151
|
O-GlcNAcylation and oxidation of proteins: is signalling in the cardiovascular system becoming sweeter? Clin Sci (Lond) 2012; 123:473-86. [PMID: 22757958 PMCID: PMC3389386 DOI: 10.1042/cs20110638] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
O-GlcNAcylation is an unusual form of protein glycosylation, where a single-sugar [GlcNAc (N-acetylglucosamine)] is added (via β-attachment) to the hydroxyl moiety of serine and threonine residues of nuclear and cytoplasmic proteins. A complex and extensive interplay exists between O-GlcNAcylation and phosphorylation. Many phosphorylation sites are also known glycosylation sites, and this reciprocal occupancy may produce different activities or alter the stability in a target protein. The interplay between these two post-translational modifications is not always reciprocal, as some proteins can be concomitantly phosphorylated and O-GlcNAcylated, and the adjacent phosphorylation or O-GlcNAcylation can regulate the addition of either moiety. Increased cardiovascular production of ROS (reactive oxygen species), termed oxidative stress, has been consistently reported in various chronic diseases and in conditions where O-GlcNAcylation has been implicated as a contributing mechanism for the associated organ injury/protection (for example, diabetes, Alzheimer's disease, arterial hypertension, aging and ischaemia). In the present review, we will briefly comment on general aspects of O-GlcNAcylation and provide an overview of what has been reported for this post-translational modification in the cardiovascular system. We will then specifically address whether signalling molecules involved in redox signalling can be modified by O-GlcNAc (O-linked GlcNAc) and will discuss the critical interplay between O-GlcNAcylation and ROS generation. Experimental evidence indicates that the interactions between O-GlcNAcylation and oxidation of proteins are important not only for cell regulation in physiological conditions, but also under pathological states where the interplay may become dysfunctional and thereby exacerbate cellular injury.
Collapse
|
152
|
Drougat L, Olivier-Van Stichelen S, Mortuaire M, Foulquier F, Lacoste AS, Michalski JC, Lefebvre T, Vercoutter-Edouart AS. Characterization of O-GlcNAc cycling and proteomic identification of differentially O-GlcNAcylated proteins during G1/S transition. Biochim Biophys Acta Gen Subj 2012; 1820:1839-48. [PMID: 22967762 DOI: 10.1016/j.bbagen.2012.08.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/21/2012] [Accepted: 08/27/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND DNA replication represents a critical step of the cell cycle which requires highly controlled and ordered regulatory mechanisms to ensure the integrity of genome duplication. Among a plethora of elements, post-translational modifications (PTMs) ensure the spatiotemporal regulation of pivotal proteins orchestrating cell division. Despite increasing evidences showing that O-GlcNAcylation regulates mitotic events, the impact of this PTM in the early steps of the cell cycle remains poorly understood. METHODS AND RESULTS Quiescent MCF7 cells were stimulated by serum mitogens and cell cycle progression was determined by flow cytometry. The levels of O-GlcNAc modified proteins, O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA) were examined by Western blotting and OGA activity was measured during the progression of cells towards S phase. A global decrease in O-GlcNAcylation was observed at S phase entry, concomitantly to an increase in the activity of OGA. A combination of two-dimensional electrophoresis, Western blotting and mass spectrometry was then used to detect and identify cell cycle-dependent putative O-GlcNAcylated proteins. 58 cytoplasmic and nuclear proteins differentially O-GlcNAcylated through G1/S transition were identified and the O-GlcNAc variations of Cytokeratin 8, hnRNP K, Caprin-1, Minichromosome Maintenance proteins MCM3, MCM6 and MCM7 were validated by immunoprecipitation. CONCLUSIONS The dynamics of O-GlcNAc is regulated during G1/S transition and observed on key proteins involved in the cytoskeleton networks, mRNA processing, translation, protein folding and DNA replication. GENERAL SIGNIFICANCE Our results led us to propose that O-GlcNAcylation joins the PTMs that take part in the regulation of DNA replication initiation.
Collapse
Affiliation(s)
- Ludivine Drougat
- Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Nilsson J, Halim A, Grahn A, Larson G. Targeting the glycoproteome. Glycoconj J 2012; 30:119-36. [PMID: 22886069 PMCID: PMC3552370 DOI: 10.1007/s10719-012-9438-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/06/2012] [Accepted: 07/26/2012] [Indexed: 12/12/2022]
Abstract
Despite numerous original publications describing the structural complexity of N- and O-linked glycans on glycoproteins, only very few answer the basic question of which particular glycans are linked to which amino acid residues along the polypeptide chain. Such structural information is of fundamental importance for understanding the biological roles of complex glycosylations as well as deciphering their non-template driven biosynthesis. This review focuses on presenting and commenting on recent strategies, specifically aimed at identifying the glycoproteome of cultured cells and biological samples, using targeted and global enrichment procedures and utilizing the high resolution power, high through-put capacity and complementary fragmentation techniques of tandem mass spectrometry. The goal is to give an update of this emerging field of protein and glyco-sciences and suggest routes to bridge the data gap between the two aspects of glycoprotein characteristics, i.e. glycan structures and their attachment sites.
Collapse
Affiliation(s)
- Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg 413 45, Sweden
| | | | | | | |
Collapse
|
154
|
Vigetti D, Deleonibus S, Moretto P, Karousou E, Viola M, Bartolini B, Hascall VC, Tammi M, De Luca G, Passi A. Role of UDP-N-acetylglucosamine (GlcNAc) and O-GlcNAcylation of hyaluronan synthase 2 in the control of chondroitin sulfate and hyaluronan synthesis. J Biol Chem 2012; 287:35544-35555. [PMID: 22887999 DOI: 10.1074/jbc.m112.402347] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1-3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t(½) >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies.
Collapse
Affiliation(s)
- Davide Vigetti
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Sara Deleonibus
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Paola Moretto
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Eugenia Karousou
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Manuela Viola
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Barbara Bartolini
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Vincent C Hascall
- Biomedical Engineering ND20, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Markku Tammi
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Giancarlo De Luca
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy
| | - Alberto Passi
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J. H. Dunant 5, 21100 Varese, Italy.
| |
Collapse
|
155
|
Trinidad JC, Barkan DT, Gulledge BF, Thalhammer A, Sali A, Schoepfer R, Burlingame AL. Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteomics 2012; 11:215-29. [PMID: 22645316 DOI: 10.1074/mcp.o112.018366] [Citation(s) in RCA: 346] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a dynamic, reversible monosaccharide modifier of serine and threonine residues on intracellular protein domains. Crosstalk between O-GlcNAcylation and phosphorylation has been hypothesized. Here, we identified over 1750 and 16,500 sites of O-GlcNAcylation and phosphorylation from murine synaptosomes, respectively. In total, 135 (7%) of all O-GlcNAcylation sites were also found to be sites of phosphorylation. Although many proteins were extensively phosphorylated and minimally O-GlcNAcylated, proteins found to be extensively O-GlcNAcylated were almost always phosphorylated to a similar or greater extent, indicating the O-GlcNAcylation system is specifically targeting a subset of the proteome that is also phosphorylated. Both PTMs usually occur on disordered regions of protein structure, within which, the location of O-GlcNAcylation and phosphorylation is virtually random with respect to each other, suggesting that negative crosstalk at the structural level is not a common phenomenon. As a class, protein kinases are found to be more extensively O-GlcNAcylated than proteins in general, indicating the potential for crosstalk of phosphorylation with O-GlcNAcylation via regulation of enzymatic activity.
