151
|
Hayashi Y, Zhang Y, Yokota A, Yan X, Liu J, Choi K, Li B, Sashida G, Peng Y, Xu Z, Huang R, Zhang L, Freudiger GM, Wang J, Dong Y, Zhou Y, Wang J, Wu L, Bu J, Chen A, Zhao X, Sun X, Chetal K, Olsson A, Watanabe M, Romick-Rosendale LE, Harada H, Shih LY, Tse W, Bridges JP, Caligiuri MA, Huang T, Zheng Y, Witte DP, Wang QF, Qu CK, Salomonis N, Grimes HL, Nimer SD, Xiao Z, Huang G. Pathobiological Pseudohypoxia as a Putative Mechanism Underlying Myelodysplastic Syndromes. Cancer Discov 2018; 8:1438-1457. [PMID: 30139811 DOI: 10.1158/2159-8290.cd-17-1203] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 06/26/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022]
Abstract
Myelodysplastic syndromes (MDS) are heterogeneous hematopoietic disorders that are incurable with conventional therapy. Their incidence is increasing with global population aging. Although many genetic, epigenetic, splicing, and metabolic aberrations have been identified in patients with MDS, their clinical features are quite similar. Here, we show that hypoxia-independent activation of hypoxia-inducible factor 1α (HIF1A) signaling is both necessary and sufficient to induce dysplastic and cytopenic MDS phenotypes. The HIF1A transcriptional signature is generally activated in MDS patient bone marrow stem/progenitors. Major MDS-associated mutations (Dnmt3a, Tet2, Asxl1, Runx1, and Mll1) activate the HIF1A signature. Although inducible activation of HIF1A signaling in hematopoietic cells is sufficient to induce MDS phenotypes, both genetic and chemical inhibition of HIF1A signaling rescues MDS phenotypes in a mouse model of MDS. These findings reveal HIF1A as a central pathobiologic mediator of MDS and as an effective therapeutic target for a broad spectrum of patients with MDS.Significance: We showed that dysregulation of HIF1A signaling could generate the clinically relevant diversity of MDS phenotypes by functioning as a signaling funnel for MDS driver mutations. This could resolve the disconnection between genotypes and phenotypes and provide a new clue as to how a variety of driver mutations cause common MDS phenotypes. Cancer Discov; 8(11); 1438-57. ©2018 AACR. See related commentary by Chen and Steidl, p. 1355 This article is highlighted in the In This Issue feature, p. 1333.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yue Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Asumi Yokota
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xiaomei Yan
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jinqin Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kwangmin Choi
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Bing Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Goro Sashida
- International Research Center for Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Yanyan Peng
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Zefeng Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Rui Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lulu Zhang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - George M Freudiger
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jingya Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yunzhu Dong
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yile Zhou
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jieyu Wang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lingyun Wu
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Hematology, Sixth Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Jiachen Bu
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Aili Chen
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xinghui Zhao
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xiujuan Sun
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andre Olsson
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Miki Watanabe
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lindsey E Romick-Rosendale
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hironori Harada
- Laboratory of Oncology, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Lee-Yung Shih
- Department of Hematology and Oncology, Chang Gung Memorial Hospital-Linkou and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - William Tse
- James Graham Brown Cancer Center, University of Louisville Hospital, Louisville, Kentucky
| | - James P Bridges
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yi Zheng
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - David P Witte
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Qian-Fei Wang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Cheng-Kui Qu
- Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - H Leighton Grimes
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Gang Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio. .,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
152
|
Madan V, Han L, Hattori N, Teoh WW, Mayakonda A, Sun QY, Ding LW, Nordin HBM, Lim SL, Shyamsunder P, Dakle P, Sundaresan J, Doan NB, Sanada M, Sato-Otsubo A, Meggendorfer M, Yang H, Said JW, Ogawa S, Haferlach T, Liang DC, Shih LY, Nakamaki T, Wang QT, Koeffler HP. ASXL2 regulates hematopoiesis in mice and its deficiency promotes myeloid expansion. Haematologica 2018; 103:1980-1990. [PMID: 30093396 PMCID: PMC6269306 DOI: 10.3324/haematol.2018.189928] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
Chromosomal translocation t(8;21)(q22;q22) which leads to the generation of oncogenic RUNX1-RUNX1T1 (AML1-ETO) fusion is observed in approximately 10% of acute myelogenous leukemia (AML). To identify somatic mutations that co-operate with t(8;21)-driven leukemia, we performed whole and targeted exome sequencing of an Asian cohort at diagnosis and relapse. We identified high frequency of truncating alterations in ASXL2 along with recurrent mutations of KIT, TET2, MGA, FLT3, and DHX15 in this subtype of AML. To investigate in depth the role of ASXL2 in normal hematopoiesis, we utilized a mouse model of ASXL2 deficiency. Loss of ASXL2 caused progressive hematopoietic defects characterized by myeloid hyperplasia, splenomegaly, extramedullary hematopoiesis, and poor reconstitution ability in transplantation models. Parallel analyses of young and >1-year old Asxl2-deficient mice revealed age-dependent perturbations affecting, not only myeloid and erythroid differentiation, but also maturation of lymphoid cells. Overall, these findings establish a critical role for ASXL2 in maintaining steady state hematopoiesis, and provide insights into how its loss primes the expansion of myeloid cells.
Collapse
Affiliation(s)
- Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore
| | - Lin Han
- Cancer Science Institute of Singapore, National University of Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
| | - Norimichi Hattori
- Cancer Science Institute of Singapore, National University of Singapore .,Division of Hematology, Department of Medicine, School of Medicine, Showa University, Shinagawa-Ku, Tokyo, Japan
| | - Weoi Woon Teoh
- Cancer Science Institute of Singapore, National University of Singapore
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore
| | - Qiao-Yang Sun
- Cancer Science Institute of Singapore, National University of Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore
| | | | - Su Lin Lim
- Cancer Science Institute of Singapore, National University of Singapore
| | | | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore
| | - Janani Sundaresan
- Cancer Science Institute of Singapore, National University of Singapore
| | - Ngan B Doan
- Department of Pathology and Laboratory Medicine, Santa Monica-University of California-Los Angeles Medical Center, Los Angeles, CA, USA
| | - Masashi Sanada
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Japan.,Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Aiko Sato-Otsubo
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | | | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore
| | - Jonathan W Said
- Department of Pathology and Laboratory Medicine, Santa Monica-University of California-Los Angeles Medical Center, Los Angeles, CA, USA
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | | | - Der-Cherng Liang
- Division of Pediatric Hematology-Oncology, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Tsuyoshi Nakamaki
- Division of Hematology, Department of Medicine, School of Medicine, Showa University, Shinagawa-Ku, Tokyo, Japan
| | - Q Tian Wang
- Department of Biological Sciences, University of Illinois at Chicago, IL, USA
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore.,Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA.,Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Hospital, Singapore
| |
Collapse
|
153
|
Abstract
Acute myeloid leukemia (AML) is a clinically and genetically heterogeneous disease that has a poor prognosis. Recent advances in genomics and molecular biology have led to a greatly improved understanding of the disease. Until 2017, there had been no new drugs approved for AML in decades. Here, we review novel drug targets in AML with a focus on epigenetic-targeted therapies in pre-clinical and clinical development as well as the recent new drug approvals.
Collapse
Affiliation(s)
- Justin Watts
- Sylvester Comprehensive Cancer Center and Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Stephen Nimer
- Sylvester Comprehensive Cancer Center and Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
154
|
Heuser M, Yun H, Thol F. Epigenetics in myelodysplastic syndromes. Semin Cancer Biol 2018; 51:170-179. [PMID: 28778402 PMCID: PMC7116652 DOI: 10.1016/j.semcancer.2017.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
Epigenetic regulators are the largest group of genes mutated in MDS patients. Most mutated genes belong to one of three groups of genes with normal functions in DNA methylation, in H3K27 methylation/acetylation or in H3K4 methylation. Mutations in the majority of epigenetic regulators disrupt their normal function and induce a loss-of-function phenotype. The transcriptional consequences are often failure to repress differentiation programs and upregulation of self-renewal pathways. However, the mechanisms how different epigenetic regulators result in similar transcriptional consequences are not well understood. Hypomethylating agents are active in higher risk MDS patients, but their efficacy does not correlate with mutations in epigenetic regulators and the median duration of hematologic response is limited to 10-13 months. Inhibitors of histone deacetylases (HDAC) yielded disappointing results so far, questioning this approach in MDS patients. We review the clinical relevance of epigenetic mutations in MDS, discuss their functional consequences and highlight the role of epigenetic therapies in this difficult to treat disease.
Collapse
Affiliation(s)
- Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
| | - Haiyang Yun
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrooke's Hospital, UK; Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
155
|
Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis. Nat Commun 2018; 9:2733. [PMID: 30013160 PMCID: PMC6048047 DOI: 10.1038/s41467-018-05085-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/13/2018] [Indexed: 12/27/2022] Open
Abstract
ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) and BAP1 in promoting myeloid leukaemogenesis. BAP1 expression results in increased monoubiquitination of ASXL1-MT, which in turn increases the catalytic function of BAP1. This hyperactive ASXL1-MT/BAP1 complex promotes aberrant myeloid differentiation of haematopoietic progenitor cells and accelerates RUNX1-ETO-driven leukaemogenesis. Mechanistically, this complex induces upregulation of posterior HOXA genes and IRF8 through removal of H2AK119 ubiquitination. Importantly, BAP1 depletion inhibits posterior HOXA gene expression and leukaemogenicity of ASXL1-MT-expressing myeloid leukemia cells. Furthermore, BAP1 is also required for the growth of MLL-fusion leukemia cells with posterior HOXA gene dysregulation. These data indicate that BAP1, which has long been considered a tumor suppressor, in fact plays tumor-promoting roles in myeloid neoplasms. ASXL1 gene is often mutated in myeloid malignancies. Here, the authors show that mutant ASXL1 and BAP1 are in a positive feedback loop such that BAP1 induces monoubiquitination of mutant ASXL1, which in turn enhances BAP1 activity to potentiate myeloid transformation via HOXA clusters and IRF8.
