151
|
Jahani-Asl A, Pilon-Larose K, Xu W, MacLaurin JG, Park DS, McBride HM, Slack RS. The mitochondrial inner membrane GTPase, optic atrophy 1 (Opa1), restores mitochondrial morphology and promotes neuronal survival following excitotoxicity. J Biol Chem 2010; 286:4772-82. [PMID: 21041314 DOI: 10.1074/jbc.m110.167155] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mitochondrial dynamics have been extensively studied in the context of classical cell death models involving Bax-mediated cytochrome c release. Excitotoxic neuronal loss is a non-classical death signaling pathway that occurs following overactivation of glutamate receptors independent of Bax activation. Presently, the role of mitochondrial dynamics in the regulation of excitotoxicity remains largely unknown. Here, we report that NMDA-induced excitotoxicity results in defects in mitochondrial morphology as evident by the presence of excessive fragmented mitochondria, cessation of mitochondrial fusion, and cristae dilation. Up-regulation of the mitochondrial inner membrane GTPase, Opa1, is able to restore mitochondrial morphology and protect neurons against excitotoxic injury. Opa1 functions downstream of the calcium-dependent protease, calpain. Inhibition of calpain activity by calpastatin, an endogenous calpain inhibitor, significantly rescued mitochondrial defects and maintained neuronal survival. Opa1 was required for calpastatin-mediated neuroprotection because the enhanced survival found following NMDA-induced toxicity was significantly reduced upon loss of Opa1. Our results define a mechanism whereby breakdown of the mitochondrial network mediated through loss of Opa1 function contributes to neuronal death following excitotoxic neuronal injury. These studies suggest Opa1 as a potential therapeutic target to promote neuronal survival following acute brain damage and neurodegenerative diseases.
Collapse
Affiliation(s)
- Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa Heart Institute, University of Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
152
|
Bae S, Siu PM, Choudhury S, Ke Q, Choi JH, Koh YY, Kang PM. Delayed activation of caspase-independent apoptosis during heart failure in transgenic mice overexpressing caspase inhibitor CrmA. Am J Physiol Heart Circ Physiol 2010; 299:H1374-81. [PMID: 20833960 DOI: 10.1152/ajpheart.00168.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although caspase activation is generally thought to be necessary to induce apoptosis, recent evidence suggests that apoptosis can be activated in the setting of caspase inhibition. In this study, we tested the hypothesis that caspase-independent apoptotic pathways contribute to the development of heart failure in the absence of caspase activation. Acute cardiomyopathy was induced using a single dose of doxorubicin (Dox, 20 mg/kg) injected into male wild-type (WT) and transgenic (Tg) mice with a cardiac-specific expression of cytokine response modifier A (CrmA), a known caspase inhibitor. Early (6 day) survival was significantly better in CrmA Tg (81%) than WT (38%) mice. Twelve days after Dox injection, however, the mortality benefit had dissipated, and increased cardiac apoptosis was observed in both groups. There was, however, a significantly greater release of apoptosis-inducing factor (AIF) from mitochondria to cytosol in CrmA Tg compared with WT mice, which suggests that an enhancement of activation in caspase-independent apoptotic pathways had occurred. The administration of a poly(ADP-ribose) polymerase-1 inhibitor, 4-amino-1,8-naphthalimide (4-AN), to Dox-treated mice resulted in significantly improved cardiac function, a significant blockade of AIF released from mitochondria, and decreased cardiac apoptosis. There were also significantly improved survival in WT (18% without 4-AN vs. 89% with 4-AN) and CrmA Tg (13% without 4-AN vs. 93% with 4-AN) mice 12 days after Dox injection. In conclusion, these findings suggest that apoptosis can be induced in the heart lacking caspase activation via caspase-independent pathways and that enabling the inhibition of AIF activation may provide a significant cardiac benefit.
Collapse
Affiliation(s)
- Soochan Bae
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
153
|
Chen L, Hu GF. Angiogenin-mediated ribosomal RNA transcription as a molecular target for treatment of head and neck squamous cell carcinoma. Oral Oncol 2010; 46:648-53. [PMID: 20656548 PMCID: PMC2932836 DOI: 10.1016/j.oraloncology.2010.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 11/25/2022]
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) is the eighth most common disease, affecting approximately 640,000 patients worldwide each year. Despite recent advances in surgery, radiotherapy, and chemotherapy, the overall cure for patients with HNSCC has remained at less than 50% for many decades. Patients with recurrent and metastatic disease have a median survival of only 6-10 months. Systemic chemotherapy is the only treatment option for those patients. New treatment options are thus desperately needed to supplement, complement, or replace currently available therapies. New agents that target molecular and cellular pathways of the disease pathogenesis of HNSCC are promising candidates. One class of these new agents is angiogenesis inhibitors that have been proven effective in the treatment of advanced colorectal, breast, and non-small cell lung cancers. Similar to other solid tumors, angiogenesis plays an important role in the pathogenesis of HNSCC. A number of angiogenic factors including vascular endothelial growth factor (VEGF) and angiogenin (ANG) have been shown to be significantly upregulated in HNSCC. Among them, ANG is unique in which it is a ribonuclease that regulates ribosomal RNA (rRNA) transcription. ANG-stimulated rRNA transcription has been shown to be a general requirement for angiogenesis induced by other angiogenic factors. ANG inhibitors have been demonstrated to inhibit angiogenesis and tumor growth induced not only by ANG but also by other angiogenic factors. As the role of ANG in HNSCC is being unveiled, the therapeutic potential of ANG inhibitors in HNSCC is expected.
Collapse
Affiliation(s)
- Lili Chen
- Department of Stomatology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guo-fu Hu
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
154
|
Abstract
Apoptosis is a tightly regulated, cell deletion process that plays an important role in various cardiovascular diseases, such as myocardial infarction, reperfusion injury, and heart failure. Since cardiomyocyte loss is the most important determinant of patient morbidity and mortality, fully understanding the regulatory mechanisms of apoptotic signaling is crucial. In fact, the inhibition of cardiac apoptosis holds promise as an effective therapeutic strategy for cardiovascular diseases. Caspase, a critical enzyme in the induction and execution of apoptosis, has been the main potential target for achieving anti-apoptotic therapy. Studies suggest, however, that a caspase-independent pathway may also play an important role in cardiac apoptosis, although the mechanism and potential significance of caspase-independent apoptosis in the heart remain poorly understood. Herein we discuss the role of apoptosis in various cardiovascular diseases, provide an update on current knowledge about the molecular mechanisms that govern apoptosis, and discuss the clinical implications of anti-apoptotic therapies.
Collapse
Affiliation(s)
- Nam-Ho Kim
- Division of Cardiology, Department of Internal Medicine, Wonkwang University Medical School, Iksan, Korea
| | | |
Collapse
|
155
|
Tanaka H, Shimazaki H, Kimura M, Izuta H, Tsuruma K, Shimazawa M, Hara H. Apoptosis-inducing factor and cyclophilin A cotranslocate to the motor neuronal nuclei in amyotrophic lateral sclerosis model mice. CNS Neurosci Ther 2010; 17:294-304. [PMID: 20553309 DOI: 10.1111/j.1755-5949.2010.00180.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIMS Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease whose mechanism is not understood. Recently, it was reported that apoptosis-inducing factor (AIF) was involved in motor neuronal cell death in ALS model mice, and AIF-induced neuronal cell death by interacting with cyclophilin A (CypA). However, it is unknown whether the CypA and AIF-complex induces chromatinolysis in ALS. Therefore, in the present study, we investigated the process of motor neuron degeneration as the disease progresses and to determine whether the CypA-AIF complex would play a role in inducing motor neuronal cell death in mutant superoxide dismutase 1 (SOD1)(G93A) ALS model mice. METHODOLOGY We prepared the nuclear fractions of spinal cords and demonstrated the nuclear translocation of CypA with AIF in SOD1(G93A) mice by immunoprecipitation. The localization of CypA and AIF in the spinal cords was assessed by immunohistochemistry. RESULTS In the spinal cords of SOD1(G93A) mice, the expressions of CypA and AIF were detected in the motor neurons, and CypA and AIF cotranslocated to the motor neuronal nuclei with CypA. Furthermore, the expression of CypA was detected in GFAP-positive astrocytes, but not in CD11b-positive microglial cells. On the other hand, these findings were not detected in the spinal cords of wild-type mice. CONCLUSIONS From these results, we suggest that CypA and AIF may play cooperative and pivotal roles in motor neuronal death in the murine ALS model.
Collapse
Affiliation(s)
- Hirotaka Tanaka
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Daigaku-nishi, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
Developmental and pathological death of neurons requires activation of a defined pathway of cell cycle proteins. However, it is unclear how this pathway is regulated and whether it is relevant in vivo. A screen for transcripts robustly induced in cultured neurons by DNA damage identified Sertad1, a Cdk4 (cyclin-dependent kinase 4) activator. Sertad1 is also induced in neurons by nerve growth factor (NGF) deprivation and Abeta (beta-amyloid). RNA interference-mediated downregulation of Sertad1 protects neurons in all three death models. Studies of NGF withdrawal indicate that Sertad1 is required to initiate the apoptotic cell cycle pathway since its knockdown blocks subsequent pathway events. Finally, we find that Sertad1 expression is required for developmental neuronal death in the cerebral cortex. Sertad1 thus appears to be essential for neuron death in trophic support deprivation in vitro and in vivo and in models of DNA damage and Alzheimer's disease. It may therefore be a suitable target for therapeutic intervention.