Collapse
Affiliation(s)
- Jonathan C Trinidad
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California 94158, USA
| | | | | | | | | | | | | |
Collapse
|
156
|
Overath T, Kuckelkorn U, Henklein P, Strehl B, Bonar D, Kloss A, Siele D, Kloetzel PM, Janek K. Mapping of O-GlcNAc sites of 20 S proteasome subunits and Hsp90 by a novel biotin-cystamine tag. Mol Cell Proteomics 2012; 11:467-77. [PMID: 22556278 PMCID: PMC3412975 DOI: 10.1074/mcp.m111.015966] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The post-translational modification of proteins with O-GlcNAc is involved in various cellular processes including signal transduction, transcription, translation, and nuclear transport. This transient protein modification enables cells or tissues to adapt to nutrient conditions or stress. O-Glycosylation of the 26 S proteasome ATPase subunit Rpt2 is known to influence the stability of proteins by reducing their proteasome-dependent degradation. In contrast, knowledge of the sites of O-GlcNAcylation on the subunits of the catalytic core of the 26 S proteasome, the 20 S proteasome, and the impact on proteasome activity is very limited. This is predominantly because O-GlcNAc modifications are often substoichiometric and because 20 S proteasomes represent a complex protein mixture of different subtypes. Therefore, identification of O-GlcNAcylation sites on proteasome subunits essentially requires effective enrichment strategies. Here we describe an adapted β-elimination-based derivatization method of O-GlcNAc peptides using a novel biotin-cystamine tag. The specificity of the reaction was increased by differential isotopic labeling with either "light" biotin-cystamine or deuterated "heavy" biotin-cystamine. The enriched peptides were analyzed by LC-MALDI-TOF/TOF-MS and relatively quantified. The method was optimized using bovine α-crystallin and then applied to murine 20 S proteasomes isolated from spleen and brain and murine Hsp90 isolated from liver. Using this approach, we identified five novel and one known O-GlcNAc sites within the murine 20 S proteasome core complex that are located on five different subunits and in addition two novel O-GlcNAc sites on murine Hsp90β, of which one corresponds to a previously described phosphorylation site.
Collapse
Affiliation(s)
- Thorsten Overath
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, 13347 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Pan PW, Zhang Q, Hou J, Liu Z, Bai F, Cao MR, Sun T, Bai G. Cell surface glycoprotein profiling of cancer cells based on bioorthogonal chemistry. Anal Bioanal Chem 2012; 403:1661-70. [DOI: 10.1007/s00216-012-5989-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/09/2012] [Accepted: 03/27/2012] [Indexed: 01/06/2023]
|
158
|
Paruchuri VDP, Zachara NE. Defining the heart and cardiovascular O-GlcNAcome: a review of approaches and methods. ACTA ACUST UNITED AC 2012; 4:710. [PMID: 22187449 DOI: 10.1161/circgenetics.110.957779] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Venkata D P Paruchuri
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | | |
Collapse
|
159
|
Darula Z, Sherman J, Medzihradszky KF. How to dig deeper? Improved enrichment methods for mucin core-1 type glycopeptides. Mol Cell Proteomics 2012; 11:O111.016774. [PMID: 22393263 DOI: 10.1074/mcp.o111.016774] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two different workflows were tested in order to develop methods that provide deeper insight into the secreted O-glycoproteome. Bovine serum samples were subjected to lectin affinity-chromatography both at the protein- and peptide-level in order to selectively isolate glycopeptides with the most common, mucin core-1 sugar. This enrichment step was implemented with either protein-level mixed-bed ion-exchange chromatography or with peptide-level electrostatic repulsion hydrophilic interaction chromatography. Both methods led to at least 65% of the identified products being glycopeptides, in comparison to ≈ 25% without the additional chromatography steps [Darula, Z., and Medzihradszky, K. F. (2009) Affinity enrichment and characterization of mucin core-1 type glycopeptides from bovine serum. Mol. Cell. Proteomics 8, 2515-2526]. In order to improve not only the isolation but also the characterization of the glycopeptides exoglycosidases were used to eliminate carbohydrate extensions from the directly peptide-bound GalNAc units. Consequent tandem MS analysis of the mixtures using higher-energy collision-dissociation and electron-transfer dissociation led to the identification of 124 glycosylation sites in 51 proteins. While the electron-transfer dissociation data provided the bulk of the information for both modified sequence and modification site assignment, the higher-energy collision-dissociation data frequently yielded confirmation of the peptide identity, and revealed the presence of some core-2 or core-3 oligosaccharides. More than two-thirds of the sites as well as the proteins have never been reported modified.
Collapse
Affiliation(s)
- Z Darula
- Proteomics Research Group, Biological Research Center of Hungarian Academy of Sciences, Szeged, H-6701, Szeged, POB 521, Hungary
| | | | | |
Collapse
|
160
|
Fukui K, Takahashi K. Infrared multiple photon dissociation spectroscopy and computational studies of O-glycosylated peptides. Anal Chem 2012; 84:2188-94. [PMID: 22300132 DOI: 10.1021/ac202379v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The infrared multiple photon dissociation (IRMPD) spectra of O-glycosylated peptides in the gas phase were studied in the IR scanning range of 5.7-9.5 μm. Fragmentation of protonated and sodiated O-glycopeptides was investigated using electrospray ionization (ESI) Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry (MS) with a free electron laser (FEL). FEL is used in the IRMPD technique as a tunable IR light source. In the IRMPD spectroscopic analysis of the protonated O-glycopeptide, fragment ions of the b/y and B/Y types were observed in the range of 5.7-9.5 μm, corresponding to the cleavage of the backbone in the parent amino acid sequence and glycosyl bonds, whereas the spectra of the sodiated glycopeptide showed major peaks of photoproducts of the B/Y type in the range of 8.4-9.5 μm. The IRMPD spectra of the O-glycopeptides were compared with simulated IR spectra for the structures obtained from the molecular dynamics.
Collapse
Affiliation(s)
- Kazuhiko Fukui
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.
| | | |
Collapse
|
161
|
Yeh CH, Chen SH, Li DT, Lin HP, Huang HJ, Chang CI, Shih WL, Chern CL, Shi FK, Hsu JL. Magnetic bead-based hydrophilic interaction liquid chromatography for glycopeptide enrichments. J Chromatogr A 2012; 1224:70-8. [DOI: 10.1016/j.chroma.2011.12.057] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/14/2011] [Accepted: 12/19/2011] [Indexed: 11/25/2022]
|
162
|
Zachara NE. The roles of O-linked β-N-acetylglucosamine in cardiovascular physiology and disease. Am J Physiol Heart Circ Physiol 2012; 302:H1905-18. [PMID: 22287582 DOI: 10.1152/ajpheart.00445.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
More than 1,000 proteins of the nucleus, cytoplasm, and mitochondria are dynamically modified by O-linked β-N-acetylglucosamine (O-GlcNAc), an essential post-translational modification of metazoans. O-GlcNAc, which modifies Ser/Thr residues, is thought to regulate protein function in a manner analogous to protein phosphorylation and, on a subset of proteins, appears to have a reciprocal relationship with phosphorylation. Like phosphorylation, O-GlcNAc levels change dynamically in response to numerous signals including hyperglycemia and cellular injury. Recent data suggests that O-GlcNAc appears to be a key regulator of the cellular stress response, the augmentation of which is protective in models of acute vascular injury, trauma hemorrhage, and ischemia-reperfusion injury. In contrast to these studies, O-GlcNAc has also been implicated in the development of hypertension and type II diabetes, leading to vascular and cardiac dysfunction. Here we summarize the current understanding of the roles of O-GlcNAc in the heart and vasculature.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
163
|
Affinity-based proteomic profiling: Problems and achievements. Proteomics 2012; 12:621-37. [DOI: 10.1002/pmic.201100373] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/01/2011] [Accepted: 09/13/2011] [Indexed: 11/07/2022]
|
164
|
Hanisch FG. O-glycoproteomics: site-specific O-glycoprotein analysis by CID/ETD electrospray ionization tandem mass spectrometry and top-down glycoprotein sequencing by in-source decay MALDI mass spectrometry. Methods Mol Biol 2012; 842:179-189. [PMID: 22259136 DOI: 10.1007/978-1-61779-513-8_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The sites of mucin-type O-glycosylation are difficult to predict, making structural analysis by mass spectrometry indispensible. This chapter refers to state-of-the-art techniques in the site localization of O-linked glycans and their structural characterization in situ using tandem ESI and MALDI mass spectrometry. Detailed protocols are provided that describe the application of nano-LC-ESI-MS/MS with alternative fragmentation modes (collision-induced dissociation vs. electron-transfer dissociation) for the analysis of O-glycopeptides. Moreover, a top-down sequencing approach by MALDI-MS is presented that is based on the in-source decay of intact glycoproteins or large glycopeptides and allows a ladder sequencing of up to 70 amino acid residues from both termini with unequivocal assignment of modified sites.