Collapse
|
156
|
Uni M, Masamoto Y, Sato T, Kamikubo Y, Arai S, Hara E, Kurokawa M. Modeling ASXL1 mutation revealed impaired hematopoiesis caused by derepression of p16Ink4a through aberrant PRC1-mediated histone modification. Leukemia 2018; 33:191-204. [PMID: 29967380 DOI: 10.1038/s41375-018-0198-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/19/2018] [Accepted: 06/07/2018] [Indexed: 12/20/2022]
Abstract
In spite of distinct clinical importance, the molecular mechanisms how Additional sex combs-like 1 (ASXL1) mutation contributes to the pathogenesis of premalignant conditions are largely unknown. Here, with newly generated knock-in mice, we investigated the biological effects of the mutant. Asxl1G643fs heterozygous (Asxl1G643fs/+) mice developed phenotypes recapitulating human low-risk myelodysplastic syndromes (MDS), and some of them developed MDS/myeloproliferative neoplasm-like disease after long latency. H2AK119ub1 level around the promoter region of p16Ink4a was significantly decreased in Asxl1G643fs/+ hematopoietic stem cells (HSC), suggesting perturbation of Bmi1-driven H2AK119ub1 histone modification by mutated Asxl1. The mutant form of ASXL1 had no ability to interact with BMI1 as opposed to wild-type ASXL1 protein. Restoration of HSC pool and amelioration of increased apoptosis in hematopoietic stem and progenitor cells were obtained from Asxl1G643fs/+ mice heterozygous for p16Ink4a. These results indicated that loss of protein interaction between Asxl1 mutant and Bmi1 affected the activity of PRC1, and subsequent derepression of p16Ink4a by aberrant histone ubiquitination could induce cellular senescence, resulting in low-risk MDS-like phenotypes in Asxl1G643fs/+ mice. This model provides a useful platform to unveil the molecular basis for hematological disorders induced by ASXL1 mutation and to develop therapeutic strategies for these patients.
Collapse
Affiliation(s)
- Masahiro Uni
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Transfusion Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Yosuke Masamoto
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Transfusion Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomohiko Sato
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Transfusion Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Yasuhiko Kamikubo
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunya Arai
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiji Hara
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
157
|
Nagase R, Inoue D, Pastore A, Fujino T, Hou HA, Yamasaki N, Goyama S, Saika M, Kanai A, Sera Y, Horikawa S, Ota Y, Asada S, Hayashi Y, Kawabata KC, Takeda R, Tien HF, Honda H, Abdel-Wahab O, Kitamura T. Expression of mutant Asxl1 perturbs hematopoiesis and promotes susceptibility to leukemic transformation. J Exp Med 2018; 215:1729-1747. [PMID: 29643185 PMCID: PMC5987913 DOI: 10.1084/jem.20171151] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/24/2017] [Accepted: 03/01/2018] [Indexed: 01/11/2023] Open
Abstract
Nagase and Inoue et al. generated a novel Asxl1 mutant mouse model to mimic clonal hematopoiesis and myelodysplastic syndromes caused by ASXL1 mutations and elucidated the effects of mutant versus wild-type ASXL1 on hematopoiesis, gene expression, and chromatin state. Additional sex combs like 1 (ASXL1) is frequently mutated in myeloid malignancies and clonal hematopoiesis of indeterminate potential (CHIP). Although loss of ASXL1 promotes hematopoietic transformation, there is growing evidence that ASXL1 mutations might confer an alteration of function. In this study, we identify that physiological expression of a C-terminal truncated Asxl1 mutant in vivo using conditional knock-in (KI) results in myeloid skewing, age-dependent anemia, thrombocytosis, and morphological dysplasia. Although expression of mutant Asxl1 altered the functions of hematopoietic stem cells (HSCs), it maintained their survival in competitive transplantation assays and increased susceptibility to leukemic transformation by co-occurring RUNX1 mutation or viral insertional mutagenesis. KI mice displayed substantial reductions in H3K4me3 and H2AK119Ub without significant reductions in H3K27me3, distinct from the effects of Asxl1 loss. Chromatin immunoprecipitation followed by next-generation sequencing analysis demonstrated opposing effects of wild-type and mutant Asxl1 on H3K4me3. These findings reveal that ASXL1 mutations confer HSCs with an altered epigenome and increase susceptibility for leukemic transformation, presenting a novel model for CHIP.
Collapse
Affiliation(s)
- Reina Nagase
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daichi Inoue
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan .,Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Alessandro Pastore
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Norimasa Yamasaki
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Makoto Saika
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akinori Kanai
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasuyuki Sera
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Sayuri Horikawa
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasunori Ota
- Department of Pathology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Asada
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasutaka Hayashi
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kimihito Cojin Kawabata
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Reina Takeda
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hiroaki Honda
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
158
|
Reduced BAP1 activity prevents ASXL1 truncation-driven myeloid malignancy in vivo. Leukemia 2018; 32:1834-1837. [PMID: 29743720 DOI: 10.1038/s41375-018-0126-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/02/2018] [Accepted: 03/20/2018] [Indexed: 01/10/2023]
|
159
|
Setd2 deficiency impairs hematopoietic stem cell self-renewal and causes malignant transformation. Cell Res 2018. [PMID: 29531312 DOI: 10.1038/s41422-018-0015-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The histone H3 lysine 36 methyltransferase SETD2 is frequently mutated in various cancers, including leukemia. However, there has not been any functional model to show the contribution of SETD2 in hematopoiesis or the causal role of SETD2 mutation in tumorigenesis. In this study, using a conditional Setd2 knockout mouse model, we show that Setd2 deficiency skews hematopoietic differentiation and reduces the number of multipotent progenitors; although the number of phenotypic hematopoietic stem cells (HSCs) in Setd2-deleted mice is unchanged, functional assays, including serial BM transplantation, reveal that the self-renewal and competitiveness of HSCs are impaired. Intriguingly, Setd2-deleted HSCs, through a latency period, can acquire abilities to overcome the growth disadvantage and eventually give rise to hematopoietic malignancy characteristic of myelodysplastic syndrome. Gene expression profile of Setd2-deleted hematopoietic stem/progenitor cells (HSPCs) partially resembles that of Dnmt3a/Tet2 double knockout HSPCs, showing activation of the erythroid transcription factor Klf1-related pathway, which plays an important role in hematopoietic malignant transformation. Setd2 deficiency also induces DNA replication stress in HSCs, as reflected by an activated E2F gene regulatory network and repressed expression of the ribonucleotide reductase subunit Rrm2b, which results in proliferation and cell cycle abnormalities and genomic instability, allowing accumulation of secondary mutation(s) that synergistically contributes to tumorigenesis. Thus, our results demonstrate that Setd2 is required for HSC self-renewal, and provide evidence supporting the causal role of Setd2 deficiency in tumorigenesis. The underlying mechanism shall advance our understanding of epigenetic regulation of cancer and provide potential new therapeutic targets.
Collapse
|
160
|
Inoue D, Fujino T, Sheridan P, Zhang YZ, Nagase R, Horikawa S, Li Z, Matsui H, Kanai A, Saika M, Yamaguchi R, Kozuka-Hata H, Kawabata KC, Yokoyama A, Goyama S, Inaba T, Imoto S, Miyano S, Xu M, Yang FC, Oyama M, Kitamura T. A novel ASXL1-OGT axis plays roles in H3K4 methylation and tumor suppression in myeloid malignancies. Leukemia 2018; 32:1327-1337. [PMID: 29556021 DOI: 10.1038/s41375-018-0083-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 01/05/2018] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
ASXL1 plays key roles in epigenetic regulation of gene expression through methylation of histone H3K27, and disruption of ASXL1 drives myeloid malignancies, at least in part, via derepression of posterior HOXA loci. However, little is known about the identity of proteins that interact with ASXL1 and about the functions of ASXL1 in modulation of the active histone mark, such as H3K4 methylation. In this study, we demonstrate that ASXL1 is a part of a protein complex containing HCFC1 and OGT; OGT directly stabilizes ASXL1 by O-GlcNAcylation. Disruption of this novel axis inhibited myeloid differentiation and H3K4 methylation as well as H2B glycosylation and impaired transcription of genes involved in myeloid differentiation, splicing, and ribosomal functions; this has implications for myelodysplastic syndrome (MDS) pathogenesis, as each of these processes are perturbed in the disease. This axis is responsible for tumor suppression in the myeloid compartment, as reactivation of OGT induced myeloid differentiation and reduced leukemogenecity both in vivo and in vitro. Our data also suggest that MLL5, a known HCFC1/OGT-interacting protein, is responsible for gene activation by the ASXL1-OGT axis. These data shed light on the novel roles of the ASXL1-OGT axis in H3K4 methylation and activation of transcription.