Collapse
|
157
|
Kondo K, Obitsu S, Ohta S, Matsunami K, Otsuka H, Teshima R. Poly(ADP-ribose) polymerase (PARP)-1-independent apoptosis-inducing factor (AIF) release and cell death are induced by eleostearic acid and blocked by alpha-tocopherol and MEK inhibition. J Biol Chem 2010; 285:13079-91. [PMID: 20177052 PMCID: PMC2857103 DOI: 10.1074/jbc.m109.044206] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 02/02/2010] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose)polymerase-1 (PARP-1) is thought to be required for apoptosis-inducing factor (AIF) release from mitochondria in caspase-independent apoptosis. The mechanism by which AIF is released through PARP-1 remains unclear. Here, we provide evidence that PARP-1-independent AIF release and cell death are induced by a trienoic fatty acid, alpha-eleostearic acid (alpha-ESA). Alpha-ESA induced the caspase-independent and AIF-initiated apoptotic death of neuronal cell lines, independently of PARP-1 activation. The cell death was inhibited by the MEK inhibitor U0126 and by knockdown of MEK using small interfering RNA. However, inhibitors for JNK, p38 inhibitors, calpain, phospholipase A(2), and phosphatidylinositol 3-kinase, did not block cell death. AIF was translocated to the nucleus after the induction of apoptosis by alpha-ESA in differentiated PC12 cells without activating caspase-3 and PARP-1. The alpha-ESA-mediated cell death was not inhibited by PARP inhibitor 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinoline and by knockdown of PARP-1 using small interfering RNA. Unlike N-methyl-N'-nitro-N-nitrosoguanidine treatment, histone-phosphorylated histone 2AX was not phosphorylated by alpha-ESA, which suggests no DNA damage. Overexpression of Bcl-2 did not inhibit the cell death. alpha-ESA caused a small quantity of superoxide production in the mitochondria, resulting in the reduction of mitochondrial membrane potential, both of which were blocked by a trace amount of alpha-tocopherol localized in the mitochondria. Our results demonstrate that alpha-ESA induces PARP-1-independent AIF release and cell death without activating Bax, cytochrome c, and caspase-3. MEK is also a key molecule, although the link between ERK, AIF release, and cell death remains unknown. Finding molecules that regulate AIF release may be an important therapeutic target for the treatment of neuronal injury.
Collapse
Affiliation(s)
- Kazunari Kondo
- Division of Novel Food and Immunochemistry, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan.
| | | | | | | | | | | |
Collapse
|
158
|
Effects of 17beta-estradiol replacement on the apoptotic effects caused by ovariectomy in the rat hippocampus. Life Sci 2010; 86:832-8. [PMID: 20394757 DOI: 10.1016/j.lfs.2010.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 03/22/2010] [Accepted: 04/06/2010] [Indexed: 12/12/2022]
Abstract
AIMS The aim of the present study was to investigate the effects of different periods of ovariectomy and 17beta-estradiol replacement on apoptotic cell death and expression of members of the Bcl-2 family in the rat hippocampus. MAIN METHODS Hippocampi were obtained from rats in proestrus, ovariectomized (15 days, 21 days and 36 days), ovariectomized for 15 days and then treated with 17beta-estradiol for 7 or 21 days, and rats ovariectomized and immediately treated with 17beta-estradiol for 21 days. The expression of Bcl-2 and Bax and the number of apoptotic cells were determined. KEY FINDINGS Ovariectomy decreased Bcl-2 expression and increased Bax expression and the number of apoptotic cells. Replacement with 17beta-estradiol (21 days) throughout the post-ovariectomy period reduced the number of apoptotic cells to the control levels, and prevented the effects of ovariectomy on Bax expression, but only partially restored the Bcl-2 expression. After 15 days of ovariectomy, the replacement with 17beta-estradiol for 21 days, but not for 7 days, restored the Bcl-2 and Bax expression and the percentage of apoptotic cells to the levels found in the proestrus control. SIGNIFICANCE The present results show that a physiological concentration of 17beta-estradiol may help maintain long-term neuronal viability by regulating the expression of members of the Bcl-2 family. Even after a period of hormonal deprivation, treatment with 17beta-estradiol is able to restore the expression of Bax and Bcl-2 to control levels, but the duration of the treatment is a key factor to obtain the desired effect. These data provide new understanding into the mechanisms contributing to the neuroprotective action of estrogen.
Collapse
|
159
|
Yamamoto BK, Moszczynska A, Gudelsky GA. Amphetamine toxicities: classical and emerging mechanisms. Ann N Y Acad Sci 2010; 1187:101-21. [PMID: 20201848 DOI: 10.1111/j.1749-6632.2009.05141.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The drugs of abuse, methamphetamine and MDMA, produce long-term decreases in markers of biogenic amine neurotransmission. These decreases have been traditionally linked to nerve terminals and are evident in a variety of species, including rodents, nonhuman primates, and humans. Recent studies indicate that the damage produced by these drugs may be more widespread than originally believed. Changes indicative of damage to cell bodies of biogenic and nonbiogenic amine-containing neurons in several brain areas and endothelial cells that make up the blood-brain barrier have been reported. The processes that mediate this damage involve not only oxidative stress but also include excitotoxic mechanisms, neuroinflammation, the ubiquitin proteasome system, as well as mitochondrial and neurotrophic factor dysfunction. These mechanisms also underlie the toxicity associated with chronic stress and human immunodeficiency virus (HIV) infection, both of which have been shown to augment the toxicity to methamphetamine. Overall, multiple mechanisms are involved and interact to promote neurotoxicity to methamphetamine and MDMA. Moreover, the high coincidence of substituted amphetamine abuse by humans with HIV and/or chronic stress exposure suggests a potential enhanced vulnerability of these individuals to the neurotoxic actions of the amphetamines.
Collapse
Affiliation(s)
- Bryan K Yamamoto
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio 43614, USA.
| | | | | |
Collapse
|
160
|
Yu W, Mechawar N, Krantic S, Quirion R. Evidence for the involvement of apoptosis-inducing factor-mediated caspase-independent neuronal death in Alzheimer disease. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2209-18. [PMID: 20228227 DOI: 10.2353/ajpath.2010.090496] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Accumulating evidence suggests the involvement of caspase-dependent and -independent mechanisms in neuronal cell death in Alzheimer disease (AD). The apoptosis-inducing factor (AIF) is a mitochondrial oxido-reductase originally characterized as a mediator of caspase-independent programmed cell death (PCD). In this postmortem study, we investigated the distribution of AIF and its possible morphological association with pathological features in the hippocampus, as well as entorhinal and medial gyrus of temporal cortices of late stage AD, dementia with Lewy bodies (DLB), and control subjects. In comparison with controls, a significant increase in neuronal AIF immunoreactivity (AIF-ir) was observed in the hippocampus and the superficial layers of entorhinal and medial gyrus of temporal cortices in AD--but not DLB--samples. AIF-ir in neuronal nuclei was also significantly more widespread in AD compared with control and DLB samples. Furthermore, AIF-ir was found to be colocalized with neurofibrillary tangles (NFTs) in AD brains. Interestingly, a significant positive correlation was seen between nuclear AIF-ir and Braak stage in CA1 of the hippocampus as well as in entorhinal and temporal cortices in AD samples. These data show for the first time: (1) the nuclear localization of AIF in the AD brain and (2) its colocalization with NFTs, suggesting a possible involvement of AIF-mediated caspase-independent PCD, at least in the late stage of this neuropathology.
Collapse
Affiliation(s)
- Wenfeng Yu
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | | | | | | |
Collapse
|
161
|
Choudhury S, Bae S, Kumar SR, Ke Q, Yalamarti B, Choi JH, Kirshenbaum LA, Kang PM. Role of AIF in cardiac apoptosis in hypertrophic cardiomyocytes from Dahl salt-sensitive rats. Cardiovasc Res 2010; 85:28-37. [PMID: 19633014 DOI: 10.1093/cvr/cvp261] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIMS The caspases are thought to be central mediators of the apoptotic program, but recent data indicate that apoptosis may also be mediated by caspase-independent mechanisms such as apoptosis-inducing factor (AIF). The role of AIF-induced apoptosis in heart, however, is currently not well understood. The aim of this study was to investigate the presence of and conditions for AIF-induced cardiac apoptosis in vitro. METHODS AND RESULTS Hypertrophic cardiomyocyte (H-CM) cultures were prepared from the hearts of Dahl salt-sensitive rats fed a high salt diet. Apoptotic stimulation induced by hypoxia/reoxygenation or staurosporine (1 microM) enhanced AIF release in H-CMs compared with non-hypertrophic cardiomyocytes (N-CMs). Caspase inhibition using zVAD.fmk (25 microM) or overexpression of CrmA using recombinant adenovirus only partially protected N-CMs from apoptosis (63 +/- 0.93%) and provided no significant protection against apoptosis in hypertrophic cells (23 +/- 1.03%). On the other hand, poly-ADP-ribose polymerase inhibition using 4-AN (20 microM) during apoptotic stimulation blocked the release of AIF from mitochondria and significantly improved cell viability in hypertrophied cardiomyocytes (74 +/- 1.18%). CONCLUSION A caspase-dependent, apoptotic pathway is important for N-CM death, whereas a caspase-independent, AIF-mediated pathway plays a critical role in H-CMs.
