151
|
Chan DW, Wang Y, Wu M, Wong J, Qin J, Zhao Y. Unbiased proteomic screen for binding proteins to modified lysines on histone H3. Proteomics 2009; 9:2343-54. [PMID: 19337993 DOI: 10.1002/pmic.200800600] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report a sensitive peptide pull-down approach in combination with protein identification by LC-MS/MS and qualitative abundance measurements by spectrum counting to identify proteins binding to histone H3 tail containing dimethyl lysine 4 (H3K4me2), dimethyl lysine 9 (H3K9me2), or acetyl lysine 9 (H3K9ac). Our study identified 86 nuclear proteins that associate with the histone H3 tail peptides examined, including seven known direct binders and 16 putative direct binders with conserved PHD finger, bromodomain, and WD40 domains. The reliability of our proteomic screen is supported by the fact that more than one-third of the proteins identified were previously described to associate with histone H3 tail directly or indirectly. To our knowledge, the results presented here are the most comprehensive analysis of H3K4me2, H3K9me2, and H3K9ac associated proteins and will provide a useful resource for researchers studying the mechanisms of histone code effector proteins.
Collapse
Affiliation(s)
- Doug W Chan
- ProTech Laboratory Inc., Houston, TX 77054, USA.
| | | | | | | | | | | |
Collapse
|
152
|
Saracco SA, Hansson M, Scalf M, Walker JM, Smith LM, Vierstra RD. Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:344-58. [PMID: 19292762 PMCID: PMC3639010 DOI: 10.1111/j.1365-313x.2009.03862.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein ubiquitylation is a central regulatory mechanism that controls numerous processes in plants, including hormone signaling, developmental progression, responses to biotic and abiotic challenges, protein trafficking and chromatin structure. Despite data implicating thousands of plant proteins as targets, so far only a few have been conclusively shown to be ubiquitylated in planta. Here we describe a method to isolate ubiquitin-protein conjugates from Arabidopsis that exploits a stable transgenic line expressing a synthetic poly-UBQ gene encoding ubiquitin (Ub) monomers N-terminally tagged with hexahistidine. Following sequential enrichment by Ub-affinity and nickel chelate-affinity chromatography, the ubiquitylated proteins were trypsinized, separated by two-dimensional liquid chromatography, and analyzed by mass spectrometry. Our list of 54 non-redundant targets, expressed by as many as 90 possible isoforms, included those predicted by genetic studies to be ubiquitylated in plants (EIN3 and JAZ6) or shown to be ubiquitylated in other eukaryotes (ribosomal subunits, elongation factor 1alpha, histone H1, HSP70 and CDC48), as well as candidates whose control by the Ub/26S proteasome system is not yet appreciated. Ub attachment site(s) were resolved for a subset of these proteins, but surprisingly little sequence consensus was detected, implying that specific residues surrounding the modified lysine are not important determinants for ubiquitylation. We also identified six of the seven available lysine residues on Ub itself as Ub attachment sites, together with evidence for a branched mixed-linkage chain, suggesting that the topologies of Ub chains can be highly complex in plants. Taken together, our method provides a widely applicable strategy to define ubiquitylation in any tissue of intact plants exposed to a wide range of conditions.
Collapse
Affiliation(s)
- Scott A. Saracco
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706-1574, USA
| | - Maria Hansson
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706-1574, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706-1574, USA
| | - Joseph M. Walker
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706-1574, USA
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706-1574, USA
| | - Richard D. Vierstra
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706-1574, USA
| |
Collapse
|
153
|
Wood C, Snijders A, Williamson J, Reynolds C, Baldwin J, Dickman M. Post-translational modifications of the linker histone variants and their association with cell mechanisms. FEBS J 2009; 276:3685-97. [PMID: 19490123 DOI: 10.1111/j.1742-4658.2009.07079.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In recent years, a considerable amount of research has been focused on establishing the epigenetic mechanisms associated with DNA and the core histones. This effort is driven by the fact that epigenetics is intimately involved with genomics in a whole range of molecular processes. However, there is now a consensus that the epigenetics of the linker histones are just as important. The result of that consensus is that the post-translational modifications (PTMs) for most of the linker histone variants in human and mouse have now been established by a number of experimental techniques, foremost of which is mass spectrometry (MS). MS was also used by our group to establish the PTMs of the linker histone variants in chicken erythrocytes. Although it is now known which types of PTM occur at particular locations on the linker histone variants, there is still a large gap in the knowledge of how this data relates to function. The focus of this review is an analysis of the PTM data for the linker histones from several species, but with an emphasis on human, mouse, and chicken. Our analysis reveals that certain PTMs can be clearly correlated with specific functions of the linker histones in particular cell types, and that unique PTM patterns exist for different cell types.
