151
|
Palmgren MG, Bækgaard L, López-Marqués RL, Fuglsang AT. Plasma Membrane ATPases. THE PLANT PLASMA MEMBRANE 2011. [DOI: 10.1007/978-3-642-13431-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
152
|
Abstract
Quo Vadis: where are you going? Advances in MS-based proteomics have enabled research to move from obtaining the basic protein inventory of cells and organelles to the ability of monitoring their dynamics, including changes in abundance, location and various PTMs. In this respect, the cellular plasma membrane is of particular interest, by not only serving as a barrier between the "cell interior" and the external environment, but moreover by organizing and clustering essential components to enable dynamic responses to internal and external stimuli. Defining and characterizing the dynamic plasma membrane proteome is crucial for understanding fundamental biological processes, disease mechanisms and for finding drug targets. Protein identification, characterization of dynamic PTMs and protein-ligand interactions, and determination of transient changes in protein expression and composition are among the challenges in functional proteomic studies of the plasma membrane. We review the recent progress in MS-based plasma membrane proteomics by presenting key examples from eukaryotic systems, including mammals, yeast and plants. We highlight the importance of enrichment and quantification technologies required for detailed functional and comparative analysis of the dynamic plasma membrane proteome.
Collapse
Affiliation(s)
- Richard R Sprenger
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | |
Collapse
|
153
|
Trost M, Bridon G, Desjardins M, Thibault P. Subcellular phosphoproteomics. MASS SPECTROMETRY REVIEWS 2010; 29:962-90. [PMID: 20931658 DOI: 10.1002/mas.20297] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Protein phosphorylation represents one of the most extensively studied post-translational modifications, primarily due to the emergence of sensitive methods enabling the detection of this modification both in vitro and in vivo. The availability of enrichment methods combined with sensitive mass spectrometry instrumentation has played a crucial role in uncovering the dynamic changes and the large expanding repertoire of this reversible modification. The structural changes imparted by the phosphorylation of specific residues afford exquisite mechanisms for the regulation of protein functions by modulating new binding sites on scaffold proteins or by abrogating protein-protein interactions. However, the dynamic interplay of protein phosphorylation is not occurring randomly within the cell but is rather finely orchestrated by specific kinases and phosphatases that are unevenly distributed across subcellular compartments. This spatial separation not only regulates protein phosphorylation but can also control the activity of other enzymes and the transfer of other post-translational modifications. While numerous large-scale phosphoproteomics studies highlighted the extent and diversity of phosphoproteins present in total cell lysates, the further understanding of their regulation and biological activities require a spatio-temporal resolution only achievable through subcellular fractionation. This review presents a first account of the emerging field of subcellular phosphoproteomics where cell fractionation approaches are combined with sensitive mass spectrometry methods to facilitate the identification of low abundance proteins and to unravel the intricate regulation of protein phosphorylation.
Collapse
Affiliation(s)
- Matthias Trost
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | |
Collapse
|
154
|
In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proc Natl Acad Sci U S A 2010; 107:15986-91. [PMID: 20733066 DOI: 10.1073/pnas.1007879107] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abscisic acid (ABA) is a hormone that controls seed dormancy and germination as well as the overall plant response to important environmental stresses such as drought. Recent studies have demonstrated that the ABA-bound receptor binds to and inhibits a class of protein phosphatases. To identify more broadly the phosphoproteins affected by this hormone in vivo, we used (14)N/(15)N metabolic labeling to perform a quantitative untargeted mass spectrometric analysis of the Arabidopsis thaliana phosphoproteome following ABA treatment. We found that 50 different phosphopeptides had their phosphorylation state significantly altered by ABA over a treatment period lasting 5-30 min. Among these changes were increases in phosphorylation of subfamily 2 SNF1-related kinases and ABA-responsive basic leucine zipper transcription factors implicated in ABA signaling by previous in vitro studies. Furthermore, four members of the aquaporin family showed decreased phosphorylation at a carboxy-terminal serine which is predicted to cause closure of the water-transporting aquaporin gate, consistent with ABA's role in ameliorating the effect of drought. Finally, more than 20 proteins not previously known to be involved with ABA were found to have significantly altered phosphorylation levels. Many of these changes are phosphorylation decreases, indicating that an expanded model of ABA signaling, beyond simple phosphatase inhibition, may be necessary. This quantitative proteomics dataset provides a more comprehensive, albeit incomplete, view both of the protein targets whose biochemical activities are likely to be controlled by ABA and of the nature of the emerging phosphorylation and dephosphorylation cascades triggered by this hormone.
Collapse
|
155
|
Neilson KA, Gammulla CG, Mirzaei M, Imin N, Haynes PA. Proteomic analysis of temperature stress in plants. Proteomics 2010; 10:828-45. [PMID: 19953552 DOI: 10.1002/pmic.200900538] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this review we examine current approaches used for proteomic analysis of temperature stress in plants. Rapid advances in this field in recent years are discussed, including metabolic, chemical and isotopic labeling, and label-free quantitative techniques. These are compared and contrasted with well-established methods such as 2-DE approaches. Examples of applications of various methods are presented, and technical difficulties and limitations of each are also considered. Results of previous studies are examined in detail, and commonly occurring temperature stress response proteins are collated. We conclude that technical advances, and improvements in genome sequence availability, will have an ever increasing impact on our understanding of molecular mechanisms of stress response in plants.
Collapse
Affiliation(s)
- Karlie A Neilson
- Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW, Australia
| | | | | | | | | |
Collapse
|
156
|
Riaño-Pachón DM, Kleessen S, Neigenfind J, Durek P, Weber E, Engelsberger WR, Walther D, Selbig J, Schulze WX, Kersten B. Proteome-wide survey of phosphorylation patterns affected by nuclear DNA polymorphisms in Arabidopsis thaliana. BMC Genomics 2010; 11:411. [PMID: 20594336 PMCID: PMC2996939 DOI: 10.1186/1471-2164-11-411] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 07/01/2010] [Indexed: 12/26/2022] Open
Abstract
Background Protein phosphorylation is an important post-translational modification influencing many aspects of dynamic cellular behavior. Site-specific phosphorylation of amino acid residues serine, threonine, and tyrosine can have profound effects on protein structure, activity, stability, and interaction with other biomolecules. Phosphorylation sites can be affected in diverse ways in members of any species, one such way is through single nucleotide polymorphisms (SNPs). The availability of large numbers of experimentally identified phosphorylation sites, and of natural variation datasets in Arabidopsis thaliana prompted us to analyze the effect of non-synonymous SNPs (nsSNPs) onto phosphorylation sites. Results From the analyses of 7,178 experimentally identified phosphorylation sites we found that: (i) Proteins with multiple phosphorylation sites occur more often than expected by chance. (ii) Phosphorylation hotspots show a preference to be located outside conserved domains. (iii) nsSNPs affected experimental phosphorylation sites as much as the corresponding non-phosphorylated amino acid residues. (iv) Losses of experimental phosphorylation sites by nsSNPs were identified in 86 A. thaliana proteins, among them receptor proteins were overrepresented. These results were confirmed by similar analyses of predicted phosphorylation sites in A. thaliana. In addition, predicted threonine phosphorylation sites showed a significant enrichment of nsSNPs towards asparagines and a significant depletion of the synonymous substitution. Proteins in which predicted phosphorylation sites were affected by nsSNPs (loss and gain), were determined to be mainly receptor proteins, stress response proteins and proteins involved in nucleotide and protein binding. Proteins involved in metabolism, catalytic activity and biosynthesis were less affected. Conclusions We analyzed more than 7,100 experimentally identified phosphorylation sites in almost 4,300 protein-coding loci in silico, thus constituting the largest phosphoproteomics dataset for A. thaliana available to date. Our findings suggest a relatively high variability in the presence or absence of phosphorylation sites between different natural accessions in receptor and other proteins involved in signal transduction. Elucidating the effect of phosphorylation sites affected by nsSNPs on adaptive responses represents an exciting research goal for the future.