Collapse
|
162
|
Life with or without AIF. Trends Biochem Sci 2010; 35:278-87. [PMID: 20138767 DOI: 10.1016/j.tibs.2009.12.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/26/2009] [Accepted: 12/30/2009] [Indexed: 12/17/2022]
Abstract
Apoptosis-inducing factor (AIF) was initially discovered as a caspase-independent death effector. AIF fulfills its lethal function after its release from mitochondria and its translocation to the nucleus of the dying cell. The contribution of AIF to programmed cell death is dependent upon the cell type and apoptotic insult. Recent in vivo data indicate that, in addition to its lethal activity, AIF plays a vital mitochondrial role in healthy cells. A segment of AIF which is dispensable for its apoptotic function carries an NADH-oxidase domain that regulates the respiratory chain complex I and is required for cell survival, proliferation and mitochondrial integrity. Mice that express reduced levels of AIF constitute a reliable model of complex I deficiency. Here we discuss recent reports on the survival-related function(s) of AIF.
Collapse
|
163
|
Alvarez-Delgado C, Mendoza-Rodríguez CA, Picazo O, Cerbón M. Different expression of alpha and beta mitochondrial estrogen receptors in the aging rat brain: interaction with respiratory complex V. Exp Gerontol 2010; 45:580-5. [PMID: 20096765 DOI: 10.1016/j.exger.2010.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 01/11/2010] [Accepted: 01/14/2010] [Indexed: 01/11/2023]
Abstract
Recent evidence suggests that hormonal effects on mitochondria could be mediated by mitochondrial estrogen receptors (mtERs). These receptors are new candidates for the beneficial estrogenic effects on mitochondria in different physiological conditions. The aim of this investigation was to study mtER expression during brain aging. We analyzed mtERalpha and mtERbeta expression in cortical, hippocampal and hypothalamic mitochondria of young adult (3months) and aged (18 months) female Wistar rats by Western blot. In addition, we explored the interaction of mtERbeta with respiratory complex V by using coimmunoprecipitation assays. The results show that mtERalpha and mtERbeta are present in young and aged brain mitochondria. We also demonstrate that mtERs are expressed as variants and have a brain region specific distribution. The predominant mtER variants detected were of 61 and 55KDa for mtERalpha and of 63 and 52KDa for mtERbeta. However, we did not observe differences in the mtERalpha or beta content between the two age groups studied. Additionally, we show that mtERbeta interacts with complex V. The overall results demonstrate that there is a differential expression of mtERalpha and mtERbeta variants in different brain areas, indicating that they may participate in different functions in the brain during aging.
Collapse
Affiliation(s)
- Carolina Alvarez-Delgado
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, México D.F., Mexico
| | | | | | | |
Collapse
|
164
|
Kumar A, Garg R, Gaur V, Kumar P. Venlafaxine involves nitric oxide modulatory mechanism in experimental model of chronic behavior despair in mice. Brain Res 2010; 1311:73-80. [DOI: 10.1016/j.brainres.2009.11.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 11/12/2009] [Accepted: 11/20/2009] [Indexed: 01/10/2023]
|
165
|
Karmakar S, Choudhury SR, Banik NL, Ray SK. Activation of Multiple Molecular Mechanisms for Increasing Apoptosis in Human Glioblastoma T98G Xenograft. ACTA ACUST UNITED AC 2010; 2:107-113. [PMID: 21666767 DOI: 10.4172/1948-5956.1000033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glioblastoma is the most malignant brain tumor of astroglial origin. It renders poor response or resistance to existing therapeutics. We used all-trans retinoic acid (ATRA) and interferon gamma (IFN-γ) alone and in combination for controlling human glioblastoma T98G xenografted in nude mice. Histopathological examination showed astrocytic differentiation in ATRA group, some apoptosis in IFN-γ group, and occurrence of differentiation and enhancement of apoptosis in ATRA plus IFN-γ group. ATRA plus IFN-γ induced extrinsic pathway of apoptosis by activation of caspase-8 and cleavage of Bid to tBid and also down regulation of hTERT, c-IAP2, and survivin and upregulation of Smac/Diablo to promote apoptosis. Mitochondrial release of apoptosis-inducing factor (AIF) induced caspase-independent pathway and also upregulation of calpain and caspase-dependent pathways ultimately activated caspase-3 for apoptosis. Increased activities of calpain and caspase-3 degraded 270 kD α-spectrin at the specific sites to generate 145 kD spectrin breakdown product (SBDP) and 120 kD SBDP, respectively. In situ TUNEL and double immunofluorescent labelings detected apoptosis with increased expression of calpain, caspase-12, caspase-3, and AIF in tumors after treatment with IFN-γ and most effectively with ATRA plus IFN-γ. Results indicated that ATRA plus IFN-γ activated multiple molecular mechanisms for increasing apoptosis in human glioblastoma in vivo.
Collapse
Affiliation(s)
- Surajit Karmakar
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | | | | |
Collapse
|
166
|
Multifaceted deaths orchestrated by mitochondria in neurones. Biochim Biophys Acta Mol Basis Dis 2010; 1802:167-85. [DOI: 10.1016/j.bbadis.2009.09.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 12/16/2022]
|
167
|
Kar P, Samanta K, Shaikh S, Chowdhury A, Chakraborti T, Chakraborti S. Mitochondrial calpain system: an overview. Arch Biochem Biophys 2009; 495:1-7. [PMID: 20035707 DOI: 10.1016/j.abb.2009.12.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 12/17/2009] [Indexed: 12/13/2022]
Abstract
Calpain system is generally known to be comprised of three molecules: two Ca2+-dependent proteases: mu- and m-calpains, and their endogenous inhibitor, calpastatin. While calpains have previously been considered as the cytoplasmic enzymes, research in the recent past demonstrated that mu-calpain, m-calpain and calpain 10 are present in mitochondria, which play important roles in a variety of pathophysiological conditions including necrotic and apoptotic cell death phenomena. Although a number of original research articles on mitochondrial calpain system are available, yet to the best of our knowledge, a precise review article on mitochondrial calpain system has, however, not been available. This review outlines the key features of the mitochondrial calpain system, and its roles in several cellular and biochemical events under normal and some pathophysiological conditions.
Collapse
Affiliation(s)
- Pulak Kar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | | | | | | | | | | |
Collapse
|
168
|
Liu L, Xing D, Chen WR. Micro-calpain regulates caspase-dependent and apoptosis inducing factor-mediated caspase-independent apoptotic pathways in cisplatin-induced apoptosis. Int J Cancer 2009; 125:2757-66. [PMID: 19705411 DOI: 10.1002/ijc.24626] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cisplatin, an effective anticancer agent, can induce tumor cell apoptosis via caspase-dependent and-independent pathways. However, the precise mechanism that regulates the pathways remains unclear. In this study, we showed that micro-calpain mediated both caspase-dependent and-independent pathways during cisplatin-induced apoptosis in human lung adenocarcinoma cells. After cisplatin treatment, calpain activation, as measured by a fluorescent substrate, was an early event, taking place well before apoptosis inducing factor (AIF) release and caspase-9/-3 activation. Confocal imaging of cells transfected with AIF-GFP demonstrated that AIF release occurred about 9 hr after cisplatin treatment. The increase of micro-calpain activity proved to be a crucial event in the apoptotic machinery, as demonstrated by the significant protection of cell death in samples suppressed the endogenous micro-calpain expression level, as well as cotreated with the calpain inhibitors, calpeptin and PD150606. Inhibition of mu-calpain not only significantly reduced caspase-9/-3 activities but also completely blocked AIF redistribution. Our study also showed that endogenous mitochondrial micro-calpain could directly induce the truncation and release of AIF, while caspases and cathepsins were not necessary for this process. In conclusion, the study demonstrated that activation of micro-calpain played an essential role in regulating both caspase-dependent and AIF-mediated caspase-independent apoptotic pathways in cisplatin-induced apoptosis.
Collapse
Affiliation(s)
- Lei Liu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, China
| | | | | |
Collapse
|
169
|
Mitochondrial m-calpain plays a role in the release of truncated apoptosis-inducing factor from the mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1848-59. [DOI: 10.1016/j.bbamcr.2009.10.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 09/19/2009] [Accepted: 10/06/2009] [Indexed: 12/13/2022]
|
170
|
Singh MH, Brooke SM, Zemlyak I, Sapolsky RM. Evidence for caspase effects on release of cytochrome c and AIF in a model of ischemia in cortical neurons. Neurosci Lett 2009; 469:179-83. [PMID: 19944742 DOI: 10.1016/j.neulet.2009.11.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 11/05/2009] [Accepted: 11/20/2009] [Indexed: 01/08/2023]
Abstract
Neuronal apoptosis following ischemia can be mediated by a caspase-dependent pathway, which involves the mitochondrial release of cytochrome c that initiates a cascade of caspase activation. In addition, there is a caspase-independent pathway, which is mediated by the release of apoptosis-inducing factor (AIF). Using caspase inhibitor gene therapy, we investigated the roles of caspases on the mitochondrial release of cyt c and the release of AIF. Specifically, we used herpes simplex virus-1 amplicon vectors to ectopically express a viral caspase inhibitor (crmA or p35) in mixed cortical cultures exposed to oxygen/glucose deprivation. Overexpression of either crmA or p35 (but not the caspase-3 inhibitor DEVD) inhibited the release of AIF; this suggests that there can be cross-talk between the caspase-dependent and the ostensibly caspase-independent pathway. In addition, both crmA overexpression and DEVD inhibited cyt c release, suggesting a positive feedback loop involving activated caspases stimulating cyt c release.