Collapse
Affiliation(s)
- Daichi Inoue
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan.
| | - Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Paul Sheridan
- Laboratory of Genome Data Base, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Yao-Zhong Zhang
- Laboratory of Genome Data Base, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Reina Nagase
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Sayuri Horikawa
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Zaomin Li
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 8608556, Japan
| | - Akinori Kanai
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 7348553, Japan
| | - Makoto Saika
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Rui Yamaguchi
- Laboratory of Genome Data Base, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Kimihito Cojin Kawabata
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 7348553, Japan
| | - Seiya Imoto
- Laboratory of Genome Data Base, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Satoru Miyano
- Laboratory of Genome Data Base, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Mingjiang Xu
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Feng-Chun Yang
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan.
| |
Collapse
|
161
|
Wu ZJ, Zhao X, Banaszak LG, Gutierrez-Rodrigues F, Keyvanfar K, Gao SG, Quinones Raffo D, Kajigaya S, Young NS. CRISPR/Cas9-mediated ASXL1 mutations in U937 cells disrupt myeloid differentiation. Int J Oncol 2018. [PMID: 29532865 PMCID: PMC5843401 DOI: 10.3892/ijo.2018.4290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Additional sex combs-like 1 (ASXL1) is a well‑known tumor suppressor gene and epigenetic modifier. ASXL1 mutations are frequent in myeloid malignances; these mutations are risk factors for the development of myelodysplasia and also appear as small clones during normal aging. ASXL1 appears to act as an epigenetic regulator of cell survival and myeloid differentiation; however, the molecular mechanisms underlying the malignant transformation of cells with ASXL1 mutations are not well defined. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genome editing, heterozygous and homozygous ASXL1 mutations were introduced into human U937 leukemic cells. Comparable cell growth and cell cycle progression were observed between wild-type (WT) and ASXL1-mutated U937 cells. Drug-induced cytotoxicity, as measured by growth inhibition and apoptosis in the presence of the cell-cycle active agent 5-fluorouracil, was variable among the mutated clones but was not significantly different from WT cells. In addition, ASXL1-mutated cells exhibited defects in monocyte/macrophage differentiation. Transcriptome analysis revealed that ASXL1 mutations altered differentiation of U937 cells by disturbing genes involved in myeloid differentiation, including cytochrome B-245 β chain and C-type lectin domain family 5, member A. Dysregulation of numerous gene sets associated with cell death and survival were also observed in ASXL1-mutated cells. These data provide evidence regarding the underlying molecular mechanisms induced by mutated ASXL1 in leukemogenesis.
Collapse
Affiliation(s)
- Zhi-Jie Wu
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Xin Zhao
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Lauren G Banaszak
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Fernanda Gutierrez-Rodrigues
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Keyvan Keyvanfar
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Shou-Guo Gao
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Diego Quinones Raffo
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| |
Collapse
|
162
|
Liu L, Wan X, Zhou P, Zhou X, Zhang W, Hui X, Yuan X, Ding X, Zhu R, Meng G, Xiao H, Ma F, Huang H, Song X, Zhou B, Xiong S, Zhang Y. The chromatin remodeling subunit Baf200 promotes normal hematopoiesis and inhibits leukemogenesis. J Hematol Oncol 2018; 11:27. [PMID: 29482581 PMCID: PMC5828314 DOI: 10.1186/s13045-018-0567-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/05/2018] [Indexed: 11/10/2022] Open
Abstract
Background Adenosine triphosphate (ATP)-dependent chromatin remodeling SWI/SNF-like BAF and PBAF complexes have been implicated in the regulation of stem cell function and cancers. Several subunits of BAF or PBAF, including BRG1, BAF53a, BAF45a, BAF180, and BAF250a, are known to be involved in hematopoiesis. Baf200, a subunit of PBAF complex, plays a pivotal role in heart morphogenesis and coronary artery angiogenesis. However, little is known on the importance of Baf200 in normal and malignant hematopoiesis. Methods Utilizing Tie2-Cre-, Vav-iCre-, and Mx1-Cre-mediated Baf200 gene deletion combined with fetal liver/bone marrow transplantation, we investigated the function of Baf200 in fetal and adult hematopoiesis. In addition, a mouse model of MLL-AF9-driven leukemogenesis was used to study the role of Baf200 in malignant hematopoiesis. We also explored the potential mechanism by using RNA-seq, RT-qPCR, cell cycle, and apoptosis assays. Results Tie2-Cre-mediated loss of Baf200 causes perinatal death due to defective erythropoiesis and impaired hematopoietic stem cell expansion in the fetal liver. Vav-iCre-mediated loss of Baf200 causes only mild anemia and enhanced extramedullary hematopoiesis. Fetal liver hematopoietic stem cells from Tie2-Cre+, Baf200f/f or Vav-iCre+, Baf200f/f embryos and bone marrow hematopoietic stem cells from Vav-iCre+, Baf200f/f mice exhibited impaired long-term reconstitution potential in vivo. A cell-autonomous requirement of Baf200 for hematopoietic stem cell function was confirmed utilizing the interferon-inducible Mx1-Cre mouse strain. Transcriptomes analysis revealed that expression of several erythropoiesis- and hematopoiesis-associated genes were regulated by Baf200. In addition, loss of Baf200 in a mouse model of MLL-AF9-driven leukemogenesis accelerates the tumor burden and shortens the host survival. Conclusion Our current studies uncover critical roles of Baf200 in both normal and malignant hematopoiesis and provide a potential therapeutic target for suppressing the progression of leukemia without interfering with normal hematopoiesis. Electronic supplementary material The online version of this article (10.1186/s13045-018-0567-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lulu Liu
- Institute of Biology and Medical Sciences, Soochow University, No. 199 Ren'ai Rd, Suzhou, China.,Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China
| | - Xiaoling Wan
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peipei Zhou
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyuan Zhou
- University of Chinese Academy of Sciences, Beijing, China.,CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Xinhui Hui
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiujie Yuan
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodan Ding
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ruihong Zhu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangxun Meng
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Xiao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianmin Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Shanghai General Hospital, Shanghai, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China.
| | - Sidong Xiong
- Institute of Biology and Medical Sciences, Soochow University, No. 199 Ren'ai Rd, Suzhou, China.
| | - Yan Zhang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
163
|
Seiter K, Htun K, Baskind P, Liu Z. Acute myeloid leukemia in a father and son with a germline mutation of ASXL1. Biomark Res 2018; 6:7. [PMID: 29456859 PMCID: PMC5809979 DOI: 10.1186/s40364-018-0121-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/02/2018] [Indexed: 12/27/2022] Open
Abstract
Background Myelodysplastic syndromes and acute myeloid leukemia usually occur sporadically in older adults. More recently cases of familial acute myeloid leukemia and/or myelodysplastic syndrome have been reported. Case presentation Currently we report a father and son who both developed myelodysplastic syndrome that progressed to acute myeloid leukemia. Both patients were found to have the identical mutation of ASXL1 on nextgen sequencing of both hematologic and nonhematologic tissues. Conclusions These cases support the diagnosis of a germline mutation of ASXL1.
Collapse
Affiliation(s)
- Karen Seiter
- 1Department of Medicine, New York Medical College, Valhalla, USA
| | - Kyaw Htun
- 1Department of Medicine, New York Medical College, Valhalla, USA
| | - Paul Baskind
- 1Department of Medicine, New York Medical College, Valhalla, USA
| | - Zach Liu
- Emerge Laboratories, Suffern, USA
| |
Collapse
|
164
|
Loss of ASXL1 in the bone marrow niche dysregulates hematopoietic stem and progenitor cell fates. Cell Discov 2018; 4:4. [PMID: 29423272 PMCID: PMC5802628 DOI: 10.1038/s41421-017-0004-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/26/2022] Open
Abstract
Somatic or de novo mutations of Additional sex combs-like 1 (ASXL1) frequently occur in patients with myeloid malignancies or Bohring-Opitz syndrome, respectively. We have reported that global loss of Asxl1 leads to the development of myeloid malignancies and impairs bone marrow stromal cell (BMSC) fates in mice. However, the impact of Asxl1 deletion in the BM niche on hematopoiesis remains unclear. Here, we showed that BMSCs derived from chronic myelomonocytic leukemia patients had reduced expression of ASXL1, which impaired the maintaining cord blood CD34+ cell colony-forming capacity with a myeloid differentiation bias. Furthermore, Asxl1 deletion in the mouse BMSCs altered hematopoietic stem and progenitor cell (HSC/HPC) pool and a preferential myeloid lineage increment. Immunoprecipitation and ChIP-seq analyses demonstrated a novel interaction of ASXL1 with the core subunits of RNA polymerase II (RNAPII) complex. Convergent analyses of RNA-seq and ChIP-seq data revealed that loss of Asxl1 deregulated RNAPII transcriptional function and altered the expression of genes critical for HSC/HPC maintenance, such as Vcam1. Altogether, our study provides a mechanistic insight into the function of ASXL1 in the niche to maintain normal hematopoiesis; and ASXL1 alteration in, at least, a subset of the niche cells induces myeloid differentiation bias, thus, contributes the progression of myeloid malignancies.
Collapse
|
165
|
Yang H, Kurtenbach S, Guo Y, Lohse I, Durante MA, Li J, Li Z, Al-Ali H, Li L, Chen Z, Field MG, Zhang P, Chen S, Yamamoto S, Li Z, Zhou Y, Nimer SD, Harbour JW, Wahlestedt C, Xu M, Yang FC. Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies. Blood 2018; 131:328-341. [PMID: 29113963 PMCID: PMC5774208 DOI: 10.1182/blood-2017-06-789669] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/28/2017] [Indexed: 11/20/2022] Open
Abstract
Additional Sex Combs-Like 1 (ASXL1) is mutated at a high frequency in all forms of myeloid malignancies associated with poor prognosis. We generated a Vav1 promoter-driven Flag-Asxl1Y588X transgenic mouse model, Asxl1Y588X Tg, to express a truncated FLAG-ASXL1aa1-587 protein in the hematopoietic system. The Asxl1Y588X Tg mice had an enlarged hematopoietic stem cell (HSC) pool, shortened survival, and predisposition to a spectrum of myeloid malignancies, thereby recapitulating the characteristics of myeloid malignancy patients with ASXL1 mutations. ATAC- and RNA-sequencing analyses revealed that the ASXL1aa1-587 truncating protein expression results in more open chromatin in cKit+ cells compared with wild-type cells, accompanied by dysregulated expression of genes critical for HSC self-renewal and differentiation. Liquid chromatography-tandem mass spectrometry and coimmunoprecipitation experiments showed that ASXL1aa1-587 acquired an interaction with BRD4. An epigenetic drug screening demonstrated a hypersensitivity of Asxl1Y588X Tg bone marrow cells to BET bromodomain inhibitors. This study demonstrates that ASXL1aa1-587 plays a gain-of-function role in promoting myeloid malignancies. Our model provides a powerful platform to test therapeutic approaches of targeting the ASXL1 truncation mutations in myeloid malignancies.
