151
|
Weers JG, Son YJ, Glusker M, Haynes A, Huang D, Kadrichu N, Le J, Li X, Malcolmson R, Miller DP, Tarara TE, Ung K, Clark A. Idealhalers Versus Realhalers: Is It Possible to Bypass Deposition in the Upper Respiratory Tract? J Aerosol Med Pulm Drug Deliv 2019; 32:55-69. [DOI: 10.1089/jamp.2018.1497] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
| | - Yoen-Ju Son
- Merck Research Laboratories, Merck & Co., Rahway, New Jersey
| | | | | | | | | | - John Le
- iPharma, Ltd., Union City, California
| | - Xue Li
- Bristol-Myers Squibb, Hopewell, New Jersey
| | | | | | | | - Keith Ung
- iPharma, Ltd., Union City, California
| | | |
Collapse
|
152
|
Gulin-Sarfraz T, Jonasson S, Wigenstam E, von Haartman E, Bucht A, Rosenholm JM. Feasibility Study of Mesoporous Silica Particles for Pulmonary Drug Delivery: Therapeutic Treatment with Dexamethasone in a Mouse Model of Airway Inflammation. Pharmaceutics 2019; 11:pharmaceutics11040149. [PMID: 30939753 PMCID: PMC6523761 DOI: 10.3390/pharmaceutics11040149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/12/2019] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
Diseases in the respiratory tract rank among the leading causes of death in the world, and thus novel and optimized treatments are needed. The lungs offer a large surface for drug absorption, and the inhalation of aerosolized drugs are a well-established therapeutic modality for local treatment of lung conditions. Nanoparticle-based drug delivery platforms are gaining importance for use through the pulmonary route. By using porous carrier matrices, higher doses of especially poorly soluble drugs can be administered locally, reducing their side effects and improving their biodistribution. In this study, the feasibility of mesoporous silica particles (MSPs) as carriers for anti-inflammatory drugs in the treatment of airway inflammation was investigated. Two different sizes of particles on the micron and nanoscale (1 µm and 200 nm) were produced, and were loaded with dexamethasone (DEX) to a loading degree of 1:1 DEX:MSP. These particles were further surface-functionalized with a polyethylene glycol–polyethylene imine (PEG–PEI) copolymer for optimal aqueous dispersibility. The drug-loaded particles were administered as an aerosol, through inhalation to two different mice models of neutrophil-induced (by melphalan or lipopolysaccharide) airway inflammation. The mice received treatment with either DEX-loaded MSPs or, as controls, empty MSPs or DEX only; and were evaluated for treatment effects 24 h after exposure. The results show that the MEL-induced airway inflammation could be treated by the DEX-loaded MSPs to the same extent as free DEX. Interestingly, in the case of LPS-induced inflammation, even the empty MSPs significantly down-modulated the inflammatory response. This study highlights the potential of MSPs as drug carriers for the treatment of diseases in the airways.
Collapse
Affiliation(s)
- Tina Gulin-Sarfraz
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.
- School of Pharmacy, University of Oslo, 0371 Oslo, Norway.
| | - Sofia Jonasson
- CBRN Defence and Security, Swedish Defence Research Agency, 90182 Umeå, Sweden.
| | - Elisabeth Wigenstam
- CBRN Defence and Security, Swedish Defence Research Agency, 90182 Umeå, Sweden.
| | - Eva von Haartman
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.
| | - Anders Bucht
- CBRN Defence and Security, Swedish Defence Research Agency, 90182 Umeå, Sweden.
- Department of Public Health and Clinical Medicine, Unit of Respiratory Medicine, Umeå University, 90182 Umeå, Sweden.