Collapse
Affiliation(s)
- Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faulty, and Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany.
| |
Collapse
|
165
|
Halfinger B, Sarg B, Lindner HH. Evaluation of non-reductive β-elimination/Michael addition for glycosylation site determination in mucin-like O-glycopeptides. Electrophoresis 2011; 32:3546-53. [DOI: 10.1002/elps.201100393] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
166
|
Zhang Y, Tang X, Yao L, Chen K, Jia W, Hu X, Xu LX. Lectin capture strategy for effective analysis of cell secretome. Proteomics 2011; 12:32-6. [DOI: 10.1002/pmic.201100323] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 09/29/2011] [Accepted: 10/11/2011] [Indexed: 01/18/2023]
|
167
|
Zachara NE, Vosseller K, Hart GW. Detection and analysis of proteins modified by O-linked N-acetylglucosamine. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2011; Chapter 12:12.8.1-12.8.33. [PMID: 22045558 PMCID: PMC3349994 DOI: 10.1002/0471140864.ps1208s66] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
O-GlcNAc is a common post-translational modification of nuclear, mitochondrial, and cytoplasmic proteins that is implicated in the etiology of type II diabetes and Alzheimer's disease, as well as cardioprotection. This unit covers simple and comprehensive techniques for identifying proteins modified by O-GlcNAc, studying the enzymes that add and remove O-GlcNAc, and mapping O-GlcNAc modification sites.
Collapse
Affiliation(s)
- Natasha E. Zachara
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Keith Vosseller
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Gerald W. Hart
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
168
|
Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 2011; 80:825-58. [PMID: 21391816 DOI: 10.1146/annurev-biochem-060608-102511] [Citation(s) in RCA: 1030] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
O-GlcNAcylation is the addition of β-D-N-acetylglucosamine to serine or threonine residues of nuclear and cytoplasmic proteins. O-linked N-acetylglucosamine (O-GlcNAc) was not discovered until the early 1980s and still remains difficult to detect and quantify. Nonetheless, O-GlcNAc is highly abundant and cycles on proteins with a timescale similar to protein phosphorylation. O-GlcNAc occurs in organisms ranging from some bacteria to protozoans and metazoans, including plants and nematodes up the evolutionary tree to man. O-GlcNAcylation is mostly on nuclear proteins, but it occurs in all intracellular compartments, including mitochondria. Recent glycomic analyses have shown that O-GlcNAcylation has surprisingly extensive cross talk with phosphorylation, where it serves as a nutrient/stress sensor to modulate signaling, transcription, and cytoskeletal functions. Abnormal amounts of O-GlcNAcylation underlie the etiology of insulin resistance and glucose toxicity in diabetes, and this type of modification plays a direct role in neurodegenerative disease. Many oncogenic proteins and tumor suppressor proteins are also regulated by O-GlcNAcylation. Current data justify extensive efforts toward a better understanding of this invisible, yet abundant, modification. As tools for the study of O-GlcNAc become more facile and available, exponential growth in this area of research will eventually take place.
Collapse
Affiliation(s)
- Gerald W Hart
- Departments of Biological Chemistry and Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205
| | | | | | | |
Collapse
|
169
|
Glycoproteomics-based identification of cancer biomarkers. INTERNATIONAL JOURNAL OF PROTEOMICS 2011; 2011:601937. [PMID: 22084691 PMCID: PMC3195811 DOI: 10.1155/2011/601937] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/16/2011] [Indexed: 01/06/2023]
Abstract
Protein glycosylation is one of the most common posttranslational modifications in mammalian cells. It is involved in many biological pathways and molecular functions and is well suited for proteomics-based disease investigations. Aberrant protein glycosylation may be associated with disease processes. Specific glycoforms of glycoproteins may serve as potential biomarkers for the early detection of disease or as biomarkers for the evaluation of therapeutic efficacy for treatment of cancer, diabetes, and other diseases. Recent technological developments, including lectin affinity chromatography and mass spectrometry, have provided researchers the ability to obtain detailed information concerning protein glycosylation. These in-depth investigations, including profiling and quantifying glycoprotein expression, as well as comprehensive glycan structural analyses may provide important information leading to the development of disease-related biomarkers. This paper describes methodologies for the detection of cancer-related glycoprotein and glycan structural alterations and briefly summarizes several current cancer-related findings.
Collapse
|
170
|
Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, Luo H, Zhang Y, He W, Yang K, Zwaans BMM, Tishkoff D, Ho L, Lombard D, He TC, Dai J, Verdin E, Ye Y, Zhao Y. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 2011; 10:M111.012658. [PMID: 21908771 DOI: 10.1074/mcp.m111.012658] [Citation(s) in RCA: 567] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein post-translational modifications (PTMs) at the lysine residue, such as lysine methylation, acetylation, and ubiquitination, are diverse, abundant, and dynamic. They play a key role in the regulation of diverse cellular physiology. Here we report discovery of a new type of lysine PTM, lysine malonylation (Kmal). Kmal was initially detected by mass spectrometry and protein sequence-database searching. The modification was comprehensively validated by Western blot, tandem MS, and high-performance liquid chromatography of synthetic peptides, isotopic labeling, and identification of multiple Kmal substrate proteins. Kmal is a dynamic and evolutionarily conserved PTM observed in mammalian cells and bacterial cells. In addition, we demonstrate that Sirt5, a member of the class III lysine deacetylases, can catalyze lysine demalonylation and lysine desuccinylation reactions both in vitro and in vivo. This result suggests the possibility of nondeacetylation activity of other class III lysine deacetylases, especially those without obvious acetylation protein substrates. Our results therefore reveal a new type of PTM pathway and identify the first enzyme that can regulate lysine malonylation and lysine succinylation status.
Collapse
Affiliation(s)
- Chao Peng
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Zhao P, Viner R, Teo CF, Boons GJ, Horn D, Wells L. Combining high-energy C-trap dissociation and electron transfer dissociation for protein O-GlcNAc modification site assignment. J Proteome Res 2011; 10:4088-104. [PMID: 21740066 PMCID: PMC3172619 DOI: 10.1021/pr2002726] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mass spectrometry-based studies of proteins that are post-translationally modified by O-linked β-N-acetylglucosamine (O-GlcNAc) are challenged in effectively identifying the sites of modification while simultaneously sequencing the peptides. Here we tested the hypothesis that a combination of high-energy C-trap dissociation (HCD) and electron transfer dissociation (ETD) could specifically target the O-GlcNAc modified peptides and elucidate the amino acid sequence while preserving the attached GlcNAc residue for accurate site assignment. By taking advantage of the recently characterized O-GlcNAc-specific IgG monoclonal antibodies and the combination of HCD and ETD fragmentation techniques, O-GlcNAc modified proteins were enriched from HEK293T cells and subsequently characterized using the LTQ Orbitrap Velos ETD (Thermo Fisher Scientific) mass spectrometer. In our data set, 83 sites of O-GlcNAc modification are reported with high confidence confirming that the HCD/ETD combined approach is amenable to the detection and site assignment of O-GlcNAc modified peptides. Realizing HCD triggered ETD fragmentation on a linear ion trap/Orbitrap platform for more in-depth analysis and application of this technique to other post-translationally modified proteins are currently underway. Furthermore, this report illustrates that the O-GlcNAc transferase appears to demonstrate promiscuity with regards to the hydroxyl-containing amino acid modified in short stretches of primary sequence of the glycosylated polypeptides.