Collapse
Affiliation(s)
- Hui Yang
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | | | - Ying Guo
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Ines Lohse
- Sylvester Comprehensive Cancer Center
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences
| | | | - Jianping Li
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Zhaomin Li
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Hassan Al-Ali
- Sylvester Comprehensive Cancer Center
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Peggy and Harold Katz Family Drug Discovery Center, and
| | - Lingxiao Li
- Sylvester Comprehensive Cancer Center
- Department of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL; and
| | - Zizhen Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Matthew G Field
- Sylvester Comprehensive Cancer Center
- Bascom Palmer Eye Institute
| | - Peng Zhang
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Shi Chen
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Shohei Yamamoto
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Zhuo Li
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
- Department of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL; and
| | - J William Harbour
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
- Bascom Palmer Eye Institute
| | - Claes Wahlestedt
- Sylvester Comprehensive Cancer Center
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center
- Department of Biochemistry and Molecular Biology
| |
Collapse
|
166
|
|
167
|
|
168
|
Megakaryocyte and polyploidization. Exp Hematol 2018; 57:1-13. [DOI: 10.1016/j.exphem.2017.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
|
169
|
Rossmann MP, Orkin SH, Chute JP. Hematopoietic Stem Cell Biology. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
170
|
Abstract
Animal models of erythropoiesis have been, and will continue to be, important tools for understanding molecular mechanisms underlying the development of this cell lineage and the pathophysiology associated with various human erythropoietic diseases. In this regard, the mouse is probably the most valuable animal model available to investigators. The physiology and short gestational period of mice make them ideal for studying developmental processes and modeling human diseases. These attributes, coupled with cutting-edge genetic tools such as transgenesis, gene knockouts, conditional gene knockouts, and genome editing, provide a significant resource to the research community to test a plethora of hypotheses. This review summarizes the mouse models available for studying a wide variety of erythroid-related questions, as well as the properties inherent in each one.
Collapse
|
171
|
Nieborowska-Skorska M, Maifrede S, Dasgupta Y, Sullivan K, Flis S, Le BV, Solecka M, Belyaeva EA, Kubovcakova L, Nawrocki M, Kirschner M, Zhao H, Prchal JT, Piwocka K, Moliterno AR, Wasik M, Koschmieder S, Green TR, Skoda RC, Skorski T. Ruxolitinib-induced defects in DNA repair cause sensitivity to PARP inhibitors in myeloproliferative neoplasms. Blood 2017; 130:2848-2859. [PMID: 29042365 PMCID: PMC5746670 DOI: 10.1182/blood-2017-05-784942] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) often carry JAK2(V617F), MPL(W515L), or CALR(del52) mutations. Current treatment options for MPNs include cytoreduction by hydroxyurea and JAK1/2 inhibition by ruxolitinib, both of which are not curative. We show here that cell lines expressing JAK2(V617F), MPL(W515L), or CALR(del52) accumulated reactive oxygen species-induced DNA double-strand breaks (DSBs) and were modestly sensitive to poly-ADP-ribose polymerase (PARP) inhibitors olaparib and BMN673. At the same time, primary MPN cell samples from individual patients displayed a high degree of variability in sensitivity to these drugs. Ruxolitinib inhibited 2 major DSB repair mechanisms, BRCA-mediated homologous recombination and DNA-dependent protein kinase-mediated nonhomologous end-joining, and, when combined with olaparib, caused abundant accumulation of toxic DSBs resulting in enhanced elimination of MPN primary cells, including the disease-initiating cells from the majority of patients. Moreover, the combination of BMN673, ruxolitinib, and hydroxyurea was highly effective in vivo against JAK2(V617F)+ murine MPN-like disease and also against JAK2(V617F)+, CALR(del52)+, and MPL(W515L)+ primary MPN xenografts. In conclusion, we postulate that ruxolitinib-induced deficiencies in DSB repair pathways sensitized MPN cells to synthetic lethality triggered by PARP inhibitors.
Collapse
Affiliation(s)
| | - Silvia Maifrede
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Yashodhara Dasgupta
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Katherine Sullivan
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Sylwia Flis
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
- Department of Pharmacology, National Medicines Institute, Warsaw, Poland
| | - Bac Viet Le
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Martyna Solecka
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Elizaveta A Belyaeva
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lucia Kubovcakova
- Department of Biomedicine, University Hospital Basel/University of Basel, Basel, Switzerland
| | - Morgan Nawrocki
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Martin Kirschner
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Huaqing Zhao
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Josef T Prchal
- School of Medicine, University of Utah, Salt Lake City, UT
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Alison R Moliterno
- Division of Hematology, Department of Medicine, School of Medicine, The Johns Hopkins University, Baltimore, MD; and
| | - Mariusz Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Tony R Green
- Cambridge Institute for Medical Research
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, and
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; and
| | - Radek C Skoda
- Department of Biomedicine, University Hospital Basel/University of Basel, Basel, Switzerland
| | - Tomasz Skorski
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
172
|
Nangalia J, Green AR. Myeloproliferative neoplasms: from origins to outcomes. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:470-479. [PMID: 29222295 PMCID: PMC6142568 DOI: 10.1182/asheducation-2017.1.470] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Substantial progress has been made in our understanding of the pathogenetic basis of myeloproliferative neoplasms. The discovery of mutations in JAK2 over a decade ago heralded a new age for patient care as a consequence of improved diagnosis and the development of therapeutic JAK inhibitors. The more recent identification of mutations in calreticulin brought with it a sense of completeness, with most patients with myeloproliferative neoplasm now having a biological basis for their excessive myeloproliferation. We are also beginning to understand the processes that lead to acquisition of somatic mutations and the factors that influence subsequent clonal expansion and emergence of disease. Extended genomic profiling has established a multitude of additional acquired mutations, particularly prevalent in myelofibrosis, where their presence carries prognostic implications. A major goal is to integrate genetic, clinical, and laboratory features to identify patients who share disease biology and clinical outcome, such that therapies, both existing and novel, can be better targeted.
Collapse
Affiliation(s)
- Jyoti Nangalia
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Anthony R. Green
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, United Kingdom; and
- Department of Haematology, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
173
|
Nangalia J, Green AR. Myeloproliferative neoplasms: from origins to outcomes. Blood 2017; 130:2475-2483. [PMID: 29212804 DOI: 10.1182/blood-2017-06-782037] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/06/2017] [Indexed: 01/06/2023] Open
Abstract
Substantial progress has been made in our understanding of the pathogenetic basis of myeloproliferative neoplasms. The discovery of mutations in JAK2 over a decade ago heralded a new age for patient care as a consequence of improved diagnosis and the development of therapeutic JAK inhibitors. The more recent identification of mutations in calreticulin brought with it a sense of completeness, with most patients with myeloproliferative neoplasm now having a biological basis for their excessive myeloproliferation. We are also beginning to understand the processes that lead to acquisition of somatic mutations and the factors that influence subsequent clonal expansion and emergence of disease. Extended genomic profiling has established a multitude of additional acquired mutations, particularly prevalent in myelofibrosis, where their presence carries prognostic implications. A major goal is to integrate genetic, clinical, and laboratory features to identify patients who share disease biology and clinical outcome, such that therapies, both existing and novel, can be better targeted.
Collapse
Affiliation(s)
- Jyoti Nangalia
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Anthony R Green
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, United Kingdom; and
- Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
174
|
Zhang L, Liu Y, Wang M, Wu Z, Li N, Zhang J, Yang C. EZH2-, CHD4-, and IDH-linked epigenetic perturbation and its association with survival in glioma patients. J Mol Cell Biol 2017; 9:477-488. [PMID: 29272522 PMCID: PMC5907834 DOI: 10.1093/jmcb/mjx056] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/12/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022] Open
Abstract
Glioma is a complex disease with limited treatment options. Recent advances have identified isocitrate dehydrogenase (IDH) mutations in up to 80% lower grade gliomas (LGG) and in 76% secondary glioblastomas (GBM). IDH mutations are also seen in 10%-20% of acute myeloid leukemia (AML). In AML, it was determined that mutations of IDH and other genes involving epigenetic regulations are early events, emerging in the pre-leukemic stem cells (pre-LSCs) stage, whereas mutations in genes propagating oncogenic signal are late events in leukemia. IDH mutations are also early events in glioma, occurring before TP53 mutation, 1p/19q deletion, etc. Despite these advances in glioma research, studies into other molecular alterations have lagged considerably. In this study, we analyzed currently available databases. We identified EZH2, KMT2C, and CHD4 as important genes in glioma in addition to the known gene IDH1/2. We also showed that genomic alterations of PIK3CA, CDKN2A, CDK4, FIP1L1, or FUBP1 collaborate with IDH mutations to negatively affect patients' survival in LGG. In LGG patients with TP53 mutations or IDH1/2 mutations, additional genomic alterations of EZH2, KMC2C, and CHD4 individually or in combination were associated with a markedly decreased disease-free survival than patients without such alterations. Alterations of EZH2, KMT2C, and CHD4 at genetic level or protein level could perturb epigenetic program, leading to malignant transformation in glioma. By reviewing current literature on both AML and glioma and performing bioinformatics analysis on available datasets, we developed a hypothetical model on the tumorigenesis from premalignant stem cells to glioma.
