151
|
Chung WSF, Meijerink M, Zeuner B, Holck J, Louis P, Meyer AS, Wells JM, Flint HJ, Duncan SH. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiol Ecol 2017; 93:4331632. [DOI: 10.1093/femsec/fix127] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/29/2017] [Indexed: 01/16/2023] Open
|
152
|
Burgess JN, Pant AB, Kasper LH, Colpitts Brass S. CD4 + T cells from multiple sclerosis patients respond to a commensal-derived antigen. Ann Clin Transl Neurol 2017; 4:825-829. [PMID: 29159195 PMCID: PMC5682114 DOI: 10.1002/acn3.465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/31/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis, an immune‐mediated disease of the central nervous system, is characterized by the impaired function of regulatory cells that fail to suppress self‐reactive effector cells. We have previously found that polysaccharide A, a capsular antigen derived from the human gut commensal Bacteroides fragilis, can induce a population of regulatory T cells. Herein, we demonstrate that naïve T cells isolated from patients with multiple sclerosis have the capacity to acquire regulatory characteristics when stimulated in vitro with polysaccharide A. This study demonstrates the amplification of a regulatory T cell response by a gut‐derived commensal antigen in those with multiple sclerosis.
Collapse
Affiliation(s)
- Joseph N Burgess
- Department of Microbiology and Immunology Geisel School of Medicine Dartmouth College Hanover 03755 New Hampshire
| | - Anudeep B Pant
- Department of Microbiology and Immunology Geisel School of Medicine Dartmouth College Hanover 03755 New Hampshire
| | - Lloyd H Kasper
- Department of Microbiology and Immunology Geisel School of Medicine Dartmouth College Hanover 03755 New Hampshire
| | - Sara Colpitts Brass
- Department of Microbiology and Immunology Geisel School of Medicine Dartmouth College Hanover 03755 New Hampshire
| |
Collapse
|
153
|
van den Hoogen WJ, Laman JD, 't Hart BA. Modulation of Multiple Sclerosis and Its Animal Model Experimental Autoimmune Encephalomyelitis by Food and Gut Microbiota. Front Immunol 2017; 8:1081. [PMID: 28928747 PMCID: PMC5591889 DOI: 10.3389/fimmu.2017.01081] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neurological disease characterized by chronic inflammation of the central nervous system (CNS), leading to demyelination, axonal damage, and symptoms such as fatigue and disability. Although the cause of MS is not known, the infiltration of peripherally activated immune cells into the CNS has a key pathogenic role. Accumulating evidence supports an important role of diet and gut microbiota in immune-mediated diseases. Preclinical as well as clinical studies suggest a role for gut microbiota and dietary components in MS. Here, we review these recent studies on gut microbiota and dietary interventions in MS and its animal model experimental autoimmune encephalomyelitis. We also propose directions for future research.
Collapse
Affiliation(s)
| | - Jon D Laman
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bert A 't Hart
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands
| |
Collapse
|
154
|
Cervantes-Barragan L, Chai JN, Tianero MD, Di Luccia B, Ahern PP, Merriman J, Cortez VS, Caparon MG, Donia MS, Gilfillan S, Cella M, Gordon JI, Hsieh CS, Colonna M. Lactobacillus reuteri induces gut intraepithelial CD4 +CD8αα + T cells. Science 2017; 357. [PMID: 28775213 PMCID: PMC5687812 DOI: 10.1126/science.aah5825 10.1126/science.aah5825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The small intestine contains CD4+CD8αα+ double-positive intraepithelial lymphocytes (DP IELs), which originate from intestinal CD4+ T cells through down-regulation of the transcription factor Thpok and have regulatory functions. DP IELs are absent in germ-free mice, which suggests that their differentiation depends on microbial factors. We found that DP IEL numbers in mice varied in different vivaria, correlating with the presence of Lactobacillus reuteri This species induced DP IELs in germ-free mice and conventionally-raised mice lacking these cells. L. reuteri did not shape the DP-IEL-TCR (TCR, T cell receptor) repertoire but generated indole derivatives of tryptophan that activated the aryl-hydrocarbon receptor in CD4+ T cells, allowing Thpok down-regulation and differentiation into DP IELs. Thus, L. reuteri, together with a tryptophan-rich diet, can reprogram intraepithelial CD4+ T cells into immunoregulatory T cells.
Collapse
Affiliation(s)
- Luisa Cervantes-Barragan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110
| | - Jiani N. Chai
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110,Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110
| | - Ma. Diarey Tianero
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Blanda Di Luccia
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110
| | - Philip P. Ahern
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph Merriman
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110
| | - Victor S. Cortez
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110
| | - Jeffrey I. Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110,Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110,Correspondence to: Marco Colonna, Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid St Louis, MO 63110. Tel: 314-362-0367; FAX: 314-747-0809;
| |
Collapse
|
155
|
Colpitts SL, Kasper LH. Influence of the Gut Microbiome on Autoimmunity in the Central Nervous System. THE JOURNAL OF IMMUNOLOGY 2017; 198:596-604. [PMID: 28069755 DOI: 10.4049/jimmunol.1601438] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/12/2016] [Indexed: 02/07/2023]
Abstract
Autoimmune disorders of the CNS have complex pathogeneses that are not well understood. In multiple sclerosis and neuromyelitis optica spectrum disorders, T cells destroy CNS tissue, resulting in severe disabilities. Mounting evidence suggests that reducing inflammation in the CNS may start with modulation of the gut microbiome. The lymphoid tissues of the gut are specialized for the induction of regulatory cells, which are directly responsible for the suppression of CNS-damaging autoreactive T cells. Whether cause or effect, the onset of dysbiosis in the gut of patients with multiple sclerosis and neuromyelitis optica provides evidence of communication along the gut-brain axis. Thus, current and future therapeutic interventions directed at microbiome modulation are of considerable appeal.