Collapse
Affiliation(s)
- Maneesh H Singh
- Department of Biological Sciences, and Neurology and Neurological Sciences, Stanford University, 371 Serra Street, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
171
|
Lee JH, Jeong YJ, Lee SW, Kim D, Oh SJ, Lim HS, Oh HK, Kim SH, Kim WJ, Jung JY. EGCG induces apoptosis in human laryngeal epidermoid carcinoma Hep2 cells via mitochondria with the release of apoptosis-inducing factor and endonuclease G. Cancer Lett 2009; 290:68-75. [PMID: 19781850 DOI: 10.1016/j.canlet.2009.08.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/19/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), a major green tea polyphenol, was tested for in vitro cytotoxicity against human laryngeal epidermoid carcinoma of the larynx Hep2 cells. EGCG-induced apoptotic cell death accompanied by a change in the cell cycle. However, EGCG did not result in caspase activation, nor did a caspase inhibitor block cell death. Furthermore, EGCG caused no change in the intracellular levels of reactive oxygen species (ROS). The levels of p53 were increased in the EGCG-treated cells, with a corresponding decrease in Bcl-2 and Bid protein levels as well as an increase in the Bax level. In addition, EGCG induced the cytoplasmic release of cytochrome c from the mitochondria accompanied by a decreased mitochondrial membrane potential, and subsequently upregulated translocation of apoptosis-inducing factor (AIF) and endonuclease G (EndoG) into the nucleus during the apoptotic process. Taken together, these findings indicate that the p53-mediated mitochondrial pathway and the nuclear translocation of AIF and EndoG play a crucial role in EGCG-induced apoptosis of human laryngeal epidermoid carcinoma Hep2 cells, which proceeds through a caspase-independent pathway.
Collapse
Affiliation(s)
- Jin-Ha Lee
- Dental Science Research Institute, School of Dentistry Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
KG-135, enriched with selected ginsenosides, inhibits the proliferation of human prostate cancer cells in culture and inhibits xenograft growth in athymic mice. Cancer Lett 2009; 289:99-110. [PMID: 19765891 DOI: 10.1016/j.canlet.2009.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 07/13/2009] [Accepted: 08/03/2009] [Indexed: 01/24/2023]
Abstract
Sun ginseng (SG) was recently developed as a heat-processed form of ginseng. The Rg3, Rk1, and Rg5 ginsenosides are its main ginsenoside components. SG has been reported to have more potent pharmacological activities than red ginseng (RG), where these pharmacological activities include vasodilatory, anti-oxidant and anti-tumorigenic effects. In the present study, we investigated KG-135, the ginsenoside-rich fraction of SG and demonstrated that this fraction inhibits proliferation of human prostate cancer cells both in vitro and in vivo. KG-135 caused a significant growth inhibition of DU145 and PC-3 human prostate cancer cells. KG-135 induced cell cycle arrest in the G1 phase and caused an associated increase in the p21(Cip1) protein levels. When KG-135 was fed to mice that had been xenografted with DU145 tumors, a time-dependent inhibition of tumor growth was noted without any observed toxicity. Immunohistochemical analysis of the tumor tissues showed that KG-135 led to a decrease in the expression of proliferating cell nuclear antigen (PCNA). Microarray analysis of the tumors revealed that KG-135 inhibited tumor growth and also caused changes in the expression levels of multiple cancer-related genes. These data suggest that KG-135 effectively inhibits prostate cancer cell proliferation. Its mechanism of action likely involves cyclin inhibition and regulation of the expression of the TNFRSF25 and ADRA2A genes.
Collapse
|
173
|
Quesada A, Micevych P, Handforth A. C-terminal mechano growth factor protects dopamine neurons: a novel peptide that induces heme oxygenase-1. Exp Neurol 2009; 220:255-66. [PMID: 19735655 DOI: 10.1016/j.expneurol.2009.08.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 08/14/2009] [Accepted: 08/22/2009] [Indexed: 12/29/2022]
Abstract
To assess potential efficacy of mechano growth factor (MGF) for chronic neurodegenerative disorders, we studied whether MGF protects dopamine (DA) neurons subjected to neurotoxic stress. We show that a short 24-amino acid C-terminal peptide of MGF (MGF24) upregulates heme oxygenase-1 (HO-1) expression and protects SH-SY5Y cells against apoptosis and cell loss induced by three DA cell-specific neurotoxins: 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenylpyridinium (MPP(+)), and rotenone. MGF24 maintains the mitochondrial membrane potential and blocks the release of mitochondrial apoptotic-inducing factor into the cytoplasm induced by 6-OHDA, MPP(+), and rotenone. Chemical inhibition of HO-1 with zinc protoporphyrin-IX prevents neuroprotection by MGF24 against the three neurotoxins. MGF24 does not activate Akt signaling nor does Akt inhibition block MGF24 protection of SH-SY5Y cells. In 6-OHDA-lesioned rats, central or peripheral MGF24 administration protects against the development of contralateral forelimb under-utilization, reduces ipsilateral nigral DA cell body loss, and attenuates tyrosine hydroxylase fiber loss in the ipsilateral striatum, independent of IGF-1 receptor activation. Peripheral MGF24 administration upregulates HO-1 expression in striatal and midbrain tissue. This report is the first to demonstrate that a small peptide, MGF24, upregulates HO-1, an important cell defense mediator, and protects DA cells, suggesting new strategies for neuroprotection in Parkinson's disease.
Collapse
Affiliation(s)
- Arnulfo Quesada
- Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | | | | |
Collapse
|
174
|
Lietzau G, Kowiański P, Karwacki Z, Dziewiatkowski J, Witkowska M, Sidor-Kaczmarek J, Moryś J. The molecular mechanisms of cell death in the course of transient ischemia are differentiated in evolutionary distinguished brain structures. Metab Brain Dis 2009; 24:507-23. [PMID: 19693659 DOI: 10.1007/s11011-009-9149-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 08/03/2009] [Indexed: 11/27/2022]
Abstract
There is large body of evidence suggesting distinct susceptibility to ischemia in various brain regions. However, the reason for this remains unexplained. Comparative studies of programmed cell death (PCD) pathways indicate their differentiated evolutional origin. The caspase-independent pathway is regarded as an older, whereas the caspase-dependent--as more advanced. In our study we address the question of whether there are any characteristic differences in the activation and course of PCD in phylogenetically and morphologically distinguished brain structures after transient focal ischemia. Using Western blot, we studied changes in expression of caspases: 3, 8, 9, and AIF in the frontoparietal neocortex, archicortex (CA1 and CA2 sectors of the hippocampus) and striatum, during reperfusion after 1 h occlusion of the middle cerebral artery. The caspase and AIF expression were differentiated between the studied structures. The activation of only the caspase-dependent pathway was observed in the neocortex. In the archicortex and striatum both caspase-dependent and caspase-independent pathways were activated, although in the latter the extrinsic apoptotic pathway was not activated. In summary, it is conceivable that structures of different evolutionary origin undergo cell-death processes with the participation of phylogenetically distinguished mechanisms. The previously reported unequal susceptibility to ischemia may co-exist with activation of different cell death pathways.
Collapse
Affiliation(s)
- Grazyna Lietzau
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki Street, 80-211, Gdansk, Poland
| | | | | | | | | | | | | |
Collapse
|
175
|
Joza N, Pospisilik JA, Hangen E, Hanada T, Modjtahedi N, Penninger JM, Kroemer G. AIF: Not Just an Apoptosis-Inducing Factor. Ann N Y Acad Sci 2009; 1171:2-11. [DOI: 10.1111/j.1749-6632.2009.04681.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
176
|
Liu J, Naegele JR, Lin SL. The DNA-PK catalytic subunit regulates Bax-mediated excitotoxic cell death by Ku70 phosphorylation. Brain Res 2009; 1296:164-75. [PMID: 19664609 DOI: 10.1016/j.brainres.2009.07.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
DNA repair deficiency results in neurodegenerative disease and increased susceptibility to excitotoxic cell death, suggesting a critical but undefined role for DNA damage in neurodegeneration. We compared DNA damage, Ku70-Bax interaction, and Bax-dependent excitotoxic cell death in kainic acid-treated primary cortical neurons derived from both wild-type mice and mice deficient in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) encoded by the Prkdc gene. In both wild-type and Prkdc(-/-) neurons, kainic acid treatment resulted in rapid induction of DNA damage (53BP1 foci formation) followed by nuclear pyknosis. Bax deficiency, by either Bax shRNA-mediated knockdown or gene deletion, protected wild-type and heterozygous but not Prkdc(-/-) neurons from kainate-induced excitotoxicity. Cotransfection of DNA-PKcs with Bax shRNA restored Bax shRNA-mediated neuroprotection in Prkdc(-/-) neurons, suggesting that DNA-PKcs is required for kainate-induced activation of the pro-apoptotic Bax pathway. Immunoprecipitation studies revealed that the DNA-PKcs-nonphosphorylatable Ku70 (S6A/S51A) bound 3- to 4-fold greater Bax than wild-type Ku70, suggesting that DNA-PKcs-mediated Ku70 phosphorylation causes release of Bax from Ku70. In support of this, kainic acid induced translocation of a Bax-EGFP fusion protein to the mitochondria in the presence of a cotransfected wild-type, but not mutant Ku70 (S6A/S51A) gene when examined at 4 and 8 h following kainate addition. We conclude that DNA-PKcs links DNA damage to Bax-dependent excitotoxic cell death, by phosphorylating Ku70 on serines 6 and/or 51, to initiate Bax translocation to the mitochondria and directly activate a pro-apoptotic Bax-dependent death cascade.