Collapse
|
157
|
Chen Y, Hoehenwarter W, Weckwerth W. Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:1-17. [PMID: 20374526 DOI: 10.1111/j.1365-313x.2010.04218.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Protein phosphorylation/dephosphorylation is a central post-translational modification in plant hormone signaling, but little is known about its extent and function. Although pertinent protein kinases and phosphatases have been predicted and identified for a variety of hormone responses, classical biochemical approaches have so far revealed only a few candidate proteins and even fewer phosphorylation sites. Here we performed a global quantitative analysis of the Arabidopsis phosphoproteome in response to a time course of treatments with various plant hormones using phosphopeptide enrichment and subsequent mass accuracy precursor alignment (MAPA). The use of three time points, 1, 3 and 6 h, in combination with five phytohormone treatments, abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellic acid (GA), jasmonic acid (JA) and kinetin, resulted in 324,000 precursor ions from 54 LC-Orbitrap-MS analyses quantified and aligned in a data matrix with the dimension of 6000 x 54 using the ProtMax algorithm. To dissect the phytohormone responses, multivariate principal/independent components analysis was performed. In total, 152 phosphopeptides were identified as differentially regulated; these phosphopeptides are involved in a wide variety of signaling pathways. New phosphorylation sites were identified for ABA response element binding factors that showed a specific increase in response to ABA. New phosphorylation sites were also found for RLKs and auxin transporters. We found that different hormones regulate distinct amino acid residues of members of the same protein families. In contrast, tyrosine phosphorylation of the G alpha subunit appeared to be a common response for multiple hormones, demonstrating global cross-talk among hormone signaling pathways.
Collapse
Affiliation(s)
- Yanmei Chen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | | | | |
Collapse
|
158
|
Ytterberg AJ, Jensen ON. Modification-specific proteomics in plant biology. J Proteomics 2010; 73:2249-66. [PMID: 20541636 DOI: 10.1016/j.jprot.2010.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/18/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
Abstract
Post-translational modifications (PTMs) are involved in the regulation of a wide range of biological processes, and affect e.g. protein structure, activity and stability. Several hundred PTMs have been described in the literature, but relatively few have been studied using mass spectrometry and proteomics. In general, methods for PTM characterization are developed to study yeast and mammalian biology and later adopted to investigate plants. Our point of view is that it is advantageous to enrich for PTMs on the peptide level as part of a quantitative proteomics strategy to not only identify the PTM, but also to determine the functional relevance in the context of regulation, response to abiotic stress etc. Protein phosphorylation is the only PTM that has been studied extensively at the proteome wide level in plants using mass spectrometry based methods. We review phosphoproteomics studies in plants and discuss the redox mediated PTMs (S-nitrosylation, tyrosine nitration and S-glutathionylation), ubiquitylation, SUMOylation, and glycosylation, including GPI anchors, and the quantitative proteomics methods that are used to study these modification in plants. Where appropriate we contrast the methods to those used for mammalian PTM characterization.
Collapse
Affiliation(s)
- A Jimmy Ytterberg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| | | |
Collapse
|
159
|
Bobik K, Boutry M, Duby G. Activation of the plasma membrane H (+) -ATPase by acid stress: antibodies as a tool to follow the phosphorylation status of the penultimate activating Thr. PLANT SIGNALING & BEHAVIOR 2010; 5:681-3. [PMID: 20404493 PMCID: PMC3001558 DOI: 10.4161/psb.5.6.11572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tight regulation of the plasma membrane proton pump ATPase (H (+) -ATPase) is necessary for controlling the membrane potential that energizes secondary transporters. This regulation relies on the phosphorylation of the H (+) -ATPase penultimate residue, a theonine, and the subsequent binding of regulatory 14-3-3 proteins, which results in enzyme activation. Using phospho-specific antibodies directed against the phosphorylable Thr of either PMA2 (Plasma membrane H (+) -ATPase from N. plumbaginifolia) or PMA4, we showed that the kinetics and extent of phosphorylation differ between both isoforms according to the growth or environmental conditions like cold stress. (1) Here, we used phospho-specific antibodies to follow PMA2 Thr phosphorylation upon acidification of the cytosol by incubating N. tabacum BY2 cells with four different weak organic acids. Increased PMA2 phosphorylation was observed for three of them, thus highlighting the role of the H (+) -ATPase in cell pH homeostasis.
Collapse
Affiliation(s)
- Krzysztof Bobik
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
160
|
Casado-Vela J, Muries B, Carvajal M, Iloro I, Elortza F, Martínez-Ballesta M. Analysis of Root Plasma Membrane Aquaporins from Brassica oleracea: Post-Translational Modifications, de novo Sequencing and Detection of Isoforms by High Resolution Mass Spectrometry. J Proteome Res 2010; 9:3479-94. [DOI: 10.1021/pr901150g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- J. Casado-Vela
- Plataforma de Proteómica, CIC bioGUNE, CIBERehd, ProteoRed, Parque Tecnológico de Bizkaia, Edifício 800, 48160, Bizkaia, Spain, and Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura - CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - B. Muries
- Plataforma de Proteómica, CIC bioGUNE, CIBERehd, ProteoRed, Parque Tecnológico de Bizkaia, Edifício 800, 48160, Bizkaia, Spain, and Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura - CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - M. Carvajal
- Plataforma de Proteómica, CIC bioGUNE, CIBERehd, ProteoRed, Parque Tecnológico de Bizkaia, Edifício 800, 48160, Bizkaia, Spain, and Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura - CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - I. Iloro
- Plataforma de Proteómica, CIC bioGUNE, CIBERehd, ProteoRed, Parque Tecnológico de Bizkaia, Edifício 800, 48160, Bizkaia, Spain, and Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura - CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - F. Elortza
- Plataforma de Proteómica, CIC bioGUNE, CIBERehd, ProteoRed, Parque Tecnológico de Bizkaia, Edifício 800, 48160, Bizkaia, Spain, and Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura - CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - M.C. Martínez-Ballesta
- Plataforma de Proteómica, CIC bioGUNE, CIBERehd, ProteoRed, Parque Tecnológico de Bizkaia, Edifício 800, 48160, Bizkaia, Spain, and Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura - CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
161
|
Lundgren DH, Hwang SI, Wu L, Han DK. Role of spectral counting in quantitative proteomics. Expert Rev Proteomics 2010; 7:39-53. [PMID: 20121475 DOI: 10.1586/epr.09.69] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spectral count, defined as the total number of spectra identified for a protein, has gained acceptance as a practical, label-free, semiquantitative measure of protein abundance in proteomic studies. In this review, we discuss issues affecting the performance of spectral counting relative to other label-free methods, as well as its limitations. Possible consequences of modifications, which are commonly applied to raw spectral counts to improve abundance estimations, are considered. The use of spectral counting for different types of quantitation studies is explored and critiqued. Different statistical methods and underlying frameworks that have been applied to spectral count analysis are described and compared, and problem areas that undermine confident statistical analysis are considered. Finally, the issue of accurate estimation of false-discovery rates is addressed and identified as a major current challenge in quantitative proteomics.
Collapse
Affiliation(s)
- Deborah H Lundgren
- Department of Cell Biology and Center for Vascular Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
162
|
He J, Liu Y, Xie X, Zhu T, Soules M, DiMeco F, Vescovi AL, Fan X, Lubman DM. Identification of cell surface glycoprotein markers for glioblastoma-derived stem-like cells using a lectin microarray and LC-MS/MS approach. J Proteome Res 2010; 9:2565-72. [PMID: 20235609 PMCID: PMC2866009 DOI: 10.1021/pr100012p] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite progress in the treatment of glioblastoma, more than 95% of patients suffering from this disease still die within 2 years. Recent findings support the belief that cancer stem-like cells are responsible for tumor formation and ongoing growth. Here a method combining lectin microarray and LC-MS/MS was used to discover the cell surface glycoprotein markers of a glioblastoma-derived stem-like cell line. Lectin microarray analysis of cell surface glycans showed that two galactose-specific lectins Trichosanthes kirilowii agglutinin (TKA) and Peanut agglutinin (PNA) could distinguish the stem-like glioblastoma neurosphere culture from a traditional adherent glioblastoma cell line. Agarose-bound TKA and PNA were used to capture the glycoproteins from the two cell cultures, which were analyzed by LC-MS/MS. The glycoproteins were quantified by spectral counting, resulting in the identification of 12 and 11 potential glycoprotein markers from the TKA and PNA captured fractions respectively. Almost all of these proteins were membrane proteins. Differential expression was verified by Western blotting analysis of 6 interesting proteins, including the up-regulated Receptor-type tyrosine-protein phosphatase zeta, Tenascin-C, Chondroitin sulfate proteoglycan NG2, Podocalyxin-like protein 1 and CD90, and the down-regulated CD44. An improved understanding of these proteins may be important for earlier diagnosis and better therapeutic targeting of glioblastoma.