Collapse
Affiliation(s)
- Sara L Colpitts
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
| | - Lloyd H Kasper
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
156
|
Cervantes-Barragan L, Chai JN, Tianero MD, Di Luccia B, Ahern PP, Merriman J, Cortez VS, Caparon MG, Donia MS, Gilfillan S, Cella M, Gordon JI, Hsieh CS, Colonna M. Lactobacillus reuteri induces gut intraepithelial CD4 +CD8αα + T cells. Science 2017; 357:806-810. [PMID: 28775213 DOI: 10.1126/science.aah5825] [Citation(s) in RCA: 618] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 04/05/2017] [Accepted: 07/11/2017] [Indexed: 12/17/2022]
Abstract
The small intestine contains CD4+CD8αα+ double-positive intraepithelial lymphocytes (DP IELs), which originate from intestinal CD4+ T cells through down-regulation of the transcription factor Thpok and have regulatory functions. DP IELs are absent in germ-free mice, which suggests that their differentiation depends on microbial factors. We found that DP IEL numbers in mice varied in different vivaria, correlating with the presence of Lactobacillus reuteri This species induced DP IELs in germ-free mice and conventionally-raised mice lacking these cells. L. reuteri did not shape the DP-IEL-TCR (TCR, T cell receptor) repertoire but generated indole derivatives of tryptophan that activated the aryl-hydrocarbon receptor in CD4+ T cells, allowing Thpok down-regulation and differentiation into DP IELs. Thus, L. reuteri, together with a tryptophan-rich diet, can reprogram intraepithelial CD4+ T cells into immunoregulatory T cells.
Collapse
Affiliation(s)
- Luisa Cervantes-Barragan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiani N Chai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ma Diarey Tianero
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Blanda Di Luccia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip P Ahern
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph Merriman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Victor S Cortez
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey I Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
157
|
Fleck AK, Schuppan D, Wiendl H, Klotz L. Gut-CNS-Axis as Possibility to Modulate Inflammatory Disease Activity-Implications for Multiple Sclerosis. Int J Mol Sci 2017; 18:E1526. [PMID: 28708108 PMCID: PMC5536015 DOI: 10.3390/ijms18071526] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022] Open
Abstract
In the last decade the role of environmental factors as modulators of disease activity and progression has received increasing attention. In contrast to classical environmental modulators such as exposure to sun-light or fine dust pollution, nutrition is an ideal tool for a personalized human intervention. Various studies demonstrate a key role of dietary factors in autoimmune diseases including Inflammatory Bowel Disease (IBD), rheumatoid arthritis or inflammatory central nervous system (CNS) diseases such as Multiple Sclerosis (MS). In this review we discuss the connection between diet and inflammatory processes via the gut-CNS-axis. This axis describes a bi-directional communication system and comprises neuronal signaling, neuroendocrine pathways and modulation of immune responses. Therefore, the gut-CNS-axis represents an emerging target to modify CNS inflammatory activity ultimately opening new avenues for complementary and adjunctive treatment of autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Ann-Katrin Fleck
- Department of Neurology, University Hospital Muenster, 48149 Muenster, Germany.
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Heinz Wiendl
- Department of Neurology, University Hospital Muenster, 48149 Muenster, Germany.
| | - Luisa Klotz
- Department of Neurology, University Hospital Muenster, 48149 Muenster, Germany.
| |
Collapse
|
158
|
Laforest-Lapointe I, Arrieta MC. Patterns of Early-Life Gut Microbial Colonization during Human Immune Development: An Ecological Perspective. Front Immunol 2017; 8:788. [PMID: 28740492 PMCID: PMC5502328 DOI: 10.3389/fimmu.2017.00788] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/22/2017] [Indexed: 12/24/2022] Open
Abstract
Alterations in gut microbial colonization during early life have been reported in infants that later developed asthma, allergies, type 1 diabetes, as well as in inflammatory bowel disease patients, previous to disease flares. Mechanistic studies in animal models have established that microbial alterations influence disease pathogenesis via changes in immune system maturation. Strong evidence points to the presence of a window of opportunity in early life, during which changes in gut microbial colonization can result in immune dysregulation that predisposes susceptible hosts to disease. Although the ecological patterns of microbial succession in the first year of life have been partly defined in specific human cohorts, the taxonomic and functional features, and diversity thresholds that characterize these microbial alterations are, for the most part, unknown. In this review, we summarize the most important links between the temporal mosaics of gut microbial colonization and the age-dependent immune functions that rely on them. We also highlight the importance of applying ecology theory to design studies that explore the interactions between this complex ecosystem and the host immune system. Focusing research efforts on understanding the importance of temporally structured patterns of diversity, keystone groups, and inter-kingdom microbial interactions for ecosystem functions has great potential to enable the development of biologically sound interventions aimed at maintaining and/or improving immune system development and preventing disease.
Collapse
Affiliation(s)
- Isabelle Laforest-Lapointe
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
159
|
Zakharzhevskaya NB, Vanyushkina AA, Altukhov IA, Shavarda AL, Butenko IO, Rakitina DV, Nikitina AS, Manolov AI, Egorova AN, Kulikov EE, Vishnyakov IE, Fisunov GY, Govorun VM. Outer membrane vesicles secreted by pathogenic and nonpathogenic Bacteroides fragilis represent different metabolic activities. Sci Rep 2017; 7:5008. [PMID: 28694488 PMCID: PMC5503946 DOI: 10.1038/s41598-017-05264-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023] Open
Abstract
Numerous studies are devoted to the intestinal microbiota and intercellular communication maintaining homeostasis. In this regard, vesicles secreted by bacteria represent one of the most popular topics for research. For example, the outer membrane vesicles (OMVs) of Bacteroides fragilis play an important nutritional role with respect to other microorganisms and promote anti-inflammatory effects on immune cells. However, toxigenic B. fragilis (ETBF) contributes to bowel disease, even causing colon cancer. If nontoxigenic B. fragilis (NTBF) vesicles exert a beneficial effect on the intestine, it is likely that ETBF vesicles can be utilized for potential pathogenic implementation. To confirm this possibility, we performed comparative proteomic HPLC-MS/MS analysis of vesicles isolated from ETBF and NTBF. Furthermore, we performed, for the first time, HPLC-MS/MS and GS-MS comparative metabolomic analysis for the vesicles isolated from both strains with subsequent reconstruction of the vesicle metabolic pathways. We utilized fluxomic experiments to validate the reconstructed biochemical reaction activities and finally observed considerable difference in the vesicle proteome and metabolome profiles. Compared with NTBF OMVs, metabolic activity of ETBF OMVs provides their similarity to micro reactors that are likely to be used for long-term persistence and implementing pathogenic potential in the host.