Collapse
Affiliation(s)
- Jia Liu
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown, CT 06459-0170, USA
| | | | | |
Collapse
|
177
|
Sharifi AM, Eslami H, Larijani B, Davoodi J. Involvement of caspase-8, -9, and -3 in high glucose-induced apoptosis in PC12 cells. Neurosci Lett 2009; 459:47-51. [DOI: 10.1016/j.neulet.2009.03.100] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/17/2009] [Accepted: 03/30/2009] [Indexed: 01/06/2023]
|
178
|
Wang CC, Fang KM, Yang CS, Tzeng SF. Reactive oxygen species-induced cell death of rat primary astrocytes through mitochondria-mediated mechanism. J Cell Biochem 2009; 107:933-43. [DOI: 10.1002/jcb.22196] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
179
|
Higgins GC, Beart PM, Nagley P. Oxidative stress triggers neuronal caspase-independent death: endonuclease G involvement in programmed cell death-type III. Cell Mol Life Sci 2009; 66:2773-87. [PMID: 19582370 PMCID: PMC11115579 DOI: 10.1007/s00018-009-0079-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 05/26/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
To characterize neuronal death, primary cortical neurons (C57/Black 6 J mice) were exposed to hydrogen peroxide (H2O2) and staurosporine. Both caused cell shrinkage, nuclear condensation, DNA fragmentation and loss of plasma membrane integrity. Neither treatment induced caspase-7 activity, but caspase-3 was activated by staurosporine but not H2O2. Each treatment caused redistribution from mitochondria of both endonuclease G (Endo G) and cytochrome c. Neurons knocked down for Endo G expression using siRNA showed reduction in both nuclear condensation and DNA fragmentation after treatment with H2O2, but not staurosporine. Endo G suppression protected cells against H2O2-induced cell death, while staurosporine-induced death was merely delayed. We conclude that staurosporine induces apoptosis in these neurons, but severe oxidative stress leads to Endo G-dependent death, in the absence of caspase activation (programmed cell death-type III). Therefore, oxidative stress triggers in neurons a form of necrosis that is a systematic cellular response subject to molecular regulation.
Collapse
Affiliation(s)
- Gavin C. Higgins
- Department of Biochemistry and Molecular Biology, Monash University, Building 13D, Clayton Campus, Clayton, VIC 3800 Australia
| | - Philip M. Beart
- Florey Neuroscience Institutes and Department of Pharmacology, University of Melbourne, Parkville, VIC Australia
| | - Phillip Nagley
- Department of Biochemistry and Molecular Biology, Monash University, Building 13D, Clayton Campus, Clayton, VIC 3800 Australia
| |
Collapse
|
180
|
Cho BB, Toledo-Pereyra LH. Caspase-Independent Programmed Cell Death Following Ischemic Stroke. J INVEST SURG 2009; 21:141-7. [DOI: 10.1080/08941930802029945] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
181
|
Lopez-Neblina F, Toledo AH, Toledo-Pereyra LH. Molecular Biology of Apoptosis in Ischemia and Reperfusion. J INVEST SURG 2009; 18:335-50. [PMID: 16319055 DOI: 10.1080/08941930500328862] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study reviews the current understanding of the mechanisms that mediate the complex processes involved in apoptosis secondary to ischemia and reperfusion (I/R) and is not intended as a complete literature review of apoptosis. Several biochemical reactions trigger a cascade of events, which activate caspases. These caspases exert their effect through downstream proteolysis until the final effector caspases mediate the nuclear features characteristic of apoptosis, DNA fragmentation and condensation. Within the context of ischemia, the hypoxic environment initiates the expression of several genes involved in inflammation, the immune response, and apoptosis. Many of these same genes are activated during reperfusion injury in response to radical oxygen species generation. It is plausible that inhibition of specific apoptotic pathways via inactivation or downregulation of those genes responsible for the initiation of inflammation, immune response, and apoptosis may provide promising molecular targets for ameliorating reperfusion injury in I/R-related processes. Such inhibitory mechanisms are discussed in this review. Important targets in I/R-related pathologies include the brain during stroke, the heart during myocardial infarction, and the organs during harvesting and/or storage for transplantation. In addition, we present data from our ongoing research of specific signal transduction-related elements and their role in ischemia/reperfusion injury. These data address the potential therapeutic application of anti-inflammatory and anti-ischemic compounds in the prevention of I/R damage.
Collapse
Affiliation(s)
- Fernando Lopez-Neblina
- Trauma, Surgery Research, and Molecular Biology, Borgess Research Institute, Kalamazoo, Michigan 49048, USA
| | | | | |
Collapse
|
182
|
Jonakait GM, Ni L. Prostaglandins compromise basal forebrain cholinergic neuron differentiation and survival: action at EP1/3 receptors results in AIF-induced death. Brain Res 2009; 1285:30-41. [PMID: 19555672 DOI: 10.1016/j.brainres.2009.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/11/2009] [Accepted: 06/12/2009] [Indexed: 01/26/2023]
Abstract
Activated microglia produce a factor or cocktail of factors that promotes cholinergic neuronal differentiation of undifferentiated precursors in the embryonic basal forebrain (BF) in vitro. To determine whether microglial prostaglandins mediate this action, microglia were stimulated in the presence of the cyclooxygenase inhibitor ibuprofen, and microglial conditioned medium (CM) was used to culture rat BF precursors at embryonic day 15. Choline acetyltransferase (ChAT) activity served as a measure of cholinergic differentiation. While inhibition of prostaglandin biosynthesis did not affect the ability of microglial CM to promote ChAT activity, treatment of microglia with prostaglandin E2 (PGE2) inhibited it. Agonists of E prostanoid receptors EP2 (butaprost) and EP1/3 (sulprostone) mimicked PGE2, while misoprostol (E1-4) actually enhanced the action of CM. PGE2 added directly to BF cultures together with microglial CM also inhibited ChAT activity. While BF cultures expressed all four prostanoid receptors, direct addition of sulprostone but not butaprost mimicked PGE2, suggesting that PGE2 engaged EP1/3 receptors in the BF. Neither PKA inhibition by H89 nor cAMP induction by forskolin or dibutyrl-cAMP altered the action of sulprostone. Sulprostone severely compromised ChAT activity, dendrite number, axonal length and axonal branching, but caspase inhibition did not restore these. However, sulprostone resulted in increased staining intensity and nuclear translocation of apoptosis-inducing factor (AIF) suggesting caspase-independent cell death. We have found that PGE2 action at microglial EP2 receptors inhibits the microglial production of the cholinergic differentiating cocktail, while action at neuronal EP3 receptors has a deleterious effect on cholinergic neurons causing neurite retraction and cell death.
Collapse
Affiliation(s)
- G Miller Jonakait
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | | |
Collapse
|
183
|
Mader JS, Mookherjee N, Hancock REW, Bleackley RC. The human host defense peptide LL-37 induces apoptosis in a calpain- and apoptosis-inducing factor-dependent manner involving Bax activity. Mol Cancer Res 2009; 7:689-702. [PMID: 19435812 DOI: 10.1158/1541-7786.mcr-08-0274] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
LL-37 is a human cationic host defense peptide (antimicrobial peptide) belonging to the cathelicidin family of peptides. In this study, LL-37 was shown to kill Jurkat T leukemia cells via apoptosis. A loss of mitochondrial membrane potential, DNA fragmentation, and phosphatidylserine externalization were detected following LL-37 exposure, whereas apoptosis was independent of caspase family members. The specific apoptotic pathway induced by LL-37 was defined through the utilization of Jurkat cells modified to express antiapoptotic proteins, as well as cells deficient in various proteins associated with apoptosis. Of interest, both Bcl-2-overexpressing cells and cells deficient in Bax and Bak proteins displayed a significant reduction in LL-37-induced apoptosis. In addition, Jurkat cells modified in the Fas receptor-associated pathway showed no reduction in apoptosis when exposed to LL-37. Analysis of the involvement of apoptosis-inducing factor (AIF) in LL-37-mediated apoptosis revealed that AIF transferred from the mitochondria to the nucleus of cells exposed to LL-37, where it may lead to large-scale DNA fragmentation and chromatin condensation. AIF knockdown analysis resulted in LL-37-resistant cells. This suggests that AIF is mandatory in LL-37-mediated killing. Lastly, chelation or inhibition of Ca(2+) or calpains inhibited LL-37-mediated killing. Further analysis revealed that calpains were required for LL-37-mediated Bax translocation to mitochondria. Together, these data show that LL-37-induced apoptosis is mediated via the mitochondria-associated pathway in a caspase-independent and calpain- and AIF-dependent manner that involves Bax activation and translocation to mitochondria.
