151
|
Bone Augmentation in Rabbit Tibia Using Microfixed Cobalt-Chromium Membranes with Whole Blood and Platelet-Rich Plasma. MATERIALS 2015; 8:4843-4856. [PMID: 28793476 PMCID: PMC5455479 DOI: 10.3390/ma8084843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/06/2015] [Accepted: 06/29/2015] [Indexed: 01/09/2023]
Abstract
Background: Bone augmentation is a subject of intensive investigation in regenerative bone medicine and constitutes a clinical situation in which autogenous bone grafts or synthetic materials are used to aid new bone formation. Method: Based on a non-critical defect, Co-Cr barrier membranes were placed on six adult Fauve de Bourgogne rabbits, divided into two groups: whole blood and PRP. Three densitometric controls were performed during the experiment. The animals were euthanized at 30, 45, 60, and 110 days. The presence of newly formed bone was observed. Samples for histological studies were taken from the augmentation center. Results: External and internal bone tissue augmentation was observed in almost all cases. Significant differences between PRP- and whole blood–stimulated bone augmentation were not observed. At 60 days, bones with PRP presented higher angiogenesis, which may indicate more proliferation and cellular activity. Conclusion: PRP activates the bone regeneration process under optimized conditions by stimulation of osteoblast proliferation after six weeks, when a significant difference in cellular activity was observed. Membranes could stimulate bone augmentation at the site of placement and in the surrounding areas.
Collapse
|
152
|
An S, Huang X, Gao Y, Ling J, Huang Y, Xiao Y. FGF-2 induces the proliferation of human periodontal ligament cells and modulates their osteoblastic phenotype by affecting Runx2 expression in the presence and absence of osteogenic inducers. Int J Mol Med 2015; 36:705-11. [PMID: 26133673 PMCID: PMC4533781 DOI: 10.3892/ijmm.2015.2271] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/30/2015] [Indexed: 02/07/2023] Open
Abstract
The exact phenotype of human periodontal ligament cells (hPDLCs) remains a controversial area. Basic fibroblast growth factor (FGF-2) exhibits various functions and its effect on hPDLCs is also controversial. Therefore, the present study examined the effect of FGF-2 on the growth and osteoblastic phenotype of hPDLCs with or without osteogenic inducers (dexamethasone and β-glycerophosphate). FGF-2 was added to defined growth culture medium and osteogenic inductive culture medium. Cell proliferation, osteogenic differentiation and mineralization were measured. The selected differentiation markers, Runx2, collagen type I, α1 (Col1a1), osteocalcin (OCN) and epidermal growth factor receptor (EGFR), were investigated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Runx2 and OCN protein expression was measured by western blotting. FGF-2 significantly increased the proliferation of hPDLCs, but did not affect alkaline phosphatase activity. RT-qPCR analysis revealed enhanced mRNA expression of Runx2, OCN and EGFR, but suppressed Col1a1 gene expression in the absence of osteogenic inducers, whereas all these gene levels had no clear trend in their presence. The Runx2 protein expression was clearly increased, but the OCN protein level showed no evident trend. The mineralization assay demonstrated that FGF-2 inhibited mineralized matrix deposition with osteogenic inducers. These results suggested that FGF-2 induces the growth of immature hPDLCs, which is a competitive inhibitor of epithelial downgrowth, and suppresses their differentiation into mineralized tissue by affecting Runx2 expression. Therefore, this may lead to the acceleration of periodontal regeneration.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Xiangya Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Yan Gao
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Junqi Ling
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Yihua Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
153
|
Chen X, Wu G, Feng Z, Dong Y, Zhou W, Li B, Bai S, Zhao Y. Advanced biomaterials and their potential applications in the treatment of periodontal disease. Crit Rev Biotechnol 2015; 36:760-75. [PMID: 26004052 DOI: 10.3109/07388551.2015.1035693] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Periodontal disease is considered as a widespread infectious disease and the most common cause of tooth loss in adults. Attempts for developing periodontal disease treatment strategies, including drug delivery and regeneration approaches, provide a useful experimental model for the evaluation of future periodontal therapies. Recently, emerging advanced biomaterials including hydrogels, films, micro/nanofibers and particles, hold great potential to be utilized as cell/drug carriers for local drug delivery and biomimetic scaffolds for future regeneration therapies. In this review, first, we describe the pathogenesis of periodontal disease, including plaque formation, immune response and inflammatory reactions caused by bacteria. Second, periodontal therapy and an overview of current biomaterials in periodontal regenerative medicine have been discussed. Third, the roles of state-of-the-art biomaterials, including hydrogels, films, micro/nanofibers and micro/nanoparticles, developed for periodontal disease treatment and periodontal tissue regeneration, and their fabrication methods, have been presented. Finally, biological properties, including biocompatibility, biodegradability and immunogenicity of the biomaterials, together with their current applications strategies are given. Conclusive remarks and future perspectives for such advanced biomaterials are discussed.
Collapse
Affiliation(s)
- Xi Chen
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| | - Guofeng Wu
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| | - Zhihong Feng
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| | - Yan Dong
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| | - Wei Zhou
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| | - Bei Li
- b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and.,c State Key Laboratory of Military Stomatology, Center for Tissue Engineering , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China
| | - Shizhu Bai
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| | - Yimin Zhao
- a State Key Laboratory of Military Stomatology, Department of Prosthetics , School of Stomatology, The Fourth Military Medical University , Xi'an , Shaanxi , P.R. China .,b Shaanxi Key Laboratory of Stomatology , Xi'an , Shaanxi , P.R. China , and
| |
Collapse
|
154
|
Goudouri OM, Vogel C, Grünewald A, Detsch R, Kontonasaki E, Boccaccini AR. Sol–gel processing of novel bioactive Mg-containing silicate scaffolds for alveolar bone regeneration. J Biomater Appl 2015; 30:740-9. [DOI: 10.1177/0885328215584887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Periodontal tissue regeneration is an important application area of biomaterials, given the large proportion of the population affected by periodontal diseases like periodontitis. The aim of this study was the synthesis of a novel porous bioceramic scaffold in the SiO2–CaO–MgO system with specific properties targeted for alveolar bone tissue regeneration using a modification of the traditional foam replica technique. Since bioceramic scaffolds are considered brittle, scaffolds were also coated with gelatin in order to increase their mechanical stability. Gelatin was chosen for its biocompatibility, biodegradability, low-cost, and low immunogenicity. However, gelatin degrades very fast in water solutions. For this reason, two different cross-linking agents were evaluated. Genipin, a non-toxic gardenia extract and the chemical compound 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) in combination with N-hydroxysuccinimide (NHS), which is also considered non-toxic. The results of the investigation indicated that all scaffolds presented an open, interconnected porosity and pores' sizes in the range of 300–600 μm, fast apatite-forming ability, biocompatibility, and suitable mechanical stability.
Collapse
Affiliation(s)
| | - Caroline Vogel
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alina Grünewald
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Rainer Detsch
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Eleana Kontonasaki
- Department of Fixed Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
155
|
Counter-regulatory phosphatases TNAP and NPP1 temporally regulate tooth root cementogenesis. Int J Oral Sci 2015; 7:27-41. [PMID: 25504209 PMCID: PMC4817535 DOI: 10.1038/ijos.2014.62] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2014] [Indexed: 12/29/2022] Open
Abstract
Cementum is critical for anchoring the insertion of periodontal ligament fibers to the tooth root. Several aspects of cementogenesis remain unclear, including differences between acellular cementum and cellular cementum, and between cementum and bone. Biomineralization is regulated by the ratio of inorganic phosphate (Pi) to mineral inhibitor pyrophosphate (PPi), where local Pi and PPi concentrations are controlled by phosphatases including tissue-nonspecific alkaline phosphatase (TNAP) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). The focus of this study was to define the roles of these phosphatases in cementogenesis. TNAP was associated with earliest cementoblasts near forming acellular and cellular cementum. With loss of TNAP in the Alpl null mouse, acellular cementum was inhibited, while cellular cementum production increased, albeit as hypomineralized cementoid. In contrast, NPP1 was detected in cementoblasts after acellular cementum formation, and at low levels around cellular cementum. Loss of NPP1 in the Enpp1 null mouse increased acellular cementum, with little effect on cellular cementum. Developmental patterns were recapitulated in a mouse model for acellular cementum regeneration, with early TNAP expression and later NPP1 expression. In vitro, cementoblasts expressed Alpl gene/protein early, whereas Enpp1 gene/protein expression was significantly induced only under mineralization conditions. These patterns were confirmed in human teeth, including widespread TNAP, and NPP1 restricted to cementoblasts lining acellular cementum. These studies suggest that early TNAP expression creates a low PPi environment promoting acellular cementum initiation, while later NPP1 expression increases PPi, restricting acellular cementum apposition. Alterations in PPi have little effect on cellular cementum formation, though matrix mineralization is affected.