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.
| |
Collapse
|
153
|
Tamadondar MR, Martín L, Rasmuson A. Agglomerate breakage and adhesion upon impact with complex‐shaped particles. AIChE J 2019. [DOI: 10.1002/aic.16581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mohammad R. Tamadondar
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
| | - Lilian Martín
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
| | - Anders Rasmuson
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
| |
Collapse
|
154
|
Rudén J, Frenning G, Bramer T, Thalberg K, An J, Alderborn G. Linking carrier morphology to the powder mechanics of adhesive mixtures for dry powder inhalers via a blend-state model. Int J Pharm 2019; 561:148-160. [PMID: 30825556 DOI: 10.1016/j.ijpharm.2019.02.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/04/2019] [Accepted: 02/23/2019] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate how the carrier morphology affects the expression of blend states in adhesive mixtures as a function of surface coverage ratio (SCR) and to identify where transitions between the different states occur. Adhesive mixtures of five lactose carriers with varying contents of lactose fines, corresponding to blends with different SCR ranging from 0 to 6, were produced by low-shear mixing. The powder mechanics of the mixtures were characterized by bulk density, compressibility and permeability. The appearance of the carriers and blends was studied by scanning electron microscopy, light microscopy and atomic force microscopy. The size and morphology of the carriers had a crucial impact on the evolution of the blend state, and affected the powder mechanical properties of the mixtures. It was found that smaller carriers with little or no surface irregularities were more sensitive to additions of fines resulting in self-agglomeration of fines at relatively low SCR values. On the contrary, carriers with irregular surface structures and larger sizes were able to reach higher SCR values before self-agglomeration of fines occurred. This could be attributed to an increased deagglomeration efficiency of irregular and larger carriers and to fines predominantly adhering to open pores.
Collapse
Affiliation(s)
- Jonas Rudén
- Department of Pharmacy and the Swedish Drug Delivery Forum (SDDF), Uppsala University, Husargatan 3, Box 580, SE-751 23 Uppsala, Sweden.
| | - Göran Frenning
- Department of Pharmacy and the Swedish Drug Delivery Forum (SDDF), Uppsala University, Husargatan 3, Box 580, SE-751 23 Uppsala, Sweden
| | - Tobias Bramer
- Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Kyrre Thalberg
- Inhalation Product Development, Pharmaceutical Technology & Development, AstraZeneca, Gothenburg, Sweden
| | - Junxue An
- Department of Pharmacy and the Swedish Drug Delivery Forum (SDDF), Uppsala University, Husargatan 3, Box 580, SE-751 23 Uppsala, Sweden
| | - Göran Alderborn
- Department of Pharmacy and the Swedish Drug Delivery Forum (SDDF), Uppsala University, Husargatan 3, Box 580, SE-751 23 Uppsala, Sweden
| |
Collapse
|
155
|
Longest W, Farkas D. Development of a New Inhaler for High-Efficiency Dispersion of Spray-Dried Powders Using Computational Fluid Dynamics (CFD) Modeling. AAPS JOURNAL 2019; 21:25. [PMID: 30734133 DOI: 10.1208/s12248-018-0281-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/01/2018] [Indexed: 01/05/2023]
Abstract
Computational fluid dynamics (CFD) modeling offers a powerful tool for the development of drug delivery devices using a first principles approach but has been underutilized in the development of pharmaceutical inhalers. The objective of this study was to develop quantitative correlations for predicting the aerosolization behavior of a newly proposed dry powder inhaler (DPI). The dose aerosolization and containment (DAC) unit DPI utilizes inlet and outlet air orifices designed to maximize the dispersion of spray-dried powders, typically with low air volumes (~ 10 mL) and relatively low airflow rates (~ 3 L/min). Five DAC unit geometries with varying orifice outlet sizes, configurations, and protrusion distances were considered. Aerosolization experiments were performed using cascade impaction to determine mean device emitted dose (ED) and mass median aerodynamic diameter (MMAD). Concurrent CFD simulations were conducted to predict both flow field-based and particle-based dispersion parameters that captured different measures of turbulence. Strong quantitative correlations were established between multiple measures of turbulence and the experimentally observed aerosolization metrics of ED and MMAD. As expected, increasing turbulence produced increased ED with best case values reaching 85% of loaded dose. Surprisingly, decreasing turbulence produced an advantageous decrease in MMAD with values as low as approximately 1.6 μm, which is in contrast with previous studies. In conclusion, CFD provided valuable insights into the performance of the DAC unit DPI as a new device including a two-stage aerosolization process offering multiple avenues for future enhancements.