Collapse
Affiliation(s)
- Christopher Wood
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK.
| | | | | | | | | | | |
Collapse
|
154
|
Zhang K, Chen Y, Zhang Z, Zhao Y. Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software. J Proteome Res 2009; 8:900-6. [PMID: 19113941 DOI: 10.1021/pr8005155] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ten types of post-translational modifications (PTMs) known to be critical to diverse cellular functions have been described in core histone proteins. However, it remains unclear whether additional PTMs exist in histones, and if so, what roles these undiscovered signals play in epigenetic phenomena. Here, we report a systematic analysis of yeast histone PTMs by mass spectrometry in combination with protein sequence alignment using PTMap, a computer program we recently developed. We have identified, for the first time, multiple sites of lysine propionylation and butyrylation in yeast histones H2B, H3, and H4. We confirmed these modifications by Western blotting using modification-specific antibodies, MS/MS of synthetic peptides, and coelution of synthetic and in vivo-derived peptides from an HPLC column. The presence of multiple modification sites in several yeast histones suggests that these two PTMs are histone marks that are evolutionarily conserved among eukaryotes. In addition, we identified 14 novel mass shifts that do not match any known PTM, suggesting the presence of previously undescribed histone modifications. The chemical natures of these modifications remain to be determined. Our studies therefore expand current knowledge of the "histone code".
Collapse
Affiliation(s)
- Kai Zhang
- Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | | | | | | |
Collapse
|
155
|
Role of chromatin states in transcriptional memory. Biochim Biophys Acta Gen Subj 2009; 1790:445-55. [PMID: 19236904 DOI: 10.1016/j.bbagen.2009.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 12/16/2022]
Abstract
Establishment of cellular memory and its faithful propagation is critical for successful development of multicellular organisms. As pluripotent cells differentiate, choices in cell fate are inherited and maintained by their progeny throughout the lifetime of the organism. A major factor in this process is the epigenetic inheritance of specific transcriptional states or transcriptional memory. In this review, we discuss chromatin transitions and mechanisms by which they are inherited by subsequent generations. We also discuss illuminating cases of cellular memory in budding yeast and evaluate whether transcriptional memory in yeast is nuclear or cytoplasmically inherited.
Collapse
|
156
|
Chen G, Daaro I, Pramanik BN, Piwinski JJ. Structural characterization of in vitro rat liver microsomal metabolites of antihistamine desloratadine using LTQ-Orbitrap hybrid mass spectrometer in combination with online hydrogen/deuterium exchange HR-LC/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:203-213. [PMID: 18853472 DOI: 10.1002/jms.1498] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In vitro drug metabolism study is an integral part of drug discovery process. In this report, we have described the application of LTQ-Orbitrap hybrid mass spectrometer in conjunction with online hydrogen (H)/deuterium (D) exchange high resolution (HR)-LC/MS for structural characterization of in vitro rat liver microsomal metabolites of antihistamine desloratadine. Five metabolites M1--M5 have been identified, including three hydroxylated metabolites M1--M3, one N-oxide M4 and one uncommon aromatized N-oxide M5. Accurate mass data have been obtained in both full scan and MSn mode support assignments of metabolite structures with reported mass errors less than 3 ppm. Online H/D exchange HR-LC/MS experiments provide additional evidence in differentiating hydroxylated metabolites from N-oxides. This study demonstrates the effectiveness of this approach in structural characterization of drug metabolites.
Collapse
Affiliation(s)
- Guodong Chen
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | | | |
Collapse
|
157
|
Happel N, Stoldt S, Schmidt B, Doenecke D. M Phase-Specific Phosphorylation of Histone H1.5 at Threonine 10 by GSK-3. J Mol Biol 2009; 386:339-50. [DOI: 10.1016/j.jmb.2008.12.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 12/15/2008] [Accepted: 12/19/2008] [Indexed: 12/24/2022]
|
158
|
Raghuram N, Carrero G, Th’ng J, Hendzel MJ. Molecular dynamics of histone H1This paper is one of a selection of papers published in this Special Issue, entitled CSBMCB’s 51st Annual Meeting – Epigenetics and Chromatin Dynamics, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2009; 87:189-206. [DOI: 10.1139/o08-127] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The histone H1 family of nucleoproteins represents an important class of structural and architectural proteins that are responsible for maintaining and stabilizing higher-order chromatin structure. Essential for mammalian cell viability, they are responsible for gene-specific regulation of transcription and other DNA-dependent processes. In this review, we focus on the wealth of information gathered on the molecular kinetics of histone H1 molecules using novel imaging techniques, such as fluorescence recovery after photobleaching. These experiments have shed light on the effects of H1 phosphorylation and core histone acetylation in influencing chromatin structure and dynamics. We also delineate important concepts surrounding the C-terminal domain of H1, such as the intrinsic disorder hypothesis, and how it affects H1 function. Finally, we address the biochemical mechanisms behind low-affinity H1 binding.
Collapse
Affiliation(s)
- Nikhil Raghuram
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| | - Gustavo Carrero
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| | - John Th’ng
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| | - Michael J. Hendzel
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| |
Collapse
|
159
|
Trojer P, Zhang J, Yonezawa M, Schmidt A, Zheng H, Jenuwein T, Reinberg D. Dynamic Histone H1 Isotype 4 Methylation and Demethylation by Histone Lysine Methyltransferase G9a/KMT1C and the Jumonji Domain-containing JMJD2/KDM4 Proteins. J Biol Chem 2009; 284:8395-405. [PMID: 19144645 PMCID: PMC2659197 DOI: 10.1074/jbc.m807818200] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The linker histone H1 generally participates in the establishment of
chromatin structure. However, of the seven somatic H1 isotypes in humans some
are also implicated in the regulation of local gene expression. Histone H1
isotype 4 (H1.4) represses transcription, and its lysine residue 26
(Lys26) was found to be important in this aspect. H1.4K26 is known
to be methylated and acetylated in vivo, but the enzymes responsible
for these post-translational modifications and the regulatory cues that
promote H1.4 residence on chromatin are poorly characterized. Here we report
that the euchromatic histone lysine methyltransferase G9a/KMT1C mediates
H1.4K26 mono- and dimethylation in vitro and in vivo and
thereby provides a recognition surface for the chromatin-binding proteins HP1
and L3MBTL1. Moreover, we show evidence that G9a promotes H1 deposition and is
required for retention of H1 on chromatin. We also identify members of the
JMJD2/KDM4 subfamily of jumonji-C type histone demethylases as being
responsible for the removal of H1.4K26 methylation.
