151
|
D’Ascenzio M, Secci D, Carradori S, Zara S, Guglielmi P, Cirilli R, Pierini M, Poli G, Tuccinardi T, Angeli A, Supuran CT. 1,3-Dipolar Cycloaddition, HPLC Enantioseparation, and Docking Studies of Saccharin/Isoxazole and Saccharin/Isoxazoline Derivatives as Selective Carbonic Anhydrase IX and XII Inhibitors. J Med Chem 2020; 63:2470-2488. [DOI: 10.1021/acs.jmedchem.9b01434] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Melissa D’Ascenzio
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Susi Zara
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Paolo Guglielmi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Roberto Cirilli
- Centro nazionale per il controllo e la valutazione dei farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marco Pierini
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Andrea Angeli
- Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica-Voda Alley, 700487 Iasi, Romania
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
152
|
Pustenko A, Nocentini A, Balašova A, Alafeefy A, Krasavin M, Žalubovskis R, Supuran CT. Aryl derivatives of 3H-1,2-benzoxathiepine 2,2-dioxide as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2020; 35:245-254. [PMID: 31790605 PMCID: PMC6896485 DOI: 10.1080/14756366.2019.1695795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A new series of homosulfocoumarins (3H-1,2-benzoxathiepine 2,2-dioxides) possessing various substitution patterns and moieties in the 7, 8 or 9 position of the heterocylic ring were prepared by original procedures and investigated for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the human (h) hCA I, II, IX and XII. The 8-substituted homosulfocoumarins were the most effective hCA IX/XII inhibitors followed by the 7-substituted derivatives, whereas the substitution pattern in position 9 led to less effective binders for the transmembrane, tumour-associated isoforms IX/XII. The cytosolic isoforms hCA I and II were not inhibited by these compounds, similar to the sulfocoumarins/coumarins investigated earlier. As hCA IX and XII are validated anti-tumour targets, with one sulphonamide (SLC-0111) in Phase Ib/II clinical trials, finding derivatives with better selectivity for inhibiting the tumour-associated isoforms over the cytosolic ones, as the homosulfocoumarins reported here, is of crucial importance.
Collapse
Affiliation(s)
- Aleksandrs Pustenko
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Alessio Nocentini
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Florence, Italy
| | | | - Ahmed Alafeefy
- Faculty of Pharmacy, University Technology MARA, UiTM, Bandar, Malaysia
| | - Mikhail Krasavin
- Chemistry Department, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Florence, Italy
| |
Collapse
|
153
|
Mettu A, Talla V, Thumma S, Naikal James Prameela S. Mechanistic investigations on substituted benzene sulphonamides as apoptosis inducing anticancer agents. Bioorg Chem 2020; 95:103539. [PMID: 31911300 DOI: 10.1016/j.bioorg.2019.103539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/27/2019] [Accepted: 12/21/2019] [Indexed: 12/16/2022]
Abstract
In an approach to develop potent cytotoxic compounds with targeted action, a systematic methodology was employed to design and initially synthesize parent compounds A1, A8, A13 and A14 followed by synthesis of further analogs of A1 (A2-A7) and A8 (A9-A12) with characterization by IR, NMR, mass and elemental techniques. These compounds were evaluated for their in vitro anti-proliferative activities against DU-145, MCF-7, HCT-15, HT-29 cell lines and apoptosis inducing potential via various mechanistic studies. Compounds A2, A9, A10 exhibited significant cytotoxic activities compared to their parent compounds and standard drug 5-fluorouracil. Compound A2 displayed superior cytotoxicity with IC50 values less than 1 µM in most of the tested cell lines. Further, compound A2 also induced apoptosis in DU-145 cells as exemplified from DAPI staining, Annexin V-FITC assay, ROS generation and mitochondrial membrane alteration studies. The above studies depict the synthesized compound A2 as potent anticancer agent with the ability to induce apoptosis in prostate cancerous cells.
Collapse
Affiliation(s)
- Akhila Mettu
- Department of Pharmaceutical Chemistry, Gokaraju Rangaraju College of Pharmacy, Kukatpally, Hyderabad 500049, India; Department of Chemistry, University College of Science, Osmania University, Hyderabad 500007, India
| | - Venu Talla
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Balanagar, Hyderabad 500037, India
| | - Soujanya Thumma
- Department of Pharmaceutical Chemistry, Gokaraju Rangaraju College of Pharmacy, Kukatpally, Hyderabad 500049, India
| | | |
Collapse
|
154
|
Becker HM. Carbonic anhydrase IX and acid transport in cancer. Br J Cancer 2020; 122:157-167. [PMID: 31819195 PMCID: PMC7051959 DOI: 10.1038/s41416-019-0642-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/29/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Alterations in tumour metabolism and acid/base regulation result in the formation of a hostile environment, which fosters tumour growth and metastasis. Acid/base homoeostasis in cancer cells is governed by the concerted interplay between carbonic anhydrases (CAs) and various transport proteins, which either mediate proton extrusion or the shuttling of acid/base equivalents, such as bicarbonate and lactate, across the cell membrane. Accumulating evidence suggests that some of these transporters interact both directly and functionally with CAIX to form a protein complex coined the 'transport metabolon'. Transport metabolons formed between bicarbonate transporters and CAIX require CA catalytic activity and have a function in cancer cell migration and invasion. Another type of transport metabolon is formed by CAIX and monocarboxylate transporters. In this complex, CAIX functions as a proton antenna for the transporter, which drives the export of lactate and protons from the cell. Since CAIX is almost exclusively expressed in cancer cells, these transport metabolons might serve as promising targets to interfere with tumour pH regulation and energy metabolism. This review provides an overview of the current state of research on the function of CAIX in tumour acid/base transport and discusses how CAIX transport metabolons could be exploited in modern cancer therapy.