Collapse
Affiliation(s)
- Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P. O. Box 843015, Richmond, Virginia, 23284, USA. .,Department of Pharmaceutics, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980533, Richmond, Virginia, 23284, USA.
| | - Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P. O. Box 843015, Richmond, Virginia, 23284, USA
| |
Collapse
|
156
|
Weers JG, Miller DP, Tarara TE. Spray-Dried PulmoSphere™ Formulations for Inhalation Comprising Crystalline Drug Particles. AAPS PharmSciTech 2019; 20:103. [PMID: 30734187 DOI: 10.1208/s12249-018-1280-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/06/2018] [Indexed: 12/30/2022] Open
Abstract
Over the past 20 years, solution-based spray dried powders have transformed inhaled product development, enabling aerosol delivery of a wider variety of molecules as dry powders. These include inhaled proteins for systemic action (e.g., Exubera®) and high-dose inhaled antibiotics (e.g., TOBI® Podhaler™). Although engineered particles provide several key advantages over traditional powder processing technologies (e.g., spheronized particles and lactose blends), the physicochemical stability of the amorphous drug present in these formulations brings along its own unique set of constraints. To this end, a number of approaches have been developed to maintain the crystallinity of drugs throughout the spray drying process. One approach is to spray dry suspensions of micronized drug(s) from a liquid feed. In this method, minimization of drug particle dissolution in the liquid feed is critical, as dissolved drug is converted into amorphous domains in the spray-dried drug product. The review explores multiple formulation and engineering strategies for decreasing drug dissolution independent of the physicochemical properties of the drug(s). Strategies to minimize particle dissolution include spray blending of particles of different compositions, formation of respirable agglomerates of micronized drug with small porous carrier particles, and use of common ions. The formulations extend the range of doses that can be delivered with a portable inhaler from about 100 ng to 100 mg. The spray-dried particles exhibit significant advantages in terms of lung targeting and dose consistency relative to conventional lactose blends, while still maintaining the crystallinity of drug(s) in the formulated drug product.
Collapse
|
157
|
Abstract
Inhalation therapy is one of the oldest approaches to the therapy of diseases of the respiratory tract. It is well recognised today that the most effective and safe means of treating the lungs is to deliver drugs directly to the airways. Surprisingly, the delivery of therapeutic aerosols has a rich history dating back more than 2,000 years to Ayurvedic medicine in India, but in many respects, the introduction of the first pressurised metered-dose inhaler (pMDI) in 1956 marked the beginning of the modern pharmaceutical aerosol industry. The pMDI was the first truly portable and convenient inhaler that effectively delivered drug to the lung and quickly gained widespread acceptance. Since 1956, the pharmaceutical aerosol industry has experienced dramatic growth. The signing of the Montreal Protocol in 1987 to reduce the use of CFCs as propellants for aerosols led to a surge in innovation that resulted in the diversification of inhaler technologies with significantly enhanced delivery efficiency, including modern pMDIs, dry powder inhalers and nebuliser systems. There is also great interest in tailoring particle size to deliver drugs to treat specific areas of the respiratory tract. One challenge that has been present since antiquity still exists, however, and that is ensuring that the patient has access to the medication and understands how to use it effectively. In this article, we will provide a summary of therapeutic aerosol delivery systems from ancient times to the present along with a look to the future.