Collapse
Affiliation(s)
- Natalya B Zakharzhevskaya
- Federal Research and Clinical Centre of Physical-Chemical Medicine Federal Medical Biological Agency, Malaya Pirogovskaya str., 1a, Moscow, 119435, Russian Federation.
| | - Anna A Vanyushkina
- Federal Research and Clinical Centre of Physical-Chemical Medicine Federal Medical Biological Agency, Malaya Pirogovskaya str., 1a, Moscow, 119435, Russian Federation
| | - Ilya A Altukhov
- Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, 141700, Russian Federation
| | - Aleksey L Shavarda
- Research Resource Center Molecular and Cell Technologies, Saint-Petersburg State University, Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russian Federation.,Analytical Phytochemistry Laboratory, Komarov Botanical Institute, Prof. Popov Street 2, Saint-Petersburg, 197376, Russia
| | - Ivan O Butenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine Federal Medical Biological Agency, Malaya Pirogovskaya str., 1a, Moscow, 119435, Russian Federation
| | - Daria V Rakitina
- Federal Research and Clinical Centre of Physical-Chemical Medicine Federal Medical Biological Agency, Malaya Pirogovskaya str., 1a, Moscow, 119435, Russian Federation
| | - Anastasia S Nikitina
- Federal Research and Clinical Centre of Physical-Chemical Medicine Federal Medical Biological Agency, Malaya Pirogovskaya str., 1a, Moscow, 119435, Russian Federation
| | - Aleksandr I Manolov
- Federal Research and Clinical Centre of Physical-Chemical Medicine Federal Medical Biological Agency, Malaya Pirogovskaya str., 1a, Moscow, 119435, Russian Federation
| | - Alina N Egorova
- Federal Research and Clinical Centre of Physical-Chemical Medicine Federal Medical Biological Agency, Malaya Pirogovskaya str., 1a, Moscow, 119435, Russian Federation.,Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, 141700, Russian Federation
| | - Eugene E Kulikov
- Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, 141700, Russian Federation.,Microbial viruses laboratory, Research Center of Biotechnology RAS, Moscow, Russian Federation
| | - Innokentii E Vishnyakov
- Lab of Genome Structural Organization, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia.,Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Gleb Y Fisunov
- Federal Research and Clinical Centre of Physical-Chemical Medicine Federal Medical Biological Agency, Malaya Pirogovskaya str., 1a, Moscow, 119435, Russian Federation
| | - Vadim M Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine Federal Medical Biological Agency, Malaya Pirogovskaya str., 1a, Moscow, 119435, Russian Federation.,Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, 141700, Russian Federation.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str. 16/10, Moscow 117997, Russian Federation, Moscow, Russia
| |
Collapse
|
160
|
Abstract
The human gastrointestinal tract is populated by a diverse, highly mutualistic microbial flora, which is known as the microbiome. Disruptions to the microbiome have been shown to be associated with severe pathologies of the host, including metabolic disease, cancer, and inflammatory bowel disease. Mood and behavior are also susceptible to alterations in the gut microbiota. A particularly striking example of the symbiotic effects of the microbiome is the immune system, whose cells depend critically on a diverse array of microbial metabolites for normal development and behavior. This includes metabolites that are produced by bacteria from dietary components, metabolites that are produced by the host and biochemically modified by gut bacteria, and metabolites that are synthesized de novo by gut microbes. In this review, we highlight the role of the intestinal microbiome in human metabolic and inflammatory diseases and focus in particular on the molecular mechanisms that govern the gut-immune axis.
Collapse
Affiliation(s)
- Thomas Siegmund Postler
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
161
|
The influence of the commensal microbiota on distal tumor-promoting inflammation. Semin Immunol 2017; 32:62-73. [PMID: 28687194 DOI: 10.1016/j.smim.2017.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/29/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023]
Abstract
Commensal microbes inhabit barrier surfaces, providing a first line of defense against invading pathogens, aiding in metabolic function of the host, and playing a vital role in immune development and function. Several recent studies have demonstrated that commensal microbes influence systemic immune function and homeostasis. For patients with extramucosal cancers, or cancers occurring distal to barrier surfaces, the role of commensal microbes in influencing tumor progression is beginning to be appreciated. Extrinsic factors such as chronic inflammation, antibiotics, and chemotherapy dysregulate commensal homeostasis and drive tumor-promoting systemic inflammation through a variety of mechanisms, including disruption of barrier function and bacterial translocation, release of soluble inflammatory mediators, and systemic changes in metabolic output. Conversely, it has also been demonstrated that certain immune therapies, immunogenic chemotherapies, and checkpoint inhibitors rely on the commensal microbiota to facilitate anti-tumor immune responses. Thus, it is evident that the mechanisms associated with commensal microbe facilitation of both pro- and anti-tumor immune responses are context dependent and rely upon a variety of factors present within the tumor microenvironment and systemic periphery. The goal of this review is to highlight the various contexts during which commensal microbes orchestrate systemic immune function with a focus on describing possible scenarios where the loss of microbial homeostasis enhances tumor progression.
Collapse
|
162
|
Lamas B, Richard ML, Sokol H. Caspase recruitment domain 9, microbiota, and tryptophan metabolism: dangerous liaisons in inflammatory bowel diseases. Curr Opin Clin Nutr Metab Care 2017; 20:243-247. [PMID: 28399013 DOI: 10.1097/mco.0000000000000382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Inflammatory bowel diseases (IBDs) develop as a result of a combination of genetic predisposition, dysbiosis of the gut microbiota, and environmental influences. Here, we describe an example of how caspase recruitment domain 9 (CARD9), one of the numerous IBD susceptibility genes, participate to colitis susceptibility by shaping gut microbiota to produce tryptophan metabolites. RECENT FINDINGS Recent study showed that CARD9 mice are more susceptible to colitis as a result of impaired interleukin 22 signaling pathway. Furthermore, aryl hydrocarbon receptor (AhR) ligands from tryptophan metabolism by the gut microbiota participate to intestinal homeostasis by inducing production of interleukin 22 by intestinal immune cells. These data suggest an interaction between CARD9 and the ability of gut microbiota to produce AhR ligands. SUMMARY The microbiota from CARD9 mice fails to metabolize tryptophan leading to defective AhR activation which contributes to the susceptibility of mice to colitis by decreased interleukin 22 production. These effects were abrogated in the presence of AhR agonist. Reduced production of AhR ligands is also observed in the microbiota from individuals with IBD, particularly in those with CARD9 risk alleles associated with IBD. Correcting impaired microbiota functions, such as ability to produce AhR ligands, is an attractive strategy in IBD.