Collapse
Affiliation(s)
- Holger M Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559, Hannover, Germany.
| |
Collapse
|
155
|
Milite C, Amendola G, Nocentini A, Bua S, Cipriano A, Barresi E, Feoli A, Novellino E, Da Settimo F, Supuran CT, Castellano S, Cosconati S, Taliani S. Novel 2-substituted-benzimidazole-6-sulfonamides as carbonic anhydrase inhibitors: synthesis, biological evaluation against isoforms I, II, IX and XII and molecular docking studies. J Enzyme Inhib Med Chem 2019; 34:1697-1710. [PMID: 31537132 PMCID: PMC6758606 DOI: 10.1080/14756366.2019.1666836] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Inhibition of Carbonic Anhydrases (CAs) has been clinically exploited for many decades for a variety of therapeutic applications. Within a research project aimed at developing novel classes of CA inhibitors (CAIs) with a proper selectivity for certain isoforms, a series of derivatives featuring the 2-substituted-benzimidazole-6-sulfonamide scaffold, conceived as frozen analogs of Schiff bases and secondary amines previously reported in the literature as CAIs, were investigated. Enzyme inhibition assays on physiologically relevant human CA I, II, IX and XII isoforms revealed a number of potent CAIs, showing promising selectivity profiles towards the transmembrane tumor-associated CA IX and XII enzymes. Computational studies were attained to clarify the structural determinants behind the activities and selectivity profiles of the novel inhibitors.
Collapse
Affiliation(s)
- Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno , Fisciano (SA) , Italy
| | - Giorgio Amendola
- DiSTABiF, Università della Campania Luigi Vanvitelli , Caserta , Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| | - Silvia Bua
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| | - Alessandra Cipriano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno , Fisciano (SA) , Italy.,PhD Program in Drug Discovery and Development, University of Salerno , Fisciano (SA) , Italy
| | | | - Alessandra Feoli
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno , Fisciano (SA) , Italy
| | - Ettore Novellino
- Department of Pharmacy, University Federico II of Naples , Naples , Italy
| | | | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno , Fisciano (SA) , Italy
| | - Sandro Cosconati
- DiSTABiF, Università della Campania Luigi Vanvitelli , Caserta , Italy
| | | |
Collapse
|
156
|
Bilginer S, Gonder B, Gul HI, Kaya R, Gulcin I, Anil B, Supuran CT. Novel sulphonamides incorporating triazene moieties show powerful carbonic anhydrase I and II inhibitory properties. J Enzyme Inhib Med Chem 2019; 35:325-329. [PMID: 31813300 PMCID: PMC6913647 DOI: 10.1080/14756366.2019.1700240] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A series of compounds incorporating 3-(3-(2/3/4-substituted phenyl)triaz-1-en-1-yl) benzenesulfonamide moieties were synthesised and their chemical structure was confirmed by physico-chemical methods. Carbonic anhydrase (CA, EC 4.2.1.1) inhibitory effects of the compounds were evaluated against human isoforms hCA I and II. KI values of these sulphonamides were in the range of 21 ± 4–72 ± 2 nM towards hCA I and in the range of 16 ± 6–40 ± 2 nM against hCA II. The 4-fluoro substituted derivative might be considered as an interesting lead due to its effective inhibitory action against both hCA I and hCA II (KIs of 21 nM), a profile rarely seen among other sulphonamide CA inhibitors, making it of interest in systems where the activity of the two cytosolic isoforms is dysregulated.
Collapse
Affiliation(s)
- Sinan Bilginer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Baris Gonder
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Ruya Kaya
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey.,Central Research & Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Baris Anil
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | | |
Collapse
|
157
|
Al-Sanea MM, Elkamhawy A, Paik S, Bua S, Ha Lee S, Abdelgawad MA, Roh EJ, Eldehna WM, Supuran CT. Synthesis and biological evaluation of novel 3-(quinolin-4-ylamino)benzenesulfonamidesAQ3 as carbonic anhydrase isoforms I and II inhibitors. J Enzyme Inhib Med Chem 2019; 34:1457-1464. [PMID: 31411080 PMCID: PMC6713088 DOI: 10.1080/14756366.2019.1652282] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are crucial metalloenzymes that are involved in diverse bioprocesses. We report the synthesis and biological evaluation of novel series of benzenesulfonamides incorporating un/substituted ethyl quinoline-3-carboxylate moieties. The newly synthesised compounds were in vitro evaluated as inhibitors of the cytosolic human (h) isoforms hCA I and II. Both isoforms hCA I and II were inhibited by the quinolines reported here in variable degrees: hCA I was inhibited with KIs in the range of 0.966-9.091 μM, whereas hCA II in the range of 0.083-3.594 μM. The primary 7-chloro-6-flouro substituted sulphfonamide derivative 6e (KI = 0.083 μM) proved to be the most active quinoline in inhibiting hCA II, whereas, its secondary sulfonamide analog failed to inhibit the hCA II up to 10 μM, confirming the crucial role of the primary sulphfonamide group, as a zinc-binding group for CA inhibitory activity.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ahmed Elkamhawy
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sora Paik
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - So Ha Lee
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef, Egypt
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
158
|
Swain B, Angeli A, Angapelly S, Thacker PS, Singh P, Supuran CT, Arifuddin M. Synthesis of a new series of 3-functionalised-1-phenyl-1,2,3-triazole sulfamoylbenzamides as carbonic anhydrase I, II, IV and IX inhibitors. J Enzyme Inhib Med Chem 2019; 34:1199-1209. [PMID: 31237458 PMCID: PMC6598542 DOI: 10.1080/14756366.2019.1629432] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 01/18/2023] Open
Abstract
The synthesis of a novel series of 3-functionalised benzenesulfonamides incorporating phenyl-1,2,3-triazole with an amide linker was achieved by using the "click-tail" approach. The new compounds, including the intermediates, were assayed as inhibitors of human carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I and II (cytosolic isoforms) and also for hCA IV and IX (transmembrane isoforms) taking acetazolamide as standard drug. Most of these compounds exhibited excellent activity against all these isoforms. hCA I was inhibited with Kis in the range of 50.8-966.8 nM, while the glaucoma associated hCA II was inhibited with Kis in the range of 6.5-760.0 nM. Isoform hCA IV was inhibited with Kis in the range of 65.3-957.5 nM, whereas the tumor associated hypoxia induced hCA IX was inhibited with Kis in the range of 30.8-815.9 nM. The structure activity relationship study for the 3-functionalised-1-phenyl-1,2,3-triazole sulfamoylbenzamides against these isoforms was also inferred from the results.