Collapse
Affiliation(s)
- Federico Lavorini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | | | - Omar S Usmani
- National Heart and Lung Institute, Imperial College London and Royal Brompton Hospital, London, UK
| |
Collapse
|
158
|
Viswanathan V, Pharande R, Bannalikar A, Gupta P, Gupta U, Mukne A. Inhalable liposomes of Glycyrrhiza glabra extract for use in tuberculosis: formulation, in vitro characterization, in vivo lung deposition, and in vivo pharmacodynamic studies. Drug Dev Ind Pharm 2018; 45:11-20. [DOI: 10.1080/03639045.2018.1513025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Vivek Viswanathan
- Department of Pharmacognosy and Phytochemistry, Bombay College of Pharmacy, Mumbai, India
| | - Rajesh Pharande
- Department of Veterinary Microbiology, Bombay Veterinary College, Mumbai, India
| | | | - Pushpa Gupta
- National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
| | - Umesh Gupta
- National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
| | - Alka Mukne
- Department of Pharmacognosy and Phytochemistry, Bombay College of Pharmacy, Mumbai, India
| |
Collapse
|
159
|
Biddiscombe MF, Usmani OS. Is there room for further innovation in inhaled therapy for airways disease? Breathe (Sheff) 2018; 14:216-224. [PMID: 30186519 PMCID: PMC6118889 DOI: 10.1183/20734735.020318] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inhaled medication is the cornerstone in the treatment of patients across a spectrum of respiratory diseases including asthma and chronic obstructive pulmonary disease. The benefits of inhaled therapy have long been recognised but the most important innovations have occurred over the past 60 years, beginning with the invention of the pressurised metered dose inhaler. However, despite over 230 different device and drug combinations currently being available, disease control is far from perfect. Here we look at how innovation in inhaler design may improve treatments for respiratory diseases and how new formulations may lead to treatments for diseases beyond the lungs. We look at the three main areas where innovation in inhaled therapy is most likely to occur: 1) device engineering and design; 2) chemistry and formulations; and 3) digital technology associated with inhalers. Inhaler design has improved significantly but considerable challenges still remain in order to continually innovate and improve targeted drug delivery to the lungs. Healthcare professionals want see innovations that motivate their patients to achieve their goal of improving their health, through better adherence to treatment. Patients want devices that are easy to use and to see that their efforts are rewarded by improvements in their condition. KEY POINTS The dictionary definition of innovation is the introduction of new things, ideas or ways of doing something. We show how this definition can be applied to inhaled therapy.We take a look at the past to see what drove innovation in inhaler design and how this has led to the current devices.We look at the current drivers of innovation in engineering, chemistry and digital technology and predict how this may translate to new devices.Can innovation help the healthcare professional manage their patients better?What does the patient expect from innovation in their device? EDUCATIONAL AIMS To understand the importance of inhaled medication in the treatment of lung diseases.To understand how innovation has helped advance some of the devices patients use today from basic and inefficient designs.To understand the obstacles that prevent patients from receiving optimal treatment from their inhalers.To understand how innovation in inhaler design can lead to improved treatment for patients and widen the range of diseases that can be treated via the inhaled route.
Collapse
Affiliation(s)
- Martyn F. Biddiscombe
- National Heart and Lung Institute, Imperial College London and Royal Brompton Hospital, Airways Disease Section, London, UK
| | | |
Collapse
|
160
|
Wilson EM, Luft JC, DeSimone JM. Formulation of High-Performance Dry Powder Aerosols for Pulmonary Protein Delivery. Pharm Res 2018; 35:195. [PMID: 30141117 DOI: 10.1007/s11095-018-2452-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Pulmonary delivery of biologics is of great interest, as it can be used for the local treatment of respiratory diseases or as a route to systemic drug delivery. To reach the full potential of inhaled biologics, a formulation platform capable of producing high performance aerosols without altering protein native structure is required. METHODS A formulation strategy using Particle Replication in Non-wetting Templates (PRINT) was developed to produce protein dry powders with precisely engineered particle morphology. Stability of the incorporated proteins was characterized and the aerosol properties of the protein dry powders was evaluated in vitro with an Andersen Cascade Impactor (ACI). RESULTS Model proteins bovine serum albumin (BSA) and lysozyme were micromolded into 1 μm cylinders composed of more than 80% protein, by mass. Extensive characterization of the incorporated proteins found no evidence of alteration of native structures. The BSA formulation produced a mass median aerodynamic diameter (MMAD) of 1.77 μm ± 0.06 and a geometric standard deviation (GSD) of 1.51 ± 0.06 while the lysozyme formulation had an MMAD of 1.83 μm ± 0.12 and a GSD of 1.44 ± 0.03. CONCLUSION Protein dry powders manufactured with PRINT could enable high-performance delivery of protein therapeutics to the lungs.