Collapse
|
156
|
Su F, Liu SS, Ma JL, Wang DS, E LL, Liu HC. Enhancement of periodontal tissue regeneration by transplantation of osteoprotegerin-engineered periodontal ligament stem cells. Stem Cell Res Ther 2015; 6:22. [PMID: 25888745 PMCID: PMC4425908 DOI: 10.1186/s13287-015-0023-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 12/22/2022] Open
Abstract
Introduction The objective of the present study was to evaluate the capacity of a tissue-engineered complex of human osteoprotegerin (hOPG)-transfected periodontal ligament stem cells (PDLSCs) seeding on beta-tricalcium phosphate (β-TCP) to regenerate alveolar bone defects in New Zealand rabbits. Methods PDLSCs were isolated from rabbit periodontal ligament tissues and expanded in vitro to enrich PDLSC numbers, and their proliferative activities and differentiation capability were evaluated under specific induction conditions. Lentiviral vector containing hOPG and enhanced green fluorescent protein (EGFP) was constructed by using Gateway technology and transfected into rabbit PDLSCs. The expression of hOPG was determined with quantitative real-time reverse transcription-polymerase chain reaction and Western blot. The PDLSCs with or without engineered hOPG were seeded on β-TCP scaffolds prior to transplantation. Morphological characterization of cells and materials was done by scanning electron microscope. Twenty rabbits with alveolar bone defects were randomly allocated into four groups and transplanted with β-TCP, PDLSCs/β-TCP, and hOPG-transfected PDLSCs/β-TCP or were left untreated as a control. Animals were sacrificed 12 weeks after operation for histological observation and histomorphometric analysis. Results PDLSCs expressed STRO-1 and vementin and favored osteogenesis and adipogenesis in conditioned media. Expressions of hOPG were significantly upregulated after transfection of the lentiviral vector into PDLSCs. PDLSCs attached and spread well on β-TCP, and there was no significant difference in growth of PDLSCs on β-TCP between the hOPG transfection group and the non-transfection group. The histological observation and histomorphometric analysis showed that the hOPG-transfected PDLSCs/β-TCP complex exhibited an earlier mineralization and more bone formation inside the scaffold than control, β-TCP, and PDLSCs/β-TCP complexes. Implantation of hOPG-transfected PDLSCs contributed to new bone formation as determined by EGFP gene expression under circularly polarized light microscopy. Conclusions The present study demonstrated the feasibility of β-TCP scaffolds for primary PDLSC culture and expression of hOPG gene in vitro and in vivo, and hOPG-transfected PDLSCs could serve as a potential cell source for periodontal bone regeneration, which may shed light on the potential of systemic hOPG gene therapy in combination with PDLSC tissue engineering as a good candidate in periodontal tissue engineering for alveolar bone regeneration.
Collapse
Affiliation(s)
- Fang Su
- Institute of Stomatology, General Hospital of Chinese PLA, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China. .,Department of Stomatology, The 306th Hospital of Chinese PLA, No.9 Anxiang Beili, Chaoyang District, Beijing, 100101, China.
| | - Shi-Sen Liu
- Institute of Stomatology, General Hospital of Chinese PLA, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China. .,Department of Stomatology, Navy General Hospital of Chinese PLA, No. 6 Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Jun-Li Ma
- Institute of Stomatology, General Hospital of Chinese PLA, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Dong-Sheng Wang
- Institute of Stomatology, General Hospital of Chinese PLA, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Ling-Ling E
- Institute of Stomatology, General Hospital of Chinese PLA, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Hong-Chen Liu
- Institute of Stomatology, General Hospital of Chinese PLA, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
157
|
Pilipchuk SP, Plonka AB, Monje A, Taut AD, Lanis A, Kang B, Giannobile WV. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater 2015; 31:317-38. [PMID: 25701146 DOI: 10.1016/j.dental.2015.01.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/19/2014] [Accepted: 01/11/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The focus of this review is to summarize recent advances on regenerative technologies (scaffolding matrices, cell/gene therapy and biologic drug delivery) to promote reconstruction of tooth and dental implant-associated bone defects. METHODS An overview of scaffolds developed for application in bone regeneration is presented with an emphasis on identifying the primary criteria required for optimized scaffold design for the purpose of regenerating physiologically functional osseous tissues. Growth factors and other biologics with clinical potential for osteogenesis are examined, with a comprehensive assessment of pre-clinical and clinical studies. Potential novel improvements to current matrix-based delivery platforms for increased control of growth factor spatiotemporal release kinetics are highlighting including recent advancements in stem cell and gene therapy. RESULTS An analysis of existing scaffold materials, their strategic design for tissue regeneration, and use of growth factors for improved bone formation in oral regenerative therapies results in the identification of current limitations and required improvements to continue moving the field of bone tissue engineering forward into the clinical arena. SIGNIFICANCE Development of optimized scaffolding matrices for the predictable regeneration of structurally and physiologically functional osseous tissues is still an elusive goal. The introduction of growth factor biologics and cells has the potential to improve the biomimetic properties and regenerative potential of scaffold-based delivery platforms for next-generation patient-specific treatments with greater clinical outcome predictability.
Collapse
Affiliation(s)
- Sophia P Pilipchuk
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, 1101 Beal Avenue, Ann Arbor, MI 48109, USA.
| | - Alexandra B Plonka
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Alberto Monje
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Andrei D Taut
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Alejandro Lanis
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Benjamin Kang
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - William V Giannobile
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, 1101 Beal Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
158
|
da Silva MAC, Oliveira RN, Mendonça RH, Lourenço TGB, Colombo APV, Tanaka MN, Tude EMO, da Costa MF, Thiré RMSM. Evaluation of metronidazole-loaded poly(3-hydroxybutyrate) membranes to potential application in periodontitis treatment. J Biomed Mater Res B Appl Biomater 2015; 104:106-15. [PMID: 25655488 DOI: 10.1002/jbm.b.33357] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/23/2014] [Accepted: 12/09/2014] [Indexed: 01/31/2023]
Abstract
Guided tissue regeneration is a technique used for periodontium reconstruction. This technique uses barrier membranes, which prevent epithelial growth in the wound site and may also be used to release antibiotics, to protect the wound against opportunistic infections. Periodontal poly(3-hydroxybutyrate) membranes containing metronidazole (a drug used to help in infection control) were produced and characterized. The kinetic mechanism of the metronidazole delivery of leached and nonleached membrane as well as its cytotoxicity and structural integrity were evaluated. Poly(3-hydroxybutyrate) membranes containing 0.5-2 wt % of the drug and 20 wt % of the plasticizer were manufactured via compression molding. Based on morphological analysis, membranes loaded with 2% metronidazole were considered for detailed studies. The results revealed that metronidazole delivery by the leached membranes seemed to follow the Fick's law. Membranes were noncytotoxic. The amount of metronidazole delivered was in the range of the minimal inhibitory concentration for Porphyromonas gingivalis, and the membranes inhibited the proliferation of these bacteria. Besides, they maintained their mechanical resistance after 30 days of immersion in phosphate buffer at pH 7.4.
Collapse
Affiliation(s)
- Marcio A C da Silva
- COPPE/Program of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro, Rio de Janeiro City, Rio de Janeiro, Brazil
| | - Renata N Oliveira
- COPPE/Program of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro, Rio de Janeiro City, Rio de Janeiro, Brazil
| | - Roberta Helena Mendonça
- Chemical Engineering Department of the Technology Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro City, Rio de Janeiro, Brazil
| | - Talita G B Lourenço
- Institute of Microbiology Paulo de Góes, Centre of Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro City, Rio de Janeiro, Brazil
| | - Ana Paula V Colombo
- Institute of Microbiology Paulo de Góes, Centre of Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro City, Rio de Janeiro, Brazil
| | - Marcelo N Tanaka
- Bioceramics and Cell Culture Lab, Brazilian Center for Physics Research, Rio de Janeiro City, Rio de Janeiro, Brazil
| | - Elena M O Tude
- Bioceramics and Cell Culture Lab, Brazilian Center for Physics Research, Rio de Janeiro City, Rio de Janeiro, Brazil
| | - Marysilvia F da Costa
- COPPE/Program of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro, Rio de Janeiro City, Rio de Janeiro, Brazil
| | - Rossana Mara S M Thiré
- COPPE/Program of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro, Rio de Janeiro City, Rio de Janeiro, Brazil
| |
Collapse
|
159
|
Kato A, Miyaji H, Ishizuka R, Tokunaga K, Inoue K, Kosen Y, Yokoyama H, Sugaya T, Tanaka S, Sakagami R, Kawanami M. Combination of Root Surface Modification with BMP-2 and Collagen Hydrogel Scaffold Implantation for Periodontal Healing in Beagle Dogs. Open Dent J 2015; 9:52-9. [PMID: 25674172 PMCID: PMC4319209 DOI: 10.2174/1874210601509010052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/10/2014] [Accepted: 12/14/2014] [Indexed: 11/23/2022] Open
Abstract
Objective : Biomodification of the root surface plays a major role in periodontal wound healing. Root surface modification with bone morphogenetic protein (BMP) stimulates bone and cementum-like tissue formation; however, severe ankylosis is simultaneously observed. Bio-safe collagen hydrogel scaffolds may therefore be useful for supplying periodontal ligament cells and preventing ankylosis. We examined the effects of BMP modification in conjunction with collagen hydrogel scaffold implantation on periodontal wound healing in dogs. Material and Methods: The collagen hydrogel scaffold was composed of type I collagen sponge and collagen hydrogel. One-wall infrabony defects (5 mm in depth, 3 mm in width) were surgically created in six beagle dogs. In the BMP/Col group, BMP-2 was applied to the root surface (loading dose; 1 µg/µl), and the defects were filled with collagen hydrogel scaffold. In the BMP or Col group, BMP-2 coating or scaffold implantation was performed. Histometric parameters were evaluated at 4 weeks after surgery. Results: Single use of BMP stimulated formation of alveolar bone and ankylosis. In contrast, the BMP/Col group frequently enhanced reconstruction of periodontal attachment including cementum-like tissue, periodontal ligament and alveolar bone. The amount of new periodontal ligament in the BMP/Col group was significantly greater when compared to all other groups. In addition, ankylosis was rarely observed in the BMP/Col group. Conclusion: The combination method using root surface modification with BMP and collagen hydrogel scaffold implantation facilitated the reestablishment of periodontal attachment. BMP-related ankylosis was suppressed by implantation of collagen hydrogel.