Collapse
Affiliation(s)
- Peng Zhao
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA, 30602
- University of Georgia, Chemistry, Athens, GA, 30602
| | | | - Chin Fen Teo
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA, 30602
- University of Georgia, Biochemistry and Molecular Biology, Athens, GA, 30602
| | - Geert-Jan Boons
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA, 30602
- University of Georgia, Chemistry, Athens, GA, 30602
| | | | - Lance Wells
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA, 30602
- University of Georgia, Chemistry, Athens, GA, 30602
- University of Georgia, Biochemistry and Molecular Biology, Athens, GA, 30602
| |
Collapse
|
172
|
Robust in-gel fluorescence detection of mucin-type O-linked glycosylation. Bioorg Med Chem Lett 2011; 21:5062-6. [DOI: 10.1016/j.bmcl.2011.04.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/01/2011] [Accepted: 04/07/2011] [Indexed: 01/24/2023]
|
173
|
Dennis MD, Schrufer TL, Bronson SK, Kimball SR, Jefferson LS. Hyperglycemia-induced O-GlcNAcylation and truncation of 4E-BP1 protein in liver of a mouse model of type 1 diabetes. J Biol Chem 2011; 286:34286-97. [PMID: 21840999 DOI: 10.1074/jbc.m111.259457] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
4E-BP1 is a protein that, in its hypophosphorylated state, binds the mRNA cap-binding protein eIF4E and represses cap-dependent mRNA translation. By doing so, it plays a major role in the regulation of gene expression by controlling the overall rate of mRNA translation as well as the selection of mRNAs for translation. Phosphorylation of 4E-BP1 causes it to release eIF4E to function in mRNA translation. 4E-BP1 is also subject to covalent addition of N-acetylglucosamine to Ser or Thr residues (O-GlcNAcylation) as well as to truncation. In the truncated form, it is both resistant to phosphorylation and able to bind eIF4E with high affinity. In the present study, Ins2(Akita/+) diabetic mice were used to test the hypothesis that hyperglycemia and elevated flux of glucose through the hexosamine biosynthetic pathway lead to increased O-GlcNAcylation and truncation of 4E-BP1 and consequently decreased eIF4E function in the liver. The amounts of both full-length and truncated 4E-BP1 bound to eIF4E were significantly elevated in the liver of diabetic as compared with non-diabetic mice. In addition, O-GlcNAcylation of both the full-length and truncated proteins was elevated by 2.5- and 5-fold, respectively. Phlorizin treatment of diabetic mice lowered blood glucose concentrations and reduced the expression and O-GlcNAcylation of 4E-BP1. Additionally, when livers were perfused in the absence of insulin, 4E-BP1 phosphorylation in the livers of diabetic mice was normalized to the control value, yet O-GlcNAcylation and the association of 4E-BP1 with eIF4E remained elevated in the liver of diabetic mice. These findings provide insight into the pathogenesis of metabolic abnormalities associated with diabetes.
Collapse
Affiliation(s)
- Michael D Dennis
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
174
|
Gesteira TF, Coulson-Thomas VJ, Ogata FT, Farias EHC, Cavalheiro RP, de Lima MA, Cunha GLA, Nakayasu ES, Almeida IC, Toma L, Nader HB. A novel approach for the characterisation of proteoglycans and biosynthetic enzymes in a snail model. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1862-9. [PMID: 21854878 DOI: 10.1016/j.bbapap.2011.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/13/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
Proteoglycans encompass a heterogeneous group of glycoconjugates where proteins are substituted with linear, highly negatively charged glycosaminoglycan chains. Sulphated glycosaminoglycans are ubiquitous to the animal kingdom of the Eukarya domain. Information on the distribution and characterisation of proteoglycans in invertebrate tissues is limited and restricted to a few species. By the use of multidimensional protein identification technology and immunohistochemistry, this study shows for the first time the presence and tissue localisation of different proteoglycans, such as perlecan, aggrecan, and heparan sulphate proteoglycan, amongst others, in organs of the gastropoda Achatina fulica. Through a proteomic analysis of Golgi proteins and immunohistochemistry of tissue sections, we detected the machinery involved in glycosaminoglycan biosynthesis, related to polymer formation (polymerases), as well as secondary modifications (sulphation and uronic acid epimerization). Therefore, this work not only identifies both the proteoglycan core proteins and glycosaminoglycan biosynthetic enzymes in invertebrates but also provides a novel method for the study of glycosaminoglycan and proteoglycan evolution.
Collapse
Affiliation(s)
- Tarsis F Gesteira
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Zachara NE, Vosseller K, Hart GW. Detection and analysis of proteins modified by O-linked N-acetylglucosamine. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2011; Chapter 17:Unit 17.6. [PMID: 21732316 PMCID: PMC3329785 DOI: 10.1002/0471142727.mb1706s95] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
O-GlcNAc is a common post-translational modification of nuclear, mitochondrial, and cytoplasmic proteins that is implicated in the etiology of type II diabetes and Alzheimer's disease, as well as cardioprotection. This unit covers simple and comprehensive techniques for identifying proteins modified by O-GlcNAc, studying the enzymes that add and remove O-GlcNAc, and mapping O-GlcNAc modification sites.
Collapse
Affiliation(s)
- Natasha E. Zachara
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Keith Vosseller
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Gerald W. Hart
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
176
|
Hanisch FG. Top-down sequencing of O-glycoproteins by in-source decay matrix-assisted laser desorption ionization mass spectrometry for glycosylation site analysis. Anal Chem 2011; 83:4829-37. [PMID: 21526855 DOI: 10.1021/ac200493c] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The sites of mucin-type O-glycosylation are largely unpredictable, making structural analysis by mass spectrometry (MS) indispensible. On the peptide level, a site localization and characterization of O-linked glycans in situ using tandem MS with electron-transfer dissociation or matrix-assisted laser desorption ionization (MALDI) MS with postsource decay have been reported. The top-down sequencing on the protein level by MALDI-MS is based on the in-source decay (ISD) of intact glycoproteins induced by hydrogen radical transfer from the matrix. It allows a ladder sequencing from both termini with assignment of O-glycosylation sites based on intense c-, y-, and z-type ions. The feasibility of ISD-MALDI-MS in the localization of O-glycosylation sites was demonstrated with synthetic O-glycopeptides, the tandem repeat domain of recombinant MUC1, and the natural bovine glycoproteins asialofetuin and desialylated κ-casein. Ladder sequencing of the 17-18.5 kD MUC1 hexarepeat domains revealed (1) cell-specific glycosylation site patterns on comparison of probes expressed in human HEK-293 or Drosophila S2 cells, and (2) a site-specific microheterogeneity at the Thr/Ser sites with variations of the glycan compositions from zero to four monosaccharides. Novel O-glycosylation sites in the C-terminal domains of fetuin (T334) and κ-caseinoglycopeptide (S154 and T156) were assigned, the former representing a sequence conflict with the published T154.
Collapse
Affiliation(s)
- Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Köln, Germany.
| |
Collapse
|
177
|
Chemical reporters for fluorescent detection and identification of O-GlcNAc-modified proteins reveal glycosylation of the ubiquitin ligase NEDD4-1. Proc Natl Acad Sci U S A 2011; 108:8146-51. [PMID: 21540332 DOI: 10.1073/pnas.1102458108] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamic modification of nuclear and cytoplasmic proteins by the monosaccharide N-acetyl-glucosamine (GlcNAc) continues to emerge as an important regulator of many biological processes. Herein we describe the development of an alkynyl-modified GlcNAc analog (GlcNAlk) as a new chemical reporter of O-GlcNAc modification in living cells. This strategy is based on metabolic incorporation of reactive functionality into the GlcNAc biosynthetic pathway. When combined with the Cu(I)-catalyzed [3 + 2] azide-alkyne cycloaddition, this chemical reporter allowed for the robust in-gel fluorescent visualization of O-GlcNAc and affinity enrichment and identification of O-GlcNAc-modified proteins. Using in-gel fluorescence detection, we characterized the metabolic fates of GlcNAlk and the previously reported azido analog, GlcNAz. We confirmed previous results that GlcNAz can be metabolically interconverted to GalNAz, whereas GlcNAlk does not, thereby yielding a more specific metabolic reporter of O-GlcNAc modification. We also used GlcNAlk, in combination with a biotin affinity tag, to identify 374 proteins, 279 of which were not previously reported, and we subsequently confirmed the enrichment of three previously uncharacterized proteins. Finally we confirmed the O-GlcNAc modification of the ubiquitin ligase NEDD4-1, the first reported glycosylation of this protein.