Collapse
Affiliation(s)
- Jamie S Mader
- Department of Biochemistry, University of Alberta, Room 463, Medical Sciences Building, Edmonton, Alberta, Canada T6G 2H7.
| | | | | | | |
Collapse
|
184
|
Vosler PS, Sun D, Wang S, Gao Y, Kintner DB, Signore AP, Cao G, Chen J. Calcium dysregulation induces apoptosis-inducing factor release: cross-talk between PARP-1- and calpain-signaling pathways. Exp Neurol 2009; 218:213-20. [PMID: 19427306 DOI: 10.1016/j.expneurol.2009.04.032] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/21/2009] [Accepted: 04/28/2009] [Indexed: 01/10/2023]
Abstract
Recent discoveries show that caspase-independent cell death pathways are a pervasive mechanism in neurodegenerative diseases, and apoptosis-inducing factor (AIF) is an important effector of this mode of neuronal death. There are currently two known mechanisms underlying AIF release following excitotoxic stress, PARP-1 and calpain. To test whether there is an interaction between PARP-1 and calpain in triggering AIF release, we used the NMDA toxicity model in rat primary cortical neurons. Exposure to NMDA resulted in AIF truncation and nuclear translocation, and shRNA-mediated knockdown of AIF resulted in neuroprotection. Both calpain and PARP-1 are involved with AIF processing as AIF truncation, nuclear translocation and neuronal death were attenuated by calpain inhibition using adeno-associated virus-mediated overexpression of the endogenous calpain inhibitor, calpastatin, or treatment with the PARP-1 inhibitor 3-ABA. Activation of PARP-1 is necessary for calpain activation as PARP-1 inhibition blocked mitochondrial calpain activation. Finally, NMDA toxicity induces mitochondrial Ca(2+) dysregulation in a PARP-1 dependent manner. Thus, PARP-1 and mitochondrial calpain activation are linked via PARP-1-induced alterations in mitochondrial Ca(2+) homeostasis. Collectively, these findings link the two seemingly independent mechanisms triggering AIF-induced neuronal death.
Collapse
Affiliation(s)
- Peter S Vosler
- Department of Neurology and Center of Cerebrovascular Diseases Research, University of Pittsburgh School of Medicine, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Mitochondrial micro-calpain is not involved in the processing of apoptosis-inducing factor. Exp Neurol 2009; 218:221-7. [PMID: 19393648 DOI: 10.1016/j.expneurol.2009.04.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 04/15/2009] [Indexed: 11/23/2022]
Abstract
Caspase-independent cell death, an important death pathway in many cells including neurons, is executed via apoptosis-inducing factor (AIF), an oxidoreductase, localized to the mitochondrial intermembrane space. AIF is processed and released from mitochondria following mitochondrial permeability transition pore (mPTP) formation, and translocates to the nucleus to induce DNA fragmentation and cell death. The release of AIF requires cleavage of its N-terminus anchored in the inner mitochondrial membrane. The protease responsible for this AIF truncation has not been established, although there is considerable evidence suggesting a role for micro-calpain. We previously found that a pool of micro-calpain is localized to the mitochondrial intermembrane space, the submitochondrial compartment in which AIF truncation occurs. The close submitochondrial proximity of mitochondrial micro-calpain and AIF gives support to the hypothesis that mitochondrial micro-calpain may be the protease responsible for processing AIF prior to its release. In the present study, AIF was released from rat liver mitochondria following mPTP induction by atractyloside. This release was inhibited by the cysteine protease inhibitor MDL28170, but not by more specific calpain inhibitors PD150606 and calpastatin. Atractyloside caused swelling in rat brain mitochondria, but did not induce AIF release. In a mitochondrial fraction from SH-SY5Y neuroblastoma cells, incubation with 5 mM Ca(2+) resulted in the activation of micro-calpain but not in AIF truncation. In summary, the localization of micro-calpain to the mitochondrial intermembrane space is suggestive of its possible involvement in AIF processing, but direct experimental evidence supporting such a role has been elusive.
Collapse
|
186
|
Li ZX, Ouyang KQ, Jiang X, Wang D, Hu Y. Curcumin induces apoptosis and inhibits growth of human Burkitt's lymphoma in xenograft mouse model. Mol Cells 2009; 27:283-9. [PMID: 19326074 DOI: 10.1007/s10059-009-0036-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 12/08/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022] Open
Abstract
Curcumin, a natural compound extracted from rhizomes of curcuma Curcuma species, has been shown to possess potent anti-inflammatory, anti-tumor and anti-oxidative properties. However, the mechanism of action of the compound remains poorly understood. In this report, we have analyzed the effects of curcumin on the cell proliferation of Burkitt's lymphoma Raji cells. The results demonstrated that curcumin could effectively inhibit the growth of Raji cells in a dose- and time-dependent manner. Further studies indicated that curcumin treatment resulted in apoptosis of cells. Biochemical analysis showed that the expression of Bax, Bid and cytochrome C were up-regulated, while the expression of oncogene c-Myc was down regulated after curcumin treatment. Furthermore, poly (ADP-ribose) polymerase (PARP) cleavage was induced by the compound. Interestingly, the antiapoptotic Bcl-2 expression was not significantly changed in Raji cells after curcumin treatment. These results suggested that the mechanism of action of curcumin was to induce mitochondrial damage and therefore led to Raji cell apoptosis. We further investigated the in vivo effects of curcumin on the growth of xenograft tumors in nude mice. The results showed that curcumin could effectively inhibit tumor growth in the xenograft mouse model. The overall results showed that curcumin could suppress the growth of Burkitt's lymphoma cells in both in vitro and in vitro systems.
Collapse
Affiliation(s)
- Zai-xin Li
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | | | | | | | | |
Collapse
|
187
|
Wang Y, Dawson VL, Dawson TM. Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. Exp Neurol 2009; 218:193-202. [PMID: 19332058 DOI: 10.1016/j.expneurol.2009.03.020] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/10/2009] [Accepted: 03/13/2009] [Indexed: 12/31/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) plays a pivotal role in multiple neurologic diseases by mediating caspase-independent cell death, which has recently been designated parthanatos to distinguish it from other forms of cell death such as apoptosis, necrosis and autophagy. Mitochondrial apoptosis-inducing factor (AIF) release and translocation to the nucleus is the commitment point for parthanatos. This process involves a pathogenic role of poly(ADP-ribose) (PAR) polymer. It generates in the nucleus and translocates to the mitochondria to mediate AIF release following lethal PARP-1 activation. PAR polymer itself is toxic to cells. Thus, PAR polymer signaling to mitochondrial AIF is the key event initiating the deadly crosstalk between the nucleus and the mitochondria in parthanatos. Targeting PAR-mediated AIF release could be a potential approach for the therapy of neurologic disorders.
Collapse
Affiliation(s)
- Yingfei Wang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
188
|
Kesaraju S, Schmidt-Kastner R, Prentice HM, Milton SL. Modulation of stress proteins and apoptotic regulators in the anoxia tolerant turtle brain. J Neurochem 2009; 109:1413-26. [PMID: 19476552 DOI: 10.1111/j.1471-4159.2009.06068.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Freshwater turtles survive prolonged anoxia and reoxygenation without overt brain damage by well-described physiological processes, but little work has been done to investigate the molecular changes associated with anoxic survival. We examined stress proteins and apoptotic regulators in the turtle during early (1 h) and long-term anoxia (4, 24 h) and reoxygenation. Western blot analyses showed changes within the first hour of anoxia; multiple stress proteins (Hsp72, Grp94, Hsp60, Hsp27, and HO-1) increased while apoptotic regulators (Bcl-2 and Bax) decreased. Levels of the ER stress protein Grp78 were unchanged. Stress proteins remained elevated in long-term anoxia while the Bcl-2/Bax ratio was unaltered. No changes in cleaved caspase 3 levels were observed during anoxia while apoptosis inducing factor increased significantly. Furthermore, we found no evidence for the anoxic translocation of Bax from the cytosol to mitochondria, nor movement of apoptosis inducing factor between the mitochondria and nucleus. Reoxygenation did not lead to further increases in stress proteins or apoptotic regulators except for HO-1. The apparent protection against cell damage was corroborated with immunohistochemistry, which indicated no overt damage in the turtle brain subjected to anoxia and reoxygenation. The results suggest that molecular adaptations enhance pro-survival mechanisms and suppress apoptotic pathways to confer anoxia tolerance in freshwater turtles.