Collapse
Affiliation(s)
- Akihito Kato
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Ryosuke Ishizuka
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Keisuke Tokunaga
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Kana Inoue
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yuta Kosen
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Hiroyuki Yokoyama
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Saori Tanaka
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Ryuji Sakagami
- Section of Periodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Masamitsu Kawanami
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| |
Collapse
|
160
|
Yan XZ, van den Beucken JJJP, Cai X, Yu N, Jansen JA, Yang F. Periodontal tissue regeneration using enzymatically solidified chitosan hydrogels with or without cell loading. Tissue Eng Part A 2014; 21:1066-76. [PMID: 25345525 DOI: 10.1089/ten.tea.2014.0319] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study is aimed to evaluate the in vivo biocompatibility and periodontal regenerative potential of enzymatically solidified chitosan hydrogels with or without incorporated periodontal ligament cells (PDLCs). To this end, chitosan hydrogels, with (n=8; CHIT+CELL) or without (n=8; CHIT) fluorescently labeled PDLCs, were prepared and transplanted into rat intrabony periodontal defects; untreated defects were used as empty controls (n=8; EMPTY). After 4 weeks, maxillae were harvested, decalcified, and used for histological, histomorphometrical, and immunohistochemical assessments. The results showed that PDLCs remained viable upon encapsulation within chitosan hydrogels before transplantation. Histological analysis demonstrated that the chitosan hydrogels were largely degraded after 4 weeks of implantation, without any adverse reaction in the surrounding tissue. In terms of periodontal regeneration, alveolar bone height, alveolar bone area, and epithelial downgrowth were comparable for CHIT, CHIT+CELL, as well as EMPTY groups. In contrast, both CHIT and CHIT+CELL showed a significant increase in functional ligament length compared with EMPTY. From a cellular perspective, the contribution of chitosan hydrogel-incorporated cells to the periodontal regeneration could not be ascertained, as no signal from transplanted PDLCs could be detected at 4 weeks posttransplantation. The results demonstrated that enzymatically solidified chitosan hydrogels are highly biocompatible and biodegradable. Moreover, chitosan hydrogels without cell loading can improve periodontal regeneration in terms of functional ligament length, indicating the great potential of this hydrogel in clinical applications. Further work on the use of chitosan hydrogels as cell carriers is required.
Collapse
Affiliation(s)
- Xiang-Zhen Yan
- Department of Biomaterials, Radboud UMC , Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
161
|
Akita D, Morokuma M, Saito Y, Yamanaka K, Akiyama Y, Sato M, Mashimo T, Toriumi T, Arai Y, Kaneko T, Tsukimura N, Isokawa K, Ishigami T, Honda MJ. Periodontal tissue regeneration by transplantation of rat adipose-derived stromal cells in combination with PLGA-based solid scaffolds. Biomed Res 2014; 35:91-103. [PMID: 24759177 DOI: 10.2220/biomedres.35.91] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Regeneration of damaged periodontium is challenging due to its multi-tissue composition. Mesenchymalstem cell-based approaches using adipose-derived stromal cells (ASCs) may contribute to periodontal reconstruction, particularly when combined with the use of scaffolds to maintain a space for new tissue growth. The aim of this study was to assess the regenerative potential of ASCs derived from inbred or outbred rats in combination with novel solid scaffolds composed of PLGA (Poly D,L-lactic-co-glycolic acid) (PLGA-scaffolds). Cultured ASCs seeded onto PLGA scaffolds (ASCs/PLGA) or PLGA-scaffolds (PLGA) alone were transplanted into periodontal fenestration defects created in F344 or Sprague Dawley (SD) rats. Micro-CT analysis showed a significantly higher percentage of bone growth in the ASCs/PLGA groups compared with the PLGA-alone groups at five weeks after surgery. Similarly, histomorphometric analysis demonstrated thicker growth of periodontal ligament and cementum layers in the ASCs/PLGA-groups compared with the PLGA-alone groups. In addition, transplanted DiI-labeled ASCs were observed in the periodontal regenerative sites. The present investigation demonstrated the marked ability of ASCs in combination with PLGA scaffolds to repair periodontal defects.
Collapse
Affiliation(s)
- Daisuke Akita
- Nihon University Graduate School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku Tokyo 101-8310, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Feng X, Huang D, Lu X, Feng G, Xing J, Lu J, Xu K, Xia W, Meng Y, Tao T, Li L, Gu Z. Insulin-like growth factor 1 can promote proliferation and osteogenic differentiation of human dental pulp stem cells via mTOR pathway. Dev Growth Differ 2014; 56:615-24. [PMID: 25388971 DOI: 10.1111/dgd.12179] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 08/23/2014] [Accepted: 08/25/2014] [Indexed: 01/05/2023]
Abstract
Insulin-like growth factor 1 (IGF-1) is a multifunctional peptide that can enhance osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). However, it remains unclear whether IGF-1 can promote osteogenic differentiation of human dental pulp stem cells (DPSCs). In our study, DPSCs were isolated from the impacted third molars, and treated with IGF-1. Osteogenic differentiation abilities were investigated. We found that IGF-1 activated the mTOR signaling pathway during osteogenic differentiation of DPSCs. IGF-1 also increased the expression of runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osterix (OSX) and collagen type I (COL I) during this process. Rapamycin, an mTOR inhibitor, blocked osteogenic differentiation induced by IGF-1. Meanwhile, CCK-8 assay and flow cytometry results demonstrated that 10-200 ng/mL IGF-1 could enhance proliferation ability of DPSCs and 100 ng/mL was the optimal concentration. In summary, IGF-1 could promote proliferation and osteogenic differentiation of DPSCs via mTOR pathways, which might have clinical implications for osteoporosis.
Collapse
Affiliation(s)
- Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Sun HH, Chen B, Zhu QL, Kong H, Li QH, Gao LN, Xiao M, Chen FM, Yu Q. Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis. Biomaterials 2014; 35:9459-72. [DOI: 10.1016/j.biomaterials.2014.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/01/2014] [Indexed: 01/09/2023]
|
164
|
Bansal R, Jain A, Mittal S, Kumar T, Kaur D. Regenerative endodontics: a road less travelled. J Clin Diagn Res 2014; 8:ZE20-4. [PMID: 25478476 DOI: 10.7860/jcdr/2014/8257.5034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/08/2014] [Indexed: 01/12/2023]
Abstract
Although traditional approaches like root canal therapy and apexification procedures have been successful in treating diseased or infected root canals, but these modalities fail to re-establish healthy pulp tissue in treated teeth. Regeneration-based approaches aims to offer high levels of success by replacing diseased or necrotic pulp tissues with healthy pulp tissue to revitalize teeth. The applications of regenerative approaches in dental clinics have potential to dramatically improve patients' quality of life. This review article offers a detailed overview of present regenerative endodontic approaches aiming to revitalize teeth and also outlines the problems to be dealt before this emerging field contributes to clinical treatment protocols. It conjointly covers the basic trilogy elements of tissue engineering.
Collapse
Affiliation(s)
- Ramta Bansal
- Senior lecturer, Department of Conservative Dentistry and Endodontics, Institute of Dental Sciences , Sehora, Jammu, India
| | - Aditya Jain
- Lecturer, Department of Physiology, Government Medical College , Patiala, Punjab, India
| | - Sunandan Mittal
- Professor and Head, Department of Conservative Dentistry and Endodontics, Dasmesh Institute of Research and Dental Sciences , Faridkot, Punjab, India
| | - Tarun Kumar
- Professor, Department of Conservative Dentistry and Endodontics, Dasmesh Institute of Research and Dental Sciences , Faridkot, Punjab, India
| | - Dilpreet Kaur
- Senior Lecturer, Department of Conservative Dentistry and Endodontics, Bhojia Dental College & Hospital (Baddi) , Himachal Pradesh, India
| |
Collapse
|
165
|
Liu J, Wang L, Liu W, Li Q, Jin Z, Jin Y. Dental follicle cells rescue the regenerative capacity of periodontal ligament stem cells in an inflammatory microenvironment. PLoS One 2014; 9:e108752. [PMID: 25275580 PMCID: PMC4183515 DOI: 10.1371/journal.pone.0108752] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/11/2014] [Indexed: 12/22/2022] Open
Abstract
Aims Periodontal ligament stem cells (PDLSCs) are one of the best candidates for periodontal regeneration. Their function could be impaired in periodontitis microenvironment. Dental follicle cells (DFCs), serving as precursor cells and mesenchymal stem cells, have intimate connection with PDLSCs. However, it is still unknown whether DFCs could provide a favorable microenvironment to improve the proliferation and differentiation capacity of PDLSCs from healthy subjects (HPDLSCs) and patients diagnosed with periodontitis (PPDLSCs). Methods HPDLSCs, PPDLSCs and DFCs were harvested and identified using microscopic and flow cytometric analysis. Then, the coculture systems of DFCs/HPDLSCs and DFCs/PPDLSCs were established with 0.4 µm transwell, in which all the detection indexs were obtained from HPDLSCs and PPDLSCs. The expression of stemness-associated genes was detected by real-time PCR, and the proliferation ability was assessed using colony formation and cell cycle assays. The osteogenic differentiation capacity was evaluated by real-time PCR, western blot, ALP activity, Alizarin Red S staining and calcium level analysis, while the adipogenic differentiation capacity was determined by real-time PCR and Oil Red O staining. The cell sheet formation in vitro was observed by HE staining and SEM, and the implantation effect in vivo was evaluated using HE staining and Masson’s trichrome staining. Results PPDLSCs had a greater proliferation capability but lower osteogenic and adipogenic potential than HPDLSCs. DFCs enhanced the proliferation and osteogenic/adipogenic differentiation of HPDLSCs and PPDLSCs to different degrees. Moreover, coculture with DFCs increased cell layers and extracellular matrix of HPDLSCs/PPDLSCs cell sheets in vitro and improved periodontal regeneration by HPDLSCs/PPDLSCs in vivo. Conclusions Our data suggest that the function of PPDLSCs could be damaged in the periodontitis microenvironment. DFCs appear to enhance the self-renewal and multi-differentiation capacity of both HPDLSCs and PPDLSCs, which indicates that DFCs could provide a beneficial microenvironment for periodontal regeneration using PDLSCs.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Liying Wang
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wenjia Liu
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qiang Li
- State Key Laboratory of Military Stomatology, Department of General Dentistry & Emergency, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (ZJ); (YJ)
| | - Yan Jin
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (ZJ); (YJ)
| |
Collapse
|
166
|
Orellana BR, Puleo DA. Tailored sequential drug release from bilayered calcium sulfate composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:243-52. [PMID: 25175211 PMCID: PMC4152730 DOI: 10.1016/j.msec.2014.06.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/04/2014] [Accepted: 06/30/2014] [Indexed: 12/26/2022]
Abstract
The current standard for treating infected bony defects, such as those caused by periodontal disease, requires multiple time-consuming steps and often multiple procedures to fight the infection and recover lost tissue. Releasing an antibiotic followed by an osteogenic agent from a synthetic bone graft substitute could allow for a streamlined treatment, reducing the need for multiple surgeries and thereby shortening recovery time. Tailorable bilayered calcium sulfate (CS) bone graft substitutes were developed with the ability to sequentially release multiple therapeutic agents. Bilayered composite samples having a shell and core geometry were fabricated with varying amounts (1 or 10 wt.%) of metronidazole-loaded poly(lactic-co-glycolic acid) (PLGA) particles embedded in the shell and simvastatin directly loaded into either the shell, core, or both. Microcomputed tomography showed the overall layered geometry as well as the uniform distribution of PLGA within the shells. Dissolution studies demonstrated that the amount of PLGA particles (i.e., 1 vs. 10 wt.%) had a small but significant effect on the erosion rate (3% vs. 3.4%/d). Mechanical testing determined that introducing a layered geometry had a significant effect on the compressive strength, with an average reduction of 35%, but properties were comparable to those of mandibular trabecular bone. Sustained release of simvastatin directly loaded into CS demonstrated that changing the shell to core volume ratio dictates the duration of drug release from each layer. When loaded together in the shell or in separate layers, sequential release of metronidazole and simvastatin was achieved. By introducing a tunable, layered geometry capable of releasing multiple drugs, CS-based bone graft substitutes could be tailored in order to help streamline the multiple steps needed to regenerate tissue in infected defects.