Collapse
Affiliation(s)
- Le Zhang
- College of Computer Science, Sichuan University, Chengdu, China
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Ying Liu
- The Vivian Smith Department of Neurosurgery, Center for Stem Cell and Regenerative Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mengning Wang
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Zhenhai Wu
- Department of neurosurgery, ShouGuang People’s Hospital, Shandong, China
| | - Na Li
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Jinsong Zhang
- Pharmacological & Physiological Science, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - Chuanwei Yang
- Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
175
|
Hilgendorf S, Vellenga E. Knockdown of TP53 in ASXL1 negative background rescues apoptotic phenotype of human hematopoietic stem and progenitor cells but without overt malignant transformation. Haematologica 2017; 103:e59-e62. [PMID: 29101206 DOI: 10.3324/haematol.2017.173922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Susan Hilgendorf
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Edo Vellenga
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, the Netherlands
| |
Collapse
|
176
|
Prognostic significance of ASXL1 mutation types and allele burden in myelofibrosis. Leukemia 2017; 32:837-839. [DOI: 10.1038/leu.2017.318] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
177
|
Dinan AM, Atkins JF, Firth AE. ASXL gain-of-function truncation mutants: defective and dysregulated forms of a natural ribosomal frameshifting product? Biol Direct 2017; 12:24. [PMID: 29037253 PMCID: PMC5644247 DOI: 10.1186/s13062-017-0195-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/04/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Programmed ribosomal frameshifting (PRF) is a gene expression mechanism which enables the translation of two N-terminally coincident, C-terminally distinct protein products from a single mRNA. Many viruses utilize PRF to control or regulate gene expression, but very few phylogenetically conserved examples are known in vertebrate genes. Additional sex combs-like (ASXL) genes 1 and 2 encode important epigenetic and transcriptional regulatory proteins that control the expression of homeotic genes during key developmental stages. Here we describe an ~150-codon overlapping ORF (termed TF) in ASXL1 and ASXL2 that, with few exceptions, is conserved throughout vertebrates. RESULTS Conservation of the TF ORF, strong suppression of synonymous site variation in the overlap region, and the completely conserved presence of an EH[N/S]Y motif (a known binding site for Host Cell Factor-1, HCF-1, an epigenetic regulatory factor), all indicate that TF is a protein-coding sequence. A highly conserved UCC_UUU_CGU sequence (identical to the known site of +1 ribosomal frameshifting for influenza virus PA-X expression) occurs at the 5' end of the region of enhanced synonymous site conservation in ASXL1. Similarly, a highly conserved RG_GUC_UCU sequence (identical to a known site of -2 ribosomal frameshifting for arterivirus nsp2TF expression) occurs at the 5' end of the region of enhanced synonymous site conservation in ASXL2. CONCLUSIONS Due to a lack of appropriate splice forms, or initiation sites, the most plausible mechanism for translation of the ASXL1 and 2 TF regions is ribosomal frameshifting, resulting in a transframe fusion of the N-terminal half of ASXL1 or 2 to the TF product, termed ASXL-TF. Truncation or frameshift mutants of ASXL are linked to myeloid malignancies and genetic diseases, such as Bohring-Opitz syndrome, likely at least in part as a result of gain-of-function or dominant-negative effects. Our hypothesis now indicates that these disease-associated mutant forms represent overexpressed defective versions of ASXL-TF. REVIEWERS This article was reviewed by Laurence Hurst and Eugene Koonin.
Collapse
Affiliation(s)
- Adam M Dinan
- Department of Pathology, Division of Virology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, T12 YT57, Cork, Ireland.,Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Andrew E Firth
- Department of Pathology, Division of Virology, University of Cambridge, Cambridge, CB2 1QP, UK.
| |
Collapse
|
178
|
Impact of DNA methylation programming on normal and pre-leukemic hematopoiesis. Semin Cancer Biol 2017; 51:89-100. [PMID: 28964938 DOI: 10.1016/j.semcancer.2017.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/30/2022]
Abstract
Epigenome regulation is a critical mechanism that governs cell identity, lineage specification and developmental cell fates. With the advent of low-input and single-cell technologies as well as sophisticated cell labeling techniques, our understanding of transcriptional and epigenetic regulation of hematopoiesis is currently undergoing dramatic changes. Increasingly, evidence suggests that the epigenome conformation acts as a critical decision-making mechanism that instructs self-renewal, differentiation and developmental fates of hematopoietic progenitor cells. When dysregulated, this leads to the evolution of disease states such as leukemia. Indeed, aberrations in DNA methylation, histone modifications and genome architecture are characteristic features of many hematopoietic neoplasms in which epigenetic enzymes are frequently mutated. Sequencing studies and characterization of the epigenetic landscape in lymphomas, leukemias and in aged healthy individuals with clonal hematopoiesis have been indispensible to identify epigenetic regulators that play a role in transformation or pre-disposition to hematopoietic malignancies. In this review, we outline the current view of the hematopoietic system and the epigenetic mechanisms regulating hematopoiesis under homeostatic conditions, with a particular focus on the role of DNA methylation in this process. We will also summarize the current knowledge on the mechanisms underlying dysregulated DNA methylation in hematologic malignancies and how this contributes to our understanding of the physiological functions of epigenetic regulators in hematopoiesis.
Collapse
|
179
|
Chen J, Luo Y, Hui H, Cai T, Huang H, Yang F, Feng J, Zhang J, Yan X. CD146 coordinates brain endothelial cell-pericyte communication for blood-brain barrier development. Proc Natl Acad Sci U S A 2017; 114:E7622-E7631. [PMID: 28827364 PMCID: PMC5594696 DOI: 10.1073/pnas.1710848114] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The blood-brain barrier (BBB) establishes a protective interface between the central neuronal system and peripheral blood circulation and is crucial for homeostasis of the CNS. BBB formation starts when the endothelial cells (ECs) invade the CNS and pericytes are recruited to the nascent vessels during embryogenesis. Despite the essential function of pericyte-EC interaction during BBB development, the molecular mechanisms coordinating the pericyte-EC behavior and communication remain incompletely understood. Here, we report a single cell receptor, CD146, that presents dynamic expression patterns in the cerebrovasculature at the stages of BBB induction and maturation, coordinates the interplay of ECs and pericytes, and orchestrates BBB development spatiotemporally. In mouse brain, CD146 is first expressed in the cerebrovascular ECs of immature capillaries without pericyte coverage; with increased coverage of pericytes, CD146 could only be detected in pericytes, but not in cerebrovascular ECs. Specific deletion of Cd146 in mice ECs resulted in reduced brain endothelial claudin-5 expression and BBB breakdown. By analyzing mice with specific deletion of Cd146 in pericytes, which have defects in pericyte coverage and BBB integrity, we demonstrate that CD146 functions as a coreceptor of PDGF receptor-β to mediate pericyte recruitment to cerebrovascular ECs. Moreover, we found that the attached pericytes in turn down-regulate endothelial CD146 by secreting TGF-β1 to promote further BBB maturation. These results reveal that the dynamic expression of CD146 controls the behavior of ECs and pericytes, thereby coordinating the formation of a mature and stable BBB.
Collapse
Affiliation(s)
- Jianan Chen
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongting Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Hui Hui
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Tanxi Cai
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongxin Huang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
180
|
Srivastava A, McGrath B, Bielas SL. Histone H2A Monoubiquitination in Neurodevelopmental Disorders. Trends Genet 2017; 33:566-578. [PMID: 28669576 PMCID: PMC5562288 DOI: 10.1016/j.tig.2017.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/05/2017] [Indexed: 11/21/2022]
Abstract
Covalent histone modifications play an essential role in gene regulation and cellular specification required for multicellular organism development. Monoubiquitination of histone H2A (H2AUb1) is a reversible transcriptionally repressive mark. Exchange of histone H2A monoubiquitination and deubiquitination reflects the succession of transcriptional profiles during development required to produce cellular diversity from pluripotent cells. Germ-line pathogenic variants in components of the H2AUb1 regulatory axis are being identified as the genetic basis of congenital neurodevelopmental disorders. Here, we review the human genetics findings coalescing on molecular mechanisms that alter the genome-wide distribution of this histone modification required for development.
Collapse
Affiliation(s)
- Anshika Srivastava
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Brian McGrath
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA; Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
181
|
Nielsen HM, Andersen CL, Westman M, Kristensen LS, Asmar F, Kruse TA, Thomassen M, Larsen TS, Skov V, Hansen LL, Bjerrum OW, Hasselbalch HC, Punj V, Grønbæk K. Epigenetic changes in myelofibrosis: Distinct methylation changes in the myeloid compartments and in cases with ASXL1 mutations. Sci Rep 2017; 7:6774. [PMID: 28754985 PMCID: PMC5533802 DOI: 10.1038/s41598-017-07057-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/26/2017] [Indexed: 02/07/2023] Open
Abstract
This is the first study to compare genome-wide DNA methylation profiles of sorted blood cells from myelofibrosis (MF) patients and healthy controls. We found that differentially methylated CpG sites located to genes involved in 'cancer' and 'embryonic development' in MF CD34+ cells, in 'inflammatory disease' in MF mononuclear cells, and in 'immunological diseases' in MF granulocytes. Only few differentially methylated CpG sites were common among the three cell populations. Mutations in the epigenetic regulators ASXL1 (47%) and TET2 (20%) were not associated with a specific DNA methylation pattern using an unsupervised approach. However, in a supervised analysis of ASXL1 mutated versus wild-type cases, differentially methylated CpG sites were enriched in regions marked by histone H3K4me1, histone H3K27me3, and the bivalent histone mark H3K27me3 + H3K4me3 in human CD34+ cells. Hypermethylation of selected CpG sites was confirmed in a separate validation cohort of 30 MF patients by pyrosequencing. Altogether, we show that individual MF cell populations have distinct differentially methylated genes relative to their normal counterparts, which likely contribute to the phenotypic characteristics of MF. Furthermore, differentially methylated CpG sites in ASXL1 mutated MF cases are found in regulatory regions that could be associated with aberrant gene expression of ASXL1 target genes.
Collapse
Affiliation(s)
- Helene Myrtue Nielsen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christen Lykkegaard Andersen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Hematology, Roskilde Hospital, Roskilde, Denmark
| | - Maj Westman
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Lasse Sommer Kristensen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Fazila Asmar
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Torben Arvid Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Vibe Skov
- Department of Hematology, Roskilde Hospital, Roskilde, Denmark
| | | | - Ole Weis Bjerrum
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Vasu Punj
- Division of Hematology, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark. .,Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
182
|
Nangalia J, Grinfeld J, Green AR. Pathogenesis of Myeloproliferative Disorders. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 11:101-26. [PMID: 27193452 DOI: 10.1146/annurev-pathol-012615-044454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myeloproliferative neoplasms (MPNs) are a set of chronic hematopoietic neoplasms with overlapping clinical and molecular features. Recent years have witnessed considerable advances in our understanding of their pathogenetic basis. Due to their protracted clinical course, the evolution to advanced hematological malignancies, and the accessibility of neoplastic tissue, the study of MPNs has provided a window into the earliest stages of tumorigenesis. With the discovery of mutations in CALR, the majority of MPN patients now bear an identifiable marker of clonal disease; however, the mechanism by which mutated CALR perturbs megakaryopoiesis is currently unresolved. We are beginning to understand better the role of JAK2(V617F) homozygosity, the function of comutations in epigenetic regulators and spliceosome components, and how these mutations cooperate with JAK2(V617F) to modulate MPN phenotype.
