to detect autoantibodies in patient serum samples, and discuss how current animal models for AMD can be used to investigate autoimmune pathogenesis. Finally, we outline unanswered questions and exciting areas of future study related to autoimmune retinal degeneration.
Collapse
Affiliation(s)
- Kei Morohoshi
- Dobbs Ocular Immunology Laboratories, Emory Eye Center and Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|