Collapse
Affiliation(s)
- Jintang He
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109
| | - Yashu Liu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109
| | - Xiaolei Xie
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109
| | - Thant Zhu
- Department of Neurosurgery, University of Michigan Medical Center, Ann Arbor, MI, 48109
| | - Mary Soules
- Department of Neurosurgery, University of Michigan Medical Center, Ann Arbor, MI, 48109
| | - Francesco DiMeco
- Neurological Surgery, Johns Hopkins University, Baltimore, MD 21205
- Department of Neurosurgery, Istituto Nazionale Neurologico C. Besta, Milan, Italy, 20133
| | - Angelo L. Vescovi
- Department of Biotechnology and Biosciences, University of Milan Bicocca, Milan, Italy, 20126
| | - Xing Fan
- Department of Neurosurgery, University of Michigan Medical Center, Ann Arbor, MI, 48109
- Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, 48109
| | - David M. Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109
| |
Collapse
|
163
|
Bobik K, Duby G, Nizet Y, Vandermeeren C, Stiernet P, Kanczewska J, Boutry M. Two widely expressed plasma membrane H(+)-ATPase isoforms of Nicotiana tabacum are differentially regulated by phosphorylation of their penultimate threonine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:291-301. [PMID: 20128881 DOI: 10.1111/j.1365-313x.2010.04147.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The plasma membrane H(+)-ATPases PMA2 and PMA4 are the most widely expressed in Nicotiana plumbaginifolia, and belong to two different subfamilies. Both are activated by phosphorylation of a Thr at the penultimate position and the subsequent binding of 14-3-3 proteins. Their expression in Saccharomyces cerevisiae revealed functional and regulatory differences. To determine whether different regulatory properties between PMA2 and PMA4 exist in plants, we generated two monoclonal antibodies able to detect phosphorylation of the penultimate Thr of either PMA2 or PMA4 in a total protein extract. We also raised Nicotiana tabacum transgenic plants expressing 6-His-tagged PMA2 or PMA4, enabling their individual purification. Using these tools we showed that phosphorylation of the penultimate Thr of both PMAs was high during the early exponential growth phase of an N. tabacum cell culture, and then progressively declined. This decline correlated with decreased 14-3-3 binding and decreased plasma membrane ATPase activity. However, the rate and extent of the decrease differed between the two isoforms. Cold stress of culture cells or leaf tissues reduced the Thr phosphorylation of PMA2, whereas no significant changes in Thr phosphorylation of PMA4 were seen. These results strongly suggest that PMA2 and PMA4 are differentially regulated by phosphorylation. Analysis of the H(+)-ATPase phosphorylation status in leaf tissues indicated that no more than 44% (PMA2) or 32% (PMA4) was in the activated state under normal growth conditions. Purification of either isoform showed that, when activated, the two isoforms did not form hetero-oligomers, which is further support for these two H(+)-ATPase subfamilies having different properties.
Collapse
Affiliation(s)
- Krzysztof Bobik
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium
| | | | | | | | | | | | | |
Collapse
|
164
|
Abstract
The phloem is a central actor in plant development and nutrition, providing nutrients and energy to sink organs and integrating interorgan communication. A comprehensive picture of the molecules trafficking in phloem sap is being made available, with recent surveys of proteins, RNAs, sugars, and other metabolites, some of which are potentially acting as signals. In this review, we focus on recent breakthroughs on phloem transport and signalling. A case study was phloem loading of sucrose, acting both as a nutrient and as a signal, whose activity was shown to be tightly regulated. Recent advances also described actors of macromolecular trafficking in sieve elements, including chaperones and RNA binding proteins, involved potentially in the formation of ribonucleoprotein complexes. Likewise, long distance signalling appeared to integrate electrical potential waves, calcium bursts and potentially the generation of reactive oxygen species. The ubiquitin-proteasome system was also proposed to be on action in sieve elements for signalling and protein turnover. Surprisingly, several basic processes of phloem physiology are still under debate. Hence, the absence in phloem sap of reducing sugar species, such as hexoses, was recently challenged with observations based on an analysis of the sap from Ranunculaceae and Papaveraceae. The possibility that protein synthesis might occur in sieve elements was again questioned with the identification of components of the translational machinery in Pumpkin phloem sap. Altogether, these new findings strengthen the idea that phloem is playing a central role in interorgan nutrient exchanges and communication and demonstrate that the ways by which this is achieved can obey various patterns among species.
Collapse
Affiliation(s)
- Sylvie Dinant
- Institut National de la Recherche Agronomique, institut Jean-Pierre-Bourgin, route de St-Cyr, Versailles cedex, France.
| | | |
Collapse
|
165
|
Stitt M, Lunn J, Usadel B. Arabidopsis and primary photosynthetic metabolism - more than the icing on the cake. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:1067-91. [PMID: 20409279 DOI: 10.1111/j.1365-313x.2010.04142.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Historically speaking, Arabidopsis was not the plant of choice for investigating photosynthesis, with physiologists and biochemists favouring other species such as Chlorella, spinach and pea. However, its inherent advantages for forward genetics rapidly led to its adoption for photosynthesis research. In the last ten years, the availability of the Arabidopsis genome sequence - still the gold-standard for plant genomes - and the rapid expansion of genetic and genomic resources have further increased its importance. Research in Arabidopsis has not only provided comprehensive information about the enzymes and other proteins involved in photosynthesis, but has also allowed transcriptional responses, protein levels and compartmentation to be analysed at a global level for the first time. Emerging technical and theoretical advances offer another leap forward in our understanding of post-translational regulation and the control of metabolism. To illustrate the impact of Arabidopsis, we provide a historical review of research in primary photosynthetic metabolism, highlighting the role of Arabidopsis in elucidation of the pathway of photorespiration and the regulation of RubisCO, as well as elucidation of the pathways of starch turnover and studies of the significance of starch for plant growth.
Collapse
Affiliation(s)
- Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany.
| | | | | |
Collapse
|
166
|
A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication. Proc Natl Acad Sci U S A 2010; 107:3900-5. [PMID: 20133584 DOI: 10.1073/pnas.0913759107] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Thioredoxins (Trxs) are small ubiquitous regulatory disulfide proteins. Plants have an unusually complex complement of Trxs composed of six well-defined types (Trxs f, m, x, y, h, and o) that reside in different cell compartments and function in an array of processes. The extraplastidic h type consists of multiple members that in general have resisted isolation of a specific phenotype. In analyzing mutant lines in Arabidopsis thaliana, we identified a phenotype of dwarf plants with short roots and small yellowish leaves for AtTrx h9 (henceforth, Trx h9), a member of the Arabidopsis Trx h family. Trx h9 was found to be associated with the plasma membrane and to move from cell to cell. Controls conducted in conjunction with the localization of Trx h9 uncovered another h-type Trx in mitochondria (Trx h2) and a Trx in plastids earlier described as a cytosolic form in tomato. Analysis of Trx h9 revealed a 17-amino acid N-terminal extension in which the second Gly (Gly(2)) and fourth cysteine (Cys(4)) were highly conserved. Mutagenesis experiments demonstrated that Gly(2) was required for membrane binding, possibly via myristoylation. Both Gly(2) and Cys(4) were needed for movement, the latter seemingly for protein structure and palmitoylation. A three-dimensional model was consistent with these predictions as well as with earlier evidence showing that a poplar ortholog is reduced by a glutaredoxin rather than NADP-thioredoxin reductase. In demonstrating the membrane location and intercellular mobility of Trx h9, the present results extend the known boundaries of Trx and suggest a role in cell-to-cell communication.
Collapse
|
167
|
Ekberg K, Palmgren MG, Veierskov B, Buch-Pedersen MJ. A novel mechanism of P-type ATPase autoinhibition involving both termini of the protein. J Biol Chem 2010; 285:7344-50. [PMID: 20068040 DOI: 10.1074/jbc.m109.096123] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of many P-type ATPases is found to be regulated by interacting proteins or autoinhibitory elements located in N- or C-terminal extensions. An extended C terminus of fungal and plant P-type plasma membrane H(+)-ATPases has long been recognized to be part of a regulatory apparatus involving an autoinhibitory domain. Here we demonstrate that both the N and the C termini of the plant plasma membrane H(+)-ATPase are directly involved in controlling the pump activity state and that N-terminal displacements are coupled to secondary modifications taking place at the C-terminal end. This identifies the first group of P-type ATPases for which both ends of the polypeptide chain constitute regulatory domains, which together contribute to the autoinhibitory apparatus. This suggests an intricate mechanism of cis-regulation with both termini of the protein communicating to obtain the necessary control of the enzyme activity state.