Collapse
Affiliation(s)
- Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Srinivas Angapelly
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Pavitra S. Thacker
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Claudiu T. Supuran
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
159
|
Tanini D, Ricci L, Capperucci A, Di Cesare Mannelli L, Ghelardini C, Peat TS, Carta F, Angeli A, Supuran CT. Synthesis of novel tellurides bearing benzensulfonamide moiety as carbonic anhydrase inhibitors with antitumor activity. Eur J Med Chem 2019; 181:111586. [PMID: 31401537 DOI: 10.1016/j.ejmech.2019.111586] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/23/2019] [Accepted: 08/04/2019] [Indexed: 12/30/2022]
Abstract
We have synthetized a novel series of β-hydroxy tellurides bearing the benzenesulfonamide group as potent inhibitors of carbonic anhydrase enzymes. In a one pot procedure, we discovered both the ring opening reaction of the three-membered ring and the cleavage of the sulfonamide protecting moiety at the same time. Moreover, the first X-ray co-crystallographic structure of a β-hydroxy telluride derivative with hCA II is reported. The potent effects of these compounds against the tumor-associated hCA IX with low nanomolar constant inhibition values give the possibility to evaluate their activity in vitro using a breast cancer cell line (MDA-MB-231). Compounds 7e and 7g induced significant toxic effects against tumor cells after 48 h incubation in normoxic conditions killing over 50% of tumor cells at 3 μM, but their efficacy decreased in hypoxic conditions reaching the 50% of the tumor cell viability only at 30 μM. These unusual features make them interesting lead compounds to act as antitumor agents, not only as Carbonic Anhydrase IX inhibitors, but reasonably in different pathways, where hCA IX is not overexpressed.
Collapse
Affiliation(s)
- Damiano Tanini
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Lorenzo Ricci
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Antonella Capperucci
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Lorenzo Di Cesare Mannelli
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139, Florence, Italy
| | - Carla Ghelardini
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139, Florence, Italy
| | - Thomas S Peat
- CSIRO, 343 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Fabrizio Carta
- Department of University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Andrea Angeli
- Department of University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy; Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| | - Claudiu T Supuran
- Department of University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
160
|
Yamali C, Gul HI, Ece A, Bua S, Angeli A, Sakagami H, Sahin E, Supuran CT. Synthesis, biological evaluation and in silico modelling studies of 1,3,5-trisubstituted pyrazoles carrying benzenesulfonamide as potential anticancer agents and selective cancer-associated hCA IX isoenzyme inhibitors. Bioorg Chem 2019; 92:103222. [PMID: 31499260 DOI: 10.1016/j.bioorg.2019.103222] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 01/10/2023]
Abstract
Inhibition of carbonic anhydrases (CAs, EC 4.2.1.1) has clinical importance for the treatment of several diseases. They participate in crucial regulatory mechanisms for balancing intracellular and extracellular pH of the cells. Among CA isoforms, selective inhibition of hCA IX has been linked to decreasing of cell growth for both primary tumors and metastases. The discovery of novel CA inhibitors as anticancer drug candidates is a current topic in medicinal chemistry. 1,3,5-Trisubstituted pyrazoles carrying benzenesulfonamide were evaluated against physiologically abundant cytosolic hCA I and hCA II and trans-membrane, tumor-associated hCA IX isoforms by a stopped-flow CO2 hydrase method. Their in vitro cytotoxicities were screened against human oral squamous cell carcinoma (OSCC) cell lines (HSC-2) and human mesenchymal normal oral cells (HGF) via 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) test. Compounds 6, 8, 9, 11, and 12 showed low nanomolar hCA II inhibitory potency with Ki < 10 nM, whereas compounds 9 and 12 displayed Ki < 10 nM against hCA IX isoenzyme when compared with reference Acetazolamide (AZA). Compound 9, 4-(3-(hydrazinecarbonyl)-5-(4-nitrophenyl)-1H-pyrazol-1-yl)benzenesulfonamide, can be considered as the most selective hCA IX inhibitor over off-target cytosolic isoenzymes hCA I and hCA II with the lowest Ki value of 2.3 nM and selectivity ratios of 3217 (hCA I/hCA IX) and 3.9 (hCA II/hCA IX). Isoform selectivity profiles were also discussed using in silico modelling. Cytotoxicity results pointed out that compounds 5 (CC50 = 37.7 μM) and 11 (CC50 = 58.1 μM) can be considered as lead cytotoxic compounds since they were more cytotoxic than 5-Fluorouracil (5-FU) and Methotrexate (MTX).
Collapse
Affiliation(s)
- Cem Yamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey.
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Silvia Bua
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Sakado, Saitama 350-0283, Japan
| | - Ertan Sahin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
161
|
Supuran CT. Agents for the prevention and treatment of age-related macular degeneration and macular edema: a literature and patent review. Expert Opin Ther Pat 2019; 29:761-767. [PMID: 31540558 DOI: 10.1080/13543776.2019.1671353] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Macular degeneration (MD) and macular edema (ME) are ophthalmologic diseases affecting an increasing number of the aging population. Until recently, there were few therapeutic options for both conditions but the last two decades saw important advances. Areas covered: This review summarizes the agents used for the treatment of age-related MD (AMD), which include verteporfin, for photodynamic therapy, and anti-VEGF agents, the aptamer pegaptanib, the monoclonal antibodies (MAbs) ranibizumab (Lucentis®) and bevacizumab (Avastin®) and the fusion protein aflibercept (Eylea®). All these drugs are effective only for the wet form of AMD, whereas for the dry form there is no treatment available. ME is, on the other hand, treated with nonsteroidal anti-inflammatory drugs and carbonic anhydrase (CA) inhibitors. Recently, MAbs such as ranibizumab and bevacizumab were also shown to be effective for the management of the cystoid and diabetic ME. Expert opinion: There are important advances made in the field in the last years but longer-acting anti-VEGF agents or drugs with less ocular side effects are needed. Many such agents are in clinical development.