Collapse
Affiliation(s)
- Shailaja Kesaraju
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431, USA.
| | | | | | | |
Collapse
|
189
|
Zafir A, Ara A, Banu N. Invivo antioxidant status: a putative target of antidepressant action. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:220-8. [PMID: 19059298 DOI: 10.1016/j.pnpbp.2008.11.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a critical route of damage in various psychological stress-induced disorders, such as depression. Antidepressants are widely prescribed to treat these conditions; however, few animal studies have investigated the effect of these drugs on endogenous antioxidant status in the brain. The present study employed a 21-day chronic regimen of random exposure to restraint stress to induce oxidative stress in brain, and behavioural aberrations, in rodents. The forced swimming (FST) and sucrose preference tests were used to identify depression-like phenotypes, and reversal in these indices indicated the effectiveness of treatment with fluoxetine (FLU; 20 mg/kg/day, p.o.; selective serotonin reuptake inhibitor), imipramine (IMI; 10 mg/kg/day, p.o.; tricyclic antidepressant) and venlafaxine (VEN; 10 mg/kg/day, p.o.; dual serotonin/norepinephrine reuptake inhibitor) following restraint stress. The antioxidant status was investigated in the brain of these animals. The results evidenced a significant recovery in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione reductase (GR) and glutathione (GSH) levels by antidepressant treatments following a restraint stress-induced decline of these parameters. The severely accumulated lipid peroxidation product malondialdehyde (MDA) and protein carbonyl contents in stressed animals were significantly normalized by antidepressant treatments. The altered oxidative status is implicated in various aspects of cellular function affecting the brain. Thus, it is possible that augmentation of in vivo antioxidant defenses could serve as a convergence point for multiple classes of antidepressants as an important mechanism underlying the neuroprotective pharmacological effects of these drugs observed clinically in the treatment of various stress disorders. Consequently, pharmacological modulation of stress-induced oxidative damage as a possible stress-management approach should be an important avenue of further research.
Collapse
Affiliation(s)
- Ayesha Zafir
- Department of Biochemistry, Faculty of Life Sciences, A. M. University, Aligarh 202 002, U.P., India
| | | | | |
Collapse
|
190
|
Yu WR, Liu T, Fehlings TK, Fehlings MG. Involvement of mitochondrial signaling pathways in the mechanism of Fas-mediated apoptosis after spinal cord injury. Eur J Neurosci 2009; 29:114-31. [DOI: 10.1111/j.1460-9568.2008.06555.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
191
|
Stetler RA, Cao G, Gao Y, Zhang F, Wang S, Weng Z, Vosler P, Zhang L, Signore A, Graham SH, Chen J. Hsp27 protects against ischemic brain injury via attenuation of a novel stress-response cascade upstream of mitochondrial cell death signaling. J Neurosci 2008; 28:13038-55. [PMID: 19052195 PMCID: PMC2614130 DOI: 10.1523/jneurosci.4407-08.2008] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/15/2008] [Accepted: 10/21/2008] [Indexed: 11/21/2022] Open
Abstract
Heat shock protein 27 (Hsp27), a recently discovered member of the heat shock protein family, is markedly induced in the brain after cerebral ischemia and other injury states. In non-neuronal systems, Hsp27 has potent cell death-suppressing functions. However, the mechanism of Hsp27-mediated neuroprotection has not yet been elucidated. Using transgenic and viral overexpression of Hsp27, we investigated the molecular mechanism by which Hsp27 exerts its neuroprotective effect. Overexpression of Hsp27 conferred long-lasting tissue preservation and neurobehavioral recovery, as measured by infarct volume, sensorimotor function, and cognitive tasks up to 3 weeks following focal cerebral ischemia. Examination of signaling pathways critical to neuronal death demonstrated that Hsp27 overexpression led to the suppression of the MKK4/JNK kinase cascade. While Hsp27 overexpression did not suppress activation of an upstream regulatory kinase of the MKK/JNK cascade, ASK1, Hsp27 effectively inhibited ASK1 activity via a physical association through its N-terminal domain and the kinase domain of ASK1. The N-terminal region of Hsp27 was required for neuroprotective function against in vitro ischemia. Moreover, knockdown of ASK1 or inhibition of the ASK1/MKK4 cascade effectively inhibited cell death following neuronal ischemia. This underscores the importance of this kinase cascade in the progression of ischemic neuronal death. Inhibition of PI3K had no effect on Hsp27-mediated neuroprotection, suggesting that Hsp27 does not promote cell survival via activation of PI3K/Akt. Based on these findings, we conclude that overexpression of Hsp27 confers long-lasting neuroprotection against ischemic brain injury via a previously unexplored association and inhibition of ASK1 kinase signaling.
Collapse
Affiliation(s)
- R. Anne Stetler
- Department of Neurology and Center of Cerebrovascular Diseases Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- State Key Laboratory of Medical Neurobiology, Fudan University School of Medicine, Shanghai 200032, China, and
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Guodong Cao
- Department of Neurology and Center of Cerebrovascular Diseases Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- State Key Laboratory of Medical Neurobiology, Fudan University School of Medicine, Shanghai 200032, China, and
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, Fudan University School of Medicine, Shanghai 200032, China, and
| | - Feng Zhang
- Department of Neurology and Center of Cerebrovascular Diseases Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Suping Wang
- Department of Neurology and Center of Cerebrovascular Diseases Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Zhongfang Weng
- Department of Neurology and Center of Cerebrovascular Diseases Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Peter Vosler
- Department of Neurology and Center of Cerebrovascular Diseases Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Lili Zhang
- Department of Neurology and Center of Cerebrovascular Diseases Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Armando Signore
- Department of Neurology and Center of Cerebrovascular Diseases Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Steven H. Graham
- Department of Neurology and Center of Cerebrovascular Diseases Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Jun Chen
- Department of Neurology and Center of Cerebrovascular Diseases Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- State Key Laboratory of Medical Neurobiology, Fudan University School of Medicine, Shanghai 200032, China, and
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
192
|
Slemmer JE, Zhu C, Landshamer S, Trabold R, Grohm J, Ardeshiri A, Wagner E, Sweeney MI, Blomgren K, Culmsee C, Weber JT, Plesnila N. Causal role of apoptosis-inducing factor for neuronal cell death following traumatic brain injury. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1795-805. [PMID: 18988795 DOI: 10.2353/ajpath.2008.080168] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Traumatic brain injury (TBI) consists of two phases: an immediate phase in which damage is caused as a direct result of the mechanical impact; and a late phase of altered biochemical events that results in delayed tissue damage and is therefore amenable to therapeutic treatment. Because the molecular mechanisms of delayed post-traumatic neuronal cell death are still poorly understood, we investigated whether apoptosis-inducing factor (AIF), a pro-apoptotic mitochondrial molecule and the key factor in the caspase-independent, cell death signaling pathway, plays a causal role in neuronal death following TBI. Using an in vitro model of neuronal stretch injury, we demonstrated that AIF translocated from mitochondria to the nucleus of neurons displaying axonal disruption, chromatin condensation, and nuclear pyknosis in a caspase-independent manner, whereas astrocytes remained unaffected. Similar findings were observed following experimental TBI in mice, where AIF translocation to the nucleus coincided with delayed neuronal cell death in both cortical and hippocampal neurons. Down-regulation of AIF in vitro by siRNA significantly reduced stretch-induced neuronal cell death by 67%, a finding corroborated in vivo using AIF-deficient harlequin mutant mice, where secondary contusion expansion was significantly reduced by 44%. Hence, our current findings demonstrate that caspase-independent, AIF-mediated signaling pathways significantly contribute to post-traumatic neuronal cell death and may therefore represent novel therapeutic targets for the treatment of TBI.
Collapse
Affiliation(s)
- Jennifer E Slemmer
- Department of Biology, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Ghosh U, Bhattacharyya NP. Induction of apoptosis by the inhibitors of poly(ADP-ribose)polymerase in HeLa cells. Mol Cell Biochem 2008; 320:15-23. [PMID: 18695944 DOI: 10.1007/s11010-008-9894-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 07/24/2008] [Indexed: 02/02/2023]
Abstract
To investigate the role of poly(ADP-ribose)polymerase (PARP) in the physiological condition of cell growth, we studied the ability of PARP inhibitors to induce apoptosis. Benzamide (BA) and 4-amino-1,8-naphthalimide (NAP), two well-known inhibitors of PARP, treatment increased nuclear fragmentation and caspase-3 activity in HeLa (Human cervical cancer cell line) cells. The increase of cellular NAD(+) level was observed in HeLa cells treated with BA in comparison with untreated control cells. For unrevealing the specific PARP family member responsible for such induction of apoptosis we knocked down and over-expressed PARP-1 gene in HeLa cells. PARP-1 knock down cells were sensitive to BA induced nuclear fragmentation and caspase-3 activation while exogenous expression of PARP-1 rendered cells resistant to BA induced apoptosis. This result indicated that inhibition of PARP-1 resulted in induction of apoptosis.