Collapse
Affiliation(s)
- Jyoti Nangalia
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom; .,Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| | - Jacob Grinfeld
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom; .,Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| | - Anthony R Green
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom; .,Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| |
Collapse
|
183
|
Hsu YC, Chiu YC, Lin CC, Kuo YY, Hou HA, Tzeng YS, Kao CJ, Chuang PH, Tseng MH, Hsiao TH, Chou WC, Tien HF. The distinct biological implications of Asxl1 mutation and its roles in leukemogenesis revealed by a knock-in mouse model. J Hematol Oncol 2017; 10:139. [PMID: 28697759 PMCID: PMC5504705 DOI: 10.1186/s13045-017-0508-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022] Open
Abstract
Background Additional sex combs-like 1 (ASXL1) is frequently mutated in myeloid malignancies. Recent studies showed that hematopoietic-specific deletion of Asxl1 or overexpression of mutant ASXL1 resulted in myelodysplasia-like disease in mice. However, actual effects of a “physiological” dose of mutant ASXL1 remain unexplored. Methods We established a knock-in mouse model bearing the most frequent Asxl1 mutation and studied its pathophysiological effects on mouse hematopoietic system. Results Heterozygotes (Asxl1tm/+) marrow cells had higher in vitro proliferation capacities as shown by more colonies in cobblestone-area forming assays and by serial re-plating assays. On the other hand, donor hematopoietic cells from Asxl1tm/+ mice declined faster in recipients during transplantation assays, suggesting compromised long-term in vivo repopulation abilities. There were no obvious blood diseases in mutant mice throughout their life-span, indicating Asxl1 mutation alone was not sufficient for leukemogenesis. However, this mutation facilitated engraftment of bone marrow cell overexpressing MN1. Analyses of global gene expression profiles of ASXL1-mutated versus wild-type human leukemia cells as well as heterozygote versus wild-type mouse marrow precursor cells, with or without MN1 overexpression, highlighted the association of in vivo Asxl1 mutation to the expression of hypoxia, multipotent progenitors, hematopoietic stem cells, KRAS, and MEK gene sets. ChIP-Seq analysis revealed global patterns of Asxl1 mutation-modulated H3K27 tri-methylation in hematopoietic precursors. Conclusions We proposed the first Asxl1 mutation knock-in mouse model and showed mutated Asxl1 lowered the threshold of MN1-driven engraftment and exhibited distinct biological functions on physiological and malignant hematopoiesis, although it was insufficient to lead to blood malignancies. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0508-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yueh-Chwen Hsu
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chiao Chiu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chien-Chin Lin
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Rd, Taipei, 10002, Taiwan
| | - Yuan-Yeh Kuo
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Rd, Taipei, 10002, Taiwan
| | - Yi-Shiuan Tzeng
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chein-Jun Kao
- Department of Laboratory Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Rd, Taipei, 10002, Taiwan
| | - Po-Han Chuang
- Department of Laboratory Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Rd, Taipei, 10002, Taiwan
| | - Mei-Hsuan Tseng
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Rd, Taipei, 10002, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Chien Chou
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan. .,Department of Laboratory Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Rd, Taipei, 10002, Taiwan. .,Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Rd, Taipei, 10002, Taiwan.
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S Rd, Taipei, 10002, Taiwan.
| |
Collapse
|
184
|
Polycomb repressive complexes in hematological malignancies. Blood 2017; 130:23-29. [DOI: 10.1182/blood-2017-02-739490] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
Abstract
The deregulation of polycomb repressive complexes (PRCs) has been reported in a number of hematological malignancies. These complexes exert oncogenic or tumor-suppressive functions depending on tumor type. These findings have revolutionized our understanding of the pathophysiology of hematological malignancies and the impact of deregulated epigenomes in tumor development and progression. The therapeutic targeting of PRCs is currently attracting increasing attention and being extensively examined in clinical studies, leading to new therapeutic strategies that may improve the outcomes of patients with hematological malignancies.
Collapse
|
185
|
McPherson S, McMullin MF, Mills K. Epigenetics in Myeloproliferative Neoplasms. J Cell Mol Med 2017; 21:1660-1667. [PMID: 28677265 PMCID: PMC5571538 DOI: 10.1111/jcmm.13095] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/15/2016] [Indexed: 12/16/2022] Open
Abstract
A decade on from the description of JAK2 V617F, the MPNs are circumscribed by an increasingly intricate landscape. There is now evidence that they are likely the result of combined genetic dysregulation, with several mutated genes involved in the regulation of epigenetic mechanisms. Epigenetic changes are not due to a change in the DNA sequence but are reversible modifications that dictate the way in which genes may be expressed (or silenced). Among the epigenetic mechanisms, DNA methylation is probably the best described. Currently known MPN‐associated mutations now include JAK2, MPL, LNK, CBL, CALR, TET2, ASXL1, IDH1, IDH2, IKZF1 and EZH2. Enhancing our knowledge about the mutation profile of patients may allow them to be stratified into risk groups which would aid clinical decision making. Ongoing work will answer whether the use of epigenetic therapies as alterative pathway targets in combination with JAK inhibitors may be more effective than single agent treatment.
Collapse
Affiliation(s)
- Suzanne McPherson
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, UK
| | - Mary Frances McMullin
- Centre for Medical Education, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Ken Mills
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, UK
| |
Collapse
|
186
|
Abstract
Myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) are aggressive myeloid malignancies recognized as a distinct category owing to their unique combination of dysplastic and proliferative features. Although current classification schemes still emphasize morphology and exclusionary criteria, disease-defining somatic mutations and/or germline predisposition alleles are increasingly incorporated into diagnostic algorithms. The developing picture suggests that phenotypes are driven mostly by epigenetic mechanisms that reflect a complex interplay between genotype, physiological processes such as ageing and interactions between malignant haematopoietic cells and the stromal microenvironment of the bone marrow. Despite the rapid accumulation of genetic knowledge, therapies have remained nonspecific and largely inefficient. In this Review, we discuss the pathogenesis of MDS/MPN, focusing on the relationship between genotype and phenotype and the molecular underpinnings of epigenetic dysregulation. Starting with the limitations of current therapies, we also explore how the available mechanistic data may be harnessed to inform strategies to develop rational and more effective treatments, and which gaps in our knowledge need to be filled to translate biological understanding into clinical progress.
Collapse
Affiliation(s)
- Michael W N Deininger
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health and Science University
- Department of Cell, Developmental and Cancer Biology, Oregon Health &Science University, Portland, Oregon 97239, USA
| | - Eric Solary
- INSERM U1170, Gustave Roussy, Faculté de médecine Paris-Sud, Université Paris-Saclay, F-94805 Villejuif, France
- Department of Hematology, Gustave Roussy, F-94805 Villejuif, France
| |
Collapse
|
187
|
Li J, He F, Zhang P, Chen S, Shi H, Sun Y, Guo Y, Yang H, Man N, Greenblatt S, Li Z, Guo Z, Zhou Y, Wang L, Morey L, Williams S, Chen X, Wang QT, Nimer SD, Yu P, Wang QF, Xu M, Yang FC. Loss of Asxl2 leads to myeloid malignancies in mice. Nat Commun 2017; 8:15456. [PMID: 28593990 PMCID: PMC5472177 DOI: 10.1038/ncomms15456] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/30/2017] [Indexed: 11/28/2022] Open
Abstract
ASXL2 is frequently mutated in acute myeloid leukaemia patients with t(8;21). However, the roles of ASXL2 in normal haematopoiesis and the pathogenesis of myeloid malignancies remain unknown. Here we show that deletion of Asxl2 in mice leads to the development of myelodysplastic syndrome (MDS)-like disease. Asxl2−/− mice have an increased bone marrow (BM) long-term haematopoietic stem cells (HSCs) and granulocyte–macrophage progenitors compared with wild-type controls. Recipients transplanted with Asxl2−/− and Asxl2+/− BM cells have shortened lifespan due to the development of MDS-like disease or myeloid leukaemia. Paired daughter cell assays demonstrate that Asxl2 loss enhances the self-renewal of HSCs. Deletion of Asxl2 alters the expression of genes critical for HSC self-renewal, differentiation and apoptosis in Lin−cKit+ cells. The altered gene expression is associated with dysregulated H3K27ac and H3K4me1/2. Our study demonstrates that ASXL2 functions as a tumour suppressor to maintain normal HSC function. ASXL2 mutations are mostly found in a subset of leukemia patients with certain genetic aberrations; however the role of this protein in normal hematopoiesis and related malignancies is still unclear. Here the authors use a knock-out mouse model to uncover the role of Asxl2 in hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Jianping Li
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Fuhong He
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Zhang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Shi Chen
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Hui Shi
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yanling Sun
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Guo
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Hui Yang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Sarah Greenblatt
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Zhaomin Li
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Zhengyu Guo
- Department of Electrical and Computer Engineering, and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Lan Wang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Sion Williams
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Xi Chen
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA.,Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Qun-Tian Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering, and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Qian-Fei Wang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th Street, Room 417, Miami, Florida 33136, USA
| |
Collapse
|
188
|
Robust patient-derived xenografts of MDS/MPN overlap syndromes capture the unique characteristics of CMML and JMML. Blood 2017; 130:397-407. [PMID: 28576879 DOI: 10.1182/blood-2017-01-763219] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
Chronic myelomonocytic leukemia (CMML) and juvenile myelomonocytic leukemia (JMML) are myelodysplastic syndrome (MDS)/myeloproliferative neoplasm (MPN) overlap disorders characterized by monocytosis, myelodysplasia, and a characteristic hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF). Currently, there are no available disease-modifying therapies for CMML, nor are there preclinical models that fully recapitulate the unique features of CMML. Through use of immunocompromised mice with transgenic expression of human GM-CSF, interleukin-3, and stem cell factor in a NOD/SCID-IL2Rγnull background (NSGS mice), we demonstrate remarkable engraftment of CMML and JMML providing the first examples of serially transplantable and genetically accurate models of CMML. Xenotransplantation of CD34+ cells (n = 8 patients) or unfractionated bone marrow (BM) or peripheral blood mononuclear cells (n = 10) resulted in robust engraftment of CMML in BM, spleen, liver, and lung of recipients (n = 82 total mice). Engrafted cells were myeloid-restricted and matched the immunophenotype, morphology, and genetic mutations of the corresponding patient. Similar levels of engraftment were seen upon serial transplantation of human CD34+ cells in secondary NSGS recipients (2/5 patients, 6/11 mice), demonstrating the durability of CMML grafts and functionally validating CD34+ cells as harboring the disease-initiating compartment in vivo. Successful engraftments of JMML primary samples were also achieved in all NSGS recipients (n = 4 patients, n = 12 mice). Engraftment of CMML and JMML resulted in overt phenotypic abnormalities and lethality in recipients, which facilitated evaluation of the JAK2/FLT3 inhibitor pacritinib in vivo. These data reveal that NSGS mice support the development of CMML and JMML disease-initiating and mature leukemic cells in vivo, allowing creation of genetically accurate preclinical models of these disorders.