Collapse
Affiliation(s)
- Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze , Firenze , Italy
| |
Collapse
|
162
|
Drug Repurposing as an Antitumor Agent: Disulfiram-Mediated Carbonic Anhydrase 12 and Anion Exchanger 2 Modulation to Inhibit Cancer Cell Migration. Molecules 2019; 24:molecules24183409. [PMID: 31546841 PMCID: PMC6767608 DOI: 10.3390/molecules24183409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Disulfiram has been used in the treatment of alcoholism and exhibits an anti-tumor effect. However, the intracellular mechanism of anti-tumor activity of Disulfiram remains unclear. In this study, we focused on the modulatory role of Disulfiram via oncogenic factor carbonic anhydrase CA12 and its associated transporter anion exchanger AE2 in lung cancer cell line A549. The surface expression of CA12 and AE2 were decreased by Disulfiram treatment with a time-dependent manner. Disulfiram treatment did not alter the expression of Na+-bicarbonate cotransporters, nor did it affect autophagy regulation. The chloride bicarbonate exchanger activity of A549 cells was reduced by Disulfiram treatment in a time-dependent manner without change in the resting pH level. The expression and activity of AE2 and the expression of CA12 were also reduced by Disulfiram treatment in the breast cancer cell line. An invasion assay and cell migration assay revealed that Disulfiram attenuated the invasion and migration of A549 cells. In conclusion, the attenuation of AE2 and its supportive enzyme CA12, and the inhibitory effect on cell migration by Disulfiram treatment in cancer cells provided the molecular evidence supporting the potential of Disulfiram as an anticancer agent.
Collapse
|
163
|
Effects of Post-translational Modifications on Membrane Localization and Signaling of Prostanoid GPCR-G Protein Complexes and the Role of Hypoxia. J Membr Biol 2019; 252:509-526. [PMID: 31485700 DOI: 10.1007/s00232-019-00091-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) play a pivotal role in the adaptive responses to cellular stresses such as hypoxia. In addition to influencing cellular gene expression profiles, hypoxic microenvironments can perturb membrane protein localization, altering GPCR effector scaffolding and altering downstream signaling. Studies using proteomics approaches have revealed significant regulation of GPCR and G proteins by their state of post-translational modification. The aim of this review is to examine the effects of post-translational modifications on membrane localization and signaling of GPCR-G protein complexes, with an emphasis on vascular prostanoid receptors, and to highlight what is known about the effect of cellular hypoxia on these mechanisms. Understanding post-translational modifications of protein targets will help to define GPCR targets in treatment of disease, and to inform research into mechanisms of hypoxic cellular responses.
Collapse
|
164
|
Bayat Mokhtari R, Baluch N, Morgatskaya E, Kumar S, Sparaneo A, Muscarella LA, Zhao S, Cheng HL, Das B, Yeger H. Human bronchial carcinoid tumor initiating cells are targeted by the combination of acetazolamide and sulforaphane. BMC Cancer 2019; 19:864. [PMID: 31470802 PMCID: PMC6716820 DOI: 10.1186/s12885-019-6018-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
Background Bronchial carcinoids are neuroendocrine tumors that present as typical (TC) and atypical (AC) variants, the latter being more aggressive, invasive and metastatic. Studies of tumor initiating cell (TIC) biology in bronchial carcinoids has been hindered by the lack of appropriate in-vitro and xenograft models representing the bronchial carcinoid phenotype and behavior. Methods Bronchial carcinoid cell lines (H727, TC and H720, AC) were cultured in serum-free growth factor supplemented medium to form 3D spheroids and serially passaged up to the 3rd generation permitting expansion of the TIC population as verified by expression of stemness markers, clonogenicity in-vitro and tumorigenicity in both subcutaneous and orthotopic (lung) models. Acetazolamide (AZ), sulforaphane (SFN) and the AZ + SFN combination were evaluated for targeting TIC in bronchial carcinoids. Results Data demonstrate that bronchial carcinoid cell line 3rd generation spheroid cells show increased drug resistance, clonogenicity, and tumorigenic potential compared with the parental cells, suggesting selection and expansion of a TIC fraction. Gene expression and immunolabeling studies demonstrated that the TIC expressed stemness factors Oct-4, Sox-2 and Nanog. In a lung orthotopic model bronchial carcinoid, cell line derived spheroids, and patient tumor derived 3rd generation spheroids when supported by a stroma, showed robust tumor formation. SFN and especially the AZ + SFN combination were effective in inhibiting tumor cell growth, spheroid formation and in reducing tumor formation in immunocompromised mice. Conclusions Human bronchial carcinoid tumor cells serially passaged as spheroids contain a higher fraction of TIC exhibiting a stemness phenotype. This TIC population can be effectively targeted by the combination of AZ + SFN. Our work portends clinical relevance and supports the therapeutic use of the novel AZ+ SFN combination that may target the TIC population of bronchial carcinoids.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., Rm 15.9714, Toronto, Ontario, M5G 0A4, Canada.