Collapse
Affiliation(s)
- Patrick Trojer
- Howard Hughes Medical Institute and Department of Biochemistry, New York University School of Medicine, New York, New York 10016
| | | | | | | | | | | | | |
Collapse
|
160
|
Dave KA, Whelan F, Bindloss C, Furness SGB, Chapman-Smith A, Whitelaw ML, Gorman JJ. Sulfonation and phosphorylation of regions of the dioxin receptor susceptible to methionine modifications. Mol Cell Proteomics 2008; 8:706-19. [PMID: 19059900 DOI: 10.1074/mcp.m800459-mcp200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tagged murine dioxin receptor was purified from mammalian cells, digested with trypsin, and analyzed by capillary HPLC-MALDI-TOF/TOF-MS and -MS/MS. Several chromatographically distinct semitryptic peptides matching two regions spanning residues Glu(409)-Arg(424) and Ser(547)-Arg(555) of the dioxin receptor were revealed by de novo sequencing. Methionine residues at 418 and 548 were detected in these peptides as either unmodified or modified by moieties of 16 (oxidation) or 57 amu (S-carboxamidomethylation) or in a form corresponding to degradative removal of 105 amu from the S-carboxamidomethylated methionine. MS/MS spectra revealed that the peptides containing modified methionine residues also existed in forms with a modification of +80 amu on serine residues 411, 415, and 547. The MS/MS spectra of these peptide ions also revealed diagnostic neutral loss fragment ions of 64, 98, and/or 80 amu, and in some instances combinations of these neutral losses were apparent. Taken together, these data indicated that serines 411 and 547 of the dioxin receptor were sulfonated and serine 415 was phosphorylated. Separate digests of the dioxin receptor were prepared in H(2)(16)O and H(2)(18)O, and enzymatic dephosphorylation was subsequently performed on the H(2)(16)O digest only. The digests were mixed in equal proportions and analyzed by capillary HPLC-MALDI-TOF/TOF-MS and -MS/MS. This strategy confirmed assignment of sulfonation as the cause of the +80-amu modifications on serines 411 and 547 and phosphorylation as the predominant cause of the +80-amu modification of serine 415. The relative quantitation of phosphorylation and sulfonation enabled by this differential phosphatase strategy also suggested the presence of sulfonation on a serine other than residue 411 within the sequence spanning Glu(409)-Arg(424). This represents the first description of post-translational sulfonation sites and identification of a new phosphorylation site of the latent dioxin receptor. Furthermore this is only the second report of serine sulfonation of eukaryotic proteins. Mutagenesis studies are underway to assess the functional consequences of these modifications.
Collapse
Affiliation(s)
- Keyur A Dave
- Protein Discovery Centre, Queensland Institute of Medical Research, P. O. Royal Brisbane Hospital, Herston, Queensland 4029, Australia
| | | | | | | | | | | | | |
Collapse
|
161
|
Happel N, Doenecke D. Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 2008; 431:1-12. [PMID: 19059319 DOI: 10.1016/j.gene.2008.11.003] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/31/2008] [Accepted: 11/02/2008] [Indexed: 01/21/2023]
Abstract
The lysine-rich H1 histone family in mammals includes eleven different subtypes, and thus it is the most divergent class of histone proteins. The central globular H1 domain asymmetrically interacts with DNA at the exit or entry end of the nucleosomal core DNA, and the C-terminal domain has a major impact on the linker DNA conformation and chromatin condensation. H1 histones are thus involved in the formation of higher order chromatin structures, and they modulate the accessibility of regulatory proteins, chromatin remodeling factors and histone modification enzymes to their target sites. The major posttranslational modification of H1 histones is phosphorylation, which reaches a peak during G2 and mitosis. Phosphorylation is, however, also involved in the control of DNA replication and it contributes to the regulation of gene expression. Disruption of linker histone genes, initially performed in order to delineate subtype-specific functions, revealed that disruption of one or two H1 subtype genes is quantitatively compensated by an increased expression of other subtypes. This suggests a functional redundancy among H1 subtypes. However, the inactivation of three subtypes and the reduction of the H1 moiety in half finally resulted in a phenotypic effect. On the other hand, studies on the role of particular subtypes at specific developmental stages in lower eukaryotes, but also in vertebrates suggest that specific subtypes of H1 participate in particular systems of gene regulation.