Collapse
Affiliation(s)
- Erin M Wilson
- Division of Pharmacoengineering and Molecular Pharmaceutics Eshelman School of Pharmacy, University of North Carolina at Chapel Hill,, Chapel Hill, North Carolina, USA
| | - J Christopher Luft
- Division of Pharmacoengineering and Molecular Pharmaceutics Eshelman School of Pharmacy, University of North Carolina at Chapel Hill,, Chapel Hill, North Carolina, USA
| | - Joseph M DeSimone
- Division of Pharmacoengineering and Molecular Pharmaceutics Eshelman School of Pharmacy, University of North Carolina at Chapel Hill,, Chapel Hill, North Carolina, USA. .,Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill,, Chapel Hill, North Carolina, USA. .,Department of Chemical and Biomolecular Engineering, North Carolina State University,, Raleigh, North Carolina, USA.
| |
Collapse
|
161
|
Paik J, Scott LJ, Pleasants RA. Fluticasone Propionate/Salmeterol MDPI (AirDuo RespiClick ®): A Review in Asthma. Clin Drug Investig 2018; 38:463-473. [PMID: 29582249 DOI: 10.1007/s40261-018-0644-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The novel, easy-to-use, breath-actuated fluticasone propionate/salmeterol multidose dry powder inhaler (MDPI) (AirDuo RespiClick®) was recently approved in the USA for twice-daily treatment of asthma in patients aged ≥ 12 years. This inhaled corticosteroid (ICS) and long-acting β2-adrenoreceptor agonist (LABA) combination treatment is available in low-, mid- and high-dosage formulations (55/14, 113/14 and 232/14 μg, respectively). In 12-week, phase III trials in patients aged ≥ 12 years with persistent asthma, all three dosages of fluticasone propionate/salmeterol MDPI treatment produced significant improvements in lung function and other asthma symptoms compared with fluticasone propionate MDPI monotherapy or placebo MDPI. In a 26-week, phase III trial in this patient population, mid- and high-dosage fluticasone propionate/salmeterol MDPI were noninferior to mid- (250/50 μg) and high- (500/50 μg) dosage fluticasone propionate/salmeterol DPI (Advair Diskus®), respectively, in terms of improvements in lung function. Treatment-emergent adverse events (TEAEs) with fluticasone propionate/salmeterol MDPI were mostly of mild to moderate severity, with no severe TEAEs deemed to be treatment related. Although long-term pharmacovigilance is required to fully establish its safety, given the ease of use and favorable characteristics of the device and its clinical efficacy at relatively low metered doses of the active moieties, fluticasone propionate/salmeterol MDPI is an important emerging treatment option in patients aged ≥ 12 years with asthma.
Collapse
Affiliation(s)
- Julia Paik
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| | - Lesley J Scott
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand
| | - Roy A Pleasants
- Duke Clinical Research Institute and Durham Veterans Administration Medical Center, Durham, NC, USA
| |
Collapse
|
162
|
Osman N, Kaneko K, Carini V, Saleem I. Carriers for the targeted delivery of aerosolized macromolecules for pulmonary pathologies. Expert Opin Drug Deliv 2018; 15:821-834. [PMID: 30021074 PMCID: PMC6110405 DOI: 10.1080/17425247.2018.1502267] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Macromolecules with unique effects and potency are increasingly being considered for application in lung pathologies. Numerous delivery strategies for these macromolecules through the lung have been investigated to improve the targeting and overall efficacy. AREAS COVERED Targeting approaches from delivery devices, formulation strategies and specific targets are discussed. EXPERT OPINION Although macromolecules are a heterogeneous group of molecules, a number of strategies have been investigated at the macro, micro, and nanoscopic scale for the delivery of macromolecules to specific sites and cells of lung tissues. Targeted approaches are already in use at the macroscopic scale through inhalation devices and formulations, but targeting strategies at the micro and nanoscopic scale are still in the laboratory stage. The combination of controlling lung deposition and targeting after deposition, through a combination of targeting strategies could be the future direction for the treatment of lung pathologies through the pulmonary route.