Collapse
Affiliation(s)
- Kira Ekberg
- Plant Physiology and Anatomy Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, Danish National Research Foundation, Frederiksberg, Denmark
| | | | | | | |
Collapse
|
168
|
Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D, Nagel A, Kersten B, Schulze WX. PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 2010; 38:D828-34. [PMID: 19880383 PMCID: PMC2808987 DOI: 10.1093/nar/gkp810] [Citation(s) in RCA: 306] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 11/17/2022] Open
Abstract
The PhosPhAt database of Arabidopsis phosphorylation sites was initially launched in August 2007. Since then, along with 10-fold increase in database entries, functionality of PhosPhAt (phosphat.mpimp-golm.mpg.de) has been considerably upgraded and re-designed. PhosPhAt is now more of a web application with the inclusion of advanced search functions allowing combinatorial searches by Boolean terms. The results output now includes interactive visualization of annotated fragmentation spectra and the ability to export spectra and peptide sequences as text files for use in other applications. We have also implemented dynamic links to other web resources thus augmenting PhosPhAt-specific information with external protein-related data. For experimental phosphorylation sites with information about dynamic behavior in response to external stimuli, we display simple time-resolved diagrams. We have included predictions for pT and pY sites and updated pS predictions. Access to prediction algorithm now allows 'on-the-fly' prediction of phosphorylation of any user-uploaded protein sequence. Protein Pfam domain structures are now mapped onto the protein sequence display next to experimental and predicted phosphorylation sites. Finally, we have implemented functional annotation of proteins using MAPMAN ontology. These new developments make the PhosPhAt resource a useful and powerful tool for the scientific community as a whole beyond the plant sciences.
Collapse
Affiliation(s)
- Pawel Durek
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Robert Schmidt
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Joshua L. Heazlewood
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Alexandra Jones
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Daniel MacLean
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Axel Nagel
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Birgit Kersten
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Waltraud X. Schulze
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
169
|
Abstract
Mass-spectrometry-based proteomics, the large-scale analysis of proteins by mass spectrometry, has emerged as a new technology over the last decade and become routine in many plant biology laboratories. While early work consisted merely of listing proteins identified in a given organ or under different conditions of interest, there is a growing need to apply comparative and quantitative proteomics strategies toward gaining novel insights into functional aspects of plant proteins and their dynamics. However, during the transition from qualitative to quantitative protein analysis, the potential and challenges will be tightly coupled. Several strategies for differential proteomics that involve stable isotopes or label-free comparisons and their statistical assessment are possible, each having specific strengths and limitations. Furthermore, incomplete proteome coverage and restricted dynamic range still impose the strongest limitations to data throughput and precise quantitative analysis. This review gives an overview of the current state of the art in differential proteomics and possible strategies in data processing.
Collapse
|
170
|
Speth C, Jaspert N, Marcon C, Oecking C. Regulation of the plant plasma membrane H+-ATPase by its C-terminal domain: what do we know for sure? Eur J Cell Biol 2009; 89:145-51. [PMID: 20034701 DOI: 10.1016/j.ejcb.2009.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The plant plasma membrane H(+)-ATPase is kept at a low activity level by its C-terminal domain, the inhibitory function of which is thought to be mediated by two regions (region I and II) interacting with cytoplasmic domains essential for the catalytic cycle. The activity of the enzyme is well known to be regulated by 14-3-3 proteins, the association of which requires phosphorylation of the penultimate H(+)-ATPase residue, but can be abolished by phosphorylation of residues close-by. The current knowledge about H(+)-ATPase regulation is briefly summed up here, combined with data that query some of the above statements. Expression of various C-terminal deletion constructs of PMA2, a H(+)-ATPase isoform from Nicotiana plumbaginifolia, in yeast indicates that three regions, which do not correspond to regions I or II, contribute to autoinhibition. Their individual and combined action can be abolished by (mimicking) phosphorylation of three threonine residues located within or close to these regions. With respect to the wild-type PMA2, mimicking phosphorylation of two of these residues increases enzyme activity. However, constitutive activation of wild-type PMA2 requires 14-3-3 association. Altogether, the data suggest that regulation of the plant H(+)-ATPase occurs in progressive steps, mediated by several protein kinases and phosphatases, thus allowing gradual as well as fine-tuned adjustment of its activity. Moreover, mating-based split ubiquitin assays indicate a complex interplay between the C-terminal domain and the rest of the enzyme. Notably, their tight contact does not seem to be the cause of the inactive state of the enzyme.
Collapse
Affiliation(s)
- Corinna Speth
- Center for Plant Molecular Biology - Plant Physiology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
171
|
Liu J, Elmore JM, Coaker G. Investigating the functions of the RIN4 protein complex during plant innate immune responses. PLANT SIGNALING & BEHAVIOR 2009; 4:1107-10. [PMID: 20514222 PMCID: PMC2819432 DOI: 10.4161/psb.4.12.9944] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 08/27/2009] [Indexed: 05/07/2023]
Abstract
Pathogen recognition by the plant innate immune system invokes a sophisticated signal transduction network that culminates in disease resistance. The Arabidopsis protein RIN4 is a well-known regulator of plant immunity. However, the molecular mechanisms by which RIN4 controls multiple immune responses have remained elusive. in our recently published study, we purified components of the RIN4 protein complex from A. thaliana and identified several novel RIN4-associated proteins.1 we found that one class of RIN4-associated proteins, the plasma membrane H(+)-ATPases AHA1 and AHA2, play a crucial role in resisting pathogen invasion. Plants use RIN4 to regulate H(+)-ATPase activity during immune responses, thereby controlling stomatal apertures during pathogen attack. Stomata were previously identified as active regulators of plant immune responses during pathogen invasion, but how the plant innate immune system coordinates this response was unknown.2,3 Our investigations have revealed a novel function of rin4 during pathogenesis. Here, we discuss the rin4-AHA1/2 interaction and highlight additional RIN4-associated proteins (RAPs) as well as speculate on their potential roles in plant innate immunity.
Collapse
Affiliation(s)
- Jun Liu
- Department of Plant Pathology; University of California, Davis, Davis, CA, USA
| | | | | |
Collapse
|
172
|
Hsu JL, Wang LY, Wang SY, Lin CH, Ho KC, Shi FK, Chang IF. Functional phosphoproteomic profiling of phosphorylation sites in membrane fractions of salt-stressed Arabidopsis thaliana. Proteome Sci 2009; 7:42. [PMID: 19900291 PMCID: PMC2778640 DOI: 10.1186/1477-5956-7-42] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 11/10/2009] [Indexed: 12/13/2022] Open
Abstract
Background Under conditions of salt stress, plants respond by initiating phosphorylation cascades. Many key phosphorylation events occur at the membrane. However, to date only limited sites have been identified that are phosphorylated in response to salt stress in plants. Results Membrane fractions from three-day and 200 mM salt-treated Arabidopsis suspension plants were isolated, followed by protease shaving and enrichment using Zirconium ion-charged magnetic beads, and tandem mass spectrometry analyses. From this isolation, 18 phosphorylation sites from 15 Arabidopsis proteins were identified. A unique phosphorylation site in 14-3-3-interacting protein AHA1 was predominately identified in 200 mM salt-treated plants. We also identified some phosphorylation sites in aquaporins. A doubly phosphorylated peptide of PIP2;1 as well as a phosphopeptide containing a single phosphorylation site (Ser-283) and a phosphopeptide containing another site (Ser-286) of aquaporin PIP2;4 were identified respectively. These two sites appeared to be novel of which were not reported before. In addition, quantitative analyses of protein phosphorylation with either label-free or stable-isotope labeling were also employed in this study. The results indicated that level of phosphopeptides on five membrane proteins such as AHA1, STP1, Patellin-2, probable inactive receptor kinase (At3g02880), and probable purine permease 18 showed at least two-fold increase in comparison to control in response to 200 mM salt-stress. Conclusion In this study, we successfully identified novel salt stress-responsive protein phosphorylation sites from membrane isolates of abiotic-stressed plants by membrane shaving followed by Zr4+-IMAC enrichment. The identified phosphorylation sites can be important in the salt stress response in plants.