| | - Narges Baluch
- Department of Pediatrics, Queen's University, 76 Stuart St, Kingston, ON, K7L 2V7, Canada
| | - Evgeniya Morgatskaya
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sushil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Williams Science Hall 3035, Department of Pharmaceutical Sciences 601 S. Saddle Creek Rd, Omaha, NE, 68106, USA
| | - Angelo Sparaneo
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, viale Cappuccini, 71013, San Giovanni Rotondo, FG, Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, viale Cappuccini, 71013, San Giovanni Rotondo, FG, Italy
| | - Sheyun Zhao
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hai-Ling Cheng
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, 164 College Street, Rosebrugh Building, Room 407, Toronto, ON, M5S 3G9, Canada
| | - Bikul Das
- Thoreau Laboratory for Global Health, M2D2, University of Massachusetts-Lowell, Innovation Hub, 110 Canal St, Lowell, MA, 01852, USA.,KaviKrishna Laboratory, Indian Institute of Technology Complex, Guwahati, India
| | - Herman Yeger
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., Rm 15.9714, Toronto, Ontario, M5G 0A4, Canada
| |
Collapse
|
165
|
Rotondi G, Guglielmi P, Carradori S, Secci D, De Monte C, De Filippis B, Maccallini C, Amoroso R, Cirilli R, Akdemir A, Angeli A, Supuran CT. Design, synthesis and biological activity of selective hCAs inhibitors based on 2-(benzylsulfinyl)benzoic acid scaffold. J Enzyme Inhib Med Chem 2019; 34:1400-1413. [PMID: 31401897 PMCID: PMC6713143 DOI: 10.1080/14756366.2019.1651315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A large library of derivatives based on the scaffold of 2-(benzylsulfinyl)benzoic acid were synthesised and tested as atypical inhibitors against four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). The exploration of the chemical space around the main functional groups led to the discovery of selective hCA IX inhibitors in the micromolar/nanomolar range, thus establishing robust structure-activity relationships within this versatile scaffold. HPLC separation of some selected chiral compounds and biological evaluation of the corresponding enantiomers was performed along with molecular modelling studies on the most active derivatives.
Collapse
Affiliation(s)
- Giulia Rotondi
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Paolo Guglielmi
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Simone Carradori
- b Department of Pharmacy, "G. D'Annunzio", University of Chieti-Pescara , Chieti , Italy
| | - Daniela Secci
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Celeste De Monte
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Barbara De Filippis
- b Department of Pharmacy, "G. D'Annunzio", University of Chieti-Pescara , Chieti , Italy
| | - Cristina Maccallini
- b Department of Pharmacy, "G. D'Annunzio", University of Chieti-Pescara , Chieti , Italy
| | - Rosa Amoroso
- b Department of Pharmacy, "G. D'Annunzio", University of Chieti-Pescara , Chieti , Italy
| | - Roberto Cirilli
- c Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Istituto Superiore di Sanità , Rome , Italy
| | - Atilla Akdemir
- d Computer-aided Drug Discovery Laboratory, Faculty of Pharmacy, Department of Pharmacology, Bezmialem Vakif University , Fatih, Istanbul , Turkey
| | - Andrea Angeli
- e Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences, Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| | - Claudiu T Supuran
- e Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences, Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| |
Collapse
|
166
|
Nocentini A, Supuran CT. Advances in the structural annotation of human carbonic anhydrases and impact on future drug discovery. Expert Opin Drug Discov 2019; 14:1175-1197. [DOI: 10.1080/17460441.2019.1651289] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alessio Nocentini
- Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T. Supuran
- Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
167
|
Larcher A, Nocentini A, Supuran CT, Winum JY, van der Lee A, Vasseur JJ, Laurencin D, Smietana M. Bis-benzoxaboroles: Design, Synthesis, and Biological Evaluation as Carbonic Anhydrase Inhibitors. ACS Med Chem Lett 2019; 10:1205-1210. [PMID: 31413806 DOI: 10.1021/acsmedchemlett.9b00252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/11/2019] [Indexed: 12/25/2022] Open
Abstract
The synthesis, characterization, and biological evaluation of a series of compounds incorporating two or three benzoxaborole moieties is reported. Three different synthetic strategies were used to explore within this series as much chemical space as possible, all starting from the 6-aminobenzoxaborole reagent: amide coupling, imine bond formation, and squarate coupling. Eleven new compounds were isolated in pure form, and single crystals were obtained for two of them. These compounds were then evaluated as carbonic anhydrase inhibitors against the cytosolic hCA I and II and the transmembrane hCA IV, IX, and XII isoforms. While the benzoxaborole scaffold has been recently introduced as a new chemotype for carbonic anhydrase inhibition, these new multivalent derivatives exhibited superior inhibitory activity against the tumor-associated isoform hCA IX. In particular, compared to monovalent 6-aminobenzoxaborole (K I = 813 nM) and 6-carboxybenzoxaborole (K I = 400 nM), derivative 2h characterized by a glutamic acid structural core and two benzoxaborole moieties was found to be more potent (K I = 64 nM) and more selective over human hCA II.