Collapse
Affiliation(s)
- Bryan R Orellana
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - David A Puleo
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
167
|
Three-dimensional biomaterial degradation — Material choice, design and extrinsic factor considerations. Biotechnol Adv 2014; 32:984-99. [DOI: 10.1016/j.biotechadv.2014.04.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/18/2014] [Accepted: 04/30/2014] [Indexed: 11/20/2022]
|
168
|
Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy. Acta Biomater 2014; 10:3795-810. [PMID: 24704700 DOI: 10.1016/j.actbio.2014.03.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/07/2014] [Accepted: 03/26/2014] [Indexed: 12/21/2022]
Abstract
Periodontal diseases like periodontitis and peri-implantitis have been linked with Gram-negative anaerobes. The incorporation of various chemotherapeutic agents, including metal ions, into several materials and devices has been extensively studied against periodontal bacteria, and materials doped with metal ions have been proposed for the treatment of periodontal and peri-implant diseases. The aim of this review is to discuss the effectiveness of materials doped with metal and metalloid ions already used in the treatment of periodontal diseases, as well as the potential use of alternative materials that are currently available for other applications but have been proved to be cytotoxic to the specific periodontal pathogens. The sources of this review included English articles using Google Scholar™, ScienceDirect, Scopus and PubMed. Search terms included the combinations of the descriptors "disease", "ionic species" and "bacterium". Articles that discuss the biocidal properties of materials doped with metal and metalloid ions against the specific periodontal bacteria were included. The articles were independently extracted by two authors using predefined data fields. The evaluation of resources was based on the quality of the content and the relevance to the topic, which was evaluated by the ionic species and the bacteria used in the study, while the final application was not considered as relevant. The present review summarizes the extensive previous and current research efforts concerning the use of metal ions in periodontal diseases therapy, while it points out the challenges and opportunities lying ahead.
Collapse
|
169
|
Yu N, Bronckers ALJJ, Oortgiesen DAW, Yan X, Jansen JA, Yang F, Walboomers XF. Periodontal cell implantation contributes to the regeneration of the periodontium in an indirect way. Tissue Eng Part A 2014; 21:166-73. [PMID: 25077766 DOI: 10.1089/ten.tea.2014.0151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Periodontitis is the most common human infectious disease. Regeneration of bone and soft tissue defects after periodontitis remains challenging, although the transplantation of periodontal ligament (PDL) cells seems a liable strategy. However, little is known about the function of PDL cells after transplantation. In the current study, a combination of in vitro coculture systems and in vivo immunohistochemistry (IHC) was used to investigate the role of PDL cells in the regenerative process. First, a coculture method was used, in which mesenchymal cells (representing the host tissue) were brought into direct contact with PDL cells (representing the transplanted cell population). It was found that PDL cells significantly increased mineralized matrix formation and osteocalcin expression, whereas control cells did not. Similar results were obtained when a noncontact coculture system was applied separating PDL and mesenchymal cells. In an in vivo rat model, regeneration of alveolar bone and ligament was seen after PDL cell transplantation. Implanted PDL cells were found clustered along the newly formed tissues. IHC showed enhanced osteopontin expression and gap junction staining in areas neighboring implanted PDL cells. In conclusion, PDL cells enhance periodontal regeneration through a trophic factor stimulating the osteogenic activity of the surrounding host cells.
Collapse
Affiliation(s)
- Na Yu
- 1 Department of Biomaterials, Radboud University Nijmegen Medical Center , Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
170
|
Anitua E, Zalduendo MM, Troya M, Orive G. Ozone dosing alters the biological potential and therapeutic outcomes of plasma rich in growth factors. J Periodontal Res 2014; 50:240-7. [PMID: 24957247 DOI: 10.1111/jre.12201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Until now, ozone has been used in a rather empirical way. This in-vitro study investigates, for the first time, whether different ozone treatments of plasma rich in growth factors (PRGF) alter the biological properties and outcomes of this autologous platelet-rich plasma. MATERIAL AND METHODS Human plasma rich in growth factors was treated with ozone using one of the following protocols: a continuous-flow method; or a syringe method in which constant volumes of ozone and PRGF were mixed. In both cases, ozone was added before, during and after the addition of calcium chloride. Three ozone concentrations, of the therapeutic range 20, 40 and 80 μg/mL, were tested. Fibrin clot properties, growth factor content and the proliferative effect on primary osteoblasts and gingival fibroblasts were evaluated. RESULTS Ozone treatment of PRGF using the continuous flow protocol impaired formation of the fibrin scaffold, drastically reduced the levels of growth factors and significantly decreased the proliferative potential of PRGF on primary osteoblasts and gingival fibroblasts. In contrast, treatment of PRGF with ozone using the syringe method, before, during and after the coagulation process, did not alter the biological outcomes of the autologous therapy. CONCLUSION These findings suggest that ozone dose and the way that ozone combines with PRGF may alter the biological potential and therapeutic outcomes of PRGF.
Collapse
Affiliation(s)
- E Anitua
- Foundation Eduardo Anitua, Vitoria, Spain
| | | | | | | |
Collapse
|
171
|
Anitua E, Troya M, Zalduendo MM, Orive G. The effect of different drugs on the preparation and biological outcomes of plasma rich in growth factors. Ann Anat 2014; 196:423-9. [PMID: 25053348 DOI: 10.1016/j.aanat.2014.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 12/14/2022]
Abstract
Chronic diseases are the major contributors to the global burden of disease and involve prodigious consumption of various drugs that usually affect platelet function. The autologous technology of plasma rich in growth factors (PRGF) provides a biological approach using autologous platelets as a reservoir and local delivery of proteins to promote tissue healing. The purpose of this study was to evaluate the effect of the consumption of acetylsalicylic acid, acenocoumarol and glucosamine sulfate on the preparation as well as on the biological properties of the PRGF technology. Clotting time and platelet activation of PRGF was evaluated. The latter was performed by flow cytometry. PRGF growth factor content and the release of various biomolecules by gingival fibroblasts were quantified by enzyme-linked immunosorbent assay. Cell proliferation was evaluated by means of a fluorescence-based method and cell migration was performed on culture inserts. None of the parameters evaluated was modified by the consumption of any of the three drugs tested; only the plasma of patients who had consumed acetylsalicylic acid and acenocoumarol expressed greater gingival fibroblast migration compared to plasma control. The intake of acetylsalicylic acid, acenocoumarol and glucosamine sulfate does not alter the preparation and biological properties of the autologous technology of PRGF.
Collapse
Affiliation(s)
- Eduardo Anitua
- Private Practice in Implantology and Oral Rehabilitation in Vitoria, Spain; Eduardo Anitua Foundation, c/José María Cagigal 19, Vitoria 01007, Spain
| | - María Troya
- Eduardo Anitua Foundation, c/José María Cagigal 19, Vitoria 01007, Spain
| | - Mari Mar Zalduendo
- Eduardo Anitua Foundation, c/José María Cagigal 19, Vitoria 01007, Spain
| | - Gorka Orive
- Eduardo Anitua Foundation, c/José María Cagigal 19, Vitoria 01007, Spain.
| |
Collapse
|
172
|
Abou Neel EA, Chrzanowski W, Salih VM, Kim HW, Knowles JC. Tissue engineering in dentistry. J Dent 2014; 42:915-28. [PMID: 24880036 DOI: 10.1016/j.jdent.2014.05.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 05/15/2014] [Accepted: 05/17/2014] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES of this review is to inform practitioners with the most updated information on tissue engineering and its potential applications in dentistry. DATA The authors used "PUBMED" to find relevant literature written in English and published from the beginning of tissue engineering until today. A combination of keywords was used as the search terms e.g., "tissue engineering", "approaches", "strategies" "dentistry", "dental stem cells", "dentino-pulp complex", "guided tissue regeneration", "whole tooth", "TMJ", "condyle", "salivary glands", and "oral mucosa". SOURCES Abstracts and full text articles were used to identify causes of craniofacial tissue loss, different approaches for craniofacial reconstructions, how the tissue engineering emerges, different strategies of tissue engineering, biomaterials employed for this purpose, the major attempts to engineer different dental structures, finally challenges and future of tissue engineering in dentistry. STUDY SELECTION Only those articles that dealt with the tissue engineering in dentistry were selected. CONCLUSIONS There have been a recent surge in guided tissue engineering methods to manage periodontal diseases beyond the traditional approaches. However, the predictable reconstruction of the innate organisation and function of whole teeth as well as their periodontal structures remains challenging. Despite some limited progress and minor successes, there remain distinct and important challenges in the development of reproducible and clinically safe approaches for oral tissue repair and regeneration. Clearly, there is a convincing body of evidence which confirms the need for this type of treatment, and public health data worldwide indicates a more than adequate patient resource. The future of these therapies involving more biological approaches and the use of dental tissue stem cells is promising and advancing. Also there may be a significant interest of their application and wider potential to treat disorders beyond the craniofacial region. CLINICAL SIGNIFICANCE Considering the interests of the patients who could possibly be helped by applying stem cell-based therapies should be carefully assessed against current ethical concerns regarding the moral status of the early embryo.