Collapse
Affiliation(s)
- Nicole Happel
- Institute of Biochemistry and Molecular Cell Biology, University of Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | | |
Collapse
|
162
|
Zougman A, Ziółkowski P, Mann M, Wiśniewski JR. Evidence for insertional RNA editing in humans. Curr Biol 2008; 18:1760-5. [PMID: 18993075 DOI: 10.1016/j.cub.2008.09.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/28/2008] [Accepted: 09/19/2008] [Indexed: 12/29/2022]
Abstract
Large-scale analysis directly at the protein level holds the promise of uncovering features not apparent or present at the gene level [1-3]. Although mass spectrometry (MS)-based proteomics can now identify and quantify thousands of cellular proteins in large-scale proteomics experiments, much of the peptide information contained in these experiments remains unassigned [4]. Here, we use such information to discover a previously unreported mechanism creating altered protein forms. Linker histones H1 and high-mobility group (HMG) proteins are abundant nuclear proteins that regulate gene expression through modulation of chromatin structure [5-8]. In the high-resolution MS analysis of histone H1 and HMG protein fractions isolated from human cells, we discovered peptides that mapped upstream of the known translation start sites of these genes. No alternative upstream start site exists in the genome, but analysis of Expressed Sequence Tag (EST) databases revealed that these N-terminally extended (ET) proteins are due to in-frame translation of the 5' untranslated region (5'UTR) sequences of the transcripts. The new translation start sites are created by a single uridine insertion between AG, reflecting a previously unreported RNA-editing mechanism. To our knowledge, this is the first report of RNA-insertion editing in humans and may be an example of the type of discoveries possible with modern proteomics methods.
Collapse
Affiliation(s)
- Alexandre Zougman
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
163
|
Perry RH, Cooks RG, Noll RJ. Orbitrap mass spectrometry: instrumentation, ion motion and applications. MASS SPECTROMETRY REVIEWS 2008; 27:661-99. [PMID: 18683895 DOI: 10.1002/mas.20186] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Since its introduction, the orbitrap has proven to be a robust mass analyzer that can routinely deliver high resolving power and mass accuracy. Unlike conventional ion traps such as the Paul and Penning traps, the orbitrap uses only electrostatic fields to confine and to analyze injected ion populations. In addition, its relatively low cost, simple design and high space-charge capacity make it suitable for tackling complex scientific problems in which high performance is required. This review begins with a brief account of the set of inventions that led to the orbitrap, followed by a qualitative description of ion capture, ion motion in the trap and modes of detection. Various orbitrap instruments, including the commercially available linear ion trap-orbitrap hybrid mass spectrometers, are also discussed with emphasis on the different methods used to inject ions into the trap. Figures of merit such as resolving power, mass accuracy, dynamic range and sensitivity of each type of instrument are compared. In addition, experimental techniques that allow mass-selective manipulation of the motion of confined ions and their potential application in tandem mass spectrometry in the orbitrap are described. Finally, some specific applications are reviewed to illustrate the performance and versatility of the orbitrap mass spectrometers.
Collapse
Affiliation(s)
- Richard H Perry
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
164
|
Sancho M, Diani E, Beato M, Jordan A. Depletion of human histone H1 variants uncovers specific roles in gene expression and cell growth. PLoS Genet 2008; 4:e1000227. [PMID: 18927631 PMCID: PMC2563032 DOI: 10.1371/journal.pgen.1000227] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 09/15/2008] [Indexed: 11/19/2022] Open
Abstract
At least six histone H1 variants exist in somatic mammalian cells that bind to the linker DNA and stabilize the nucleosome particle contributing to higher order chromatin compaction. In addition, H1 seems to be actively involved in the regulation of gene expression. However, it is not well known whether the different variants have distinct roles or if they regulate specific promoters. We have explored this by inducible shRNA-mediated knock-down of each of the H1 variants in a human breast cancer cell line. Rapid inhibition of each H1 variant was not compensated for by changes of expression of other variants. Microarray experiments have shown a different subset of genes to be altered in each H1 knock-down. Interestingly, H1.2 depletion caused specific effects such as a cell cycle G1-phase arrest, the repressed expression of a number of cell cycle genes, and decreased global nucleosome spacing. On its side, H1.4 depletion caused cell death in T47D cells, providing the first evidence of the essential role of an H1 variant for survival in a human cell type. Thus, specific phenotypes are observed in breast cancer cells depleted of individual histone H1 variants, supporting the theory that distinct roles exist for the linker histone variants. Eukaryotic DNA is packaged into chromatin through its association with histone proteins. The linker histone H1 sits at the base of the nucleosome near the DNA entry and exit sites to stabilize two full turns of DNA. In particular, histone H1 participates in nucleosome spacing and formation of the higher-order chromatin structure. In addition, H1 seems to be actively involved in the regulation of gene expression. Histone H1 in mammals is a family of closely related, single-gene encoded proteins, including five somatic subtypes (from H1.1 to H1.5) and a terminally differentiated expressed isoform (H1.0). It is not well known whether the different variants have distinct roles or if they regulate specific promoters. We have explored this by inducible knock-down of each of the H1 variants in breast cancer cells. A different subset of genes is altered in each H1 knock-down, and depletion has different effects on cell survival. Interestingly, H1.2 and H1.4 depletion specifically caused arrest of cell proliferation. Concomitant with this, H1.2 depletion caused decreased global nucleosome spacing and repressed expression of a number of cell cycle genes. Thus, specific phenotypes are observed in breast cancer cells depleted of individual histone H1 variants.