Collapse
Affiliation(s)
- Adèle Larcher
- Institut Charles Gerhardt de Montpellier (ICGM), Université de Montpellier, UMR 5253, CNRS, ENSCM, Place E. Bataillon, CC1701, 34095 Montpellier Cedex 05, France
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, UMR
5247, CNRS, ENSCM, Place E. Bataillon, CC 1704, 34095 Montpellier Cedex 05, France
| | - Alessio Nocentini
- NEUROFARBA Dept., University of Florence, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Dept., University of Florence, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, UMR
5247, CNRS, ENSCM, Place E. Bataillon, CC 1704, 34095 Montpellier Cedex 05, France
| | - Arie van der Lee
- Institut Européen des Membranes, Université
de Montpellier, UMR 5632 CNRS ENSCM, 34095 Montpellier, Cedex 05, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, UMR
5247, CNRS, ENSCM, Place E. Bataillon, CC 1704, 34095 Montpellier Cedex 05, France
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier (ICGM), Université de Montpellier, UMR 5253, CNRS, ENSCM, Place E. Bataillon, CC1701, 34095 Montpellier Cedex 05, France
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, UMR
5247, CNRS, ENSCM, Place E. Bataillon, CC 1704, 34095 Montpellier Cedex 05, France
| |
Collapse
|
168
|
Occhipinti R, Boron WF. Role of Carbonic Anhydrases and Inhibitors in Acid-Base Physiology: Insights from Mathematical Modeling. Int J Mol Sci 2019; 20:E3841. [PMID: 31390837 PMCID: PMC6695913 DOI: 10.3390/ijms20153841] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/25/2023] Open
Abstract
Carbonic anhydrases (CAs) catalyze a reaction fundamental for life: the bidirectional conversion of carbon dioxide (CO2) and water (H2O) into bicarbonate (HCO3-) and protons (H+). These enzymes impact numerous physiological processes that occur within and across the many compartments in the body. Within compartments, CAs promote rapid H+ buffering and thus the stability of pH-sensitive processes. Between compartments, CAs promote movements of H+, CO2, HCO3-, and related species. This traffic is central to respiration, digestion, and whole-body/cellular pH regulation. Here, we focus on the role of mathematical modeling in understanding how CA enhances buffering as well as gradients that drive fluxes of CO2 and other solutes (facilitated diffusion). We also examine urinary acid secretion and the carriage of CO2 by the respiratory system. We propose that the broad physiological impact of CAs stem from three fundamental actions: promoting H+ buffering, enhancing H+ exchange between buffer systems, and facilitating diffusion. Mathematical modeling can be a powerful tool for: (1) clarifying the complex interdependencies among reaction, diffusion, and protein-mediated components of physiological processes; (2) formulating hypotheses and making predictions to be tested in wet-lab experiments; and (3) inferring data that are impossible to measure.
Collapse
Affiliation(s)
- Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
169
|
Chiaramonte N, Bua S, Angeli A, Ferraroni M, Picchioni I, Bartolucci G, Braconi L, Dei S, Teodori E, Supuran CT, Romanelli MN. Sulfonamides incorporating piperazine bioisosteres as potent human carbonic anhydrase I, II, IV and IX inhibitors. Bioorg Chem 2019; 91:103130. [PMID: 31374520 DOI: 10.1016/j.bioorg.2019.103130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Abstract
Starting from the molecular simplification of (R) 4-(3,4-dibenzylpiperazine-1-carbonyl)benzenesulfonamide 9a, a compound endowed with selectivity for human Carbonic Anhydrase (hCA) IV, a series of piperazines and 4-aminopiperidines carrying a 4-sulfamoylbenzamide moiety as Zn-binding group have been designed and tested on human isoforms hCA I, II, IV and IX, using a stopped flow CO2 hydrase assay. The aim of the work was to derive structure-activity relationships useful for designing isoform selective compounds. These structural modifications changed the selectivity profile of the analogues from hCA IV to hCA I and II, and improved potency. Several of the new compounds showed subnanomolar activity on hCA II. X-ray crystallography of ligand-hCAII complexes was used to compare the binding modes of the new piperazines and the previously synthesized 2-benzyl-piperazine analogues, explaining the inhibition profiles.
Collapse
Affiliation(s)
- Niccolò Chiaramonte
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Silvia Bua
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Andrea Angeli
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Marta Ferraroni
- University of Florence, Department of Chemistry, via della Lastruccia, 50019 Sesto Fiorentino, Italy
| | - Ilaria Picchioni
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Gianluca Bartolucci
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Laura Braconi
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Silvia Dei
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Elisabetta Teodori
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | - Maria Novella Romanelli
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
170
|
Podolski-Renić A, Dinić J, Stanković T, Jovanović M, Ramović A, Pustenko A, Žalubovskis R, Pešić M. Sulfocoumarins, specific carbonic anhydrase IX and XII inhibitors, interact with cancer multidrug resistant phenotype through pH regulation and reverse P-glycoprotein mediated resistance. Eur J Pharm Sci 2019; 138:105012. [PMID: 31330259 DOI: 10.1016/j.ejps.2019.105012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/10/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
New 6-triazolyl-substituted sulfocoumarins were described as potent inhibitors of the transmembrane human carbonic anhydrase isoforms, CAIX and CAXII. These membrane associated enzymes that maintain pH and CO2 homeostasis are involved in cancer progression, invasion, and resistance to therapy. Recently, it was shown that CAXII expression associates with the expression of P-glycoprotein in multidrug resistant cancer cells. CAXII regulates P-glycoprotein activity by maintaining high intracellular pHi. In this study, the activity of three new sulfocoumarins was evaluated in three sensitive and corresponding multidrug resistant cancer cell lines with increased P-glycoprotein expression (non-small cell lung carcinoma, colorectal carcinoma and glioblastoma). Compound 3 showed the highest potential for cancer cell growth inhibition in all tested cell lines. Flow cytometric analyses showed that compound 3 induced intracellular acidification, cell cycle arrest in G2/M phase and necrosis in non-small cell lung carcinoma cells. Compound 3 demonstrated irreversible, concentration- and time-dependent inhibition of P-glycoprotein activity in multidrug resistant non-small cell lung carcinoma cells. The suppression of P-glycoprotein activity was accompanied with increased P-glycoprotein expression suggesting a compensatory mechanism of multidrug resistant cancer cells. In addition, compound 3 was able to sensitize multidrug resistant non-small cell lung carcinoma cells to doxorubicin. Overall, results imply that compound 3 has multidrug resistance modulating effect through intracellular acidification and subsequent inhibition of P-glycoprotein activity.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Jelena Dinić
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana Stanković
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Mirna Jovanović
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Amra Ramović
- State University of Novi Pazar, Vuka Karadzica bb, 36300 Novi Pazar, Serbia
| | - Aleksandrs Pustenko
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga LV-1048, Latvia
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga LV-1048, Latvia
| | - Milica Pešić
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
171
|
Serbian I, Schwarzenberger P, Loesche A, Hoenke S, Al-Harrasi A, Csuk R. Ureidobenzenesulfonamides as efficient inhibitors of carbonic anhydrase II. Bioorg Chem 2019; 91:103123. [PMID: 31336306 DOI: 10.1016/j.bioorg.2019.103123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 01/13/2023]
Abstract
Sulfonamides represent an important class of drugs because of their inhibitory effect on carbonic anhydrases (CAs). We therefore synthesized several ureidobenzenesulfonamides and evaluated their bCA II inhibition for their potential use as anti-glaucoma gents. Since these compounds must not show cytotoxic effects, their cytotoxic potential against several human tumor cell lines and non-malignant fibroblasts was investigated. Several fluorophenyl substituted sulfonamides were efficient inhibitors of bCA II. Only one benzylphenyl substituted sulfonamide, however, showed a remarkable selectivity for HT29 colorectal carcinoma cells while being significantly less cytotoxic to non-malignant fibroblasts.