Collapse
Affiliation(s)
- Ensanya Ali Abou Neel
- Division of Biomaterials, Operative and Aesthetic Department Biomaterials Division, King Abdulaziz University, Jeddah, Saudi Arabia; Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt; UCL Eastman Dental Institute, Biomaterials & Tissue Engineering, 256 Gray's Inn Road, London WC1X 8LD, UK.
| | - Wojciech Chrzanowski
- The University of Sydney, The Faculty of Pharmacy, NSW 2006 Sydney, Australia; Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Vehid M Salih
- UCL Eastman Dental Institute, Biomaterials & Tissue Engineering, 256 Gray's Inn Road, London WC1X 8LD, UK; Plymouth University Peninsula School of Medicine & Dentistry, Drake's Circus, Plymouth PL4 8AA, Devon, UK
| | - Hae-Won Kim
- Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook, University, Cheonan 330-714, Republic of Korea
| | - Jonathan C Knowles
- UCL Eastman Dental Institute, Biomaterials & Tissue Engineering, 256 Gray's Inn Road, London WC1X 8LD, UK; Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| |
Collapse
|
173
|
Prosecká E, Rampichová M, Litvinec A, Tonar Z, Králíčková M, Vojtová L, Kochová P, Plencner M, Buzgo M, Míčková A, Jančář J, Amler E. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo. J Biomed Mater Res A 2014; 103:671-82. [PMID: 24838634 DOI: 10.1002/jbm.a.35216] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/09/2014] [Accepted: 05/01/2014] [Indexed: 12/30/2022]
Abstract
A three-dimensional scaffold of type I collagen and hydroxyapatite enriched with polycaprolactone nanofibers (Coll/HA/PCL), autologous mesenchymal stem cells (MSCs) in osteogenic media, and thrombocyte-rich solution (TRS) was an optimal implant for bone regeneration in vivo in white rabbits. Nanofibers optimized the viscoelastic properties of the Coll/HA scaffold for bone regeneration. MSCs and TRS in the composite scaffold improved bone regeneration. Three types of Coll/HA/PCL scaffold were prepared: an MSC-enriched scaffold, a TRS-enriched scaffold, and a scaffold enriched with both MSCs and TRS. These scaffolds were implanted into femoral condyle defects 6 mm in diameter and 10-mm deep. Untreated defects were used as a control. Macroscopic and histological analyses of the regenerated tissue from all groups were performed 12 weeks after implantation. The highest volume and most uniform distribution of newly formed bone occurred in defects treated with scaffolds enriched with both MSCs and TRS compared with that in defects treated with scaffolds enriched by either component alone. The modulus of elasticity in compressive testing was significantly higher in the Coll/HA/PCL scaffold than those without nanofibers. The composite Coll scaffold functionalized with PCL nanofibers and enriched with MSCs and TRS appears to be a novel treatment for bone defects.
Collapse
Affiliation(s)
- E Prosecká
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, V Uvalu 84, 150 06, Prague, Czech Republic; Department of Tissue Engineering, Institute of Experimental Medicine ASCR v.v.i., Vídeňská 1083, 14240, Prague, Czech Republic; Student Science s.r.o., Horní Podluží 237, Horní Podluží, 407 57, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Human periodontal ligament derived progenitor cells: effect of STRO-1 cell sorting and Wnt3a treatment on cell behavior. BIOMED RESEARCH INTERNATIONAL 2014; 2014:145423. [PMID: 24864228 PMCID: PMC4020471 DOI: 10.1155/2014/145423] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/08/2014] [Accepted: 04/12/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVES STRO-1 positive periodontal ligament cells (PDLCs) and unsorted PDLCs have demonstrated potential for periodontal regeneration, but the comparison between unsorted cells and the expanded STRO-1 sorted cells has never been reported. Additionally, Wnt3a is involved in cell proliferation thus may benefit in vitro PDLC expansion. The aim was to evaluate the effect of STRO-1 cell sorting and Wnt3a treatment on cell behavior of human PDLCs (hPDLCs). MATERIALS AND METHODS STRO-1 positive hPDLCs were sorted and the sorted cells were expanded and compared with their unsorted parental cells. Thereafter, hPDLCs were treated with or without Wnt3a and the cell proliferation, self-renewal, and osteogenic differentiation were evaluated. RESULTS No differences were measured between the expanded STRO-1-sorted cells and unsorted parental cells in terms of proliferation, CFU, and mineralization capacity. Wnt3a enhanced the proliferation and self-renewal ability of hPDLCs significantly as displayed by higher DNA content values, a shorter cell population doubling time, and higher expression of the self-renewal gene Oct4. Moreover, Wnt3a promoted the expansion of hPDLCs for 5 passages without affecting cell proliferation, CFU, and osteogenic capacity. CONCLUSIONS Expanded STRO-1-sorted hPDLCs showed no superiority compared to their unsorted parental cells. On the other hand, Wnt3a promotes the efficient hPDLC expansion and retains the self-renewal and osteogenic differentiation capacity.
Collapse
|
175
|
Requicha JF, Viegas CA, Muñoz F, Azevedo JM, Leonor IB, Reis RL, Gomes ME. A tissue engineering approach for periodontal regeneration based on a biodegradable double-layer scaffold and adipose-derived stem cells. Tissue Eng Part A 2014; 20:2483-92. [PMID: 24575867 DOI: 10.1089/ten.tea.2013.0360] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human and canine periodontium are often affected by an inflammatory pathology called periodontitis, which is associated with severe damages across tissues, namely, in the periodontal ligament, cementum, and alveolar bone. However, the therapies used in the routine dental practice, often consisting in a combination of different techniques, do not allow to fully restore the functionality of the periodontium. Tissue Engineering (TE) appears as a valuable alternative approach to regenerate periodontal defects, but for this purpose, it is essential to develop supportive biomaterial and stem cell sourcing/culturing methodologies that address the complexity of the various tissues affected by this condition. The main aim of this work was to study the in vitro functionality of a newly developed double-layer scaffold for periodontal TE. The scaffold design was based on a combination of a three-dimensional (3D) fiber mesh functionalized with silanol groups and a membrane, both made of a blend of starch and poly-ɛ-(caprolactone). Adipose-derived stem cells (canine adipose stem cells [cASCs]) were seeded and cultured onto such scaffolds, and the obtained constructs were evaluated in terms of cellular morphology, metabolic activity, and proliferation. The osteogenic potential of the fiber mesh layer functionalized with silanol groups was further assessed concerning the osteogenic differentiation of the seeded and cultured ASCs. The obtained results showed that the proposed double-layer scaffold supports the proliferation and selectively promotes the osteogenic differentiation of cASCs seeded onto the functionalized mesh. These findings suggest that the 3D structure and asymmetric composition of the scaffold in combination with stem cells may provide the basis for developing alternative therapies to treat periodontal defects more efficiently.
Collapse
Affiliation(s)
- João F Requicha
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Guimarães, Portugal
| | | | | | | | | | | | | |
Collapse
|
176
|
Hu B, Zhang Y, Zhou J, Li J, Deng F, Wang Z, Song J. Low-intensity pulsed ultrasound stimulation facilitates osteogenic differentiation of human periodontal ligament cells. PLoS One 2014; 9:e95168. [PMID: 24743551 PMCID: PMC3990585 DOI: 10.1371/journal.pone.0095168] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 03/24/2014] [Indexed: 12/24/2022] Open
Abstract
Human periodontal ligament cells (hPDLCs) possess stem cell properties, which play a key role in periodontal regeneration. Physical stimulation at appropriate intensities such as low-intensity pulsed ultrasound (LIPUS) enhances cell proliferation and osteogenic differentiation of mesechymal stem cells. However, the impacts of LIPUS on osteogenic differentiation of hPDLCs in vitro and its molecular mechanism are unknown. This study was undertaken to investigate the effects of LIPUS on osteogenic differentiation of hPDLCs. HPDLCs were isolated from premolars of adolescents for orthodontic reasons, and exposed to LIPUS at different intensities to determine an optimal LIPUS treatment dosage. Dynamic changes of alkaline phosphatase (ALP) activities in the cultured cells and supernatants, and osteocalcin production in the supernatants after treatment were analyzed. Runx2 and integrin β1 mRNA levels were assessed by reverse transcription polymerase chain reaction analysis after LIPUS stimulation. Blocking antibody against integrinβ1 was used to assess the effects of integrinβ1 inhibitor on LIPUS-induced ALP activity, osteocalcin production as well as calcium deposition. Our data showed that LIPUS at the intensity of 90 mW/cm2 with 20 min/day was more effective. The ALP activities in lysates and supernatants of LIPUS-treated cells started to increase at days 3 and 7, respectively, and peaked at day 11. LIPUS treatment significantly augmented the production of osteocalcin after day 5. LIPUS caused a significant increase in the mRNA expression of Runx2 and integrin β1, while a significant decline when the integrinβ1 inhibitor was used. Moreover, ALP activity, osteocalcin production as well as calcium nodules of cells treated with both daily LIPUS stimulation and integrinβ1 antibody were less than those in the LIPUS-treated group. In conclusion, LIPUS promotes osteogenic differentiation of hPDLCs, which is associated with upregulation of Runx2 and integrin β1, which may thus provide therapeutic benefits in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Bo Hu
- Chongqing key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jie Zhou
- Chongqing key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jing Li
- Chongqing key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Feng Deng
- Chongqing key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Zhibiao Wang
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- Chongqing key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
177
|
Felthaus O, Gosau M, Ettl T, Prantl L, Morsczeck C. Migration of human dental follicle cells in vitro. J Periodontal Res 2014; 49:205-212. [PMID: 23710611 DOI: 10.1111/jre.12096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVES The objective of this study was to elucidate the effects of different growth factors on the migration of dental follicle cells (DFCs). DFCs are ectomesenchymally derived easily accessible multipotent stem cells. Cell migration is a crucial step in many biological processes but also for tissue engineering. Growth factors such as epidermal growth factor (EGF), bone morphogenetic protein-2 (BMP2) or transforming growth factor β1 (TGF-β1) can be used to modify the behavior of cells. MATERIAL AND METHODS We used different migration assays (gel spot assay, scratch assay, transwell assay) to evaluate the influence of EGF, BMP2 and TGF-β1 on the migration of DFCs. We investigated the expression of migration-related genes after growth factor stimulation using the PCR array human cell motility. RESULTS DFCs treated with BMP2 or TGF-β1 migrated faster than DFCs treated with EGF. Additionally, more migration-related genes are regulated after treatment with BMP2 or TGF-β1 than with EGF. TGF-β1 additionally functions as a chemoattractant for DFCs. Osteogenic differentiation markers were regulated after BMP2 treatment only. CONCLUSION Whereas the strong migration induced by BMP2 was accompanied by beginning osteogenic differentiation the strong migration induced by TGF-β1 was directional. EGF exhibited not only the weakest migration stimulation but also the weakest induction of differentiation into mineralizing cells.