Collapse
|
189
|
Epigenetic dysregulation of hematopoietic stem cells and preleukemic state. Int J Hematol 2017; 106:34-44. [PMID: 28555413 DOI: 10.1007/s12185-017-2257-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/16/2017] [Indexed: 12/31/2022]
Abstract
Recent genetic analyses have revealed that premalignant somatic mutations in hematopoietic cells are common in older people without an evidence of hematologic malignancies, leading to clonal hematopoietic expansion. This phenomenon has been termed clonal hematopoiesis of indeterminate potential (CHIP). Frequency of such clonal somatic mutations increases with age: in 5-10% of people older than 70 years and around 20% of people older than 90 years. The most commonly mutated genes found in individuals with CHIP were epigenetic regulators, including DNA methyltransferase 3A (DNMT3A), Ten-eleven-translocation 2 (TET2), and Additional sex combs-like 1 (ASXL1), which are also recurrently mutated in myeloid malignancies. Recent functional studies have uncovered pleiotropic effect of mutations in DNMT3A, TET2, and ASXL1 in hematopoietic stem cell regulation and leukemic transformation. Of note, CHIP is associated with an increased risk of hematologic malignancy and all-cause mortality, albeit the annual risk of leukemic transformation was relatively low (0.5-1%). These findings suggest that clonal hematopoiesis per se may not be sufficient to engender preleukemic state. Further studies are required to decipher the exact mechanism by which preleukemic stem cells originate and transform into a full-blown leukemic state.
Collapse
|
190
|
ASXL2 is essential for haematopoiesis and acts as a haploinsufficient tumour suppressor in leukemia. Nat Commun 2017; 8:15429. [PMID: 28516957 PMCID: PMC5454368 DOI: 10.1038/ncomms15429] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/29/2017] [Indexed: 12/22/2022] Open
Abstract
Additional sex combs-like (ASXL) proteins are mammalian homologues of additional sex combs (Asx), a regulator of trithorax and polycomb function in Drosophila. While there has been great interest in ASXL1 due to its frequent mutation in leukemia, little is known about its paralog ASXL2, which is frequently mutated in acute myeloid leukemia patients bearing the RUNX1-RUNX1T1 (AML1-ETO) fusion. Here we report that ASXL2 is required for normal haematopoiesis with distinct, non-overlapping effects from ASXL1 and acts as a haploinsufficient tumour suppressor. While Asxl2 was required for normal haematopoietic stem cell self-renewal, Asxl2 loss promoted AML1-ETO leukemogenesis. Moreover, ASXL2 target genes strongly overlapped with those of RUNX1 and AML1-ETO and ASXL2 loss was associated with increased chromatin accessibility at putative enhancers of key leukemogenic loci. These data reveal that Asxl2 is a critical regulator of haematopoiesis and mediates transcriptional effects that promote leukemogenesis driven by AML1-ETO. While the role of ASLX1 in haematopoiesis and leukaemia has been heavily studied, the role of ASLX2 is unclear. Here the authors show that ASLX2 is required for normal haematopoietic stem cell self-renewal whereas Asxl2 loss promotes leukemogenesis, thus explaining the frequently observed mutations in AML patients
Collapse
|
191
|
Assessment of the ExAC data set for the presence of individuals with pathogenic genotypes implicated in severe Mendelian pediatric disorders. Genet Med 2017; 19:1300-1308. [PMID: 28471432 PMCID: PMC5729344 DOI: 10.1038/gim.2017.50] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/13/2017] [Indexed: 12/26/2022] Open
Abstract
Purpose We analyzed the Exome Aggregation Consortium (ExAC) data set for the presence of individuals with pathogenic genotypes implicated in Mendelian pediatric disorders. Methods ClinVar likely/pathogenic variants supported by at least one peer-reviewed publication were assessed within the ExAC database to identify individuals expected to exhibit a childhood disorder based on concordance with disease inheritance modes: heterozygous (for dominant), homozygous (for recessive) or hemizygous (for X-linked recessive conditions). Variants from 924 genes reported to cause Mendelian childhood disorders were considered. Results We identified ExAC individuals with candidate pathogenic genotypes for 190 previously published likely/pathogenic variants in 128 genes. After curation, we determined that 113 of the variants have sufficient support for pathogenicity and identified 1,717 ExAC individuals (~2.8% of the ExAC population) with corresponding possible/disease-associated genotypes implicated in rare Mendelian disorders, ranging from mild (e.g., due to SCN2A deficiency) to severe pediatric conditions (e.g., due to FGFR1 deficiency). Conclusion Large-scale sequencing projects and data aggregation consortia provide unprecedented opportunities to determine the prevalence of pathogenic genotypes in unselected populations. This knowledge is crucial for understanding the penetrance of disease-associated variants, phenotypic variability, somatic mosaicism, as well as published literature curation for variant classification procedures and predicted clinical outcomes.
Collapse
|
192
|
Goyama S, Kitamura T. Epigenetics in normal and malignant hematopoiesis: An overview and update 2017. Cancer Sci 2017; 108:553-562. [PMID: 28100030 PMCID: PMC5406607 DOI: 10.1111/cas.13168] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 12/11/2022] Open
Abstract
Epigenetic regulation in hematopoiesis has been a field of rapid expansion. Genome‐wide analyses have revealed, and will continue to identify genetic alterations in epigenetic genes that are present in various types of hematopoietic neoplasms. Development of new mouse models for individual epigenetic modifiers has revealed their novel, sometimes unexpected, functions. In this review, we provide an overview of genetic alterations within epigenetic genes in various types of hematopoietic neoplasms. We then summarize the physiologic roles of these epigenetic modifiers during hematopoiesis, and describe therapeutic approaches targeting the epigenetic modifications. Interestingly, the mutational spectrum of epigenetic genes indicates that myeloid neoplasms are similar to T‐cell neoplasms, whereas B‐cell lymphomas have distinct features. Furthermore, it appears that the epigenetic mutations related to active transcription are more associated with myeloid/T‐cell neoplasms, whereas those that repress transcription are associated with B‐cell lymphomas. These observations may imply that the global low‐level or high‐level transcriptional activity underlies the development of myeloid/T‐cell tumors or B‐cell tumors, respectively.
Collapse
Affiliation(s)
- Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
193
|
Tsai CT, So CWE. Epigenetic therapies by targeting aberrant histone methylome in AML: molecular mechanisms, current preclinical and clinical development. Oncogene 2017; 36:1753-1759. [PMID: 27593928 PMCID: PMC5378929 DOI: 10.1038/onc.2016.315] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/05/2016] [Accepted: 07/17/2016] [Indexed: 02/06/2023]
Abstract
While the current epigenetic drug development is still largely restricted to target DNA methylome, emerging evidence indicates that histone methylome is indeed another major epigenetic determinant for gene expression and frequently deregulated in acute myeloid leukaemia (AML). The recent advances in dissecting the molecular regulation and targeting histone methylome in AML together with the success in developing lead compounds specific to key histone methylation-modifying enzymes have revealed new opportunities for effective leukaemia treatment. In this article, we will review the emerging functions of histone methyltransferases and histone demethylases in AML, especially MLL-rearranged leukaemia. We will also examine recent preclinical and clinical studies that show significant promises of targeting these histone methylation-modifying enzymes for AML treatment.
Collapse
Affiliation(s)
- C T Tsai
- Leukaemia and Stem Cell Biology Group, Division of Cancer Studies, Department of Haematological Medicine, King's College London, Denmark Hill Campus, Rayne Institute, London, UK
| | - C W E So
- Leukaemia and Stem Cell Biology Group, Division of Cancer Studies, Department of Haematological Medicine, King's College London, Denmark Hill Campus, Rayne Institute, London, UK
| |
Collapse
|
194
|
Carlston CM, O'Donnell-Luria AH, Underhill HR, Cummings BB, Weisburd B, Minikel EV, Birnbaum DP, Tvrdik T, MacArthur DG, Mao R. Pathogenic ASXL1 somatic variants in reference databases complicate germline variant interpretation for Bohring-Opitz Syndrome. Hum Mutat 2017; 38:517-523. [PMID: 28229513 DOI: 10.1002/humu.23203] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/31/2017] [Accepted: 02/18/2017] [Indexed: 01/09/2023]
Abstract
The clinical interpretation of genetic variants has come to rely heavily on reference population databases such as the Exome Aggregation Consortium (ExAC) database. Pathogenic variants in genes associated with severe, pediatric-onset, highly penetrant, autosomal dominant conditions are assumed to be absent or rare in these databases. Exome sequencing of a 6-year-old female patient with seizures, developmental delay, dysmorphic features, and failure to thrive identified an ASXL1 variant previously reported as causative of Bohring-Opitz syndrome (BOS). Surprisingly, the variant was observed seven times in the ExAC database, presumably in individuals without BOS. Although the BOS phenotype fit, the presence of the variant in reference population databases introduced ambiguity in result interpretation. Review of the literature revealed that acquired somatic mosaicism of ASXL1 variants (including pathogenic variants) during hematopoietic clonal expansion can occur with aging in healthy individuals. We examined all ASXL1 truncating variants in the ExAC database and determined most are likely somatic. Failure to consider somatic mosaicism may lead to the inaccurate assumption that conditions like BOS have reduced penetrance, or the misclassification of potentially pathogenic variants.