Collapse
Affiliation(s)
- Immo Serbian
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Philipp Schwarzenberger
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Anne Loesche
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Sophie Hoenke
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- University of Nizwa, Chair of Oman's Medicinal Plants and Marine Natural Products, PO Box 33, Birkat Al-Mauz, Nizwa, Oman
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
172
|
Pillai SR, Damaghi M, Marunaka Y, Spugnini EP, Fais S, Gillies RJ. Causes, consequences, and therapy of tumors acidosis. Cancer Metastasis Rev 2019; 38:205-222. [PMID: 30911978 PMCID: PMC6625890 DOI: 10.1007/s10555-019-09792-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While cancer is commonly described as "a disease of the genes," it is also associated with massive metabolic reprogramming that is now accepted as a disease "Hallmark." This programming is complex and often involves metabolic cooperativity between cancer cells and their surrounding stroma. Indeed, there is emerging clinical evidence that interrupting a cancer's metabolic program can improve patients' outcomes. The most commonly observed and well-studied metabolic adaptation in cancers is the fermentation of glucose to lactic acid, even in the presence of oxygen, also known as "aerobic glycolysis" or the "Warburg Effect." Much has been written about the mechanisms of the Warburg effect, and this remains a topic of great debate. However, herein, we will focus on an important sequela of this metabolic program: the acidification of the tumor microenvironment. Rather than being an epiphenomenon, it is now appreciated that this acidosis is a key player in cancer somatic evolution and progression to malignancy. Adaptation to acidosis induces and selects for malignant behaviors, such as increased invasion and metastasis, chemoresistance, and inhibition of immune surveillance. However, the metabolic reprogramming that occurs during adaptation to acidosis also introduces therapeutic vulnerabilities. Thus, tumor acidosis is a relevant therapeutic target, and we describe herein four approaches to accomplish this: (1) neutralizing acid directly with buffers, (2) targeting metabolic vulnerabilities revealed by acidosis, (3) developing acid-activatable drugs and nanomedicines, and (4) inhibiting metabolic processes responsible for generating acids in the first place.
Collapse
Affiliation(s)
- Smitha R Pillai
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33602, USA
| | - Mehdi Damaghi
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33602, USA
| | - Yoshinori Marunaka
- Research Institute for Clinical Physiology, Kyoto, 604-8472, Japan
- Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | | | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena, 299, 00161, Rome, Italy.
| | - Robert J Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33602, USA.
| |
Collapse
|
173
|
Cloning, Purification, and Characterization of a β-Carbonic Anhydrase from Malassezia restricta, an Opportunistic Pathogen Involved in Dandruff and Seborrheic Dermatitis. Int J Mol Sci 2019; 20:ijms20102447. [PMID: 31108925 PMCID: PMC6566260 DOI: 10.3390/ijms20102447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cloning, purification, and initial characterization of the β-carbonic anhydrase (CA, EC 4.2.1.1) from the genome of the opportunistic pathogen Malassezia restricta (MreCA), which a fungus involved in dandruff and seborrheic dermatitis (SD), is reported. MreCA is a protein consisting of 230 amino acid residues and shows high catalytic activity for the hydration of CO2 into bicarbonate and protons, with the following kinetic parameters: kcat of 1.06 × 106 s−1 and kcat/KM of 1.07 × 108 M−1 s−1. It is also sensitive to inhibition by the sulfonamide acetazolamide (KI of 50.7 nM). Phylogenetically, MreCA and other CAs from various Malassezia species seem to be on a different branch, distinct from that of other β-CAs found in fungi, such as Candida spp., Saccharomyces cerevisiae, Aspergillus fumigatus, and Sordaria macrospora, with only Cryptococcus neoformans and Ustilago maydis enzymes clustering near MreCA. The further characterization of this enzyme and the identification of inhibitors that may interfere with its life cycle might constitute new strategies for fighting dandruff and SD.
Collapse
|
174
|
5-Arylisothiazol-3(2H)-one-1,(1)-(di)oxides: A new class of selective tumor-associated carbonic anhydrases (hCA IX and XII) inhibitors. Eur J Med Chem 2019; 175:40-48. [PMID: 31071549 DOI: 10.1016/j.ejmech.2019.04.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022]
Abstract
Sixteen 5-aryl-substituted isothiazol-3(2H)-one-1,(1)-(di)oxide analogs have been prepared from the corresponding 5-chloroisothiazol-3(2H)-one-1-oxide or -1,1-dioxide by a Suzuki-Miyaura cross-coupling reaction and screened for their inhibition potency against four human carbonic anhydrase isoenzymes: the transmembrane tumor-associated hCA IX and XII and the cytosolic off-target hCA I and II. Most of the synthesized derivatives inhibited hCA IX and XII isoforms in nanomolar range, whereas remained inactive or modestly active against both hCA I and II isoenzymes. In the N-tert-butylisothiazolone series, the 5-phenyl-substituted analog (1a) excelled in the inhibition of tumor-associated hCA IX and XII (Ki = 4.5 and Ki = 4.3 nM, respectively) with excellent selectivity against off target hCA I and II isoenzymes (S > 2222 and S > 2325, respectively). Since the highest inhibition activities were observed with N-tert-butyl derivatives, lacking a zinc-binding group, we suppose to have a new binding mode situated out of the active site. Additionally, three free-NH containing analogs (3a, 4a, 3i) have also been prepared in order to study the impact of free-NH containing N-acyl-sulfinamide- (-SO-NH-CO-) or N-acyl-sulfonamide-type (-SO2-NH-CO-) derivatives on the inhibitory potency and selectivity. Screening experiments evidenced 5-phenylisothiazol-3(2H)-one-1,1-dioxide (4a), the closest saccharin analog, to be the most active derivative with inhibition constants of Ki = 40.3 nM and Ki = 9.6 nM against hCA IX and hCA XII, respectively. The promising biological results support the high potential of 5-arylisothiazolinone-1,(1)-(di)oxides to be exploited for the design of potent and cancer-selective carbonic anhydrase inhibitors.