Collapse
Affiliation(s)
- Mónica Sancho
- Centre de Regulació Genòmica (CRG-UPF), Barcelona, Spain
| | - Erika Diani
- Centre de Regulació Genòmica (CRG-UPF), Barcelona, Spain
| | - Miguel Beato
- Centre de Regulació Genòmica (CRG-UPF), Barcelona, Spain
| | - Albert Jordan
- Centre de Regulació Genòmica (CRG-UPF), Barcelona, Spain
- * E-mail:
| |
Collapse
|
165
|
Abstract
Chromatin serves to package, protect and organize the complex eukaryotic genomes to assure their stable inheritance over many cell generations. At the same time, chromatin must be dynamic to allow continued use of DNA during a cell's lifetime. One important principle that endows chromatin with flexibility involves ATP-dependent 'remodeling' factors, which alter DNA-histone interactions to form, disrupt or move nucleosomes. Remodeling is well documented at the nucleosomal level, but little is known about the action of remodeling factors in a more physiological chromatin environment. Recent findings suggest that some remodeling machines can reorganize even folded chromatin fibers containing the linker histone H1, extending the potential scope of remodeling reactions to the bulk of euchromatin.
Collapse
Affiliation(s)
- Verena K Maier
- Adolf-Butenandt Institut, Abt. Molekularbiologie, and Münchner Zentrum für Integrierte Proteinforschung, Ludwig-Maximilian-Universität München, Schillerstrasse 44, D-80336 München, Germany
| | | | | |
Collapse
|
166
|
Snijders APL, Pongdam S, Lambert SJ, Wood CM, Baldwin JP, Dickman MJ. Characterization of post-translational modifications of the linker histones H1 and H5 from chicken erythrocytes using mass spectrometry. J Proteome Res 2008; 7:4326-35. [PMID: 18754630 DOI: 10.1021/pr800260a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Histone linker proteins H1 and H5 were purified from chicken erythrocyte cell nuclei under nondenaturing conditions. The purified linker histones were analyzed using in-solution enzymatic digestions followed by nanoflow reverse-phase high-performance liquid chromatography tandem mass spectrometry. We have identified all six major isoforms of the chicken histone H1 (H101, H102, H103, H110, H11R and H11L) and, in addition, the specialist avian isoform H5. In all the histone variants, both the acetylated and nonacetylated N (alpha)-terminal peptides were identified. Mass spectrometry analysis also enabled the identification of a wide range of post-translational modifications including acetylation, methylation, phosphorylation and deamidation. Furthermore, a number of amino acids were identified that were modified with both acetylation and methylation. These results highlight the extensive modifications that are present on the linker histone proteins, indicating that, similar to the core histones, post-translational modifications of the linker histones may play a role in chromatin remodelling and gene regulation.
Collapse
Affiliation(s)
- Ambrosius P L Snijders
- School of Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | | | | | | | | | | |
Collapse
|
167
|
Koenig T, Menze BH, Kirchner M, Monigatti F, Parker KC, Patterson T, Steen JJ, Hamprecht FA, Steen H. Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics. J Proteome Res 2008; 7:3708-17. [PMID: 18707158 DOI: 10.1021/pr700859x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein identification by tandem mass spectrometry is based on the reliable processing of the acquired data. Unfortunately, the generation of a large number of poor quality spectra is commonly observed in LC-MS/MS, and the processing of these mostly noninformative spectra with its associated costs should be avoided. We present a continuous quality score that can be computed very quickly and that can be considered an approximation of the MASCOT score in case of a correct identification. This score can be used to reject low quality spectra prior to database identification, or to draw attention to those spectra that exhibit a (supposedly) high information content, but could not be identified. The proposed quality score can be calibrated automatically on site without the need for a manually generated training set. When this score is turned into a classifier and when features are used that are independent of the instrument, the proposed approach performs equally to previously published classifiers and feature sets and also gives insights into the behavior of the MASCOT score.
Collapse
Affiliation(s)
- Thomas Koenig
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Garcia BA, Thomas CE, Kelleher NL, Mizzen CA. Tissue-specific expression and post-translational modification of histone H3 variants. J Proteome Res 2008; 7:4225-36. [PMID: 18700791 DOI: 10.1021/pr800044q] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Analyses of histone H3 from 10 rat tissues using a Middle Down proteomics platform revealed tissue-specific differences in their expression and global PTM abundance. ESI/FTMS with electron capture dissociation showed that, in general, these proteins were hypomodified in heart, liver and testes. H3.3 was hypermodified compared to H3.2 in some, but not all tissues. In addition, a novel rat testes-specific H3 protein was identified with this approach.
Collapse
Affiliation(s)
- Benjamin A Garcia
- Institute for Genomic Biology, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
169
|
Rose KL, Li A, Zalenskaya I, Zhang Y, Unni E, Hodgson KC, Yu Y, Shabanowitz J, Meistrich ML, Hunt DF, Ausió J. C-terminal phosphorylation of murine testis-specific histone H1t in elongating spermatids. J Proteome Res 2008; 7:4070-8. [PMID: 18698803 DOI: 10.1021/pr8003908] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies gave differing results as to whether the testis-specific histone H1t was phosphorylated during rodent spermatogenesis. We show here that histones extracted from germ cell populations enriched with spermatids at different stages of development in rat testes reveal an electrophoretic shift in the position of H1t to slower mobilities in elongating spermatids as compared to that from preceding stages. Alkaline phosphatase treatment and radioactive labeling with (32)P demonstrated that the electrophoretic shift is due to phosphorylation. Mass spectrometric analysis of histone H1t purified from sexually mature mice and rat testes confirmed the occurrence of singly, doubly, and triply phosphorylated species, with phosphorylation sites predominantly found at the C-terminal end of the molecule. Furthermore, using collision-activated dissociation (CAD) and electron transfer dissociation (ETD), we have been able to identify the major phosphorylation sites. These include a new, previously unidentified putative H1t-specific cdc2 phosphorylation site in linker histones. The presence of phosphorylation at the C-terminal end of H1t and the timing of its appearance suggest that this post-translational modification is involved in the reduction of H1t binding strength to DNA. It is proposed that this could participate in the opening of the chromatin fiber in preparation for histone displacement by transition proteins in the next phase of spermiogenesis.