Collapse
Affiliation(s)
- Bruno Lamas
- aSorbonne University-Pierre and Marie Curie University bINSERM ERL 1157, Avenir Team Gut Microbiota and Immunity cCNRS UMR 7203 dLaboratoire de BioMolécules (LBM), CHU Saint-Antoine eMicalis Institute, INRA, Agro Paris Tech, Université Paris-Saclay, Jouy-en-Josas fInflammation-Immunopathology-Biotherapy Department (DHU i2B) gDepartment of Gastroenterology, Saint Antoine Hospital, Assistance Publique-Hopitaux de Paris, Pierre and Marie Curie University, Paris, France
| | | | | |
Collapse
|
163
|
Abstract
The microbiota - the collection of microorganisms that live within and on all mammals - provides crucial signals for the development and function of the immune system. Increased availability of technologies that profile microbial communities is facilitating the entry of many immunologists into the evolving field of host-microbiota studies. The microbial communities, their metabolites and components are not only necessary for immune homeostasis, they also influence the susceptibility of the host to many immune-mediated diseases and disorders. In this Review, we discuss technological and computational approaches for investigating the microbiome, as well as recent advances in our understanding of host immunity and microbial mutualism with a focus on specific microbial metabolites, bacterial components and the immune system.
Collapse
|
164
|
Microbiota in T-cell homeostasis and inflammatory diseases. Exp Mol Med 2017; 49:e340. [PMID: 28546563 PMCID: PMC5454441 DOI: 10.1038/emm.2017.36] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/02/2017] [Indexed: 12/11/2022] Open
Abstract
The etiology of disease pathogenesis can be largely explained by genetic variations and several types of environmental factors. In genetically disease-susceptible individuals, subsequent environmental triggers may induce disease development. The human body is colonized by complex commensal microbes that have co-evolved with the host immune system. With the adaptation to modern lifestyles, its composition has changed depending on host genetics, changes in diet, overuse of antibiotics against infection and elimination of natural enemies through the strengthening of sanitation. In particular, commensal microbiota is necessary in the development, induction and function of T cells to maintain host immune homeostasis. Alterations in the compositional diversity and abundance levels of microbiota, known as dysbiosis, can trigger several types of autoimmune and inflammatory diseases through the imbalance of T-cell subpopulations, such as Th1, Th2, Th17 and Treg cells. Recently, emerging evidence has identified that dysbiosis is involved in the progression of rheumatoid arthritis, type 1 and 2 diabetic mellitus, and asthma, together with dysregulated T-cell subpopulations. In this review, we will focus on understanding the complicated microbiota-T-cell axis between homeostatic and pathogenic conditions and elucidate important insights for the development of novel targets for disease therapy.
Collapse
|
165
|
Mu Q, Kirby J, Reilly CM, Luo XM. Leaky Gut As a Danger Signal for Autoimmune Diseases. Front Immunol 2017; 8:598. [PMID: 28588585 PMCID: PMC5440529 DOI: 10.3389/fimmu.2017.00598] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelial lining, together with factors secreted from it, forms a barrier that separates the host from the environment. In pathologic conditions, the permeability of the epithelial lining may be compromised allowing the passage of toxins, antigens, and bacteria in the lumen to enter the blood stream creating a “leaky gut.” In individuals with a genetic predisposition, a leaky gut may allow environmental factors to enter the body and trigger the initiation and development of autoimmune disease. Growing evidence shows that the gut microbiota is important in supporting the epithelial barrier and therefore plays a key role in the regulation of environmental factors that enter the body. Several recent reports have shown that probiotics can reverse the leaky gut by enhancing the production of tight junction proteins; however, additional and longer term studies are still required. Conversely, pathogenic bacteria that can facilitate a leaky gut and induce autoimmune symptoms can be ameliorated with the use of antibiotic treatment. Therefore, it is hypothesized that modulating the gut microbiota can serve as a potential method for regulating intestinal permeability and may help to alter the course of autoimmune diseases in susceptible individuals.
Collapse
Affiliation(s)
- Qinghui Mu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Jay Kirby
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | | | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
166
|
Galley JD, Mackos AR, Varaljay VA, Bailey MT. Stressor exposure has prolonged effects on colonic microbial community structure in Citrobacter rodentium-challenged mice. Sci Rep 2017; 7:45012. [PMID: 28344333 PMCID: PMC5366811 DOI: 10.1038/srep45012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/20/2017] [Indexed: 12/13/2022] Open
Abstract
Stressor exposure significantly affects the colonic mucosa-associated microbiota, and exacerbates Citrobacter rodentium-induced inflammation, effects that can be attenuated with probiotic Lactobacillus reuteri. This study assessed the structure of the colonic mucosa-associated microbiota in mice exposed to a social stressor (called social disruption), as well as non-stressed control mice, during challenge with the colonic pathogen C. rodentium. Mice were exposed to the social stressor or home cage control conditions for six consecutive days and all mice were challenged with C. rodentium immediately following the first exposure to the stressor. In addition, mice received probiotic L. reuteri, or vehicle as a control, via oral gavage following each stressor exposure. The stressor-exposed mice had significant differences in microbial community composition compared to non-stressed control mice. This difference was first evident following the six-cycle exposure to the stressor, on Day 6 post-C. rodentium challenge, and persisted for up to 19 days after stressor termination. Mice exposed to the stressor had different microbial community composition regardless of whether they were treated with L. reuteri or treated with vehicle as a control. These data indicate that stressor exposure affects the colonic microbiota during challenge with C. rodentium, and that these effects are long-lasting and not attenuated by probiotic L. reuteri.
Collapse
Affiliation(s)
- Jeffrey D Galley
- Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Amy R Mackos
- Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Vanessa A Varaljay
- Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Michael T Bailey
- Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
167
|
Mirza A, Mao-Draayer Y. The gut microbiome and microbial translocation in multiple sclerosis. Clin Immunol 2017; 183:213-224. [PMID: 28286112 DOI: 10.1016/j.clim.2017.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/03/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023]
Abstract
Individuals with multiple sclerosis (MS) have a distinct intestinal microbial community (microbiota) and increased low-grade translocation of bacteria from the intestines into the circulation. The observed change of intestinal bacteria in MS patients regulate immune functions involved in MS pathogenesis. These functions include: systemic and central nervous system (CNS) immunity (including peripheral regulatory T cell function), the blood-brain barrier (BBB) permeability and CNS-resident cell activity. This review discusses the MS intestinal microbiota implication on MS systemic- and CNS-immunopathology. We introduce the possible contributions of MS low-grade microbial translocation (LG-MT) to the development of MS, and end on a discussion on microbiota therapies for MS patients.