Collapse
Affiliation(s)
- Colleen M Carlston
- Department of Pathology, University of Utah, Salt Lake City, Utah.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
| | - Anne H O'Donnell-Luria
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | - Hunter R Underhill
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah.,Department of Radiology, University of Utah, Salt Lake City, Utah
| | - Beryl B Cummings
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts
| | - Ben Weisburd
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Eric V Minikel
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts
| | - Daniel P Birnbaum
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | | | - Tatiana Tvrdik
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Rong Mao
- Department of Pathology, University of Utah, Salt Lake City, Utah.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
| |
Collapse
|
195
|
Mupo A, Seiler M, Sathiaseelan V, Pance A, Yang Y, Agrawal AA, Iorio F, Bautista R, Pacharne S, Tzelepis K, Manes N, Wright P, Papaemmanuil E, Kent DG, Campbell PC, Buonamici S, Bolli N, Vassiliou GS. Hemopoietic-specific Sf3b1-K700E knock-in mice display the splicing defect seen in human MDS but develop anemia without ring sideroblasts. Leukemia 2017; 31:720-727. [PMID: 27604819 PMCID: PMC5336192 DOI: 10.1038/leu.2016.251] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
Abstract
Heterozygous somatic mutations affecting the spliceosome gene SF3B1 drive age-related clonal hematopoiesis, myelodysplastic syndromes (MDS) and other neoplasms. To study their role in such disorders, we generated knock-in mice with hematopoietic-specific expression of Sf3b1-K700E, the commonest type of SF3B1 mutation in MDS. Sf3b1K700E/+ animals had impaired erythropoiesis and progressive anemia without ringed sideroblasts, as well as reduced hematopoietic stem cell numbers and host-repopulating fitness. To understand the molecular basis of these observations, we analyzed global RNA splicing in Sf3b1K700E/+ hematopoietic cells. Aberrant splicing was associated with the usage of cryptic 3' splice and branchpoint sites, as described for human SF3B1 mutants. However, we found a little overlap between aberrantly spliced mRNAs in mouse versus human, suggesting that anemia may be a consequence of globally disrupted splicing. Furthermore, the murine orthologues of genes associated with ring sideroblasts in human MDS, including Abcb7 and Tmem14c, were not aberrantly spliced in Sf3b1K700E/+ mice. Our findings demonstrate that, despite significant differences in affected transcripts, there is overlap in the phenotypes associated with SF3B1-K700E between human and mouse. Future studies should focus on understanding the basis of these similarities and differences as a means of deciphering the consequences of spliceosome gene mutations in MDS.
Collapse
Affiliation(s)
- A Mupo
- Haematological Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - M Seiler
- H3 Biomedicine, Inc., Cambridge, MA, USA
| | | | - A Pance
- Malaria Programme, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Y Yang
- Haematological Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | | | - F Iorio
- European Bioinformatics, Institute, Hinxton, Cambridge, UK
| | - R Bautista
- LIMS Compute and Infrastructure, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - S Pacharne
- Haematological Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - K Tzelepis
- Haematological Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - N Manes
- Haematological Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - P Wright
- Department of Pathology, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - E Papaemmanuil
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - D G Kent
- Cambridge Stem Cell Institute, Cambridge, UK
| | - P C Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | - N Bolli
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Dipartimento di Oncologia ed Onco-Ematologia, Universita' degli Studi di Milano, Milano, Italy
- Dipartimento di Ematologia ed Onco-Ematologia Pediatrica, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - G S Vassiliou
- Haematological Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
196
|
Stem and progenitor cell alterations in myelodysplastic syndromes. Blood 2017; 129:1586-1594. [PMID: 28159737 DOI: 10.1182/blood-2016-10-696062] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/18/2017] [Indexed: 02/07/2023] Open
Abstract
Recent studies have demonstrated that myelodysplastic syndromes (MDSs) arise from a small population of disease-initiating hematopoietic stem cells (HSCs) that persist and expand through conventional therapies and are major contributors to disease progression and relapse. MDS stem and progenitor cells are characterized by key founder and driver mutations and are enriched for cytogenetic alterations. Quantitative alterations in hematopoietic stem and progenitor cell (HSPC) numbers are also seen in a stage-specific manner in human MDS samples as well as in murine models of the disease. Overexpression of several markers such as interleukin-1 (IL-1) receptor accessory protein (IL1RAP), CD99, T-cell immunoglobulin mucin-3, and CD123 have begun to differentiate MDS HSPCs from healthy counterparts. Overactivation of innate immune components such as Toll-like receptors, IL-1 receptor-associated kinase/tumor necrosis factor receptor-associated factor-6, IL8/CXCR2, and IL1RAP signaling pathways has been demonstrated in MDS HSPCs and is being targeted therapeutically in preclinical and early clinical studies. Other dysregulated pathways such as signal transducer and activator of transcription 3, tyrosine kinase with immunoglobulinlike and EGF-like domains 1/angiopoietin-1, p21-activated kinase, microRNA 21, and transforming growth factor β are also being explored as therapeutic targets against MDS HSPCs. Taken together, these studies have demonstrated that MDS stem cells are functionally critical for the initiation, transformation, and relapse of disease and need to be targeted therapeutically for future curative strategies in MDSs.
Collapse
|
197
|
Molecular Mutations and Their Cooccurrences in Cytogenetically Normal Acute Myeloid Leukemia. Stem Cells Int 2017; 2017:6962379. [PMID: 28197208 PMCID: PMC5288537 DOI: 10.1155/2017/6962379] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/25/2016] [Indexed: 01/08/2023] Open
Abstract
Adult acute myeloid leukemia (AML) clinically is a disparate disease that requires intensive treatments ranging from chemotherapy alone to allogeneic hematopoietic cell transplantation (allo-HCT). Historically, cytogenetic analysis has been a useful prognostic tool to classify patients into favorable, intermediate, and unfavorable prognostic risk groups. However, the intermediate-risk group, consisting predominantly of cytogenetically normal AML (CN-AML), itself exhibits diverse clinical outcomes and requires further characterization to allow for more optimal treatment decision-making. The recent advances in clinical genomics have led to the recategorization of CN-AML into favorable or unfavorable subgroups. The relapsing nature of AML is thought to be due to clonal heterogeneity that includes founder or driver mutations present in the leukemic stem cell population. In this article, we summarize the clinical outcomes of relevant molecular mutations and their cooccurrences in CN-AML, including NPM1, FLT3ITD, DNMT3A, NRAS, TET2, RUNX1, MLLPTD, ASXL1, BCOR, PHF6, CEBPAbiallelic, IDH1, IDH2R140, and IDH2R170, with an emphasis on their relevance to the leukemic stem cell compartment. We have reviewed the available literature and TCGA AML databases (2013) to highlight the potential role of stem cell regulating factor mutations on outcome within newly defined AML molecular subgroups.
Collapse
|
198
|
Misregulation of DNA Methylation Regulators in Cancer. DNA AND HISTONE METHYLATION AS CANCER TARGETS 2017. [DOI: 10.1007/978-3-319-59786-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
199
|
Zauderer MG. Standard Chemotherapy Options and Clinical Trials of Novel Agents for Mesothelioma. ASBESTOS AND MESOTHELIOMA 2017. [DOI: 10.1007/978-3-319-53560-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
200
|
Li Z, Zhang P, Yan A, Guo Z, Ban Y, Li J, Chen S, Yang H, He Y, Li J, Guo Y, Zhang W, Hajiramezanali E, An H, Fajardo D, Harbour JW, Ruan Y, Nimer SD, Yu P, Chen X, Xu M, Yang FC. ASXL1 interacts with the cohesin complex to maintain chromatid separation and gene expression for normal hematopoiesis. SCIENCE ADVANCES 2017; 3:e1601602. [PMID: 28116354 PMCID: PMC5249256 DOI: 10.1126/sciadv.1601602] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/30/2016] [Indexed: 05/26/2023]
Abstract
ASXL1 is frequently mutated in a spectrum of myeloid malignancies with poor prognosis. Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice; however, the underlying molecular mechanisms remain unclear. We report that ASXL1 interacts with the cohesin complex, which has been shown to guide sister chromatid segregation and regulate gene expression. Loss of Asxl1 impairs the cohesin function, as reflected by an impaired telophase chromatid disjunction in hematopoietic cells. Chromatin immunoprecipitation followed by DNA sequencing data revealed that ASXL1, RAD21, and SMC1A share 93% of genomic binding sites at promoter regions in Lin-cKit+ (LK) cells. We have shown that loss of Asxl1 reduces the genome binding of RAD21 and SMC1A and alters the expression of ASXL1/cohesin target genes in LK cells. Our study underscores the ASXL1-cohesin interaction as a novel means to maintain normal sister chromatid separation and regulate gene expression in hematopoietic cells.
Collapse
Affiliation(s)
- Zhaomin Li
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peng Zhang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Aimin Yan
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zhengyu Guo
- Department of Electrical and Computer Engineering and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jin Li
- Department of Electrical and Computer Engineering and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Shi Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Hui Yang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yongzheng He
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jianping Li
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ying Guo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wen Zhang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ehsan Hajiramezanali
- Department of Electrical and Computer Engineering and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Huangda An
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Darlene Fajardo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - J. William Harbour
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Stephen D. Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Xi Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|