Collapse
Affiliation(s)
- Kristie L Rose
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Nady N, Min J, Kareta MS, Chédin F, Arrowsmith CH. A SPOT on the chromatin landscape? Histone peptide arrays as a tool for epigenetic research. Trends Biochem Sci 2008; 33:305-13. [PMID: 18538573 DOI: 10.1016/j.tibs.2008.04.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 04/18/2008] [Accepted: 04/23/2008] [Indexed: 12/23/2022]
Abstract
Post-translational modifications of histones serve as docking sites and signals for effector proteins and chromatin-remodeling enzymes, thereby influencing many fundamental cellular processes. Nevertheless, there are huge gaps in the knowledge of which proteins read and write the 'histone code'. Several techniques have been used to decipher complex histone-modification patterns. However, none is entirely satisfactory owing to the inherent limitations of in vitro studies of histones, such as deficits in the knowledge of the proteins involved, and the associated difficulties in the consistent and quantitative generation of histone marks. An alternative technique that could prove to be a useful tool in the study of the histone code is the use of synthetic peptide arrays (SPOT blot analysis) as a screening approach to characterize macromolecules that interact with specific covalent modifications of histone tails.
Collapse
Affiliation(s)
- Nataliya Nady
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | | | | | | | | |
Collapse
|
171
|
Couttas TA, Raftery MJ, Bernardini G, Wilkins MR. Immonium Ion Scanning for the Discovery of Post-Translational Modifications and Its Application to Histones. J Proteome Res 2008; 7:2632-41. [DOI: 10.1021/pr700644t] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Timothy A. Couttas
- School of Biotechnology and Biomolecular Sciences and Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia, and Department of Molecular Biology, University of Siena, Italy
| | - Mark J. Raftery
- School of Biotechnology and Biomolecular Sciences and Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia, and Department of Molecular Biology, University of Siena, Italy
| | - Giulia Bernardini
- School of Biotechnology and Biomolecular Sciences and Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia, and Department of Molecular Biology, University of Siena, Italy
| | - Marc R. Wilkins
- School of Biotechnology and Biomolecular Sciences and Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia, and Department of Molecular Biology, University of Siena, Italy
| |
Collapse
|
172
|
Scherl A, Shaffer SA, Taylor GK, Hernandez P, Appel RD, Binz PA, Goodlett DR. On the benefits of acquiring peptide fragment ions at high measured mass accuracy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:891-901. [PMID: 18417358 PMCID: PMC2459323 DOI: 10.1016/j.jasms.2008.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/31/2008] [Accepted: 02/19/2008] [Indexed: 05/09/2023]
Abstract
The advantages and disadvantages of acquiring tandem mass spectra by collision-induced dissociation (CID) of peptides in linear ion trap Fourier-transform hybrid instruments are described. These instruments offer the possibility to transfer fragment ions from the linear ion trap to the FT-based analyzer for analysis with both high resolution and high mass accuracy. In addition, performing CID during the transfer of ions from the linear ion trap (LTQ) to the FT analyzer is also possible in instruments containing an additional collision cell (i.e., the "C-trap" in the LTQ-Orbitrap), resulting in tandem mass spectra over the full m/z range and not limited by the ejection q value of the LTQ. Our results show that these scan modes have lower duty cycles than tandem mass spectra acquired in the LTQ with nominal mass resolution, and typically result in fewer peptide identifications during data-dependent analysis of complex samples. However, the higher measured mass accuracy and resolution provides more specificity and hence provides a lower false positive ratio for the same number of true positives during database search of peptide tandem mass spectra. In addition, the search for modified and unexpected peptides is greatly facilitated with this data acquisition mode. It is therefore concluded that acquisition of tandem mass spectral data with high measured mass accuracy and resolution is a competitive alternative to "classical" data acquisition strategies, especially in situations of complex searches from large databases, searches for modified peptides, or for peptides resulting from unspecific cleavages.