Collapse
Affiliation(s)
- Ali Mirza
- Department of Microbiology and Immunology, University of Michigan School of Medicine, 4258 Alfred Taubman Biomedical Sciences Research Bldg. 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States; Department of Neurology, University of Michigan School of Medicine, 4258 Alfred Taubman Biomedical Sciences Research Bldg. 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan School of Medicine, 4015 Alfred Taubman Biomedical Sciences Research Bldg. 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States.
| |
Collapse
|
168
|
The influence of gut-derived CD39 regulatory T cells in CNS demyelinating disease. Transl Res 2017; 179:126-138. [PMID: 27519147 PMCID: PMC5164971 DOI: 10.1016/j.trsl.2016.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/20/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023]
Abstract
There is considerable interest in trying to understand the importance of the gut microbiome in human diseases. The association between dysbiosis, an altered microbial composition, as related to human disease is being explored in the context of different autoimmune conditions, including multiple sclerosis (MS). Recent studies suggest that MS affects the composition of the gut microbiota by altering the relative abundances of specific bacteria and archaea species. Remarkably, some of the bacterial species shown reduced in the gut of MS patients are known to promote immunosuppressive regulatory T cells (Tregs). In MS, the function of a phenotype of Tregs that express CD39, an ectoenzyme involved in the catabolism of adenosine triphosphate as immunomodulatory cells, appears to be reduced. In this review, we discuss the involvement of the gut microbiota in the regulation of experimental models of central nervous system inflammatory demyelination and review the evidence that link the gut microbiome with MS. Further, we hypothesize that the gut microbiome is an essential organ for the control of tolerance in MS patients and a potential source for safer novel therapeutics.
Collapse
|
169
|
Abstract
Peptide-specific conventional T cells have been major targets for designing most antimycobacterial vaccines. Immune responses mediated by conventional T cells exhibit a delayed onset upon primary infection and are highly variable in different human populations. In contrast, innate-like T cells quickly respond to pathogens and display effector functions without undergoing extensive clonal expansion. Specifically, the activation of innate-like T cells depends on the promiscuous interaction of highly conserved antigen-presenting molecules, non-peptidic antigens, and likely semi-invariant T cell receptors. In antimicrobial immune responses, mucosal-associated invariant T cells are activated by riboflavin precursor metabolites presented by major histocompatibility complex-related protein I, while lipid-specific T cells including natural killer T cells are activated by lipid metabolites presented by CD1 proteins. Multiple innate-like T cell subsets have been shown to be protective or responsive in mycobacterial infections. Through rapid cytokine secretion, innate-like T cells function in early defense and memory response, offering novel advantages over conventional T cells in the design of anti-tuberculosis strategies.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine , Cincinnati, OH , USA
| |
Collapse
|
170
|
Budhram A, Parvathy S, Kremenchutzky M, Silverman M. Breaking down the gut microbiome composition in multiple sclerosis. Mult Scler 2016; 23:628-636. [PMID: 27956557 DOI: 10.1177/1352458516682105] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The gut microbiome, which consists of a highly diverse ecologic community of micro-organisms, has increasingly been studied regarding its role in multiple sclerosis (MS) immunopathogenesis. This review critically examines the literature investigating the gut microbiome in MS. METHODS A comprehensive search was performed of PubMed databases and ECTRIMS meeting abstracts for literature relating to the gut microbiome in MS. Controlled studies examining the gut microbiome in patients with MS were included for review. RESULTS Identified studies were predominantly case-control in their design and consistently found differences in the gut microbiome of MS patients compared to controls. We examine plausible mechanistic links between these differences and MS immunopathogenesis, and discuss the therapeutic implications of these findings. CONCLUSIONS Review of the available literature reveals potential immunopathogenic links between the gut microbiome and MS, identifies avenues for therapeutic advancement, and emphasizes the need for further systematic study in this emerging field.
Collapse
Affiliation(s)
- Adrian Budhram
- Department of Clinical Neurological Sciences, Division of Neurology, University Hospital, London, ON, Canada
| | - Seema Parvathy
- Division of Infectious Diseases, St. Joseph's Health Care, London, ON, Canada
| | - Marcelo Kremenchutzky
- Department of Clinical Neurological Sciences, Division of Neurology, University Hospital, London, ON, Canada
| | - Michael Silverman
- Division of Infectious Diseases, St. Joseph's Health Care, London, ON, Canada
| |
Collapse
|
171
|
Wang M, Monaco MH, Donovan SM. Impact of early gut microbiota on immune and metabolic development and function. Semin Fetal Neonatal Med 2016; 21:380-387. [PMID: 27132110 DOI: 10.1016/j.siny.2016.04.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Microbial colonization of the infant intestine occurs in the first two years of life. Symbiotic host and microbe interactions are critical for host metabolic and immune development. Emerging evidence indicates that early microbiota colonization may influence the occurrence of metabolic and immune diseases. Further understanding of the importance of environmental factors, including fetal microbial exposure, diet, delivery mode, pre- and probiotic consumption, and antibiotic use on immune and metabolic programming will provide new opportunities for the development of therapeutic and prophylactic measures to improve infant health and reduce the risk of disease in post-infancy years.