Collapse
Affiliation(s)
- Jue-Liang Hsu
- Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
173
|
Lanquar V, Loqué D, Hörmann F, Yuan L, Bohner A, Engelsberger WR, Lalonde S, Schulze WX, von Wirén N, Frommer WB. Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis. THE PLANT CELL 2009; 21:3610-22. [PMID: 19948793 PMCID: PMC2798313 DOI: 10.1105/tpc.109.068593] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 09/23/2009] [Accepted: 11/06/2009] [Indexed: 05/18/2023]
Abstract
The acquisition of nutrients requires tight regulation to ensure optimal supply while preventing accumulation to toxic levels. Ammonium transporter/methylamine permease/rhesus (AMT/Mep/Rh) transporters are responsible for ammonium acquisition in bacteria, fungi, and plants. The ammonium transporter AMT1;1 from Arabidopsis thaliana uses a novel regulatory mechanism requiring the productive interaction between a trimer of subunits for function. Allosteric regulation is mediated by a cytosolic C-terminal trans-activation domain, which carries a conserved Thr (T460) in a critical position in the hinge region of the C terminus. When expressed in yeast, mutation of T460 leads to inactivation of the trimeric complex. This study shows that phosphorylation of T460 is triggered by ammonium in a time- and concentration-dependent manner. Neither Gln nor l-methionine sulfoximine-induced ammonium accumulation were effective in inducing phosphorylation, suggesting that roots use either the ammonium transporter itself or another extracellular sensor to measure ammonium concentrations in the rhizosphere. Phosphorylation of T460 in response to an increase in external ammonium correlates with inhibition of ammonium uptake into Arabidopsis roots. Thus, phosphorylation appears to function in a feedback loop restricting ammonium uptake. This novel autoregulatory mechanism is capable of tuning uptake capacity over a wide range of supply levels using an extracellular sensory system, potentially mediated by a transceptor (i.e., transporter and receptor).
Collapse
Affiliation(s)
- Viviane Lanquar
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Dominique Loqué
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Friederike Hörmann
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Lixing Yuan
- Key Lab of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Anne Bohner
- Molecular Plant Nutrition, Leibniz-Institute for Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | | | - Sylvie Lalonde
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | | | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz-Institute for Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Wolf B. Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
- Address correspondence to
| |
Collapse
|
174
|
Pertl H, Schulze WX, Obermeyer G. The Pollen Organelle Membrane Proteome Reveals Highly Spatial−Temporal Dynamics during Germination and Tube Growth of Lily Pollen. J Proteome Res 2009; 8:5142-52. [DOI: 10.1021/pr900503f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Heidi Pertl
- Molecular Plant Biophysics and Biochemistry, Deptartment of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria, and Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | - Waltraud X. Schulze
- Molecular Plant Biophysics and Biochemistry, Deptartment of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria, and Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | - Gerhard Obermeyer
- Molecular Plant Biophysics and Biochemistry, Deptartment of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria, and Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| |
Collapse
|
175
|
Kierszniowska S, Walther D, Schulze WX. Ratio-dependent significance thresholds in reciprocal 15N-labeling experiments as a robust tool in detection of candidate proteins responding to biological treatment. Proteomics 2009; 9:1916-24. [PMID: 19260003 DOI: 10.1002/pmic.200800443] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Metabolic labeling of plant tissues with (15)N has become widely used in plant proteomics. Here, we describe a robust experimental design and data analysis workflow implementing two parallel biological replicate experiments with reciprocal labeling and series of 1:1 control mixtures. Thereby, we are able to unambiguously distinguish (i) inherent biological variation between cultures and (ii) specific responses to a biological treatment. The data analysis workflow is based on first determining the variation between cultures based on (15)N/(14)N ratios in independent 1:1 mixtures before biological treatment is applied. In a second step, ratio-dependent SD is used to define p-values for significant deviation of protein ratios in the biological experiment from the distribution of protein ratios in the 1:1 mixture. This approach allows defining those proteins showing significant biological response superimposed on the biological variation before treatment. The proposed workflow was applied to a series of experiments, in which changes in composition of detergent resistant membrane domains was analyzed in response to sucrose resupply after carbon starvation. Especially in experiments involving cell culture treatment (starvation) prior to the actual biological stimulus of interest (resupply), a clear distinction between culture to culture variations and biological response is of utmost importance.
Collapse
|
176
|
Ritsema T, Brodmann D, Diks SH, Bos CL, Nagaraj V, Pieterse CM, Boller T, Wiemken A, Peppelenbosch MP. Are small GTPases signal hubs in sugar-mediated induction of fructan biosynthesis? PLoS One 2009; 4:e6605. [PMID: 19672308 PMCID: PMC2720452 DOI: 10.1371/journal.pone.0006605] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 06/20/2009] [Indexed: 11/19/2022] Open
Abstract
External sugar initiates biosynthesis of the reserve carbohydrate fructan, but the molecular processes mediating this response remain obscure. Previously it was shown that a phosphatase and a general kinase inhibitor hamper fructan accumulation. We use various phosphorylation inhibitors both in barley and in Arabidopsis and show that the expression of fructan biosynthetic genes is dependent on PP2A and different kinases such as Tyr-kinases and PI3-kinases. To further characterize the phosphorylation events involved, comprehensive analysis of kinase activities in the cell was performed using a PepChip, an array of >1000 kinase consensus substrate peptide substrates spotted on a chip. Comparison of kinase activities in sugar-stimulated and mock(sorbitol)-treated Arabidopsis demonstrates the altered phosphorylation of many consensus substrates and documents the differences in plant kinase activity upon sucrose feeding. The different phosphorylation profiles obtained are consistent with sugar-mediated alterations in Tyr phosphorylation, cell cycling, and phosphoinositide signaling, and indicate cytoskeletal rearrangements. The results lead us to infer a central role for small GTPases in sugar signaling.
Collapse
Affiliation(s)
- Tita Ritsema
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
- Plant-Microbe interactions, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - David Brodmann
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Sander H. Diks
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Carina L. Bos
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vinay Nagaraj
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Corné M.J. Pieterse
- Plant-Microbe interactions, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Thomas Boller
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Andres Wiemken
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Maikel P. Peppelenbosch
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
177
|
Kersten B, Agrawal GK, Durek P, Neigenfind J, Schulze W, Walther D, Rakwal R. Plant phosphoproteomics: an update. Proteomics 2009; 9:964-88. [PMID: 19212952 DOI: 10.1002/pmic.200800548] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phosphoproteomics involves identification of phosphoproteins, precise mapping, and quantification of phosphorylation sites, and eventually, revealing their biological function. In plants, several systematic phosphoproteomic analyses have recently been performed to optimize in vitro and in vivo technologies to reveal components of the phosphoproteome. The discovery of novel substrates for specific protein kinases is also an important issue. Development of a new tool has enabled rapid identification of potential kinase substrates such as kinase assays using plant protein microarrays. Progress has also been made in quantitative and dynamic analysis of mapped phosphorylation sites. Increased quantity of experimentally verified phosphorylation sites in plants has prompted the creation of dedicated web-resources for plant-specific phosphoproteomics data. This resulted in development of computational prediction methods yielding significantly improved sensitivity and specificity for the detection of phosphorylation sites in plants when compared to methods trained on less plant-specific data. In this review, we present an update on phosphoproteomic studies in plants and summarize the recent progress in the computational prediction of plant phosphorylation sites. The application of the experimental and computed results in understanding the phosphoproteomic networks of cellular and metabolic processes in plants is discussed. This is a continuation of our comprehensive review series on plant phosphoproteomics.
Collapse
Affiliation(s)
- Birgit Kersten
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | | | | | | | | | |
Collapse
|
178
|
Liu J, Elmore JM, Fuglsang AT, Palmgren MG, Staskawicz BJ, Coaker G. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS Biol 2009; 7:e1000139. [PMID: 19564897 PMCID: PMC2694982 DOI: 10.1371/journal.pbio.1000139] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 05/18/2009] [Indexed: 02/05/2023] Open
Abstract
Pathogen perception by the plant innate immune system is of central importance to plant survival and productivity. The Arabidopsis protein RIN4 is a negative regulator of plant immunity. In order to identify additional proteins involved in RIN4-mediated immune signal transduction, we purified components of the RIN4 protein complex. We identified six novel proteins that had not previously been implicated in RIN4 signaling, including the plasma membrane (PM) H(+)-ATPases AHA1 and/or AHA2. RIN4 interacts with AHA1 and AHA2 both in vitro and in vivo. RIN4 overexpression and knockout lines exhibit differential PM H(+)-ATPase activity. PM H(+)-ATPase activation induces stomatal opening, enabling bacteria to gain entry into the plant leaf; inactivation induces stomatal closure thus restricting bacterial invasion. The rin4 knockout line exhibited reduced PM H(+)-ATPase activity and, importantly, its stomata could not be re-opened by virulent Pseudomonas syringae. We also demonstrate that RIN4 is expressed in guard cells, highlighting the importance of this cell type in innate immunity. These results indicate that the Arabidopsis protein RIN4 functions with the PM H(+)-ATPase to regulate stomatal apertures, inhibiting the entry of bacterial pathogens into the plant leaf during infection.