Collapse
Affiliation(s)
- Alexander Scherl
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Scott A. Shaffer
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Gregory K. Taylor
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Patricia Hernandez
- Swiss Institute of Bioinformatics, University of Geneva, Geneva, Switzerland
| | - Ron D. Appel
- Swiss Institute of Bioinformatics, University of Geneva, Geneva, Switzerland
| | - Pierre-Alain Binz
- Swiss Institute of Bioinformatics, University of Geneva, Geneva, Switzerland
- GeneBio SA, Geneva, Switzerland
| | - David R. Goodlett
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
- *Address reprint request to Dr. David R. Goodlett, University of Washington, Department of Medicinal Chemistry, Box 357610, Seattle, WA 98195-7610, Phone: 206.616.4586, Fax: 206.685.3252,
| |
Collapse
|
173
|
Wiśniewski JR, Zougman A, Krüger S, Ziółkowski P, Pudełko M, Bębenek M, Mann M. Constitutive and dynamic phosphorylation and acetylation sites on NUCKS, a hypermodified nuclear protein, studied by quantitative proteomics. Proteins 2008; 73:710-8. [DOI: 10.1002/prot.22104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
174
|
Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One 2008; 3:e1994. [PMID: 18431481 PMCID: PMC2291561 DOI: 10.1371/journal.pone.0001994] [Citation(s) in RCA: 508] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 03/06/2008] [Indexed: 01/24/2023] Open
Abstract
Characterization of the chloroplast proteome is needed to understand the essential contribution of the chloroplast to plant growth and development. Here we present a large scale analysis by nanoLC-Q-TOF and nanoLC-LTQ-Orbitrap mass spectrometry (MS) of ten independent chloroplast preparations from Arabidopsis thaliana which unambiguously identified 1325 proteins. Novel proteins include various kinases and putative nucleotide binding proteins. Based on repeated and independent MS based protein identifications requiring multiple matched peptide sequences, as well as literature, 916 nuclear-encoded proteins were assigned with high confidence to the plastid, of which 86% had a predicted chloroplast transit peptide (cTP). The protein abundance of soluble stromal proteins was calculated from normalized spectral counts from LTQ-Obitrap analysis and was found to cover four orders of magnitude. Comparison to gel-based quantification demonstrates that ‘spectral counting’ can provide large scale protein quantification for Arabidopsis. This quantitative information was used to determine possible biases for protein targeting prediction by TargetP and also to understand the significance of protein contaminants. The abundance data for 550 stromal proteins was used to understand abundance of metabolic pathways and chloroplast processes. We highlight the abundance of 48 stromal proteins involved in post-translational proteome homeostasis (including aminopeptidases, proteases, deformylases, chaperones, protein sorting components) and discuss the biological implications. N-terminal modifications were identified for a subset of nuclear- and chloroplast-encoded proteins and a novel N-terminal acetylation motif was discovered. Analysis of cTPs and their cleavage sites of Arabidopsis chloroplast proteins, as well as their predicted rice homologues, identified new species-dependent features, which will facilitate improved subcellular localization prediction. No evidence was found for suggested targeting via the secretory system. This study provides the most comprehensive chloroplast proteome analysis to date and an expanded Plant Proteome Database (PPDB) in which all MS data are projected on identified gene models.
Collapse
Affiliation(s)
- Boris Zybailov
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Heidi Rutschow
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Andrea Rudella
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Olof Emanuelsson
- Stockholm Bioinformatics Center, AlbaNova, Stockholm University, Stockholm, Sweden
| | - Qi Sun
- Computation Biology Service Unit, Cornell Theory Center, Cornell University, Ithaca, New York, United States of America
| | - Klaas J. van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
175
|
Deterding LJ, Bunger MK, Banks GC, Tomer KB, Archer TK. Global changes in and characterization of specific sites of phosphorylation in mouse and human histone H1 Isoforms upon CDK inhibitor treatment using mass spectrometry. J Proteome Res 2008; 7:2368-79. [PMID: 18416567 DOI: 10.1021/pr700790a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Global changes in the phosphorylation state of human H1 isoforms isolated from UL3 cells have been investigated using mass spectrometry. Relative changes in H1 phosphorylation between untreated cells and cells treated with dexamethasone or various CDK inhibitors were determined. The specific cyclin-dependent kinase consensus sites of phosphorylation on the histone H1 isoforms that show changes in phosphorylation were also investigated. Three sites of phosphorylation on histone H1.4 isoforms have been identified.
Collapse
Affiliation(s)
- Leesa J Deterding
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, P.O. Box 12233, RTP, North Carolina 27709, USA.
| | | | | | | | | |
Collapse
|
176
|
Villar-Garea A, Imhof A. Fine mapping of posttranslational modifications of the linker histone H1 from Drosophila melanogaster. PLoS One 2008; 3:e1553. [PMID: 18253500 PMCID: PMC2212714 DOI: 10.1371/journal.pone.0001553] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Accepted: 01/10/2008] [Indexed: 11/18/2022] Open
Abstract
The linker histone H1 binds to the DNA in between adjacent nucleosomes and contributes to chromatin organization and transcriptional control. It is known that H1 carries diverse posttranslational modifications (PTMs), including phosphorylation, lysine methylation and ADP-ribosylation. Their biological functions, however, remain largely unclear. This is in part due to the fact that most of the studies have been performed in organisms that have several H1 variants, which complicates the analyses. We have chosen Drosophila melanogaster, a model organism, which has a single H1 variant, to approach the study of the role of H1 PTMs during embryonic development. Mass spectrometry mapping of the entire sequence of the protein showed phosphorylation only in the ten N-terminal amino acids, mostly at S10. For the first time, changes in the PTMs of a linker H1 during the development of a multicellular organism are reported. The abundance of H1 monophosphorylated at S10 decreases as the embryos age, which suggests that this PTM is related to cell cycle progression and/or cell differentiation. Additionally, we have found a polymorphism in the protein sequence that can be mistaken with lysine methylation if the analysis is not rigorous.