Collapse
Affiliation(s)
- Nashwa Osman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Kan Kaneko
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Valeria Carini
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Imran Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
163
|
Bodier-Montagutelli E, Mayor A, Vecellio L, Respaud R, Heuzé-Vourc’h N. Designing inhaled protein therapeutics for topical lung delivery: what are the next steps? Expert Opin Drug Deliv 2018; 15:729-736. [DOI: 10.1080/17425247.2018.1503251] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Elsa Bodier-Montagutelli
- Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
- Centre d'Etude des Pathologies Respiratoires, U1100, INSERM, Centre d’Etude des Pathologies Respiratoires, Tours, France
- CHRU de Tours, Service de Pharmacie, Tours, France
| | - Alexie Mayor
- Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
- Centre d'Etude des Pathologies Respiratoires, U1100, INSERM, Centre d’Etude des Pathologies Respiratoires, Tours, France
- Formulation Development Unit – Biotherapeutics, Sanofi Aventis Recherche Développement, Vitry-sur-Seine, France
| | - Laurent Vecellio
- Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
- Centre d'Etude des Pathologies Respiratoires, U1100, INSERM, Centre d’Etude des Pathologies Respiratoires, Tours, France
| | - Renaud Respaud
- Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
- Centre d'Etude des Pathologies Respiratoires, U1100, INSERM, Centre d’Etude des Pathologies Respiratoires, Tours, France
- CHRU de Tours, Service de Pharmacie, Tours, France
| | - Nathalie Heuzé-Vourc’h
- Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
- Centre d'Etude des Pathologies Respiratoires, U1100, INSERM, Centre d’Etude des Pathologies Respiratoires, Tours, France
| |
Collapse
|
164
|
Brunaugh AD, Smyth HDC. Formulation techniques for high dose dry powders. Int J Pharm 2018; 547:489-498. [PMID: 29778822 DOI: 10.1016/j.ijpharm.2018.05.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/08/2023]
Abstract
Delivery of drugs to the lungs via dry powder inhaler (DPI) is a promising approach for the treatment of both local pulmonary conditions and systemic diseases. Though DPIs are widely used for the pulmonary deposition of potent bronchodilators, anticholinergics, and corticosteroids, there is growing interest in the utilization of this delivery system for the administration of high drug doses to the lungs, as made evident by recent regulatory approvals for anti-microbial, anti-viral and osmotic agents. However, the formulation of high dose DPIs carries several challenges from both a physiological and physicochemical standpoint. This review describes the various formulation techniques utilized to overcome the barriers associated with the pulmonary delivery of high dose powders.
Collapse
Affiliation(s)
- Ashlee D Brunaugh
- University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 West University Avenue, Austin, TX 78712, United States
| | - Hugh D C Smyth
- University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 West University Avenue, Austin, TX 78712, United States; LaMontagne Center for Infectious Disease, The University of Texas at Austin, United States.