Collapse
|
178
|
Abstract
Proteomic technologies are used to study the complexity of proteins, their roles, and biological functions. It is based on the premise that the diversity of proteins, comprising their isoforms, and posttranslational modifications (PTMs) underlies biology. Based on an annotated human cardiac protein database, 62% have at least one PTM (phosphorylation currently dominating), whereas ≈25% have more than one type of modification. The field of proteomics strives to observe and quantify this protein diversity. It represents a broad group of technologies and methods arising from analytic protein biochemistry, analytic separation, mass spectrometry, and bioinformatics. Since the 1990s, the application of proteomic analysis has been increasingly used in cardiovascular research. Technology development and adaptation have been at the heart of this progress. Technology undergoes a maturation, becoming routine and ultimately obsolete, being replaced by newer methods. Because of extensive methodological improvements, many proteomic studies today observe 1000 to 5000 proteins. Only 5 years ago, this was not feasible. Even so, there are still road blocks. Nowadays, there is a focus on obtaining better characterization of protein isoforms and specific PTMs. Consequently, new techniques for identification and quantification of modified amino acid residues are required, as is the assessment of single-nucleotide polymorphisms in addition to determination of the structural and functional consequences. In this series, 4 articles provide concrete examples of how proteomics can be incorporated into cardiovascular research and address specific biological questions. They also illustrate how novel discoveries can be made and how proteomic technology has continued to evolve.
Collapse
Affiliation(s)
- Jennifer E Van Eyk
- Johns Hopkins University Bayview Proteomic Center, Rm 602, Mason F. Bldg Center Tower, Johns Hopkins University, Baltimore, MD 21239, USA.
| |
Collapse
|
179
|
Wells L, Slawson C, Hart GW. The E2F-1 associated retinoblastoma-susceptibility gene product is modified by O-GlcNAc. Amino Acids 2011; 40:877-83. [PMID: 20680651 PMCID: PMC3030635 DOI: 10.1007/s00726-010-0709-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
Abstract
The retinoblastoma-susceptibility gene product (pRB) is a classical tumor suppressor. pRB regulates a number of cellular processes including proliferation, differentiation, and apoptosis. One of the essential mechanisms by which pRB, and the related p107 and p130 family members, act is through its interactions with the E2F class of transcription factors. E2F-1 transcription is necessary for entry into S-phase during the cell-cycle. pRB binds E2F-1 and represses transcription via recruitment of a histone deacetylase complex and by preventing co-activator complexes from binding E2F-1. Current dogma suggests that phosphorylation of pRB during mid- to late-G1 leads to release of E2F-1 and E2F-1 dependent transcriptional activation of essential S-phase genes. Here we show that pRB, and the related p107 protein, are modified by O-linked β-N-acetylglucosamine (O-GlcNAc) in an in vitro transcription/translation system. Furthermore, we show in vivo that pRB is more heavily glycosylated in G1 of the cell-cycle when pRB is known to be in an active, hypophosphorylated state. Finally, we demonstrate that E2F-1 associated pRB is modified by O-GlcNAc. These studies suggest that regulation of pRB function(s) may be controlled by dynamic O-GlcNAc modification, as well as phosphorylation.
Collapse
Affiliation(s)
- Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Chad Slawson
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Gerald W. Hart
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| |
Collapse
|
180
|
Kim EJ. Chemical arsenal for the study of O-GlcNAc. Molecules 2011; 16:1987-2022. [PMID: 21358590 PMCID: PMC6259741 DOI: 10.3390/molecules16031987] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/03/2011] [Accepted: 02/15/2011] [Indexed: 12/24/2022] Open
Abstract
The concepts of both protein glycosylation and cellular signaling have been influenced by O-linked-β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) on the hydroxyl group of serine or threonine residues. Unlike conventional protein glycosylation, O-GlcNAcylation is localized in the nucleocytoplasm and its cycling is a dynamic process that operates in a highly regulated manner in response to various cellular stimuli. These characteristics render O-GlcNAcylation similar to phosphorylation, which has long been considered a major regulatory mechanism in cellular processes. Various efficient chemical approaches and novel mass spectrometric (MS) techniques have uncovered numerous O-GlcNAcylated proteins that are involved in the regulation of many important cellular events. These discoveries imply that O-GlcNAcylation is another major regulator of cellular signaling. However, in contrast to phosphorylation, which is regulated by hundreds of kinases and phosphatases, dynamic O-GlcNAc cycling is catalyzed by only two enzymes: uridine diphospho-N-acetyl-glucosamine:polypeptide β-N-acetylglucosaminyl transferase (OGT) and β-D-N-acetylglucosaminidase (OGA). Many useful chemical tools have recently been used to greatly expand our understanding of the extensive crosstalk between O-GlcNAcylation and phosphorylation and hence of cellular signaling. This review article describes the various useful chemical tools that have been developed and discusses the considerable advances made in the O-GlcNAc field.
Collapse
Affiliation(s)
- Eun J Kim
- Department of Science Education-Chemistry Major, Daegu University, Gyeongbuk 712-714, Korea.
| |
Collapse
|
181
|
Metabolic cross-talk allows labeling of O-linked beta-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway. Proc Natl Acad Sci U S A 2011; 108:3141-6. [PMID: 21300897 DOI: 10.1073/pnas.1010045108] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hundreds of mammalian nuclear and cytoplasmic proteins are reversibly glycosylated by O-linked β-N-acetylglucosamine (O-GlcNAc) to regulate their function, localization, and stability. Despite its broad functional significance, the dynamic and posttranslational nature of O-GlcNAc signaling makes it challenging to study using traditional molecular and cell biological techniques alone. Here, we report that metabolic cross-talk between the N-acetylgalactosamine salvage and O-GlcNAcylation pathways can be exploited for the tagging and identification of O-GlcNAcylated proteins. We found that N-azidoacetylgalactosamine (GalNAz) is converted by endogenous mammalian biosynthetic enzymes to UDP-GalNAz and then epimerized to UDP-N-azidoacetylglucosamine (GlcNAz). O-GlcNAc transferase accepts UDP-GlcNAz as a nucleotide-sugar donor, appending an azidosugar onto its native substrates, which can then be detected by covalent labeling using azide-reactive chemical probes. In a proof-of-principle proteomics experiment, we used metabolic GalNAz labeling of human cells and a bioorthogonal chemical probe to affinity-purify and identify numerous O-GlcNAcylated proteins. Our work provides a blueprint for a wide variety of future chemical approaches to identify, visualize, and characterize dynamic O-GlcNAc signaling.
Collapse
|
182
|
Ly M, Laremore TN, Linhardt RJ. Proteoglycomics: recent progress and future challenges. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:389-99. [PMID: 20450439 DOI: 10.1089/omi.2009.0123] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteoglycomics is a systematic study of structure, expression, and function of proteoglycans, a posttranslationally modified subset of a proteome. Although relying on the established technologies of proteomics and glycomics, proteoglycomics research requires unique approaches for elucidating structure-function relationships of both proteoglycan components, glycosaminoglycan chain, and core protein. This review discusses our current understanding of structure and function of proteoglycans, major players in the development, normal physiology, and disease. A brief outline of the proteoglycomic sample preparation and analysis is provided along with examples of several recent proteoglycomic studies. Unique challenges in the characterization of glycosaminoglycan component of proteoglycans are discussed, with emphasis on the many analytical tools used and the types of information they provide.
Collapse
Affiliation(s)
- Mellisa Ly
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | | |
Collapse
|
183
|
García-Murria MJ, Valero ML, Sánchez del Pino MM. Simple chemical tools to expand the range of proteomics applications. J Proteomics 2010; 74:137-50. [PMID: 21074642 DOI: 10.1016/j.jprot.2010.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/08/2010] [Accepted: 11/03/2010] [Indexed: 12/26/2022]
Abstract
Proteomics is an expanding technology with potential applications in many research fields. Even though many research groups do not have direct access to its main analytical technique, mass spectrometry, they can interact with proteomics core facilities to incorporate this technology into their projects. Protein identification is the analysis most frequently performed in core facilities and is, probably, the most robust procedure. Here we discuss a few chemical reactions that are easily implemented within the conventional protein identification workflow. Chemical modification of proteins with N-hydroxysuccinimide esters, 4-sulfophenyl isothiocyanate, O-methylisourea or through β-elimination/Michael addition can be easily performed in any laboratory. The reactions are quite specific with almost no side reactions. These chemical tools increase considerably the number of applications and have been applied to characterize protein-protein interactions, to determine the N-terminal residues of proteins, to identify proteins with non-sequenced genomes or to locate phosphorylated and O-glycosylated.