Collapse
|
175
|
Lolak N, Akocak S, Bua S, Sanku RKK, Supuran CT. Discovery of new ureido benzenesulfonamides incorporating 1,3,5-triazine moieties as carbonic anhydrase I, II, IX and XII inhibitors. Bioorg Med Chem 2019; 27:1588-1594. [PMID: 30846402 DOI: 10.1016/j.bmc.2019.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 12/22/2022]
Abstract
A series of twenty novel ureido benzenesulfonamides incorporating 1,3,5-triazine moieties substituted on one side with aromatic amines and on the other side with dimethylamine, morpholine and piperidine is reported. The compounds were synthesized from the 4-(3-(4,6-dichloro-1,3,5-triazin-2-yl)ureido)benzensulfonamide (1) by using stepwise nucleophilic substitution of the chlorine atoms of cyanuric chloride. The intermediates 2(a-e) and final compounds 3(a-o) were tested for their efficiency as carbonic anhydrase (CA) inhibitors against four selected physiologically relevant human carbonic anhydrase (CA, EC 4.2.1.1) isoforms, namely, the cytosolic ones hCA I and II, and the transmembrane, tumor associated ones hCA IX, and XII. The compounds 2a, 2e and 3m showed the highest activity for hCA IX with Kis in the range of 11.8-14.6 nM. Most of the compounds showed high hCA IX selectivity over the abundant off-target isoforms hCA I and II. Since hCA IX is a validated drug target for anticancer/antimetastatic agents, these isoform-selective and potent inhibitors may be considered of interest for further medicinal/pharmacologic studies.
Collapse
Affiliation(s)
- Nabih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, 02040 Adiyaman, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, 02040 Adiyaman, Turkey.
| | - Silvia Bua
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Rajesh K K Sanku
- University of Pennsylvania, Perelman School of Medicine, Department of Systems Pharmacology and Translational Therapeutics, 19104 Philadelphia, United States
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
176
|
Chiarini F, Evangelisti C, Lattanzi G, McCubrey JA, Martelli AM. Advances in understanding the mechanisms of evasive and innate resistance to mTOR inhibition in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1322-1337. [PMID: 30928610 DOI: 10.1016/j.bbamcr.2019.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
The development of drug-resistance by neoplastic cells is recognized as a major cause of targeted therapy failure and disease progression. The mechanistic (previously mammalian) target of rapamycin (mTOR) is a highly conserved Ser/Thr kinase that acts as the catalytic subunit of two structurally and functionally distinct large multiprotein complexes, referred to as mTOR complex 1 (mTORC1) and mTORC2. Both mTORC1 and mTORC2 play key roles in a variety of healthy cell types/tissues by regulating physiological anabolic and catabolic processes in response to external cues. However, a body of evidence identified aberrant activation of mTOR signaling as a common event in many human tumors. Therefore, mTOR is an attractive target for therapeutic targeting in cancer and this fact has driven the development of numerous mTOR inhibitors, several of which have progressed to clinical trials. Nevertheless, mTOR inhibitors have met with a very limited success as anticancer therapeutics. Among other reasons, this failure was initially ascribed to the activation of several compensatory signaling pathways that dampen the efficacy of mTOR inhibitors. The discovery of these regulatory feedback mechanisms greatly contributed to a better understanding of cancer cell resistance to mTOR targeting agents. However, over the last few years, other mechanisms of resistance have emerged, including epigenetic alterations, compensatory metabolism rewiring and the occurrence of mTOR mutations. In this article, we provide the reader with an updated overview of the mechanisms that could explain resistance of cancer cells to the various classes of mTOR inhibitors.
Collapse
Affiliation(s)
- Francesca Chiarini
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, BO, Italy.
| |
Collapse
|
177
|
Targeting Tumor Microenvironment for Cancer Therapy. Int J Mol Sci 2019; 20:ijms20040840. [PMID: 30781344 PMCID: PMC6413095 DOI: 10.3390/ijms20040840] [Citation(s) in RCA: 816] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer development is highly associated to the physiological state of the tumor microenvironment (TME). Despite the existing heterogeneity of tumors from the same or from different anatomical locations, common features can be found in the TME maturation of epithelial-derived tumors. Genetic alterations in tumor cells result in hyperplasia, uncontrolled growth, resistance to apoptosis, and metabolic shift towards anaerobic glycolysis (Warburg effect). These events create hypoxia, oxidative stress and acidosis within the TME triggering an adjustment of the extracellular matrix (ECM), a response from neighbor stromal cells (e.g., fibroblasts) and immune cells (lymphocytes and macrophages), inducing angiogenesis and, ultimately, resulting in metastasis. Exosomes secreted by TME cells are central players in all these events. The TME profile is preponderant on prognosis and impacts efficacy of anti-cancer therapies. Hence, a big effort has been made to develop new therapeutic strategies towards a more efficient targeting of TME. These efforts focus on: (i) therapeutic strategies targeting TME components, extending from conventional therapeutics, to combined therapies and nanomedicines; and (ii) the development of models that accurately resemble the TME for bench investigations, including tumor-tissue explants, “tumor on a chip” or multicellular tumor-spheroids.
Collapse
|