151
|
Chen JH, Huang C, Zhang B, Yin S, Liang J, Xu C, Huang Y, Cen LP, Ng TK, Zheng C, Zhang S, Chen H, Pang CP, Zhang M. Mutations of RagA GTPase in mTORC1 Pathway Are Associated with Autosomal Dominant Cataracts. PLoS Genet 2016; 12:e1006090. [PMID: 27294265 PMCID: PMC4905677 DOI: 10.1371/journal.pgen.1006090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/09/2016] [Indexed: 01/15/2023] Open
Abstract
Cataracts are a significant public health problem with no proven methods for prevention. Discovery of novel disease mechanisms to delineate new therapeutic targets is of importance in cataract prevention and therapy. Herein, we report that mutations in the RagA GTPase (RRAGA), a key regulator of the mechanistic rapamycin complex 1 (mTORC1), are associated with autosomal dominant cataracts. We performed whole exome sequencing in a family with autosomal dominant juvenile-onset cataracts, and identified a novel p.Leu60Arg mutation in RRAGA that co-segregated with the disease, after filtering against the dbSNP database, and at least 123,000 control chromosomes from public and in-house exome databases. In a follow-up direct screening of RRAGA in another 22 families and 142 unrelated patients with congenital or juvenile-onset cataracts, RRAGA was found to be mutated in two unrelated patients (p.Leu60Arg and c.-16G>A respectively). Functional studies in human lens epithelial cells revealed that the RRAGA mutations exerted deleterious effects on mTORC1 signaling, including increased relocation of RRAGA to the lysosomes, up-regulated mTORC1 phosphorylation, down-regulated autophagy, altered cell growth or compromised promoter activity. These data indicate that the RRAGA mutations, associated with autosomal dominant cataracts, play a role in the disease by acting through disruption of mTORC1 signaling. A group of guanine nucleotide-binding molecules called Rag GTPases are known to play a crucial role in regulation of mTORC1 signaling cascade. In the current study, whole exome sequencing has led to the identification of the RagA GTPase (RRAGA) gene for cataracts and we proceeded to study properties of the RRAGA protein. We captured and sequenced the whole exome for four affected patients from a family with autosomal dominant juvenile-onset posterior cataracts, and found a novel rare mutation in RagA GTPase (RRAGA). To validate this finding, we then sequenced more families and patients, and observed RRAGA mutations in unrelated patients with related phenotypes, suggesting that RRAGA could be mutated in congenital and juvenile-onset cataracts. We further demonstrated supporting evidence that in human lens epithelial cells the RRAGA mutations exerted deleterious effects on relocation of RRAGA to the lysosomes, mTORC1 phosphorylation, autophagy and cell growth. This study gives important new insight into the roles of RRAGA and mTROC1 signaling in the etiology of cataracts.
Collapse
Affiliation(s)
- Jian-Huan Chen
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Chukai Huang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Bining Zhang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Shengjie Yin
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Jiajian Liang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Ciyan Xu
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Yuqiang Huang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Ling-Ping Cen
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Tsz-Kin Ng
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Ce Zheng
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Shaobin Zhang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Haoyu Chen
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Chi-Pui Pang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (CPP); (MZ)
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
- * E-mail: (CPP); (MZ)
| |
Collapse
|
152
|
Stittrich AB, Ashworth J, Shi M, Robinson M, Mauldin D, Brunkow ME, Biswas S, Kim JM, Kwon KS, Jung JU, Galas D, Serikawa K, Duerr RH, Guthery SL, Peschon J, Hood L, Roach JC, Glusman G. Genomic architecture of inflammatory bowel disease in five families with multiple affected individuals. Hum Genome Var 2016; 3:15060. [PMID: 27081563 PMCID: PMC4785573 DOI: 10.1038/hgv.2015.60] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 01/06/2023] Open
Abstract
Currently, the best clinical predictor for inflammatory bowel disease (IBD) is family history. Over 163 sequence variants have been associated with IBD in genome-wide association studies, but they have weak effects and explain only a fraction of the observed heritability. It is expected that additional variants contribute to the genomic architecture of IBD, possibly including rare variants with effect sizes larger than the identified common variants. Here we applied a family study design and sequenced 38 individuals from five families, under the hypothesis that families with multiple IBD-affected individuals harbor one or more risk variants that (i) are shared among affected family members, (ii) are rare and (iii) have substantial effect on disease development. Our analysis revealed not only novel candidate risk variants but also high polygenic risk scores for common known risk variants in four out of the five families. Functional analysis of our top novel variant in the remaining family, a rare missense mutation in the ubiquitin ligase TRIM11, suggests that it leads to increased nuclear factor of kappa light chain enhancer in B-cells (NF-κB) signaling. We conclude that an accumulation of common weak-effect variants accounts for the high incidence of IBD in most, but not all families we analyzed and that a family study design can identify novel rare variants conferring risk for IBD with potentially large effect size, such as the TRIM11 p.H414Y mutation.