Collapse
Affiliation(s)
- María Jesús García-Murria
- Laboratorio de Proteómica, Centro de Investigación Príncipe Felipe, Avda, Autopista del Saler 16, 46012 Valencia, Spain
| | | | | |
Collapse
|
184
|
Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci U S A 2010; 107:19915-20. [PMID: 21045127 DOI: 10.1073/pnas.1009023107] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamic posttranslational modification of serine and threonine residues of nucleocytoplasmic proteins by β-N-acetylglucosamine (O-GlcNAc) is a regulator of cellular processes such as transcription, signaling, and protein-protein interactions. Like phosphorylation, O-GlcNAc cycles in response to a wide variety of stimuli. Although cycling of O-GlcNAc is catalyzed by only two highly conserved enzymes, O-GlcNAc transferase (OGT), which adds the sugar, and β-N-acetylglucosaminidase (O-GlcNAcase), which hydrolyzes it, the targeting of these enzymes is highly specific and is controlled by myriad interacting subunits. Here, we demonstrate by multiple specific immunological and enzymatic approaches that histones, the proteins that package DNA within the nucleus, are O-GlcNAcylated in vivo. Histones also are substrates for OGT in vitro. We identify O-GlcNAc sites on histones H2A, H2B, and H4 using mass spectrometry. Finally, we show that histone O-GlcNAcylation changes during mitosis and with heat shock. Taken together, these data show that O-GlcNAc cycles dynamically on histones and can be considered part of the histone code.
Collapse
|
185
|
Di Domenico F, Owen JB, Sultana R, Sowell RA, Perluigi M, Cini C, Cai J, Pierce WM, Butterfield DA. The wheat germ agglutinin-fractionated proteome of subjects with Alzheimer's disease and mild cognitive impairment hippocampus and inferior parietal lobule: Implications for disease pathogenesis and progression. J Neurosci Res 2010; 88:3566-77. [PMID: 20936705 DOI: 10.1002/jnr.22528] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/28/2010] [Accepted: 09/03/2010] [Indexed: 01/07/2023]
Abstract
Lectin affinity chromatography is a powerful separation technique that fractionates proteins by selectively binding to specific carbohydrate moieties characteristic of protein glycosylation type. Wheat germ agglutinin (WGA) selectively binds terminal N-acetylglucosamine (O-GlcNAc) and sialic acid moieties characteristic of O-linked glycosylation. The current study utilizes WGA affinity chromatography to fractionate proteins from hippocampus and inferior parietal lobule (IPL) from subjects with Alzheimer's disease (AD) and arguably its earliest form, mild cognitive impairment (MCI). Proteins identified by proteomics that were fractionated from MCI and AD hippocampus by WGA affinity chromatography with altered levels compared with age-matched controls included GP96, γ-enolase, glutamate dehydrogenase, glucosidase IIα, 14-3-3ϵ, 14-3-3γ, 14-3-3ζ, tropomyosin-2, calmodulin 2, gelsolin, β-synuclein, α1-antichymotrypsin, and dimethylguanosine tRNA methyltransferase. Proteins identified by proteomics that were fractionated from MCI and AD IPL by WGA affinity chromatography showing altered levels compared with age-matched controls included protein disulfide isomerase, calreticulin, and GP96. The proteins described in this study are involved in diverse processes, including glucose metabolism, endoplasmic reticulum (ER) functions, chaperoning, cytoskeletal assembly, and proteolysis, all of which are affected in AD. This study, the first to use proteomics to identify WGA-fractionated proteins isolated from brains from subjects with MCI and AD, provides additional information about the active proteome of the brain throughout AD progression.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Abstract
Glycosylation is one of the most common and complex forms of posttranslational modifications of proteins in eukaryotes. Seven different protein-carbohydrate linkages have been characterized on nuclear and cytoplasmic glycoproteins, the most widespread of which is the modification of Ser/Thr residues with monosaccharides of O-linked beta-N-acetylglucosamine (O-GlcNAc). O-GlcNAc modification is concentrated in nuclear proteins. O-GlcNAc is thought to regulate protein function in a manner analogous to phosphorylation; and is implicated in the regulation of transcription, the proteasome, insulin and MAP kinase signaling, the cell cycle, and the cellular stress response. In this chapter we focus on methods for the detection of O-GlcNAc-modified proteins and discuss general techniques for the detection and subsequent analysis of other protein-carbohydrate conjugates.
Collapse
|
187
|
Yuzwa SA, Yadav AK, Skorobogatko Y, Clark T, Vosseller K, Vocadlo DJ. Mapping O-GlcNAc modification sites on tau and generation of a site-specific O-GlcNAc tau antibody. Amino Acids 2010; 40:857-68. [PMID: 20706749 DOI: 10.1007/s00726-010-0705-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/14/2010] [Indexed: 11/30/2022]
Abstract
The microtubule-associated protein tau is known to be post-translationally modified by the addition of N-acetyl-D: -glucosamine monosaccharides to certain serine and threonine residues. These O-GlcNAc modification sites on tau have been challenging to identify due to the inherent complexity of tau from mammalian brains and the fact that the O-GlcNAc modification typically has substoichiometric occupancy. Here, we describe a method for the production of recombinant O-GlcNAc modified tau and, using this tau, we have mapped sites of O-GlcNAc on tau at Thr-123 and Ser-400 using mass spectrometry. We have also detected the presence of a third O-GlcNAc site on either Ser-409, Ser-412, or Ser-413. Using this information we have raised a rabbit polyclonal IgG antibody (3925) that detects tau O-GlcNAc modified at Ser-400. Further, using this antibody we have detected the Ser-400 tau O-GlcNAc modification in rat brain, which confirms the validity of this in vitro mapping approach. The identification of these O-GlcNAc sites on tau and this antibody will enable both in vivo and in vitro experiments designed to understand the possible functional roles of O-GlcNAc on tau.
Collapse
Affiliation(s)
- Scott A Yuzwa
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | | | | | | | | | | |
Collapse
|
188
|
Stalnaker SH, Hashmi S, Lim JM, Aoki K, Porterfield M, Gutierrez-Sanchez G, Wheeler J, Ervasti JM, Bergmann C, Tiemeyer M, Wells L. Site mapping and characterization of O-glycan structures on alpha-dystroglycan isolated from rabbit skeletal muscle. J Biol Chem 2010; 285:24882-91. [PMID: 20507986 PMCID: PMC2915724 DOI: 10.1074/jbc.m110.126474] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/19/2010] [Indexed: 01/11/2023] Open
Abstract
The main extracellular matrix binding component of the dystrophin-glycoprotein complex, alpha-dystroglycan (alpha-DG), which was originally isolated from rabbit skeletal muscle, is an extensively O-glycosylated protein. Previous studies have shown alpha-DG to be modified by both O-GalNAc- and O-mannose-initiated glycan structures. O-Mannosylation, which accounts for up to 30% of the reported O-linked structures in certain tissues, has been rarely observed on mammalian proteins. Mutations in multiple genes encoding defined or putative glycosyltransferases involved in O-mannosylation are causal for various forms of congenital muscular dystrophy. Here, we explore the glycosylation of purified rabbit skeletal muscle alpha-DG in detail. Using tandem mass spectrometry approaches, we identify 4 O-mannose-initiated and 17 O-GalNAc-initiated structures on alpha-DG isolated from rabbit skeletal muscle. Additionally, we demonstrate the use of tandem mass spectrometry-based workflows to directly analyze glycopeptides generated from the purified protein. By combining glycomics and tandem mass spectrometry analysis of 91 glycopeptides from alpha-DG, we were able to assign 21 different residues as being modified by O-glycosylation with differing degrees of microheterogeneity; 9 sites of O-mannosylation and 14 sites of O-GalNAcylation were observed with only two sites definitively exhibiting occupancy by either type of glycan. The distribution of identified sites of O-mannosylation suggests a limited role for local primary sequence in dictating sites of attachment.