Collapse
Affiliation(s)
- Mei Wang
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
| | - Marcia H Monaco
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
| | - Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
172
|
Abstract
A 2-year longitudinal microbiome study of 22 patients who underwent colectomy with an ileal pouch anal anastomosis detected significant increases in distinct populations of Bacteroides during 9 of 11 patient visits that coincided with inflammation (pouchitis). Oligotyping and metagenomic short-read annotation identified Bacteroides populations that occurred in early samples, bloomed during inflammation, and reappeared after antibiotic treatment. Targeted cultivation of Bacteroides isolates from the same individual at multiple time points and from several patients detected subtle genomic changes, including the identification of rapidly evolving genomic elements that differentiate isogenic strains of Bacteroides fragilis from the mucosa versus lumen. Each patient harbored Bacteroides spp. that are closely related to commonly occurring clinical isolates, including Bacteroides ovatus, B. thetaiotaomicron, B. vulgatus, and B. fragilis, which contained unique loci in different patients for synthesis of capsular polysaccharides. The presence of unique Bacteroides capsular polysaccharide loci within different hosts and between the lumen and mucosa may represent adaptations to stimulate, suppress, and evade host-specific immune responses at different microsites of the ileal pouch. This longitudinal study provides an opportunity to describe shifts in the microbiomes of individual patients who suffer from ulcerative colitis (UC) prior to and following inflammation. Pouchitis serves as a model for UC with a predictable incidence of disease onset and enables prospective longitudinal investigations of UC etiology prior to inflammation. Because of insufficient criteria for predicting which patients will develop UC or pouchitis, the interpretation of cross-sectional study designs suffers from lack of information about the microbiome structure and host gene expression patterns that directly correlate with the onset of disease. Our unique longitudinal study design allows each patient to serve as their own control, providing information about the state of the microbiome and host prior to and during the course of disease. Of significance to the broader community, this study identifies microbial strains that may have genetic elements that trigger the onset of disease in susceptible hosts.
Collapse
|
173
|
Czaja AJ. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis. World J Gastroenterol 2016; 22:9257-9278. [PMID: 27895415 PMCID: PMC5107691 DOI: 10.3748/wjg.v22.i42.9257] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/07/2016] [Accepted: 10/31/2016] [Indexed: 02/06/2023] Open
Abstract
The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies.
Collapse
|
174
|
Vo Ngoc DTL, Krist L, van Overveld FJ, Rijkers GT. The long and winding road to IgA deficiency: causes and consequences. Expert Rev Clin Immunol 2016; 13:371-382. [PMID: 27776452 DOI: 10.1080/1744666x.2017.1248410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The most common humoral immunodeficiency is IgA deficiency. One of the first papers addressing the cellular and molecular mechanisms underlying IgA deficiency indicated that immature IgA-positive B-lymphocytes are present in these patients. This suggests that the genetic background for IgA is still intact and that class switching can take place. At this moment, it cannot be ruled out that genetic as well as environmental factors are involved. Areas covered: A clinical presentation, the biological functions of IgA, and the management of IgA deficiency are reviewed. In some IgA deficient patients, a relationship with a loss-of-function mutation in the TACI (transmembrane activator and calcium-modulating cyclophilin ligand interaction) gene has been found. Many other genes also have been associated. Gut microbiota are an important environmental trigger for IgA synthesis. Expert commentary: Expression of IgA deficiency is due to both genetic and environmental factors and a role for gut microbiota cannot be excluded.
Collapse
Affiliation(s)
- D T Laura Vo Ngoc
- a Department of Science , University College Roosevelt , Middelburg , The Netherlands
| | - Lizette Krist
- a Department of Science , University College Roosevelt , Middelburg , The Netherlands
| | - Frans J van Overveld
- a Department of Science , University College Roosevelt , Middelburg , The Netherlands
| | - Ger T Rijkers
- a Department of Science , University College Roosevelt , Middelburg , The Netherlands
| |
Collapse
|
175
|
Rothhammer V, Quintana FJ. Environmental control of autoimmune inflammation in the central nervous system. Curr Opin Immunol 2016; 43:46-53. [PMID: 27710839 DOI: 10.1016/j.coi.2016.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/18/2016] [Accepted: 09/05/2016] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune inflammatory demyelinating disorder of the central nervous system (CNS), which causes severe disability and requires extensive medical attention and treatment. While the infiltration of pathogenic immune cells into the CNS leads to the formation of inflammatory lesions in its initial relapsing-remitting stage, late stages of MS are characterized by progressive neuronal loss and demyelination even without continued interaction with the peripheral immune compartment. Several genetic and environmental factors modulate and influence these processes on multiple levels. Genetic variants confer a predisposition for the development of MS, but are not accessible to therapeutic intervention as of today. However, migration studies suggest that environmental factors influence disease development, activity and progression. This article reviews mechanisms of disease pathogenesis in MS and their modulation by environmental factors such as geographical localization, the gut microbiome and the diet.
Collapse
Affiliation(s)
- Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
176
|
Arnolds KL, Lozupone CA. Striking a Balance with Help from our Little Friends - How the Gut Microbiota Contributes to Immune Homeostasis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:389-395. [PMID: 27698623 PMCID: PMC5045148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The trillions of microbes that inhabit the human gut (the microbiota) together with the host comprise a complex ecosystem, and like any ecosystem, health relies on stability and balance. Some of the most important members of the human microbiota are those that help maintain this balance via modulation of the host immune system. Gut microbes, through both molecular factors (such as capsular components) and by-products of their metabolism (such as Short Chain Fatty Acids (SCFAs)), can influence both innate and adaptive components of the immune system, in ways that can drive both effector, and regulatory responses. Here we review how commensal microbes can specifically promote a dynamic balance of these immune responses in the mammalian gut.
Collapse
Affiliation(s)
| | - Catherine A. Lozupone
- To whom all correspondence should be addressed: Catherine A Lozupone, University of Colorado Anschutz Medical Campus, 127000 E. 19th Avenue, Room 3113, Aurora, Colorado 80045, tel: 303-724-7942, 303-724-1799,
| |
Collapse
|
177
|
Neff CP, Rhodes ME, Arnolds KL, Collins CB, Donnelly J, Nusbacher N, Jedlicka P, Schneider JM, McCarter MD, Shaffer M, Mazmanian SK, Palmer BE, Lozupone CA. Diverse Intestinal Bacteria Contain Putative Zwitterionic Capsular Polysaccharides with Anti-inflammatory Properties. Cell Host Microbe 2016; 20:535-547. [PMID: 27693306 DOI: 10.1016/j.chom.2016.09.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 07/19/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023]
Abstract
Zwitterionic capsular polysaccharides (ZPSs) are bacterial products that modulate T cells, including inducing anti-inflammatory IL-10-secreting T regulatory cells (Tregs). However, only a few diverse bacteria are known to modulate the host immune system via ZPS. We present a genomic screen for bacteria encoding ZPS molecules. We identify diverse host-associated bacteria, including commensals and pathogens with known anti-inflammatory properties, with the capacity to produce ZPSs. Human mononuclear cells stimulated with lysates from putative ZPS-producing bacteria induce significantly greater IL-10 production and higher proportions of Tregs than lysates from non-ZPS-encoding relatives or a commensal strain of Bacteroides cellulosilyticus in which a putative ZPS biosynthetic operon was genetically disrupted. Similarly, wild-type B. cellulosilyticus DSM 14838, but not a close relative lacking a putative ZPS, attenuated experimental colitis in mice. Collectively, this screen identifies bacterial strains that may use ZPSs to interact with the host as well as those with potential probiotic properties.