Collapse
Affiliation(s)
| | | | - Mude Shi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | - Jin-Man Kim
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ki-Sun Kwon
- Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Galas
- Pacific Northwest Diabetes Research Institute, Seattle, WA, USA
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Richard H Duerr
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen L Guthery
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, USA
| | | | | |
Collapse
|
153
|
Human genotype–phenotype databases: aims, challenges and opportunities. Nat Rev Genet 2015; 16:702-15. [DOI: 10.1038/nrg3932] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
154
|
Shringarpure SS, Bustamante CD. Privacy Risks from Genomic Data-Sharing Beacons. Am J Hum Genet 2015; 97:631-46. [PMID: 26522470 PMCID: PMC4667107 DOI: 10.1016/j.ajhg.2015.09.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022] Open
Abstract
The human genetics community needs robust protocols that enable secure sharing of genomic data from participants in genetic research. Beacons are web servers that answer allele-presence queries—such as “Do you have a genome that has a specific nucleotide (e.g., A) at a specific genomic position (e.g., position 11,272 on chromosome 1)?”—with either “yes” or “no.” Here, we show that individuals in a beacon are susceptible to re-identification even if the only data shared include presence or absence information about alleles in a beacon. Specifically, we propose a likelihood-ratio test of whether a given individual is present in a given genetic beacon. Our test is not dependent on allele frequencies and is the most powerful test for a specified false-positive rate. Through simulations, we showed that in a beacon with 1,000 individuals, re-identification is possible with just 5,000 queries. Relatives can also be identified in the beacon. Re-identification is possible even in the presence of sequencing errors and variant-calling differences. In a beacon constructed with 65 European individuals from the 1000 Genomes Project, we demonstrated that it is possible to detect membership in the beacon with just 250 SNPs. With just 1,000 SNP queries, we were able to detect the presence of an individual genome from the Personal Genome Project in an existing beacon. Our results show that beacons can disclose membership and implied phenotypic information about participants and do not protect privacy a priori. We discuss risk mitigation through policies and standards such as not allowing anonymous pings of genetic beacons and requiring minimum beacon sizes.
Collapse
|
155
|
Toga AW, Foster I, Kesselman C, Madduri R, Chard K, Deutsch EW, Price ND, Glusman G, Heavner BD, Dinov ID, Ames J, Van Horn J, Kramer R, Hood L. Big biomedical data as the key resource for discovery science. J Am Med Inform Assoc 2015; 22:1126-31. [PMID: 26198305 PMCID: PMC5009918 DOI: 10.1093/jamia/ocv077] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/07/2015] [Accepted: 05/15/2015] [Indexed: 12/19/2022] Open
Abstract
Modern biomedical data collection is generating exponentially more data in a multitude of formats. This flood of complex data poses significant opportunities to discover and understand the critical interplay among such diverse domains as genomics, proteomics, metabolomics, and phenomics, including imaging, biometrics, and clinical data. The Big Data for Discovery Science Center is taking an "-ome to home" approach to discover linkages between these disparate data sources by mining existing databases of proteomic and genomic data, brain images, and clinical assessments. In support of this work, the authors developed new technological capabilities that make it easy for researchers to manage, aggregate, manipulate, integrate, and model large amounts of distributed data. Guided by biological domain expertise, the Center's computational resources and software will reveal relationships and patterns, aiding researchers in identifying biomarkers for the most confounding conditions and diseases, such as Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Ian Foster
- Computation Institute, University of Chicago and Argonne National Laboratory, Chicago, IL, USA
| | - Carl Kesselman
- Information Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | - Ravi Madduri
- Computation Institute, University of Chicago and Argonne National Laboratory, Chicago, IL, USA
| | - Kyle Chard
- Computation Institute, University of Chicago and Argonne National Laboratory, Chicago, IL, USA
| | | | | | | | | | - Ivo D Dinov
- Statistics Online Computational Resource (SOCR), UMSN, University of Michigan, Ann Arbor, MI, USA
| | - Joseph Ames
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - John Van Horn
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, USA
| |
Collapse
|
156
|
Lalli MA, Bettcher BM, Arcila ML, Garcia G, Guzman C, Madrigal L, Ramirez L, Acosta-Uribe J, Baena A, Wojta KJ, Coppola G, Fitch R, de Both MD, Huentelman MJ, Reiman EM, Brunkow ME, Glusman G, Roach JC, Kao AW, Lopera F, Kosik KS. Whole-genome sequencing suggests a chemokine gene cluster that modifies age at onset in familial Alzheimer's disease. Mol Psychiatry 2015; 20:1294-300. [PMID: 26324103 PMCID: PMC4759097 DOI: 10.1038/mp.2015.131] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/10/2015] [Accepted: 07/23/2015] [Indexed: 12/22/2022]