Collapse
Affiliation(s)
- O Felthaus
- Department of Cranio- and Maxillofacial Surgery, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
178
|
Anderson PJ, Yong R, Surman TL, Rajion ZA, Ranjitkar S. Application of three-dimensional computed tomography in craniofacial clinical practice and research. Aust Dent J 2014; 59 Suppl 1:174-85. [DOI: 10.1111/adj.12154] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- PJ Anderson
- Australian Craniofacial Unit; Women's and Children's Hospital; North Adelaide South Australia Australia
- School of Dentistry; The University of Adelaide; South Australia Australia
- School of Dental Sciences, Health Campus; Universiti Sains Malaysia; Kota Bharu Kelantan Malaysia
| | - R Yong
- School of Dentistry; The University of Adelaide; South Australia Australia
| | - TL Surman
- Australian Craniofacial Unit; Women's and Children's Hospital; North Adelaide South Australia Australia
- School of Dentistry; The University of Adelaide; South Australia Australia
| | - ZA Rajion
- School of Dental Sciences, Health Campus; Universiti Sains Malaysia; Kota Bharu Kelantan Malaysia
| | - S Ranjitkar
- School of Dentistry; The University of Adelaide; South Australia Australia
| |
Collapse
|
179
|
Tsuchida S, Satoh M, Sogawa K, Kawashima Y, Kado S, Ishige T, Beppu M, Sawai S, Nishimura M, Kodera Y, Matsushita K, Nomura F. Application of proteomic technologies to discover and identify biomarkers for periodontal diseases in gingival crevicular fluid: A review. Proteomics Clin Appl 2014. [DOI: 10.1002/prca.201300122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sachio Tsuchida
- Department of Molecular Diagnosis; Graduate School of Medicine; Chiba University; Chiba Japan
- Clinical Proteomics Research Center; Chiba University Hospital; Chiba Japan
| | - Mamoru Satoh
- Department of Molecular Diagnosis; Graduate School of Medicine; Chiba University; Chiba Japan
- Clinical Proteomics Research Center; Chiba University Hospital; Chiba Japan
- Chemical Analysis Center; Chiba University; Chiba Japan
| | - Kazuyuki Sogawa
- Department of Molecular Diagnosis; Graduate School of Medicine; Chiba University; Chiba Japan
- Clinical Proteomics Research Center; Chiba University Hospital; Chiba Japan
| | - Yusuke Kawashima
- Laboratory of Biomolecular Dynamics; Department of Physics; School of Science; Kitasato University; Sagamihara Japan
| | - Sayaka Kado
- Chemical Analysis Center; Chiba University; Chiba Japan
| | - Takayuki Ishige
- Department of Molecular Diagnosis; Graduate School of Medicine; Chiba University; Chiba Japan
| | - Minako Beppu
- Department of Molecular Diagnosis; Graduate School of Medicine; Chiba University; Chiba Japan
- Clinical Proteomics Research Center; Chiba University Hospital; Chiba Japan
| | - Setsu Sawai
- Department of Molecular Diagnosis; Graduate School of Medicine; Chiba University; Chiba Japan
- Clinical Proteomics Research Center; Chiba University Hospital; Chiba Japan
| | - Motoi Nishimura
- Department of Molecular Diagnosis; Graduate School of Medicine; Chiba University; Chiba Japan
- Clinical Proteomics Research Center; Chiba University Hospital; Chiba Japan
| | - Yoshio Kodera
- Clinical Proteomics Research Center; Chiba University Hospital; Chiba Japan
- Laboratory of Biomolecular Dynamics; Department of Physics; School of Science; Kitasato University; Sagamihara Japan
| | - Kazuyuki Matsushita
- Department of Molecular Diagnosis; Graduate School of Medicine; Chiba University; Chiba Japan
- Clinical Proteomics Research Center; Chiba University Hospital; Chiba Japan
| | - Fumio Nomura
- Department of Molecular Diagnosis; Graduate School of Medicine; Chiba University; Chiba Japan
- Clinical Proteomics Research Center; Chiba University Hospital; Chiba Japan
| |
Collapse
|
180
|
BOONANANTANASARN K, JANEBODIN K, SUPPAKPATANA P, ARAYAPISIT T, RODSUTTHI JA, CHUNHABUNDIT P, BOONANUNTANASARN S, SRIPAIROJTHIKOON W. Morinda citrifolia leaves enhance osteogenic differentiation and mineralization of human periodontal ligament cells. Dent Mater J 2014; 33:157-65. [DOI: 10.4012/dmj.2012-053-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
181
|
Zhang X, Han P, Jaiprakash A, Wu C, Xiao Y. A stimulatory effect of Ca3ZrSi2O9 bioceramics on cementogenic/osteogenic differentiation of periodontal ligament cells. J Mater Chem B 2014; 2:1415-1423. [DOI: 10.1039/c3tb21663b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ca3ZrSi2O9 bioceramics promote the cementogenic/osteogenic differentiation of PDLCs.
Collapse
Affiliation(s)
- Xufang Zhang
- Institute of Health & Biomedical Innovation
- Queensland University of Technology
- Brisbane, Australia
| | - Pingping Han
- Institute of Health & Biomedical Innovation
- Queensland University of Technology
- Brisbane, Australia
| | - Anjali Jaiprakash
- Institute of Health & Biomedical Innovation
- Queensland University of Technology
- Brisbane, Australia
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050, People's Republic of China
| | - Yin Xiao
- Institute of Health & Biomedical Innovation
- Queensland University of Technology
- Brisbane, Australia
| |
Collapse
|
182
|
Santos A, Sinn Aw M, Bariana M, Kumeria T, Wang Y, Losic D. Drug-releasing implants: current progress, challenges and perspectives. J Mater Chem B 2014; 2:6157-6182. [DOI: 10.1039/c4tb00548a] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review presents the different types and concepts of drug-releasing implants using new nanomaterials and nanotechnology-based devices.
Collapse
Affiliation(s)
- Abel Santos
- School of Chemical Engineering
- The University of Adelaide
- 5005 Adelaide, Australia
| | - Moom Sinn Aw
- School of Chemical Engineering
- The University of Adelaide
- 5005 Adelaide, Australia
| | - Manpreet Bariana
- School of Chemical Engineering
- The University of Adelaide
- 5005 Adelaide, Australia
- School of Dentistry
- The University of Adelaide
| | - Tushar Kumeria
- School of Chemical Engineering
- The University of Adelaide
- 5005 Adelaide, Australia
| | - Ye Wang
- School of Chemical Engineering
- The University of Adelaide
- 5005 Adelaide, Australia
| | - Dusan Losic
- School of Chemical Engineering
- The University of Adelaide
- 5005 Adelaide, Australia
| |
Collapse
|
183
|
Requicha JF, Viegas CA, Muñoz F, Reis RL, Gomes ME. Periodontal tissue engineering strategies based on nonoral stem cells. Anat Rec (Hoboken) 2013; 297:6-15. [PMID: 24293355 DOI: 10.1002/ar.22797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 01/09/2023]
Abstract
Periodontal disease is an inflammatory disease which constitutes an important health problem in humans due to its enormous prevalence and life threatening implications on systemic health. Routine standard periodontal treatments include gingival flaps, root planning, application of growth/differentiation factors or filler materials and guided tissue regeneration. However, these treatments have come short on achieving regeneration ad integrum of the periodontium, mainly due to the presence of tissues from different embryonic origins and their complex interactions along the regenerative process. Tissue engineering (TE) aims to regenerate damaged tissue by providing the repair site with a suitable scaffold seeded with sufficient undifferentiated cells and, thus, constitutes a valuable alternative to current therapies for the treatment of periodontal defects. Stem cells from oral and dental origin are known to have potential to regenerate these tissues. Nevertheless, harvesting cells from these sites implies a significant local tissue morbidity and low cell yield, as compared to other anatomical sources of adult multipotent stem cells. This manuscript reviews studies describing the use of non-oral stem cells in tissue engineering strategies, highlighting the importance and potential of these alternative stem cells sources in the development of advanced therapies for periodontal regeneration.
Collapse
Affiliation(s)
- João Filipe Requicha
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Guimarães, Portugal; Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | |
Collapse
|
184
|
Gao LN, An Y, Lei M, Li B, Yang H, Lu H, Chen FM, Jin Y. The effect of the coumarin-like derivative osthole on the osteogenic properties of human periodontal ligament and jaw bone marrow mesenchymal stem cell sheets. Biomaterials 2013; 34:9937-51. [DOI: 10.1016/j.biomaterials.2013.09.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/04/2013] [Indexed: 12/29/2022]
|
185
|
What and where are the stem cells for Dentistry? ACTA ACUST UNITED AC 2013; 34:13-8. [DOI: 10.1016/j.sdj.2013.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/02/2013] [Accepted: 11/08/2013] [Indexed: 01/09/2023]
|
186
|
Trofin EA, Monsarrat P, Kémoun P. Cell therapy of periodontium: from animal to human? Front Physiol 2013; 4:325. [PMID: 24298258 PMCID: PMC3828527 DOI: 10.3389/fphys.2013.00325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/19/2013] [Indexed: 12/30/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease affecting the soft and hard tissues supporting the teeth, which often leads to tooth loss. Its significant impact on the patient's general health and quality of life point to a need for more effective management of this condition. Existing treatments include scaling/root planning and surgical approaches but their overall effects are relatively modest and restricted in application. The goal of regenerative therapy of periodontal defects is to enhance endogenous progenitors and thus promote optimal wound healing. Considering that the host or tissue might be defective in the periodontitis context, it has been proposed that grafting exogenous stem cells would produce new tissues and create a suitable microenvironment for tissue regeneration. Thus, cell therapy of periodontium has been assessed in many animal models and promising results have been reported. However, the methodological diversity of these studies makes the conversion to clinical practice difficult. The aim of this review is to highlight the primary requirements to be satisfied before the leap to clinical trials can be made. We therefore review cell therapy applications for periodontal regeneration in animal models and the concerns to be addressed before undertaking human experiments.