Collapse
Affiliation(s)
- Utpal Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India.
| | | |
Collapse
|
194
|
Jin G, Inoue M, Hayashi T, Deguchi K, Nagotani S, Zhang H, Wang X, Shoji M, Hasegawa M, Abe K. Sendai virus-mediated gene transfer of GDNF reduces AIF translocation and ameliorates ischemic cerebral injury. Neurol Res 2008; 30:731-9. [PMID: 18593521 DOI: 10.1179/174313208x305418] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The therapeutic effect of a novel RNA viral vector, Sendai virus (SeV)-mediated glial cell line-derived neurotrophic factor (GDNF) gene (SeV/GDNF), on the infarct volume, was investigated after 90 minutes of transient middle cerebral artery occlusion (tMCAO) in rats with relation to nuclear translocation of apoptosis inducing factor (AIF). The topical administration of SeV/GDNF induced high level expression of GDNF protein, which effectively reduced the infarct volume when administrated 0 and 1 hours as well after the reperfusion. Twenty-four hours after ischemia, the obvious nuclear translocation of AIF was found in neurons of peri-infarct area, which significantly reduced with administration of SeV/GDNF 0 or 1 hour after reperfusion, as well as the number of TUNEL positive cells. These results demonstrate that SeV vector-mediated gene transfer of GDNF effectively reduced ischemic infarct volume after tMCAO and extended the therapeutic time window compared with previous viral vectors, and that promoting neuronal survival of GDNF might be related to the reduction of AIF nuclear translocation, indicating the high therapeutic potency of SeV/GDNF for cerebral ischemia.
Collapse
Affiliation(s)
- Guang Jin
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
CITED2 signals through peroxisome proliferator-activated receptor-gamma to regulate death of cortical neurons after DNA damage. J Neurosci 2008; 28:5559-69. [PMID: 18495890 DOI: 10.1523/jneurosci.1014-08.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA damage is an important initiator of neuronal apoptosis and activates signaling events not yet fully defined. Using the camptothecin-induced DNA damage model in neurons, we previously showed that cyclin D1-associated cell cycle cyclin-dependent kinases (Cdks) (Cdk4/6) and p53 activation are two major events leading to activation of the mitochondrial apoptotic pathway. With gene array analyses, we detected upregulation of Cited2, a CBP (cAMP response element-binding protein-binding protein)/p300 interacting transactivator, in response to DNA damage. This upregulation was confirmed by reverse transcription-PCR and Western blot. CITED2 was functionally important because CITED2 overexpression promotes death, whereas CITED2 deficiency protects. Cited2 upregulation is upstream of the mitochondrial death pathway (BAX, Apaf1, or cytochrome c release) and appears to be independent of p53. However, inhibition of the Cdk4 blocked Cited2 induction. The Cited2 prodeath mechanism does not involve Bmi-1 or p53. Instead, Cited2 activates peroxisome proliferator-activated receptor-gamma (PPARgamma), an activity that we demonstrate is critical for DNA damage-induced death. These results define a novel neuronal prodeath pathway in which Cdk4-mediated regulation of Cited2 activates PPARgamma and consequently caspase.
Collapse
|
196
|
Vaishnav RA, Getchell ML, Huang L, Hersh MA, Stromberg AJ, Getchell TV. Cellular and molecular characterization of oxidative stress in olfactory epithelium of Harlequin mutant mouse. J Neurosci Res 2008; 86:165-82. [PMID: 17868149 DOI: 10.1002/jnr.21464] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oxidative stress in the olfactory system is a major factor associated with age-related olfactory impairment, although the mechanisms by which this occurs are not completely understood. The Harlequin mutant mouse (Hq/Y), which carries an X-linked recessive mutation in the Aifm1 gene, is a model of progressive oxidative stress-induced neurodegeneration in the cerebellum and retina. To determine whether the Hq/Y mutant mouse is a suitable model of oxidative stress-associated olfactory aging, we investigated cellular and molecular changes in the olfactory epithelium (OE) and olfactory bulb (OB) of 6-month-old male Hq/Y mice compared to those in sex-matched littermate controls (+/Y) and in age- and sex-matched C57BL/6 mice. Immunoreactivity for apoptosis-inducing factor, the protein product of Aifm1, was localized in mature olfactory sensory neurons (mOSNs) in +/Y mice but was rarely detected in Hq/Y mice. Hq/Y mice also exhibited increased lipofuscin autofluorescence and increased immunoreactivity for an oxidative DNA/RNA damage marker in mOSNs and in mitral/tufted cells in the OB and an increased number of cleaved caspase-3 immunoreactive apoptotic cells in the OE. Microarray analysis demonstrated that Aifm1 expression was down-regulated by 80% in the OE of Hq/Y mice compared to that in +/Y mice. Most significantly, regulated genes were classified into functional categories of cell signaling/apoptosis/cell cycle, oxidative stress/aging, and cytoskeleton/extracellular matrix/transport-associated. Analysis with EASE software indicated that the functional categories significantly overrepresented in Hq/Y mice included up-regulated mitochondrial genes and down-regulated cytoskeletal organization- and neurogenesis-related genes. Our results strongly support the Hq/Y mutant mouse being a novel model for mechanistic studies of oxidative stress-associated olfactory aging.
Collapse
Affiliation(s)
- Radhika A Vaishnav
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | | | | | | | | | | |
Collapse
|
197
|
Liang Q, Li W, Zhou B. Caspase-independent apoptosis in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1311-9. [PMID: 18358844 DOI: 10.1016/j.bbamcr.2008.02.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 01/31/2008] [Accepted: 02/20/2008] [Indexed: 12/31/2022]
Abstract
Apoptosis is a highly regulated cellular suicide program crucial for metazoan development. Yeast counterparts of central metazoan apoptotic regulators, such as metacaspase Yca1p, have been identified. In spite of the importance of Yca1p in yeast apoptotic process, many other factors such as Aif1p, orthologs of EndoG, AMID and cyclophilin D play important roles in caspase-independent apoptotic pathways. This review summarized recent progress about studies of various intrinsic and extrinsic apoptotic stimuli that may induce yeast cell death via caspase-independent apoptosis.
Collapse
Affiliation(s)
- Qiuli Liang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | |
Collapse
|
198
|
The molecular archaeology of a mitochondrial death effector: AIF in Drosophila. Cell Death Differ 2008; 15:1009-18. [PMID: 18309327 DOI: 10.1038/cdd.2008.24] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Apoptosis-inducing factor (AIF) is a phylogenetically conserved redox-active flavoprotein that contributes to cell death and oxidative phosphorylation in Saccharomyces cerevisiae, Caenorhabditis elegans, mouse and humans. AIF has been characterized as a caspase-independent death effector that is activated by its translocation from mitochondria to the cytosol and nucleus. Here, we report the molecular characterization of AIF in Drosophila melanogaster, a species in which most cell deaths occur in a caspase-dependent manner. Interestingly, knockout of zygotic D. melanogaster AIF (DmAIF) expression using gene targeting resulted in decreased embryonic cell death and the persistence of differentiated neuronal cells at late embryonic stages. Although knockout embryos hatch, they undergo growth arrest at early larval stages, accompanied by mitochondrial respiratory dysfunction. Transgenic expression of DmAIF misdirected to the extramitochondrial compartment (DeltaN-DmAIF), but not wild-type DmAIF, triggered ectopic caspase activation and cell death. DeltaN-DmAIF-induced death was not blocked by removal of caspase activator Dark or transgenic expression of baculoviral caspase inhibitor p35, but was partially inhibited by Diap1 overexpression. Knockdown studies revealed that DeltaN-DmAIF interacts genetically with the redox protein thioredoxin-2. In conclusion, we show that Drosophila AIF is a mitochondrial effector of cell death that plays roles in developmentally regulated cell death and normal mitochondrial function.
Collapse
|
199
|
Persistent mitochondrial dysfunction and oxidative stress hinder neuronal cell recovery from reversible proteasome inhibition. Apoptosis 2008; 13:588-99. [DOI: 10.1007/s10495-008-0182-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
200
|
Developing postmitotic mammalian neurons in vivo lacking Apaf-1 undergo programmed cell death by a caspase-independent, nonapoptotic pathway involving autophagy. J Neurosci 2008; 28:1490-7. [PMID: 18256270 DOI: 10.1523/jneurosci.4575-07.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies have shown that caspases and Apaf-1 are required for the normal programmed cell death (PCD) in vivo of immature postmitotic neurons and mitotically active neuronal precursor cells. In contrast, caspase activity is not necessary for the normal PCD of more mature postmitotic neurons that are establishing synaptic connections. Although normally these cells use caspases for PCD, in the absence of caspase activity these neurons undergo a distinct nonapoptotic type of degeneration. We examined the survival of these more mature postmitotic neuronal populations in mice in which Apaf-1 has been genetically deleted and find that they exhibit quantitatively normal PCD of developing postmitotic neurons. We next characterized the morphological mode of PCD in these mice and show that the neurons degenerate by a caspase-independent, nonapoptotic pathway that involves autophagy. However, autophagy does not appear to be involved in the normal PCD of postmitotic neurons in which caspases and Apaf-1 are present and functional because quantitatively normal neuronal PCD occurred in the absence of a key gene required for autophagy (ATG7). Finally, we examined the possible role of another caspase-independent type of neuronal PCD involving the apoptosis-inducing factor (AIF). Mice deficient in AIF also exhibit quantitatively normal PCD of postmitotic neurons after caspase inhibition. Together, these data indicate that, when key components of the type 1 apoptotic pathway (i.e., caspases and Apaf-1) are perturbed in vivo, developing postmitotic neurons nonetheless undergo quantitatively normal PCD by a caspase-independent pathway involving autophagy and not requiring AIF.
Collapse
|