Abstract
We have sequenced the complete genomes of 72 individuals affected with early-onset familial Alzheimer's disease caused by an autosomal dominant, highly penetrant mutation in the presenilin-1 (PSEN1) gene, and performed genome-wide association testing to identify variants that modify age at onset (AAO) of Alzheimer's disease. Our analysis identified a haplotype of single-nucleotide polymorphisms (SNPs) on chromosome 17 within a chemokine gene cluster associated with delayed onset of mild-cognitive impairment and dementia. Individuals carrying this haplotype had a mean AAO of mild-cognitive impairment at 51.0 ± 5.2 years compared with 41.1 ± 7.4 years for those without these SNPs. This haplotype thus appears to modify Alzheimer's AAO, conferring a large (~10 years) protective effect. The associated locus harbors several chemokines including eotaxin-1 encoded by CCL11, and the haplotype includes a missense polymorphism in this gene. Validating this association, we found plasma eotaxin-1 levels were correlated with disease AAO in an independent cohort from the University of California San Francisco Memory and Aging Center. In this second cohort, the associated haplotype disrupted the typical age-associated increase of eotaxin-1 levels, suggesting a complex regulatory role for this haplotype in the general population. Altogether, these results suggest eotaxin-1 as a novel modifier of Alzheimer's disease AAO and open potential avenues for therapy.
Collapse
Affiliation(s)
- M A Lalli
- Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - B M Bettcher
- Memory and Aging Center, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - M L Arcila
- Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - G Garcia
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
| | - C Guzman
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
| | - L Madrigal
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
| | - L Ramirez
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
| | - J Acosta-Uribe
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
| | - A Baena
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
| | - K J Wojta
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA
| | - G Coppola
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA
| | - R Fitch
- Memory and Aging Center, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - M D de Both
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - M J Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - E M Reiman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
- Banner Alzheimer's Institute, Department of Psychiatry, University of Arizona, Tucson, AZ, USA
| | - M E Brunkow
- Institute for Systems Biology, Seattle, WA, USA
| | - G Glusman
- Institute for Systems Biology, Seattle, WA, USA
| | - J C Roach
- Institute for Systems Biology, Seattle, WA, USA
| | - A W Kao
- Memory and Aging Center, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - F Lopera
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
| | - K S Kosik
- Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
157
|
Heterozygous Loss-of-Function Mutations in DLL4 Cause Adams-Oliver Syndrome. Am J Hum Genet 2015; 97:475-82. [PMID: 26299364 DOI: 10.1016/j.ajhg.2015.07.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/29/2015] [Indexed: 12/17/2022] Open
Abstract
Adams-Oliver syndrome (AOS) is a rare developmental disorder characterized by the presence of aplasia cutis congenita (ACC) of the scalp vertex and terminal limb-reduction defects. Cardiovascular anomalies are also frequently observed. Mutations in five genes have been identified as a cause for AOS prior to this report. Mutations in EOGT and DOCK6 cause autosomal-recessive AOS, whereas mutations in ARHGAP31, RBPJ, and NOTCH1 lead to autosomal-dominant AOS. Because RBPJ, NOTCH1, and EOGT are involved in NOTCH signaling, we hypothesized that mutations in other genes involved in this pathway might also be implicated in AOS pathogenesis. Using a candidate-gene-based approach, we prioritized DLL4, a critical NOTCH ligand, due to its essential role in vascular development in the context of cardiovascular features in AOS-affected individuals. Targeted resequencing of the DLL4 gene with a custom enrichment panel in 89 independent families resulted in the identification of seven mutations. A defect in DLL4 was also detected in two families via whole-exome or genome sequencing. In total, nine heterozygous mutations in DLL4 were identified, including two nonsense and seven missense variants, the latter encompassing four mutations that replace or create cysteine residues, which are most likely critical for maintaining structural integrity of the protein. Affected individuals with DLL4 mutations present with variable clinical expression with no emerging genotype-phenotype correlations. Our findings demonstrate that DLL4 mutations are an additional cause of autosomal-dominant AOS or isolated ACC and provide further evidence for a key role of NOTCH signaling in the etiology of this disorder.