Collapse
Affiliation(s)
- C Preston Neff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew E Rhodes
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kathleen L Arnolds
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Colm B Collins
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jody Donnelly
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nichole Nusbacher
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paul Jedlicka
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jennifer M Schneider
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Martin D McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael Shaffer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarkis K Mazmanian
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brent E Palmer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Catherine A Lozupone
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
178
|
Huang S, Moody DB. Donor-unrestricted T cells in the human CD1 system. Immunogenetics 2016; 68:577-96. [PMID: 27502318 PMCID: PMC5915868 DOI: 10.1007/s00251-016-0942-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
Abstract
The CD1 and MHC systems are specialized for lipid and peptide display, respectively. Here, we review evidence showing how cellular CD1a, CD1b, CD1c, and CD1d proteins capture and display many cellular lipids to T cell receptors (TCRs). Increasing evidence shows that CD1-reactive T cells operate outside two classical immunogenetic concepts derived from the MHC paradigm. First, because CD1 proteins are non-polymorphic in human populations, T cell responses are not restricted to the donor's genetic background. Second, the simplified population genetics of CD1 antigen-presenting molecules can lead to simplified patterns of TCR usage. As contrasted with donor-restricted patterns of MHC-TCR interaction, the donor-unrestricted nature of CD1-TCR interactions raises the prospect that lipid agonists and antagonists of T cells could be developed.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - D Branch Moody
- Divison of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
179
|
Abstract
Intestinal microbes have profound effects on inflammatory autoimmunity in sites distant from the gut. The mechanisms whereby this happens are only now beginning to be understood and may include such diverse effects as innate stimulation of migrating immune cells and effects of circulating bacterial metabolites. Our studies add to this the demonstration that microbiota may provide a source of cross-reactive antigenic material that activates autoreactive lymphocytes within the gut environment. In a spontaneous model of autoimmune uveitis, T lymphocytes specific to a retinal autoantigen are activated through their specific antigen receptor in the gut and acquire the ability to fuel inflammatory autoimmunity in the eye. In view of the huge diversity of commensals, it is conceivable that they may provide surrogate antigens for activation of autoreactive lymphocytes(s) of other tissue specificities, and might therefore be involved in the etiology of autoimmune diseases more frequently than is currently appreciated.
Collapse
Affiliation(s)
- Carlos R Zárate-Bladés
- 1 Laboratory of Immunoregulation, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina , Florianopolis, Brazil
- 2 Laboratory of Immunology, National Eye Institute, National Institutes of Health , Bethesda, Maryland
| | - Reiko Horai
- 2 Laboratory of Immunology, National Eye Institute, National Institutes of Health , Bethesda, Maryland
| | - Rachel R Caspi
- 2 Laboratory of Immunology, National Eye Institute, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
180
|
The interplay between microbiota and inflammation: lessons from peritonitis and sepsis. Clin Transl Immunology 2016; 5:e90. [PMID: 27525063 PMCID: PMC4973320 DOI: 10.1038/cti.2016.32] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022] Open
Abstract
Mammals harbor a complex gut-associated microbiota, comprising bacteria that provide immunological, metabolic and neurological benefits to the host, and contribute to their well-being. However, dysregulation of the microbiota composition, known as dysbiosis, along with the associated mucosal immune response have a key role in the pathogenesis of many inflammatory diseases, including inflammatory bowel diseases (IBDs), type 1 and type 2 diabetes, asthma, multiple sclerosis, among others. In addition, outside the gut lumen, bacteria from microbiota are the causative agent of peritoneal inflammation, abdominal sepsis and systemic sepsis. Critical care interventions during sepsis by antibiotics induce dysbiosis and present acute and long-term poor prognosis. In this review, we discuss immunomodulatory effects of the microbial molecules and products, highlighting the role of Bacteroides fragilis, a human commensal with ambiguous interactions with the host. Moreover, we also address the impact of antibiotic treatment in sepsis outcome and discuss new insights for microbiota modulation.
Collapse
|
181
|
Abstract
Consistent interactions between the gut microbiome and adaptive immunity recently led several research groups to evaluate modifications of human gut microbiota composition during HIV infection. Herein we propose to review the shifts reported in infected individuals, as their correlation to disease progression. Though the gut microbiota is consistently altered in HIV individuals, the literature reveals several discrepancies, such as changes in microbial diversity associated with HIV status, taxa modified in infected subjects or influence of ART on gut flora restoration. Similarly, mechanisms involved in interactions between gut bacteria and immunity are to date poorly elucidated, emphasizing the importance of understanding how microbes can promote HIV replication. Further research is needed to propose adjuvant therapeutics dedicated to controlling disease progression through gut microbiome restoration.
Collapse
|
182
|
Impact of gut microbiota on diabetes mellitus. DIABETES & METABOLISM 2016; 42:303-315. [PMID: 27179626 DOI: 10.1016/j.diabet.2016.04.004] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
Various functions of the gut are regulated by sophisticated interactions among its functional elements, including the gut microbiota. These microorganisms play a crucial role in gastrointestinal mucosa permeability. They control the fermentation and absorption of dietary polysaccharides to produce short-chain fatty acids, which may explain their importance in the regulation of fat accumulation and the subsequent development of obesity-related diseases, suggesting that they are a crucial mediator of obesity and its consequences. In addition, gut bacteria play a crucial role in the host immune system, modulation of inflammatory processes, extraction of energy from the host diet and alterations of human gene expression. Dietary modulation of the human colonic microbiota has been shown to confer a number of health benefits to the host. Simple therapeutic strategies targeted at attenuating the progression of chronic low-grade inflammation and insulin resistance are urgently required to prevent or slow the development of diabetes in susceptible individuals. The main objective of this review is to address the pathogenic association between gut microbiota and diabetes, and to explore any novel related therapeutic targets. New insights into the role of the gut microbiota in diabetes could lead to the development of integrated strategies using probiotics to prevent and treat these metabolic disorders.