Collapse
Affiliation(s)
- Jun Liu
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - James M. Elmore
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Anja T. Fuglsang
- Centre for Membrane Pumps in Cells and Disease—PUMPKIN, Danish National Research Foundation, Århus and Copenhagen, Denmark
- Plant Physiology and Anatomy Laboratory, Department of Plant Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Michael G. Palmgren
- Centre for Membrane Pumps in Cells and Disease—PUMPKIN, Danish National Research Foundation, Århus and Copenhagen, Denmark
- Plant Physiology and Anatomy Laboratory, Department of Plant Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Brian J. Staskawicz
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Gitta Coaker
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
179
|
Li H, Wong WS, Zhu L, Guo HW, Ecker J, Li N. Phosphoproteomic analysis of ethylene-regulated protein phosphorylation in etiolated seedlings of Arabidopsis mutant ein2 using two-dimensional separations coupled with a hybrid quadrupole time-of-flight mass spectrometer. Proteomics 2009; 9:1646-61. [PMID: 19253305 DOI: 10.1002/pmic.200800420] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ethylene regulates a variety of stress responses and developmental adaptation in plants. In the present study, the phosphoproteomics is adopted to investigate the differential protein phosphorylation by ethylene in Arabidopsis ethylene-insensitive 2 (ein2) mutant. A total of 224 phosphopeptides were identified, of which 64 phosphopeptides were detected three or more times. Ethylene induces a general reduction in phosphorylated proteins in ein2. Totally, three ethylene-enhanced and three ethylene-repressible unique phosphopeptides were identified, respectively. Classification of the cellular functions of these phosphoproteins revealed that 55.5% of them are related to signaling and gene expression. Peptide sequence alignment reveals two highly conserved phosphorylation motifs, PRVD/GSx and SPDYxx. Alignment of these phosphopeptides with Arabidopsis proteins reveals five phosphorylation motifs. Both ethylene-enhanced and -repressible phosphopeptides present in these motifs. EIL-1, ERF110 transcription factors and Hua enhancer 4 (HEN4) are predicted to contain one of the phosphorylation motifs. The phosphorylation of the motif-containing peptides has been validated by the in vitro kinase assays coupled with MS analysis. The differential regulation of phosphorylation by ethylene is substantiated by Western dot blot analysis. Taken together, these results suggest that ethylene signals may be transduced by a phosphor-relay from receptors to transcriptional events via both ein2-dependent and -independent pathways.
Collapse
Affiliation(s)
- Hao Li
- Department of Biology, The Hong Kong University of Science and Technology, Hong Kong SAR, PR China
| | | | | | | | | | | |
Collapse
|
180
|
Duby G, Poreba W, Piotrowiak D, Bobik K, Derua R, Waelkens E, Boutry M. Activation of plant plasma membrane H+-ATPase by 14-3-3 proteins is negatively controlled by two phosphorylation sites within the H+-ATPase C-terminal region. J Biol Chem 2009; 284:4213-21. [PMID: 19088078 DOI: 10.1074/jbc.m807311200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proton pump ATPase (H(+)-ATPase) of the plant plasma membrane is regulated by an autoinhibitory C-terminal domain, which can be displaced by phosphorylation of the penultimate Thr residue and the subsequent binding of 14-3-3 proteins. We performed a mass spectrometric analysis of PMA2 (plasma membrane H(+)-ATPase isoform 2) isolated from Nicotiana tabacum suspension cells and identified two new phosphorylated residues in the enzyme 14-3-3 protein binding site: Thr(931) and Ser(938). When PMA2 was expressed in Saccharomyces cerevisiae, mutagenesis of each of these two residues into Asp prevented growth of a yeast strain devoid of its own H(+)-ATPases. When the Asp mutations were individually introduced in a constitutively activated mutant of PMA2 (E14D), they still allowed yeast growth but at a reduced rate. Purification of His-tagged PMA2 showed that the T931D or S938D mutation prevented 14-3-3 protein binding, although the penultimate Thr(955) was still phosphorylated, indicating that Thr(955) phosphorylation is not sufficient for full enzyme activation. Expression of PMA2 in an N. tabacum cell line also showed an absence of 14-3-3 protein binding resulting from the T931D or S938D mutation. Together, the data show that activation of H(+)-ATPase by the binding of 14-3-3 proteins is negatively controlled by phosphorylation of two residues in the H(+)-ATPase 14-3-3 protein binding site. The data also show that phosphorylation of the penultimate Thr and 14-3-3 binding each contribute in part to H(+)-ATPase activation.
Collapse
Affiliation(s)
- Geoffrey Duby
- Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud, 5-15, 1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | |
Collapse
|
181
|
Endler A, Reiland S, Gerrits B, Schmidt UG, Baginsky S, Martinoia E. In vivo phosphorylation sites of barley tonoplast proteins identified by a phosphoproteomic approach. Proteomics 2009; 9:310-21. [DOI: 10.1002/pmic.200800323] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
182
|
Santi S, Schmidt W. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. THE NEW PHYTOLOGIST 2009; 183:1072-1084. [PMID: 19549134 DOI: 10.1111/j.1469-8137.2009.02908.x] [Citation(s) in RCA: 365] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Here, we have analysed the H(+)-ATPase-mediated extrusion of protons across the plasma membrane (PM) of rhizodermic cells, a process that is inducible by iron (Fe) deficiency and thought to serve in the mobilization of sparingly soluble Fe sources. The induction and function of Fe-responsive PM H(+)-ATPases in Arabidopsis roots was investigated by gene expression analysis and by using mutants defective in the expression or function of one of the isogenes. In addition, the expression of the most responsive isogenes was investigated in natural Arabidopsis accessions that have been selected for their in vivo proton extrusion activity. Our data suggest that the rhizosphere acidification in response to Fe deficiency is chiefly mediated by AHA2, while AHA1 functions as a housekeeping isoform. The aha7 knock-out mutant plants showed a reduced frequency of root hairs, suggesting an involvement of AHA7 in the differentiation of rhizodermic cells. Acidification capacity varied among Arabidopsis accessions and was associated with a high induction of AHA2 and IRT1, a high relative growth rate and a shoot-root ratio that was unaffected by the external Fe supply. An effective regulation of the Fe-responsive genes and a stable shoot-root ratio may represent important characteristics for the Fe uptake efficiency.
Collapse
Affiliation(s)
- Simonetta Santi
- Dipartimento di Scienze Agrarie e Ambientali, Universitá degli studi di Udine, Via delle Scienze 208, I-33100 Udine, Italy
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, 115 Taipei, Taiwan
| |
Collapse
|
183
|
Oeljeklaus S, Meyer HE, Warscheid B. Advancements in plant proteomics using quantitative mass spectrometry. J Proteomics 2008; 72:545-54. [PMID: 19049910 DOI: 10.1016/j.jprot.2008.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 10/21/2022]
Abstract
Due to innovative advancements in quantitative MS technologies, proteomics has evolved from taking mere "snapshots" of distinct proteomes in a defined state to monitoring, for instance, changes in abundance, location and/or posttranslational modification(s) of proteins under various conditions, thereby facilitating the functional characterization of proteins in large scale experiments. In plant biology, MS-based quantitative proteomics strategies utilizing stable isotope labeling or label-free methods for protein quantification have only recently been started to find increasing application to comparative and functional proteomics analyses. This review summarizes latest trends and applications in MS-based quantitative plant proteomics and provides insight into different technologies available. In addition, the studies presented here illustrate the enormous potential of quantitative MS for the analysis of important functional aspects with the emphasis on organellar and phosphoproteomics as well as dynamics and turnover of proteins in plants.