Collapse
Affiliation(s)
- Elena A Trofin
- Department of Biology, Toulouse Faculty of Dentistry - Paul Sabatier University, Toulouse University Hospital - CHU de Toulouse Toulouse, France ; Department of Pathology, Faculty of Medicine and Odontology, University of Valencia Valencia, Spain
| | | | | |
Collapse
|
187
|
Sundararaj SC, Thomas MV, Peyyala R, Dziubla TD, Puleo DA. Design of a multiple drug delivery system directed at periodontitis. Biomaterials 2013; 34:8835-42. [PMID: 23948165 PMCID: PMC3773615 DOI: 10.1016/j.biomaterials.2013.07.093] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/26/2013] [Indexed: 02/07/2023]
Abstract
Periodontal disease is highly prevalent, with 90% of the world population affected by either periodontitis or its preceding condition, gingivitis. These conditions are caused by bacterial biofilms on teeth, which stimulate a chronic inflammatory response that leads to loss of alveolar bone and, ultimately, the tooth. Current treatment methods for periodontitis address specific parts of the disease, with no individual treatment serving as a complete therapy. The present research sought to demonstrate development of a multiple drug delivery system for stepwise treatment of different stages of periodontal disease. More specifically, multilayered films were fabricated from an association polymer comprising cellulose acetate phthalate and Pluronic F-127 to achieve sequential release of drugs. The four types of drugs used were metronidazole, ketoprofen, doxycycline, and simvastatin to eliminate infection, inhibit inflammation, prevent tissue destruction, and aid bone regeneration, respectively. Different erosion times and adjustable sequential release profiles were achieved by modifying the number of layers or by inclusion of a slower-eroding polymer layer. Analysis of antibiotic and anti-inflammatory bioactivity showed that drugs released from the devices retained 100% bioactivity. The multilayered CAPP delivery system offers a versatile approach for releasing different drugs based on the pathogenesis of periodontitis and other conditions.
Collapse
Affiliation(s)
- Sharath C. Sundararaj
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0070, USA
| | - Mark V. Thomas
- College of Dentistry, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Rebecca Peyyala
- College of Dentistry, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Thomas D. Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, USA
| | - David A. Puleo
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0070, USA
| |
Collapse
|
188
|
Shimauchi H, Nemoto E, Ishihata H, Shimomura M. Possible functional scaffolds for periodontal regeneration. JAPANESE DENTAL SCIENCE REVIEW 2013. [DOI: 10.1016/j.jdsr.2013.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
189
|
Ronay V, Belibasakis GN, Attin T, Schmidlin PR, Bostanci N. Expression of embryonic stem cell markers and osteogenic differentiation potential in cells derived from periodontal granulation tissue. Cell Biol Int 2013; 38:179-86. [PMID: 24123724 DOI: 10.1002/cbin.10190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/05/2013] [Indexed: 01/08/2023]
Abstract
The aim of this study was to identify if cells obtained from periodontal granulation tissue possess embryonic stem cell properties and osteogenic capacities in vitro. Periodontal granulation tissue was removed from one furcation and one infrabony defect (FGTC/IGTC-furcation/infrabony defect derived granulation tissue cells) of six patients. The extracted tissues were treated with collagenase/dispase solution, cultured and passaged twice, while a fraction of them was bacteriologically analyzed. Upon reaching confluence, total RNA was extracted, followed by cDNA synthesis and real-time PCR analysis. Gene expression levels of collagen type I, alkaline phosphatase (ALP), and the embryonic stem cell markers Nanog, Oct-4, Rex-1 and Sox-2 were measured, calibrated against the housekeeping gene GAPDH. Further, osteogenic differentiation was induced. Mineralized matrix formation was confirmed by von Kossa staining, and ALP activity was measured colorimetrically. The total bacterial load amounted to 9.4 ± 14.6 × 10(6) counts/mg of tissue for IGTC, and 11.1 ± 6.1 × 10(6) counts/of tissue for FGTC. Among the embryonic stem cell markers (FGTC/IGTC), Nanog was most highly expressed (3.48 ± 1.2/5.85 ± 5.7), followed by Oct-4 (1.79 ± 0.69/2.85 ± 2.5), Sox-2 (0.66 ± 0.3/1.26 ± 1.4) and Rex-1 (0.06 ± 0.0/0.04 ± 0.0). The osteogenic differentiation process was positive in both FGTC and IGTC, judged by increased von Kossa staining, and elevated ALP activity and gene expression. This study provides evidence that infected periodontal granulation tissue harbors cells expressing embryonic stem cell markers, and exhibiting osteogenic capacities when in culture in vitro.
Collapse
Affiliation(s)
- Valerie Ronay
- Clinic for Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
190
|
Fu X, Jin L, Ma P, Fan Z, Wang S. Allogeneic stem cells from deciduous teeth in treatment for periodontitis in miniature swine. J Periodontol 2013; 85:845-51. [PMID: 24001042 DOI: 10.1902/jop.2013.130254] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Regeneration of lost periodontium in periodontitis is a challenge in that alveolar bone, cementum, and periodontal ligament need to be restored to their original architecture. Stem cells from exfoliated deciduous teeth (SHEDs) appear to be an attractive candidate for periodontium tissue regeneration. Previously, the authors successfully regenerated periodontal defects using autologous and allogeneic periodontal ligament stem cells (PDLSCs). The purpose of the present study is to investigate the ability of allogeneic SHEDs to regenerate lost periodontium in a swine periodontitis model. METHODS Animal models of periodontitis were established in miniature pigs, and allogeneic stem cells were isolated from miniature pig deciduous teeth (SPDs). The animal models were treated with SPDs plus hydroxyapatite/tricalcium phosphate (HA/TCP). Allogeneic PDLSCs plus HA/TCP or HA/TCP alone were set as positive control or control, respectively. Clinical assessments, computed tomography (CT) scanning, and histologic examination were used to evaluate the outcome of tissue regeneration. RESULTS Clinical indices including probing depth, gingival recession, and attachment loss showed significant restoration in the SPD and PDLSC treatment groups, compared to the HA/TCP group 12 weeks post-transplantation. Meanwhile, CT scans showed that 75% of the samples had successful hard-tissue regeneration in both PDLSC and SPD groups, compared to the HA/TCP group, where the success rate was only 25%. In addition, histologic examination demonstrated that SPD and PDLSC treatment brought about remarkable regeneration of periodontal tissues, whereas periodontal regeneration was rare in the HA/TCP group. CONCLUSIONS Allogeneic SPDs can effectively repair hard and soft tissue loss brought about by periodontitis in a swine model. Allogeneic SHEDs, which are easily accessible, may be applied to treat periodontitis in clinics in the future.