| |
Collapse
|
165
|
Zhao Z, Huang Z, Zhang X, Huang Y, Cui Y, Ma C, Wang G, Freeman T, Lu XY, Pan X, Wu C. Low density, good flowability cyclodextrin-raffinose binary carrier for dry powder inhaler: anti-hygroscopicity and aerosolization performance enhancement. Expert Opin Drug Deliv 2018; 15:443-457. [PMID: 29532682 DOI: 10.1080/17425247.2018.1450865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/07/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND The hygroscopicity of raffinose carrier for dry powder inhaler (DPI) was the main obstacle for its further application. Hygroscopicity-induced agglomeration would cause deterioration of aerosolization performance of raffinose, undermining the delivery efficiency. METHODS Cyclodextrin-raffinose binary carriers (CRBCs) were produced by spray-drying so as to surmount the above issue. Physicochemical attributes and formation mechanism of CRBCs were explored in detail. The flow property of CRBCs was examined by FT4 Powder Rheometer. Hygroscopicity of CRBCs was elucidated by dynamic vapor sorption study. Aerosolization performance was evaluated by in vitro deposition profile and in vivo pharmacokinetic profile of CRBC based DPI formulations. RESULTS The optimal formulation of CRBC (R4) was proven to possess anti-hygroscopicity and aerosolization performance enhancement properties. Concisely, the moisture uptake of R4 was c.a. 5% which was far lower than spray-dried raffinose (R0, c.a. 65%). R4 exhibited a high fine particle fraction value of 70.56 ± 0.61% and it was 3.75-fold against R0. The pulmonary and plasmatic bioavailability of R4 were significantly higher than R0 (p < 0.05). CONCLUSION CRBC with anti-hygroscopicity and aerosolization performance enhancement properties was a promising approach for pulmonary drug delivery, which could provide new possibilities to the application of hygroscopic carriers for DPI.
Collapse
Affiliation(s)
- Ziyu Zhao
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Zhengwei Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Xuejuan Zhang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
- b Institute for Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou , P.R. China
| | - Ying Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Yingtong Cui
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Cheng Ma
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Guanlin Wang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | | | | | - Xin Pan
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Chuanbin Wu
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| |
Collapse
|
166
|
Rudén J, Frenning G, Bramer T, Thalberg K, Alderborn G. Relationships between surface coverage ratio and powder mechanics of binary adhesive mixtures for dry powder inhalers. Int J Pharm 2018; 541:143-156. [PMID: 29454905 DOI: 10.1016/j.ijpharm.2018.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 10/18/2022]
Abstract
The aim of this paper was to study relationships between the content of fine particles and the powder mechanics of binary adhesive mixtures and link these relationships to the blend state. Mixtures with increasing amounts of fine particles (increasing surface coverage ratios (SCR)) were prepared using Lactopress SD as carrier and micro particles of lactose as fines (2.7 µm). Indicators of unsettled bulk density, compressibility and flowability were derived and the blend state was visually examined by imaging. The powder properties studied showed relationships to the SCR characterised by stages. At low SCR, the fine particles predominantly gathered in cavities of the carriers, giving increased bulk density and unchanged or improved flow. Thereafter, increased SCR gave a deposition of particles at the enveloped carrier surface with a gradually more irregular adhesion layer leading to a reduced bulk density and a step-wise reduced flowability. The mechanics of the mixtures at a certain stage were dependent on the structure and the dynamics of the adhesion layer and transitions between the stages were controlled by the evolution of the adhesion layer. It is advisable to use techniques based on different types of flow in order to comprehensively study the mechanics of adhesive mixtures.
Collapse
Affiliation(s)
- Jonas Rudén
- Department of Pharmacy, Uppsala University, Husargatan 3, Box 580, SE-751 23 Uppsala, Sweden.