Collapse
|
183
|
Klevorn LE, Teague RM. Adapting Cancer Immunotherapy Models for the Real World. Trends Immunol 2016; 37:354-363. [PMID: 27105824 DOI: 10.1016/j.it.2016.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 02/07/2023]
Abstract
Early experiments in mice predicted the success of checkpoint blockade immunotherapy in cancer patients. However, these same animal studies failed to accurately predict many of the limitations and toxicities of treatment. One of the likely reasons for this discrepancy is the nearly universal use of young healthy mice, which stand in stark contrast to diverse patient populations varying in age, weight, diet, and hygiene. Because these variables impact immunity and metabolism, they also influence outcomes during immunotherapy and should be incorporated into the study design of preclinical experiments. Here, we discuss recent findings that highlight how efficacy and toxicity of cancer immunotherapy are affected by patient variation, and how distinct host environments can be better modeled in animal studies.
Collapse
Affiliation(s)
- Lauryn E Klevorn
- Saint Louis University School of Medicine, Molecular Microbiology and Immunology Department, 1100 South Grand Boulevard, St Louis, MO 63104, USA
| | - Ryan M Teague
- Saint Louis University School of Medicine, Molecular Microbiology and Immunology Department, 1100 South Grand Boulevard, St Louis, MO 63104, USA; Alvin J. Siteman NCI Comprehensive Cancer Center, St Louis, MO, USA.
| |
Collapse
|
184
|
Molecular Insight into Gut Microbiota and Rheumatoid Arthritis. Int J Mol Sci 2016; 17:431. [PMID: 27011180 PMCID: PMC4813281 DOI: 10.3390/ijms17030431] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 01/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic, inflammatory, and autoimmune disorder. Gut microbiota play an important role in the etiology of RA. With the considerable progress made in next-generation sequencing techniques, the identified gut microbiota difference between RA patients and healthy individuals provides an updated overview of the association between gut microbiota and RA. We reviewed the reported correlation and underlying molecular mechanisms among gut microbiota, the immune system, and RA. It has become known that gut microbiota contribute to the pathogenesis of RA via multiple molecular mechanisms. The progressive understanding of the dynamic interaction between gut microbiota and their host will help in establishing a highly individualized management for each RA patient, and achieve a better efficacy in clinical practice, or even discovering new drugs for RA.
Collapse
|
185
|
Ochoa-Repáraz J, Kasper LH. The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders? Curr Obes Rep 2016; 5:51-64. [PMID: 26865085 PMCID: PMC4798912 DOI: 10.1007/s13679-016-0191-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gut-brain axis is a bi-directional integrated system composed by immune, endocrine, and neuronal components by which the gap between the gut microbiota and the brain is significantly impacted. An increasing number of different gut microbial species are now postulated to regulate brain function in health and disease. The westernized diet is hypothesized to be the cause of the current obesity levels in many countries, a major socio-economical health problem. Experimental and epidemiological evidence suggest that the gut microbiota is responsible for significant immunologic, neuronal, and endocrine changes that lead to obesity. We hypothesize that the gut microbiota, and changes associated with diet, affect the gut-brain axis and may possibly contribute to the development of mental illness. In this review, we discuss the links between diet, gut dysbiosis, obesity, and immunologic and neurologic diseases that impact brain function and behavior.
Collapse
Affiliation(s)
| | - Lloyd H. Kasper
- Department of Microbiology and Immunology, Remsen Building, Room 132A, Geisel School of Medicine at Dartmouth College, Hanover NH 03755, United States, Phone: (603) 653-9909
| |
Collapse
|
186
|
Stanisavljević S, Lukić J, Soković S, Mihajlovic S, Mostarica Stojković M, Miljković D, Golić N. Correlation of Gut Microbiota Composition with Resistance to Experimental Autoimmune Encephalomyelitis in Rats. Front Microbiol 2016; 7:2005. [PMID: 28018327 PMCID: PMC5156687 DOI: 10.3389/fmicb.2016.02005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/30/2016] [Indexed: 12/28/2022] Open
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system (CNS). It is widely accepted that autoimmune response against the antigens of the CNS is the essential pathogenic force in the disease. It has recently become increasingly appreciated that activated encephalitogenic cells tend to migrate toward gut associated lymphoid tissues (GALTs) and that interrupted balance between regulatory and inflammatory immunity within the GALT might have decisive role in the initiation and propagation of the CNS autoimmunity. Gut microbiota composition and function has the major impact on the balance in the GALT. Thus, our aim was to perform analyses of gut microbiota in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Albino Oxford (AO) rats that are highly resistant to EAE induction and Dark Agouti (DA) rats that develop EAE after mild immunization were compared for gut microbiota composition in different phases after EAE induction. Microbial analyses of the genus Lactobacillus and related lactic acid bacteria showed higher diversity of Lactobacillus spp. in EAE-resistant AO rats, while some members of Firmicutes and Proteobacteria (Undibacterium oligocarboniphilum) were detected only in feces of DA rats at the peak of the disease (between 13 and 16 days after induction). Interestingly, in contrast to our previous study where Turicibacter sp. was found exclusively in non-immunized AO, but not in DA rats, in this study it was detected in DA rats that remained healthy 16 days after induction, as well as in four of 12 DA rats at the peak of the disease. Similar observation was obtained for the members of Lachnospiraceae. Further, production of a typical regulatory cytokine interleukin-10 was compared in GALT cells of AO and DA rats, and higher production was observed in DA rats. Our data contribute to the idea that gut microbiota and GALT considerably influence multiple sclerosis pathogenesis.
Collapse
Affiliation(s)
- Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research “Siniša Stanković," University of BelgradeBelgrade, Serbia
| | - Jovanka Lukić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of BelgradeBelgrade, Serbia
| | - Svetlana Soković
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of BelgradeBelgrade, Serbia
| | - Sanja Mihajlovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of BelgradeBelgrade, Serbia
| | | | - Djordje Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković," University of BelgradeBelgrade, Serbia
- *Correspondence: Djordje Miljković, Natasa Golić,
| | - Natasa Golić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of BelgradeBelgrade, Serbia
- *Correspondence: Djordje Miljković, Natasa Golić,
| |
Collapse
|