Collapse
|
158
|
Sequence-Level Analysis of the Major European Huntington Disease Haplotype. Am J Hum Genet 2015; 97:435-44. [PMID: 26320893 DOI: 10.1016/j.ajhg.2015.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/31/2015] [Indexed: 01/08/2023] Open
Abstract
Huntington disease (HD) reflects the dominant consequences of a CAG-repeat expansion in HTT. Analysis of common SNP-based haplotypes has revealed that most European HD subjects have distinguishable HTT haplotypes on their normal and disease chromosomes and that ∼50% of the latter share the same major HD haplotype. We reasoned that sequence-level investigation of this founder haplotype could provide significant insights into the history of HD and valuable information for gene-targeting approaches. Consequently, we performed whole-genome sequencing of HD and control subjects from four independent families in whom the major European HD haplotype segregates with the disease. Analysis of the full-sequence-based HTT haplotype indicated that these four families share a common ancestor sufficiently distant to have permitted the accumulation of family-specific variants. Confirmation of new CAG-expansion mutations on this haplotype suggests that unlike most founders of human disease, the common ancestor of HD-affected families with the major haplotype most likely did not have HD. Further, availability of the full sequence data validated the use of SNP imputation to predict the optimal variants for capturing heterozygosity in personalized allele-specific gene-silencing approaches. As few as ten SNPs are capable of revealing heterozygosity in more than 97% of European HD subjects. Extension of allele-specific silencing strategies to the few remaining homozygous individuals is likely to be achievable through additional known SNPs and discovery of private variants by complete sequencing of HTT. These data suggest that the current development of gene-based targeting for HD could be extended to personalized allele-specific approaches in essentially all HD individuals of European ancestry.
Collapse
|
159
|
Deutsch EW, Sun Z, Campbell D, Kusebauch U, Chu CS, Mendoza L, Shteynberg D, Omenn GS, Moritz RL. State of the Human Proteome in 2014/2015 As Viewed through PeptideAtlas: Enhancing Accuracy and Coverage through the AtlasProphet. J Proteome Res 2015; 14:3461-73. [PMID: 26139527 DOI: 10.1021/acs.jproteome.5b00500] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Human PeptideAtlas is a compendium of the highest quality peptide identifications from over 1000 shotgun mass spectrometry proteomics experiments collected from many different laboratories, all reanalyzed through a uniform processing pipeline. The latest 2015-03 build contains substantially more input data than past releases, is mapped to a recent version of our merged reference proteome, and uses improved informatics processing and the development of the AtlasProphet to provide the highest quality results. Within the set of ∼20,000 neXtProt primary entries, 14,070 (70%) are confidently detected in the latest build, 5% are ambiguous, 9% are redundant, leaving the total percentage of proteins for which there are no mapping detections at just 16% (3166), all derived from over 133 million peptide-spectrum matches identifying more than 1 million distinct peptides using AtlasProphet to characterize and classify the protein matches. Improved handling for detection and presentation of single amino-acid variants (SAAVs) reveals the detection of 5326 uniquely mapping SAAVs across 2794 proteins. With such a large amount of data, the control of false positives is a challenge. We present the methodology and results for maintaining rigorous quality along with a discussion of the implications of the remaining sources of errors in the build.