Collapse
Affiliation(s)
- Silke Oeljeklaus
- Medizinisches Proteom-Center, Zentrum fuer klinische Forschung, Ruhr-Universitaet Bochum, Bochum, Germany
| | | | | |
Collapse
|
184
|
Maathuis FJ. Conservation of protein phosphorylation sites within gene families and across species. PLANT SIGNALING & BEHAVIOR 2008; 3:1011-3. [PMID: 19704437 PMCID: PMC2633760 DOI: 10.4161/psb.6721] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 05/20/2023]
Abstract
Recent large scale phosphoproteomics studies have helped identify many phosphorylation sites of both membrane and soluble proteins. In most cases the relevance of specific sites has yet to be established whereas in a small number of cases their potency in modulating protein activity is evident. With the increasing amount of data it is becoming clear that phosphosites are often conserved within protein families, pointing to generic regulatory mechanisms. In addition, such mechanisms may be conserved across species. In this addendum evidence is presented for these phenomena occurring in rice and Arabidopsis.
Collapse
|
185
|
Towards functional phosphoproteomics by mapping differential phosphorylation events in signaling networks. Proteomics 2008; 8:4453-65. [DOI: 10.1002/pmic.200800175] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
186
|
Whiteman SA, Nühse TS, Ashford DA, Sanders D, Maathuis FJM. A proteomic and phosphoproteomic analysis of Oryza sativa plasma membrane and vacuolar membrane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:146-56. [PMID: 18557835 DOI: 10.1111/j.1365-313x.2008.03578.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Proteomic and phosphoproteomic analyses of rice shoot and root tonoplast-enriched and plasma membrane-enriched membrane fractions were carried out to look at tissue-specific expression, and to identify putative regulatory sites of membrane transport proteins. Around 90 unique membrane proteins were identified, which included primary and secondary transporters, ion channels and aquaporins. Primary H(+) pumps from the AHA family showed little isoform specificity in their tissue expression pattern, whereas specific isoforms of the Ca(2+) pump ECA/ACA family were expressed in root and shoot tissues. Several ABC transporters were detected, particularly from the MDR and PDR subfamilies, which often showed expression in either roots or shoots. Ammonium transporters were expressed in root, but not shoot, tissue. Large numbers of sugar transporters were expressed, particularly in green tissue. The occurrence of phosphorylation sites in rice transporters such as AMT1;1 and PIP2;6 agrees with those previously described in other species, pointing to conserved regulatory mechanisms. New phosphosites were found in many transporters, including H(+) pumps and H(+):cation antiporters, often at residues that are well conserved across gene families. Comparison of root and shoot tissue showed that phosphorylation of AMT1;1 and several further transporters may be tissue dependent.
Collapse
|
187
|
Lange E, Tautenhahn R, Neumann S, Gröpl C. Critical assessment of alignment procedures for LC-MS proteomics and metabolomics measurements. BMC Bioinformatics 2008; 9:375. [PMID: 18793413 PMCID: PMC2570366 DOI: 10.1186/1471-2105-9-375] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 09/15/2008] [Indexed: 11/28/2022] Open
Abstract
Background Liquid chromatography coupled to mass spectrometry (LC-MS) has become a prominent tool for the analysis of complex proteomics and metabolomics samples. In many applications multiple LC-MS measurements need to be compared, e. g. to improve reliability or to combine results from different samples in a statistical comparative analysis. As in all physical experiments, LC-MS data are affected by uncertainties, and variability of retention time is encountered in all data sets. It is therefore necessary to estimate and correct the underlying distortions of the retention time axis to search for corresponding compounds in different samples. To this end, a variety of so-called LC-MS map alignment algorithms have been developed during the last four years. Most of these approaches are well documented, but they are usually evaluated on very specific samples only. So far, no publication has been assessing different alignment algorithms using a standard LC-MS sample along with commonly used quality criteria. Results We propose two LC-MS proteomics as well as two LC-MS metabolomics data sets that represent typical alignment scenarios. Furthermore, we introduce a new quality measure for the evaluation of LC-MS alignment algorithms. Using the four data sets to compare six freely available alignment algorithms proposed for the alignment of metabolomics and proteomics LC-MS measurements, we found significant differences with respect to alignment quality, running time, and usability in general. Conclusion The multitude of available alignment methods necessitates the generation of standard data sets and quality measures that allow users as well as developers to benchmark and compare their map alignment tools on a fair basis. Our study represents a first step in this direction. Currently, the installation and evaluation of the "correct" parameter settings can be quite a time-consuming task, and the success of a particular method is still highly dependent on the experience of the user. Therefore, we propose to continue and extend this type of study to a community-wide competition. All data as well as our evaluation scripts are available at .
Collapse
Affiliation(s)
- Eva Lange
- Beatson Institute for Cancer Research, Proteomics and Mass Spectrometry Group, Scotland, UK.
| | | | | | | |
Collapse
|
188
|
Anderson JC, Peck SC. A simple and rapid technique for detecting protein phosphorylation using one-dimensional isoelectric focusing gels and immunoblot analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:881-885. [PMID: 18466305 DOI: 10.1111/j.1365-313x.2008.03550.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We report a technique for detecting protein phosphorylation that involves isoelectric focusing in a vertical mini-gel format followed by immunoblot detection of the target protein. This method uses standard protein gel equipment, allows sensitive detection of protein phosphorylation when phosphospecific antibodies are not available, and provides a stoichiometric measure of phosphorylation. We demonstrate the application of this method for observing phosphorylation of an Arabidopsis thaliana protein in response to biotic stress.
Collapse
Affiliation(s)
- Jeffrey C Anderson
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | | |
Collapse
|
189
|
Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 2008; 321:557-60. [PMID: 18653891 PMCID: PMC2730546 DOI: 10.1126/science.1156973] [Citation(s) in RCA: 507] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Brassinosteroids (BRs) bind to the extracellular domain of the receptor kinase BRI1 to activate a signal transduction cascade that regulates nuclear gene expression and plant development. Many components of the BR signaling pathway have been identified and studied in detail. However, the substrate of BRI1 kinase that transduces the signal to downstream components remains unknown. Proteomic studies of plasma membrane proteins lead to the identification of three homologous BR-signaling kinases (BSK1, BSK2, and BSK3). The BSKs are phosphorylated by BRI1 in vitro and interact with BRI1 in vivo. Genetic and transgenic studies demonstrate that the BSKs represent a small family of kinases that activate BR signaling downstream of BRI1. These results demonstrate that BSKs are the substrates of BRI1 kinase that activate downstream BR signal transduction.
Collapse
Affiliation(s)
- Wenqiang Tang
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305
| | - Tae-Wuk Kim
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Yu Sun
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305
| | - Zhiping Deng
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305
| | - Shengwei Zhu
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305
- Key Laboratory of Photosynthesis and Environmental Molecular Biology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ruiju Wang
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305
- Institute for Molecular Biology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305
| |
Collapse
|
190
|
Quantitative proteomics as a new piece of the systems biology puzzle. J Proteomics 2008; 71:357-67. [PMID: 18640294 DOI: 10.1016/j.jprot.2008.07.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/30/2008] [Accepted: 07/02/2008] [Indexed: 12/19/2022]
Abstract
The definition of the role of each gene product in its cellular context is of outstanding importance in the post-genomics era. Recent technological innovations have driven research in proteomics from single protein characterization to global approaches, aiming to achieve a comprehensive qualitative and quantitative description of complex molecular mechanisms. In this review, we discuss the methodology of quantitative proteomics as it applies to the analysis of complex biological model systems. A special attention will be given to model systems that are suitable for functional genomic studies, where the potential of quantitative proteomics can be effectively demonstrated.
Collapse
|
191
|
Vlad F, Turk BE, Peynot P, Leung J, Merlot S. A versatile strategy to define the phosphorylation preferences of plant protein kinases and screen for putative substrates. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:104-17. [PMID: 18363786 DOI: 10.1111/j.1365-313x.2008.03488.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Most signaling networks are regulated by reversible protein phosphorylation. The specificity of this regulation depends in part on the capacity of protein kinases to recognize and efficiently phosphorylate particular sequence motifs in their substrates. Sequenced plant genomes potentially encode over than 1000 protein kinases, representing 4% of the proteins, twice the proportion found in humans. This plethora of plant kinases requires the development of high-throughput strategies to identify their substrates. In this study, we have implemented a semi-degenerate peptide array screen to define the phosphorylation preferences of four kinases from Arabidopsis thaliana that are representative of the plant calcium-dependent protein kinase and Snf1-related kinase superfamily. We converted these quantitative data into position-specific scoring matrices to identify putative substrates of these kinases in silico in protein sequence databases. Our data show that these kinases display related but nevertheless distinct phosphorylation motif preferences, suggesting that they might share common targets but are likely to have specific substrates. Our analysis also reveals that a conserved motif found in the stress-related dehydrin protein family may be targeted by the SnRK2-10 kinase. Our results indicate that semi-degenerate peptide array screening is a versatile strategy that can be used on numerous plant kinases to facilitate identification of their substrates, and therefore represents a valuable tool to decipher phosphorylation-regulated signaling networks in plants.