Collapse
Affiliation(s)
- Xiaoru Fu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | | | | | | | | |
Collapse
|
191
|
Yang H, Gao LN, An Y, Hu CH, Jin F, Zhou J, Jin Y, Chen FM. Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions. Biomaterials 2013; 34:7033-47. [DOI: 10.1016/j.biomaterials.2013.05.025] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 05/16/2013] [Indexed: 12/25/2022]
|
192
|
Requicha JF, Viegas CA, Hede S, Leonor IB, Reis RL, Gomes ME. Design and characterization of a biodegradable double-layer scaffold aimed at periodontal tissue-engineering applications. J Tissue Eng Regen Med 2013; 10:392-403. [DOI: 10.1002/term.1816] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 12/21/2022]
Affiliation(s)
- João F. Requicha
- 3B's Research Group, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; University of Minho; Guimarães Portugal
- ICVS/3B's; PT Government Associated Laboratory; Braga/Guimarães Portugal
- Department of Veterinary Sciences; University of Trás-os-Montes e Alto Douro; Vila Real Portugal
| | - Carlos A. Viegas
- 3B's Research Group, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; University of Minho; Guimarães Portugal
- ICVS/3B's; PT Government Associated Laboratory; Braga/Guimarães Portugal
- Department of Veterinary Sciences; University of Trás-os-Montes e Alto Douro; Vila Real Portugal
| | - Shantesh Hede
- 3B's Research Group, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; University of Minho; Guimarães Portugal
- ICVS/3B's; PT Government Associated Laboratory; Braga/Guimarães Portugal
| | - Isabel B. Leonor
- 3B's Research Group, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; University of Minho; Guimarães Portugal
- ICVS/3B's; PT Government Associated Laboratory; Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; University of Minho; Guimarães Portugal
- ICVS/3B's; PT Government Associated Laboratory; Braga/Guimarães Portugal
| | - Manuela E. Gomes
- 3B's Research Group, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; University of Minho; Guimarães Portugal
- ICVS/3B's; PT Government Associated Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
193
|
The combined use of cell sheet fragments of periodontal ligament stem cells and platelet-rich fibrin granules for avulsed tooth reimplantation. Biomaterials 2013; 34:5506-20. [DOI: 10.1016/j.biomaterials.2013.03.079] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/27/2013] [Indexed: 01/27/2023]
|
194
|
Prgeeth Pandula PKC, Samaranayake LP, Jin LJ, Zhang CF. Human umbilical vein endothelial cells synergize osteo/odontogenic differentiation of periodontal ligament stem cells in 3D cell sheets. J Periodontal Res 2013; 49:299-306. [DOI: 10.1111/jre.12107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2013] [Indexed: 12/29/2022]
Affiliation(s)
- P. K. C. Prgeeth Pandula
- Department of Endodontics; Comprehensive Dental Care; Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| | - L. P. Samaranayake
- Department of Oral Biosciences; Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| | - L. J. Jin
- Department of Periodontology and Public Health; Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| | - C. F. Zhang
- Department of Endodontics; Comprehensive Dental Care; Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| |
Collapse
|
195
|
Guo S, Guo W, Ding Y, Gong J, Zou Q, Xie D, Chen Y, Wu Y, Tian W. Comparative Study of Human Dental Follicle Cell Sheets and Periodontal Ligament Cell Sheets for Periodontal Tissue Regeneration. Cell Transplant 2013; 22:1061-73. [PMID: 23007138 DOI: 10.3727/096368912x656036] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Periodontal ligament cell (PDLC) sheets have been shown to contribute to periodontal tissue regeneration. Dental follicle cells (DFCs), acknowledged as the precursor cells of PDLCs, have demonstrated stemness, embryonic features, heterogeneity, and pluripotency. Therefore, we hypothesized that DFC sheets might be more effective and suitable for periodontal tissue regeneration than PDLC sheets. In this study, we compared the biological characteristics of DFC sheets and PDLC sheets in vitro. To investigate the potential for periodontal tissue regeneration in vivo, complexes composed of two types of cell sheets combined with dentin matrix were implanted subcutaneously into nude mice for 6 weeks. Our results showed that, when forming cell sheets, DFCs secreted richer extracellular matrix than PDLCs. And compared to DFCs, DFC sheets expressed high levels of calcification-related genes, including alkaline phosphatase ( alp), bone sialoprotein ( bsp), osteopontin ( opn), runt-related transcription factor ( runx2), as well as the periodontal ligament-specific genes collagen III ( col III) and periostin, while the gene expression of bsp, osteocalcin ( ocn), and opn were greatly increased in PDLC sheets, when compared to PDLCs. col I expression did not change significantly. However, cementum protein 23 ( cp-23) expression increased several fold in PDLC sheets compared to PDLCs but decreased in DFC sheets compared to DFCs. DFC and PDLC sheets were both positive for Collagen I (Col I), cementum attachment protein (CAP), ALP, BSP, OCN, and OPN protein expression, and Col I, ALP, BSP, and OPN expression were increased after cell sheets were formed. Furthermore, the levels of laminin and fibronectin were higher in DFCs and DFC sheets than that of PDLCs and PDLC sheets, respectively. In vivo, DFC and PDLC sheets could both regenerate periodontal tissue-like structures, but DFC sheets demonstrated stronger periodontal regeneration potential than PDLC sheets. Therefore, DFC sheets derived from discarded dental follicle tissue after tooth extraction may be more advantageous for clinical periodontal tissue regeneration in the future.
Collapse
Affiliation(s)
- Shujuan Guo
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jian Gong
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qing Zou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
| | - Dan Xie
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
| | - Yali Chen
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
196
|
Yu N, Oortgiesen DAW, Bronckers ALJJ, Yang F, Walboomers XF, Jansen JA. Enhanced periodontal tissue regeneration by periodontal cell implantation. J Clin Periodontol 2013; 40:698-706. [PMID: 23675871 DOI: 10.1111/jcpe.12113] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2013] [Indexed: 12/14/2022]
Abstract
AIM Due to a lack of regenerative potential, current treatments for periodontal defects do not always provide satisfactory clinical results. Previously, the implantation of a biomaterial scaffold-cell construct has been suggested as a clinically achievable approach. In this study, it was aimed to investigate the contribution of implanted periodontal ligament (PDL) cells to periodontal tissue regeneration. MATERIALS & METHODS Gelatin sponges were seeded with green fluorescent protein (GFP) transfected PDL or gingival fibroblasts (GF) cells, and implanted into a surgically created rat intrabony periodontal defect model. After six weeks, decalcified maxillae were used for histomorphometrical and immunohistochemical analyses. RESULTS After six weeks, animals that had received the PDL cells exhibited significantly more functional bone and ligament. Furthermore, there were remarkable differences in the distribution of the transplanted cells. Periodontal ligament cells were always located directly lining the newly regenerated areas. In contrast, GF cells dispersed over the whole defect area, and did not provide a favourable effect on the regeneration of the periodontal tissues. CONCLUSION We concluded that PDL cells transplanted into a periodontal defect survive and favour regeneration of periodontium, possibly in a paracrine manner.
Collapse
Affiliation(s)
- Na Yu
- Department of Biomaterials, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
197
|
Anitua E, Troya M, Orive G. An autologous platelet-rich plasma stimulates periodontal ligament regeneration. J Periodontol 2013; 84:1556-66. [PMID: 23289869 DOI: 10.1902/jop.2013.120556] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Regeneration of periodontal tissues is one of the most important goals for the treatment of periodontal disease. The technology of plasma rich in growth factors provides a biologic approach for the stimulation and acceleration of tissue healing. The purpose of this study is to evaluate the biologic effects of this technology on primary human periodontal ligament fibroblasts. METHODS The authors studied the response of periodontal ligament cells to this pool of growth factors on cell proliferation, cell migration, secretion of several biomolecules, cell adhesion, and expression of α2 integrin. Cell proliferation and adhesion were evaluated by means of a fluorescence-based method. Cell migration was performed on culture inserts. The release of different biomolecules by periodontal ligament fibroblasts was quantified through enzyme-linked immunosorbent assay. The α2 integrin expression was assessed through Western blot. RESULTS This autologous technology significantly stimulated cell proliferation, migration, adhesion, and synthesis of many growth factors from cells including vascular endothelial growth factor, thrombospondin 1, connective tissue growth factor, hepatocyte growth factor, and procollagen type I. The α2 integrin expression was lower in plasma rich in growth factor-treated cells compared to non-stimulated cells, although no statistically significant differences were observed. CONCLUSION This plasma rich in growth factors exerts positive effects on periodontal ligament fibroblasts, which could be positive for periodontal regeneration.
Collapse
|
198
|
Lu H, Xie C, Zhao YM, Chen FM. Translational research and therapeutic applications of stem cell transplantation in periodontal regenerative medicine. Cell Transplant 2012; 22:205-29. [PMID: 23031442 DOI: 10.3727/096368912x656171] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stem cells have received a great deal of interest from the research community as potential therapeutic "tools" for a variety of chronic debilitating diseases that lack clinically effective therapies. Stem cells are also of interest for the regeneration of tooth-supporting tissues that have been lost to periodontal disease. Indeed, substantial data have demonstrated that the exogenous administration of stem cells or their derivatives in preclinical animal models of periodontal defects can restore damaged tissues to their original form and function. As we discuss here, however, considerable hurdles must be overcome before these findings can be responsibly translated to novel clinical therapies. Generally, the application of stem cells for periodontal therapy in clinics will not be realized until the best cell(s) to use, the optimal dose, and an effective mode of administration are identified. In particular, we need to better understand the mechanisms of action of stem cells after transplantation in the periodontium and to learn how to preciously control stem cell fates in the pathological environment around a tooth. From a translational perspective, we outline the challenges that may vary across preclinical models for the evaluation of stem cell therapy in situations that require periodontal reconstruction and the safety issues that are related to clinical applications of human stem cells. Although clinical trials that use autologous periodontal ligament stem cells have been approved and have already been initiated, proper consideration of the technical, safety, and regulatory concerns may facilitate, rather than inhibit, the clinical translation of new therapies.
Collapse
Affiliation(s)
- Hong Lu
- Department of Periodontology and Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | | | | | | |
Collapse
|
199
|
Ji K, Liu Y, Lu W, Yang F, Yu J, Wang X, Ma Q, Yang Z, Wen L, Xuan K. Periodontal tissue engineering with stem cells from the periodontal ligament of human retained deciduous teeth. J Periodontal Res 2012; 48:105-16. [PMID: 22881344 DOI: 10.1111/j.1600-0765.2012.01509.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament stem cells from human permanent teeth (PePDLSCs) have been investigated extensively in periodontal tissue engineering and regeneration. However, little knowledge is available on the periodontal ligament stem cells from human retained deciduous teeth (DePDLSCs). This study evaluated the potential of DePDLSCs in periodontal tissue regeneration. MATERIAL AND METHODS DePDLSCs were isolated and purified by limited dilution. The characteristics of DePDLSCs were evaluated and compared with PePDLSCs both in vitro and in vivo. RESULTS DePDLSCs presented a higher proliferation rate and colony-forming capacity than PePDLSCs in vitro. During the osteogenic induction, alkaline phosphatase (ALP) activity, mineralized matrix formation and expression of mineralization-related genes, including runt-related transcription factor 2 (RUNX2), ALP, collagen type I (COLI) and osteocalcin (OCN) were significantly enhanced in DePDLSCs compared with PePDLSCs. Furthermore, DePDLSC cell sheets showed a stronger synthesis of collagen type I in the extracellular matrix than did PePDLSC cell sheets. After in vivo transplantation, DePDLSC cell sheets recombined with human dentin blocks were able to generate new cementum/periodontal ligament-like tissues. CONCLUSION Our findings suggest that DePDLSCs can be used as a promising candidate for periodontal tissue engineering.
Collapse
Affiliation(s)
- K Ji
- Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Wang WJ, Zhao YM, Lin BC, Yang J, Ge LH. Identification of multipotent stem cells from adult dog periodontal ligament. Eur J Oral Sci 2012; 120:303-10. [PMID: 22813220 DOI: 10.1111/j.1600-0722.2012.00975.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wen-Jun Wang
- Department of Pediatric Dentistry; Peking University School and Hospital of Stomatology; Beijing China
| | - Yu-Ming Zhao
- Department of Pediatric Dentistry; Peking University School and Hospital of Stomatology; Beijing China
| | - Bi-Chen Lin
- Department of Pediatric Dentistry; Peking University School and Hospital of Stomatology; Beijing China
| | - Jie Yang
- Department of Pediatric Dentistry; Peking University School and Hospital of Stomatology; Beijing China
| | - Li-Hong Ge
- Department of Pediatric Dentistry; Peking University School and Hospital of Stomatology; Beijing China
| |
Collapse
|