Collapse
Affiliation(s)
- Ana Villar-Garea
- Munich Center for Integrated Protein Science CIPSM, Histone Modifications Group, Adolf-Butenandt Institute, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Axel Imhof
- Munich Center for Integrated Protein Science CIPSM, Histone Modifications Group, Adolf-Butenandt Institute, Ludwig-Maximilians University of Munich, Munich, Germany
- *E-mail:
| |
Collapse
|
177
|
Abstract
Two-dimensional (2D) polyacrylamide gel electrophoresis (PAGE) systems employing combinations of acetic acid/urea (AU), acetic acid/urea/Triton X-100 (AUT) and sodium dodecyl sulfate (SDS) gel formulations are uniquely effective for resolution of histone variants and their modified derivatives. Coupled with Western transfer methods using modification-specific antibodies and recent advances in mass spectrometry, 2D PAGE emerges as a versatile tool for histone purification and analysis. This chapter describes 2D PAGE gel systems appropriate for histone proteins, including detailed procedures for designing, running, and staining gels. Methods for electrophoretic transfer of histones from AUTxSDS and AUTxAU 2D gels are described and evaluated. Alternatively, methods are provided for obtaining highly purified protein samples from fixed and stained gels via electroelution of proteins from specific gel spots.
Collapse
Affiliation(s)
- George R Green
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy and Health Sciences, Atlanta, GA, USA
| | | |
Collapse
|
178
|
Wisniewski JR, Zougman A, Mann M. Nepsilon-formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function. Nucleic Acids Res 2007; 36:570-7. [PMID: 18056081 PMCID: PMC2241850 DOI: 10.1093/nar/gkm1057] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Post-translational modification of histones and other chromosomal proteins regulates chromatin conformation and gene activity. Methylation and acetylation of lysyl residues are among the most frequently described modifications in these proteins. Whereas these modifications have been studied in detail, very little is known about a recently discovered chemical modification, the N(epsilon)-lysine formylation, in histones and other nuclear proteins. Here we mapped, for the first time, the sites of lysine formylation in histones and several other nuclear proteins. We found that core and linker histones are formylated at multiple lysyl residues located both in the tails and globular domains of histones. In core histones, formylation was found at lysyl residues known to be involved in organization of nucleosomal particles that are frequently acetylated and methylated. In linker histones and high mobility group proteins, multiple formylation sites were mapped to residues with important role in DNA binding. N(epsilon)-lysine formylation in chromosomal proteins is relatively abundant, suggesting that it may interfere with epigenetic mechanisms governing chromatin function, which could lead to deregulation of the cell and disease.
Collapse
Affiliation(s)
- Jacek R Wisniewski
- Department of Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| | | | | |
Collapse
|
179
|
Stoldt S, Wenzel D, Schulze E, Doenecke D, Happel N. G1 phase-dependent nucleolar accumulation of human histone H1x. Biol Cell 2007; 99:541-52. [PMID: 17868027 DOI: 10.1042/bc20060117] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION H1 histones are a protein family comprising several subtypes. Although specific functions of the individual subtypes could not be determined so far, differential roles are indicated by varied nuclear distributions as well as differential expression patterns of the H1 subtypes. Although the group of replication-dependent H1 subtypes is synthesized during S phase, the replacement H1 subtype, H1 degrees , is also expressed in a replication-independent manner in non-proliferating cells. Recently we showed, by protein biochemical analysis, that the ubiquitously expressed subtype H1x is enriched in the micrococcal nuclease-resistant part of chromatin and that, although it shares common features with H1 degrees , its expression is differentially regulated, since, in contrast to H1 degrees , growth arrest or induction of differentiation did not induce an accumulation of H1x. RESULTS In the present study, we show that H1x exhibits a cell-cycle-dependent change of its nuclear distribution. This H1 subtype showed a nucleolar accumulation during the G(1) phase, and it was evenly distributed in the nucleus during S phase and G(2). Immunocytochemical analysis of the intranucleolar distribution of H1x indicated that it is located mainly in the condensed nucleolar chromatin. In addition, we demonstrate that the amount of H1x protein remained nearly unchanged during S phase progression, which is in contrast to the replication-dependent subtypes. CONCLUSION These results suggest that the differential localization of H1x provides a mechanism for a control of H1x activity by means of shuttling between nuclear subcompartments instead of a controlled turnover of the protein.
Collapse
Affiliation(s)
- Stefan Stoldt
- Institute for Biochemistry and Molecular Cell Biology, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
180
|
Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M. Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 2007; 4:709-12. [PMID: 17721543 DOI: 10.1038/nmeth1060] [Citation(s) in RCA: 723] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 07/30/2007] [Indexed: 11/08/2022]
Abstract
Peptide sequencing is the basis of mass spectrometry-driven proteomics. Here we show that in the linear ion trap-orbitrap mass spectrometer (LTQ Orbitrap) peptide ions can be efficiently fragmented by high-accuracy and full-mass-range tandem mass spectrometry (MS/MS) via higher-energy C-trap dissociation (HCD). Immonium ions generated via HCD pinpoint modifications such as phosphotyrosine with very high confidence. Additionally we show that an added octopole collision cell facilitates de novo sequencing.
Collapse
Affiliation(s)
- Jesper V Olsen
- Department for Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82131 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|