Collapse
Affiliation(s)
| | - Sana Hashmi
- From the Complex Carbohydrate Research Center and
| | - Jae-Min Lim
- From the Complex Carbohydrate Research Center and
| | | | - Mindy Porterfield
- From the Complex Carbohydrate Research Center and
- Departments of Chemistry and
| | | | | | - James M. Ervasti
- the Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Carl Bergmann
- From the Complex Carbohydrate Research Center and
- Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-4712 and
| | - Michael Tiemeyer
- From the Complex Carbohydrate Research Center and
- Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-4712 and
| | - Lance Wells
- From the Complex Carbohydrate Research Center and
- Departments of Chemistry and
- Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-4712 and
| |
Collapse
|
189
|
Ji S, Kang JG, Park SY, Lee J, Oh YJ, Cho JW. O-GlcNAcylation of tubulin inhibits its polymerization. Amino Acids 2010; 40:809-18. [PMID: 20665223 DOI: 10.1007/s00726-010-0698-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 07/13/2010] [Indexed: 01/30/2023]
Abstract
The attachment of O-linked β-N-acetylglucosamine (O-GlcNAc) to proteins is an abundant and reversible modification that involves many cellular processes including transcription, translation, cell proliferation, apoptosis, and signal transduction. Here, we found that the O-GlcNAc modification pattern was altered during all-trans retinoic acid (tRA)-induced neurite outgrowth in the MN9D neuronal cell line. We identified several O-GlcNAcylated proteins using mass spectrometric analysis, including α- and β-tubulin. Further analysis of α- and β-tubulin revealed that O-GlcNAcylated peptides mapped between residues 173 and 185 of α-tubulin and between residues 216 and 238 of β-tubulin, respectively. We found that an increase in α-tubulin O-GlcNAcylation reduced heterodimerization and that O-GlcNAcylated tubulin did not polymerize into microtubules. Consequently, when O-GlcNAcase inhibitors were co-incubated with tRA, the extent of neurite outgrowth was decreased by 20% compared to control. Thus, our data indicate that the O-GlcNAcylation of tubulin negatively regulates microtubule formation.
Collapse
Affiliation(s)
- Suena Ji
- Department of Biology, Yonsei University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
190
|
Abstract
Cardiovascular function is regulated at multiple levels. Some of the most important aspects of such regulation involve alterations in an ever-growing list of posttranslational modifications. One such modification orchestrates input from numerous metabolic cues to modify proteins and alter their localization and/or function. Known as the beta-O-linkage of N-acetylglucosamine (ie, O-GlcNAc) to cellular proteins, this unique monosaccharide is involved in a diverse array of physiological and pathological functions. This review introduces readers to the general concepts related to O-GlcNAc, the regulation of this modification, and its role in primary pathophysiology. Much of the existing literature regarding the role of O-GlcNAcylation in disease addresses the protracted elevations in O-GlcNAcylation observed during diabetes. In this review, we focus on the emerging evidence of its involvement in the cardiovascular system. In particular, we highlight evidence of protein O-GlcNAcylation as an autoprotective alarm or stress response. We discuss recent literature supporting the idea that promoting O-GlcNAcylation improves cell survival during acute stress (eg, hypoxia, ischemia, oxidative stress), whereas limiting O-GlcNAcylation exacerbates cell damage in similar models. In addition to addressing the potential mechanisms of O-GlcNAc-mediated cardioprotection, we discuss technical issues related to studying protein O-GlcNAcylation in biological systems. The reader should gain an understanding of what protein O-GlcNAcylation is and that its roles in the acute and chronic disease settings appear distinct.
Collapse
Affiliation(s)
- Gladys A Ngoh
- Institute of Molecular Cardiology, University of Louisville, 580 South Preston St, 404C, Baxter II-404C, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
191
|
Characteristic increase in nucleocytoplasmic protein glycosylation by O-GlcNAc in 3T3-L1 adipocyte differentiation. Biochem Biophys Res Commun 2010; 398:489-94. [DOI: 10.1016/j.bbrc.2010.06.105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 06/28/2010] [Indexed: 11/20/2022]
|
192
|
Zeidan Q, Hart GW. The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. J Cell Sci 2010; 123:13-22. [PMID: 20016062 DOI: 10.1242/jcs.053678] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A paradigm-changing discovery in biology came about when it was found that nuclear and cytosolic proteins could be dynamically glycosylated with a single O-linked beta-N-acetylglucosamine (O-GlcNAc) moiety. O-GlcNAcylation is akin to phosphorylation: it occurs on serine and/or threonine side chains of proteins, and cycles rapidly upon cellular activation. O-GlcNAc and phosphate show a complex interplay: they can either competitively occupy a single site or proximal sites, or noncompetitively occupy different sites on a substrate. Phosphorylation regulates O-GlcNAc-cycling enzymes and, conversely, O-GlcNAcylation controls phosphate-cycling enzymes. Such crosstalk is evident in all compartments of the cell, a finding that is congruent with the fundamental role of O-GlcNAc in regulating nutrient- and stress-induced signal transduction. O-GlcNAc transferase is recruited to the plasma membrane in response to insulin and is targeted to substrates by forming transient holoenzyme complexes that have different specificities. Cytosolic O-GlcNAcylation is important for the proper transduction of signaling cascades such as the NFkappaB pathway, whereas nuclear O-GlcNAc is crucial for regulating the activity of numerous transcription factors. This Commentary focuses on recent findings supporting an emerging concept that continuous crosstalk between phosphorylation and O-GlcNAcylation is essential for the control of vital cellular processes and for understanding the mechanisms that underlie certain neuropathologies.
Collapse
|
193
|
Lee Y, Kockx M, Raftery MJ, Jessup W, Griffith R, Kritharides L. Glycosylation and sialylation of macrophage-derived human apolipoprotein E analyzed by SDS-PAGE and mass spectrometry: evidence for a novel site of glycosylation on Ser290. Mol Cell Proteomics 2010; 9:1968-81. [PMID: 20511397 DOI: 10.1074/mcp.m900430-mcp200] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein E (apoE) is a 34-kDa glycoprotein secreted from various cells including hepatocytes and macrophages and plays an important role in remnant lipoprotein clearance, immune responses, Alzheimer disease, and atherosclerosis. Cellular apoE and plasma apoE exist as multiple glycosylated and sialylated glycoforms with plasma apoE being less glycosylated/sialylated than cell-derived apoE. Some of the glycan structures on plasma apoE are characterized; however, the more complicated structures on plasma and cellular/secreted apoE remain unidentified. We investigated glycosylation and sialylation of cellular and secreted apoE from primary human macrophages by one- and two-dimensional gel electrophoresis and mass spectrometry. Our results identify eight different glycoforms with (HexNAc)(2)-Hex(2)-(NeuAc)(2) being the most complex glycan detected on Thr(194) in both cellular and secreted apoE. Four additional glycans were identified on apoE(283-299), and using beta-elimination/alkylation by methylamine in vitro, we identified Ser(290) as a novel site of glycan attachment. Comparison of plasma and cellular/secreted apoE from the same donor confirmed that cell-derived apoE is more extensively sialylated than plasma apoE. Given the importance of the C terminus of apoE in regulating apoE solubility, stability, and lipid binding, these results may have important implications for our understanding of apoE biochemistry.