Collapse
Affiliation(s)
- Florina Vlad
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, UPR 2355, 1 avenue de la Terrasse, Bât. 23, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
192
|
MacLean D, Burrell MA, Studholme DJ, Jones AM. PhosCalc: a tool for evaluating the sites of peptide phosphorylation from mass spectrometer data. BMC Res Notes 2008; 1:30. [PMID: 18710483 PMCID: PMC2518918 DOI: 10.1186/1756-0500-1-30] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 06/23/2008] [Indexed: 11/23/2022] Open
Abstract
Background We have created a software implementation of a published and verified method for assigning probabilities to potential phosphorylation sites on peptides using mass spectrometric data. Our tool, named PhosCalc, determines the number of possible phosphorylation sites and calculates the theoretical masses for the b and y fragment ions of a user-provided peptide sequence. A corresponding user-provided mass spectrum is examined to determine which putative b and y ions have support in the spectrum and a probability score is calculated for each combination of phosphorylation sites. Findings We test the implementation using spectra of phosphopeptides from bovine beta-casein and we compare the results from the implementation to those from manually curated and verified phosphopeptides from our own experiments. We find that the PhosCalc scores are capable of helping a user to identify phosphorylated sites and can remove a bottleneck in high throughput proteomics analyses. Conclusion PhosCalc is available as a web-based interface for examining up to 100 peptides and as a downloadable tool for examining larger numbers of peptides. PhosCalc can be used to speed up identification of phosphorylation sites and can be easily integrated into data handling pipelines making it a very useful tool for those involved in phosphoproteomic research.
Collapse
Affiliation(s)
- Daniel MacLean
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
| | | | | | | |
Collapse
|
193
|
Prak S, Hem S, Boudet J, Viennois G, Sommerer N, Rossignol M, Maurel C, Santoni V. Multiple Phosphorylations in the C-terminal Tail of Plant Plasma Membrane Aquaporins. Mol Cell Proteomics 2008; 7:1019-30. [DOI: 10.1074/mcp.m700566-mcp200] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
194
|
Duby G, Boutry M. The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles. Pflugers Arch 2008; 457:645-55. [PMID: 18228034 DOI: 10.1007/s00424-008-0457-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 12/01/2022]
Abstract
Around 40 P-type ATPases have been identified in Arabidopsis and rice, for which the genomes are known. None seems to exchange sodium and potassium, as does the animal Na(+)/K(+)-ATPase. Instead, plants, together with fungi, possess a proton pumping ATPase (H(+)-ATPase), which couples ATP hydrolysis to proton transport out of the cell, and so establishes an electrochemical gradient across the plasma membrane, which is dissipated by secondary transporters using protons in symport or antiport, as sodium is used in animal cells. Additional functions, such as stomata opening, cell growth, and intracellular pH homeostasis, have been proposed. Crystallographic data and homology modeling suggest that the H(+)-ATPase has a broadly similar structure to the other P-type ATPases but has an extended C-terminal region, which is involved in enzyme regulation. Phosphorylation of the penultimate residue, a Thr, and the subsequent binding of regulatory 14-3-3 proteins result in the formation of a dodecamer (six H(+)-ATPase and six 14-3-3 molecules) and enzyme activation. This type of regulation is unique to the P-type ATPase family. However, the recent identification of additional phosphorylated residues suggests further regulatory features.
Collapse
Affiliation(s)
- Geoffrey Duby
- Unité de Biochimie Physiologique, Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | | |
Collapse
|
195
|
Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, Schulze WX. PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 2008; 36:D1015-21. [PMID: 17984086 PMCID: PMC2238998 DOI: 10.1093/nar/gkm812] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 09/18/2007] [Accepted: 09/18/2007] [Indexed: 11/25/2022] Open
Abstract
The PhosPhAt database provides a resource consolidating our current knowledge of mass spectrometry-based identified phosphorylation sites in Arabidopsis and combines it with phosphorylation site prediction specifically trained on experimentally identified Arabidopsis phosphorylation motifs. The database currently contains 1187 unique tryptic peptide sequences encompassing 1053 Arabidopsis proteins. Among the characterized phosphorylation sites, there are over 1000 with unambiguous site assignments, and nearly 500 for which the precise phosphorylation site could not be determined. The database is searchable by protein accession number, physical peptide characteristics, as well as by experimental conditions (tissue sampled, phosphopeptide enrichment method). For each protein, a phosphorylation site overview is presented in tabular form with detailed information on each identified phosphopeptide. We have utilized a set of 802 experimentally validated serine phosphorylation sites to develop a method for prediction of serine phosphorylation (pSer) in Arabidopsis. An analysis of the current annotated Arabidopsis proteome yielded in 27,782 predicted phosphoserine sites distributed across 17,035 proteins. These prediction results are summarized graphically in the database together with the experimental phosphorylation sites in a whole sequence context. The Arabidopsis Protein Phosphorylation Site Database (PhosPhAt) provides a valuable resource to the plant science community and can be accessed through the following link http://phosphat.mpimp-golm.mpg.de.
Collapse
Affiliation(s)
- Joshua L. Heazlewood
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley 6009, WA, Australia, Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm and GoFORSYS, University of Potsdam, Institute of Biochemistry and Biology, c/o MPI-MP, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Pawel Durek
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley 6009, WA, Australia, Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm and GoFORSYS, University of Potsdam, Institute of Biochemistry and Biology, c/o MPI-MP, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Jan Hummel
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley 6009, WA, Australia, Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm and GoFORSYS, University of Potsdam, Institute of Biochemistry and Biology, c/o MPI-MP, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Joachim Selbig
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley 6009, WA, Australia, Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm and GoFORSYS, University of Potsdam, Institute of Biochemistry and Biology, c/o MPI-MP, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Wolfram Weckwerth
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley 6009, WA, Australia, Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm and GoFORSYS, University of Potsdam, Institute of Biochemistry and Biology, c/o MPI-MP, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Dirk Walther
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley 6009, WA, Australia, Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm and GoFORSYS, University of Potsdam, Institute of Biochemistry and Biology, c/o MPI-MP, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Waltraud X. Schulze
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley 6009, WA, Australia, Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm and GoFORSYS, University of Potsdam, Institute of Biochemistry and Biology, c/o MPI-MP, Am Mühlenberg 1, 14424 Potsdam, Germany
| |
Collapse
|
196
|
Okumoto S, Takanaga H, Frommer WB. Quantitative imaging for discovery and assembly of the metabo-regulome. THE NEW PHYTOLOGIST 2008; 180:271-295. [PMID: 19138219 PMCID: PMC2663047 DOI: 10.1111/j.1469-8137.2008.02611.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Little is known about regulatory networks that control metabolic flux in plant cells. Detailed understanding of regulation is crucial for synthetic biology. The difficulty of measuring metabolites with cellular and subcellular precision is a major roadblock. New tools have been developed for monitoring extracellular, cytosolic, organellar and vacuolar ion and metabolite concentrations with a time resolution of milliseconds to hours. Genetically encoded sensors allow quantitative measurement of steady-state concentrations of ions, signaling molecules and metabolites and their respective changes over time. Fluorescence resonance energy transfer (FRET) sensors exploit conformational changes in polypeptides as a proxy for analyte concentrations. Subtle effects of analyte binding on the conformation of the recognition element are translated into a FRET change between two fused green fluorescent protein (GFP) variants, enabling simple monitoring of analyte concentrations using fluorimetry or fluorescence microscopy. Fluorimetry provides information averaged over cell populations, while microscopy detects differences between cells or populations of cells. The genetically encoded sensors can be targeted to subcellular compartments or the cell surface. Confocal microscopy ultimately permits observation of gradients or local differences within a compartment. The FRET assays can be adapted to high-throughput analysis to screen mutant populations in order to systematically identify signaling networks that control individual steps in metabolic flux.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Plant Pathology, Physiology, and Weed Science Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hitomi Takanaga
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Wolf B. Frommer
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
- Joint Bioenergy Institute, Feedstocks Division, Emerystation East, 5885 Hollis Street Emeryville, CA 94608, USA
| |
Collapse
|