Collapse
Affiliation(s)
- Eric W Deutsch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
| | - Zhi Sun
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
| | - David Campbell
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
| | - Ulrike Kusebauch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
| | - Caroline S Chu
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
| | - Luis Mendoza
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
| | - David Shteynberg
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
| | - Gilbert S Omenn
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States.,Departments of Computational Medicine & Bioinformatics, Internal Medicine, Human Genetics and School of Public Health, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Robert L Moritz
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
| |
Collapse
|
160
|
Seok HS, Song T, Kong SW, Hwang KB. An Efficient Search Algorithm for Finding Genomic-Range Overlaps Based on the Maximum Range Length. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:778-784. [PMID: 26357316 DOI: 10.1109/tcbb.2014.2369042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Efficient search algorithms for finding genomic-range overlaps are essential for various bioinformatics applications. A majority of fast algorithms for searching the overlaps between a query range (e.g., a genomic variant) and a set of N reference ranges (e.g., exons) has time complexity of O(k + logN), where kdenotes a term related to the length and location of the reference ranges. Here, we present a simple but efficient algorithm that reduces k, based on the maximum reference range length. Specifically, for a given query range and the maximum reference range length, the proposed method divides the reference range set into three subsets: always, potentially, and never overlapping. Therefore, search effort can be reduced by excluding never overlapping subset. We demonstrate that the running time of the proposed algorithm is proportional to potentially overlapping subset size, that is proportional to the maximum reference range length if all the other conditions are the same. Moreover, an implementation of our algorithm was 13.8 to 30.0 percent faster than one of the fastest range search methods available when tested on various genomic-range data sets. The proposed algorithm has been incorporated into a disease-linked variant prioritization pipeline for WGS (http://gnome.tchlab.org) and its implementation is available at http://ml.ssu.ac.kr/gSearch.
Collapse
|
161
|
Viollet L, Glusman G, Murphy KJ, Newcomb TM, Reyna SP, Sweney M, Nelson B, Andermann F, Andermann E, Acsadi G, Barbano RL, Brown C, Brunkow ME, Chugani HT, Cheyette SR, Collins A, DeBrosse SD, Galas D, Friedman J, Hood L, Huff C, Jorde LB, King MD, LaSalle B, Leventer RJ, Lewelt AJ, Massart MB, Mérida MR, Ptáček LJ, Roach JC, Rust RS, Renault F, Sanger TD, Sotero de Menezes MA, Tennyson R, Uldall P, Zhang Y, Zupanc M, Xin W, Silver K, Swoboda KJ. Alternating Hemiplegia of Childhood: Retrospective Genetic Study and Genotype-Phenotype Correlations in 187 Subjects from the US AHCF Registry. PLoS One 2015; 10:e0127045. [PMID: 25996915 PMCID: PMC4440742 DOI: 10.1371/journal.pone.0127045] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/11/2015] [Indexed: 11/21/2022] Open
Abstract
Mutations in ATP1A3 cause Alternating Hemiplegia of Childhood (AHC) by disrupting function of the neuronal Na+/K+ ATPase. Published studies to date indicate 2 recurrent mutations, D801N and E815K, and a more severe phenotype in the E815K cohort. We performed mutation analysis and retrospective genotype-phenotype correlations in all eligible patients with AHC enrolled in the US AHC Foundation registry from 1997-2012. Clinical data were abstracted from standardized caregivers’ questionnaires and medical records and confirmed by expert clinicians. We identified ATP1A3 mutations by Sanger and whole genome sequencing, and compared phenotypes within and between 4 groups of subjects, those with D801N, E815K, other ATP1A3 or no ATP1A3 mutations. We identified heterozygous ATP1A3 mutations in 154 of 187 (82%) AHC patients. Of 34 unique mutations, 31 (91%) are missense, and 16 (47%) had not been previously reported. Concordant with prior studies, more than 2/3 of all mutations are clustered in exons 17 and 18. Of 143 simplex occurrences, 58 had D801N (40%), 38 had E815K (26%) and 11 had G937R (8%) mutations. Patients with an E815K mutation demonstrate an earlier age of onset, more severe motor impairment and a higher prevalence of status epilepticus. This study further expands the number and spectrum of ATP1A3 mutations associated with AHC and confirms a more deleterious effect of the E815K mutation on selected neurologic outcomes. However, the complexity of the disorder and the extensive phenotypic variability among subgroups merits caution and emphasizes the need for further studies.