| | - Göran Frenning
- Department of Pharmacy, Uppsala University, Husargatan 3, Box 580, SE-751 23 Uppsala, Sweden
| | - Tobias Bramer
- Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Kyrre Thalberg
- Inhalation Product Development, Pharmaceutical Technology & Development, AstraZeneca, Gothenburg, Sweden
| | - Göran Alderborn
- Department of Pharmacy, Uppsala University, Husargatan 3, Box 580, SE-751 23 Uppsala, Sweden
| |
Collapse
|
167
|
Patil TS, Deshpande AS, Deshpande S, Shende P. Targeting pulmonary tuberculosis using nanocarrier-based dry powder inhalation: current status and futuristic need. J Drug Target 2018; 27:12-27. [DOI: 10.1080/1061186x.2018.1455842] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Tulshidas S. Patil
- School of Pharmacy & Technology Management, SVKM’s NMIMS, Shirpur, Maharashtra, India
| | - Ashwini S. Deshpande
- School of Pharmacy & Technology Management, SVKM’s NMIMS, Shirpur, Maharashtra, India
| | - Shirish Deshpande
- School of Pharmacy & Technology Management, SVKM’s NMIMS, Shirpur, Maharashtra, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai, Maharashtra, India
| |
Collapse
|
168
|
Buttini F, Rozou S, Rossi A, Zoumpliou V, Rekkas DM. The application of Quality by Design framework in the pharmaceutical development of dry powder inhalers. Eur J Pharm Sci 2018; 113:64-76. [DOI: 10.1016/j.ejps.2017.10.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022]
|
169
|
Shetty N, Zeng L, Mangal S, Nie H, Rowles MR, Guo R, Han Y, Park JH, Zhou QT. Effects of Moisture-Induced Crystallization on the Aerosol Performance of Spray Dried Amorphous Ciprofloxacin Powder Formulations. Pharm Res 2018; 35:7. [PMID: 29294198 PMCID: PMC5942560 DOI: 10.1007/s11095-017-2281-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/13/2017] [Indexed: 01/12/2023]
Abstract
PURPOSE This study aims to investigate the influence of different storage humidity conditions on crystallization and aerosol performance of inhalable spray dried amorphous powder formulations (Ciprofloxacin hydrochloride as the model drug). METHODS The spray dried samples were stored at 20%, 55% and 75% relative humidity (RH). Crystallinity was monitored by Powder X-ray diffraction (PXRD), and particle morphology was measured by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Aerosol performance was evaluated using a multi-stage liquid impinger (MSLI). RESULTS PXRD diffractograms showed the spray dried Ciprofloxacin stored at 20% RH for three weeks were amorphous; whereas those stored at 55% RH and 75% RH started crystallizing after one hour. Fine particle fraction (FPF) of the particles was improved from 28% to 42% after storage at 55% RH for three days. Such improvement was attributed to the crystallization of amorphous powders, which led to increased particle roughness and reduced particulate contact area, as visualized by SEM and quantified by AFM. A linear relationship was observed between degree of crystallinity/crystallite size and FPF (R2 = 0.94 and R2 = 0.96, respectively). However, deterioration in aerosol performance was observed after storage at 75% RH due to formation of inter-particulate liquid/solid bridges, as confirmed by SEM. CONCLUSIONS This study provides a fundamental understanding in moisture-induced physical and aerosol instability of the spray dried powder formulations.
Collapse
Affiliation(s)
- Nivedita Shetty
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Lingfei Zeng
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Sharad Mangal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Haichen Nie
- Teva Pharmaceuticals, 145 Brandywine Pkwy, West Chester, Pennsylvania, 19380, USA
| | - Matthew R Rowles
- Department of Physics and Astronomy, Curtin University, Bentley, WA, 6102, Australia
| | - Rui Guo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Youngwoo Han
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Joon Hyeong Park
- Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, Indiana, 47907, USA
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
170
|
Performance indicators for carrier-based DPIs: Carrier surface properties for capsule filling and API properties for in vitro aerosolisation. Int J Pharm 2018; 536:326-335. [DOI: 10.1016/j.ijpharm.2017.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 12/20/2022]
|
171
|
Abstract
Inhalational route for drug delivery and desired effects has been known since centuries. This lung-targeted therapy has benefited asthmatics and those with chronic respiratory problems. The technique has evolved greatly from crude pots and pipes to modern sophisticated drug-dispensing devices. This mode is effective, rapid and safe. Its outcome, however, is majorly determined by drug formulation, device structure and patient's coordinating skill. In spite of great advances in this field, more efforts are required to meet the unmet needs. This noninvasive mode is being increasingly studied for transfer of drugs for systemic action with promising results. The present article is an attempt to capture the recent development and progress in this field and review relevant newer patents.
Collapse
|