Collapse
Affiliation(s)
- Youra Lee
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
194
|
Rogacka D, Piwkowska A, Jankowski M, Kocbuch K, Dominiczak MH, Stępiński JK, Angielski S. Expression of GFAT1 and OGT in podocytes: Transport of glucosamine and the implications for glucose uptake into these cells. J Cell Physiol 2010; 225:577-84. [DOI: 10.1002/jcp.22242] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
195
|
Klement E, Lipinszki Z, Kupihár Z, Udvardy A, Medzihradszky KF. Enrichment of O-GlcNAc modified proteins by the periodate oxidation-hydrazide resin capture approach. J Proteome Res 2010; 9:2200-6. [PMID: 20146544 PMCID: PMC2866058 DOI: 10.1021/pr900984h] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A chemical derivatization approach has been developed for the enrichment of O-GlcNAc modified proteins. The procedure is based on the isolation technique used for N-glycoproteins with appropriate modifications because of the differences in the two types of glycosylation: a prolonged periodate oxidation is followed by hydrazide resin capture, on-resin proteolytic digestion, and release of the modified peptides by hydroxylamine. This enrichment strategy offers a fringe benefit in mass spectrometry analysis. Upon collisional activation, the presence of the open carbohydrate ring leads to characteristic fragmentation facilitating both glycopeptide identification and site assignment. The enrichment protocol was applied to the Drosophila proteasome complex previously described as O-GlcNAc modified. The O-GlcNAc modification was located on proteasome interacting proteins, deubiquitinating enzyme Faf (CG1945) and a ubiquitin-like domain containing protein (CG7546). Three other proteins were also found GlcNAc modified, a HSP70 homologue (CG2918), scribbled (CG5462) and the 205 kDa microtubule-associated protein (CG1483). Interestingly, in the HSP70 homologue the GlcNAc modification is attached to an asparagine residue of a N-glycosylation motif.
Collapse
Affiliation(s)
- Eva Klement
- Proteomics Research Group, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Zoltán Lipinszki
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Zoltán Kupihár
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Andor Udvardy
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Katalin F. Medzihradszky
- Proteomics Research Group, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
| |
Collapse
|
196
|
Teo CF, Wollaston-Hayden EE, Wells L. Hexosamine flux, the O-GlcNAc modification, and the development of insulin resistance in adipocytes. Mol Cell Endocrinol 2010; 318:44-53. [PMID: 19799964 PMCID: PMC2855202 DOI: 10.1016/j.mce.2009.09.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/18/2009] [Accepted: 09/21/2009] [Indexed: 01/01/2023]
Abstract
Excess flux through the hexosamine biosynthesis pathway in adipocytes is a fundamental cause of "glucose toxicity" and the development of insulin resistance that leads to type II diabetes. Adipose tissue-specific elevation in hexosamine flux in animal models recapitulates whole-body insulin-resistant phenotypes, and increased hexosamine flux in adipocyte cell culture models impairs insulin-stimulated glucose uptake. Many studies have been devoted to unveiling the molecular mechanisms in adipocytes in response to excess hexosamine flux-mediated insulin resistance. As a major downstream event consuming and incorporating the final product of the hexosamine biosynthesis pathway, dynamic and inducible O-GlcNAc modification is emerging as a modulator of insulin sensitivity in adipocytes. Given that O-GlcNAc is implicated in both insulin-mediated signal transduction and transcriptional events essential for adipocytokine secretion, direct functional studies to pinpoint the roles of O-GlcNAc in the development of insulin resistance via excess flux through hexosamine biosynthesis pathway are needed.
Collapse
Affiliation(s)
- Chin Fen Teo
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | |
Collapse
|
197
|
Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. FEBS Lett 2010; 584:2526-38. [DOI: 10.1016/j.febslet.2010.04.044] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 04/15/2010] [Indexed: 11/17/2022]
|
198
|
Zeidan Q, Wang Z, De Maio A, Hart GW. O-GlcNAc cycling enzymes associate with the translational machinery and modify core ribosomal proteins. Mol Biol Cell 2010; 21:1922-36. [PMID: 20410138 PMCID: PMC2883937 DOI: 10.1091/mbc.e09-11-0941] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
At least 20 core ribosome proteins are modified by O-GlcNAc. O-GlcNAcase is localized to the nucleolus and O-GlcNAc transferase is excluded from the nucleolus. Both enzymes associate with active polysomes. Overexpression of OGT disrupts ribosomal subunit homeostasis. Data suggest that O-GlcNAc regulates translation and ribosome biogenesis. Protein synthesis is globally regulated through posttranslational modifications of initiation and elongation factors. Recent high-throughput studies have identified translation factors and ribosomal proteins (RPs) as substrates for the O-GlcNAc modification. Here we determine the extent and abundance of O-GlcNAcylated proteins in translational preparations. O-GlcNAc is present on many proteins that form active polysomes. We identify twenty O-GlcNAcylated core RPs, of which eight are newly reported. We map sites of O-GlcNAc modification on four RPs (L6, L29, L32, and L36). RPS6, a component of the mammalian target of rapamycin (mTOR) signaling pathway, follows different dynamics of O-GlcNAcylation than nutrient-induced phosphorylation. We also show that both O-GlcNAc cycling enzymes OGT and OGAse strongly associate with cytosolic ribosomes. Immunofluorescence experiments demonstrate that OGAse is present uniformly throughout the nucleus, whereas OGT is excluded from the nucleolus. Moreover, nucleolar stress only alters OGAse nuclear staining, but not OGT staining. Lastly, adenovirus-mediated overexpression of OGT, but not of OGAse or GFP control, causes an accumulation of 60S subunits and 80S monosomes. Our results not only establish that O-GlcNAcylation extensively modifies RPs, but also suggest that O-GlcNAc play important roles in regulating translation and ribosome biogenesis.
Collapse
Affiliation(s)
- Quira Zeidan
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | | | | | | |
Collapse
|
199
|
Ozlu N, Akten B, Timm W, Haseley N, Steen H, Steen JA. Phosphoproteomics. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 2:255-276. [DOI: 10.1002/wsbm.41] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nurhan Ozlu
- Proteomics Center at Children's Hospital Boston, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Bikem Akten
- Proteomics Center at Children's Hospital Boston, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Wiebke Timm
- Proteomics Center at Children's Hospital Boston, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Children's Hospital Boston, Boston, MA, USA
| | - Nathan Haseley
- Proteomics Center at Children's Hospital Boston, Boston, MA, USA
- Department of Biological Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Hanno Steen
- Proteomics Center at Children's Hospital Boston, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Children's Hospital Boston, Boston, MA, USA
| | - Judith A.J. Steen
- Proteomics Center at Children's Hospital Boston, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
200
|
Chen M, Su X, Yang J, Jenkins CM, Cedars AM, Gross RW. Facile identification and quantitation of protein phosphorylation via beta-elimination and Michael addition with natural abundance and stable isotope labeled thiocholine. Anal Chem 2010; 82:163-71. [PMID: 20000356 DOI: 10.1021/ac9015193] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we employ the unique chemical properties of the quaternary amine present in thiocholine (2-mercapto-N,N,N-trimethyl-ethanaminium) in conjunction with alkaline beta-elimination and Michael addition (BEMA) reactions for the specific detection, identification, and quantitation of phosphorylated serine/threonine containing peptides. Through replacement of the phosphate with thiocholine, the negative charge on the phosphopeptide is switched to a quaternary amine containing a permanent positive charge. This strategy resulted in a 100-fold increase in ionization sensitivity during ESI (sub-500 amol/microL detection limit) accompanied by a markedly enhanced production of informative peptidic fragment ions during CID that dramatically increase sequence coverage. Moreover, the definitive localization of phosphorylated residues is greatly facilitated through the generation of diagnostic triads of fragmentation ions resulting from peptide bond cleavage and further neutral loss of either trimethylamine (-59 Da) or thiocholine thiolate (-119 Da) during collision induced dissociation (CID) in tandem mass spectrometry (MS(2) and MS(3)). Synthesis of stable isotope labeled thiocholine enabled the quantitation of protein phosphorylation with high precision by ratiometric comparisons using heavy and light thiocholine. Collectively, this study demonstrates a sensitive and efficient strategy for mapping of phosphopeptides by BEMA using thiocholine through the production of a diagnostic repertoire of unique fragment ions during liquid chromatography-tandem mass spectrometry (LC-MS(2)/MS(3)) analyses, facilitating phosphosite identification and quantitative phosphoproteomics.
Collapse
Affiliation(s)
- Meng Chen
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|