Collapse
Affiliation(s)
- Louis Viollet
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Gustavo Glusman
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Kelley J. Murphy
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Tara M. Newcomb
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Sandra P. Reyna
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew Sweney
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Benjamin Nelson
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Frederick Andermann
- Neurogenetics Unit, Montreal Neurologic Institute and Hospital, McGill University, Montreal Quebec, Canada
| | - Eva Andermann
- Neurogenetics Unit, Montreal Neurologic Institute and Hospital, McGill University, Montreal Quebec, Canada
| | - Gyula Acsadi
- Departments of Pediatrics and Neurology, Connecticut Children's Medical Center and University of Connecticut School of Medicine, Hartford, CT, United States of America
| | - Richard L. Barbano
- Department of Neurology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Candida Brown
- Diablo Valley Child Neurology, an affiliate of Stanford Health Alliance, Pleasant Hill, California, United States of America
| | - Mary E. Brunkow
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Harry T. Chugani
- Division of Pediatric Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan, United States of America
| | - Sarah R. Cheyette
- Department of Child Neurology, Palo Alto Medical Foundation Redwood City Clinic, Redwood City, California, United States of America
| | - Abigail Collins
- Department of Pediatric Neurology, Children’s Hospital Colorado, University of Colorado Hospital, Aurora, Colorado, United States of America
| | - Suzanne D. DeBrosse
- Departments of Genetics and Genome Sciences, Pediatrics, and Neurology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - David Galas
- Pacific Northwest Diabetes Research Institute, Seattle, Washington, United States of America
| | - Jennifer Friedman
- Departments of Neuroscience and Pediatrics, University of California San Diego, San Diego, California, United States of America
| | - Lee Hood
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Chad Huff
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Lynn B. Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary D. King
- Departments of Pediatrics and Neurology, University College Dublin School of Medicine and Medical Science, Dublin, Ireland
| | - Bernie LaSalle
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Richard J. Leventer
- Children’s Neuroscience Centre, Murdoch Childrens Research Institute, University of Melbourne Department of Paediatrics, The Royal Children’s Hospital Melbourne, Parkville Victoria, Australia
| | - Aga J. Lewelt
- Department of Pediatrics, College of Medicine Jacksonville, University of Florida, Jacksonville, Florida, United States of America
| | - Mylynda B. Massart
- Department of Family Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Mario R. Mérida
- Stevens Henager College, Salt Lake City, Utah, United States of America
| | - Louis J. Ptáček
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Jared C. Roach
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Robert S. Rust
- Center for Medical Ethics and Humanities in Medicine, University Of Virginia UVA health system, Charlottesville, Virginia, United States of America
| | - Francis Renault
- Departement de Neurophysiologie. Hopital Armand Trousseau APHP, Paris, France
| | - Terry D. Sanger
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | | | - Rachel Tennyson
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Peter Uldall
- Department of Paediatrics and Adolescent Medicine, Juliane Marie Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Yue Zhang
- Study Design and Biostatistics Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary Zupanc
- Department of Neurology, Children’s Hospital Orange County, and Department of Pediatrics, University of California, Orange, California, United States of America
| | - Winnie Xin
- Center for Human Genetic Research, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kenneth Silver
- Departments of Pediatrics and Neurology, University of Chicago and Comer Children's Hospital, Chicago, Illinois, United States of America
| | - Kathryn J. Swoboda
- Pediatric Motor Disorders Research Program, Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
162
|
Leveraging ancestry to improve causal variant identification in exome sequencing for monogenic disorders. Eur J Hum Genet 2015; 24:113-9. [PMID: 25898925 DOI: 10.1038/ejhg.2015.68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 03/01/2015] [Accepted: 03/10/2015] [Indexed: 01/18/2023] Open
Abstract
Recent breakthroughs in exome-sequencing technology have made possible the identification of many causal variants of monogenic disorders. Although extremely powerful when closely related individuals (eg, child and parents) are simultaneously sequenced, sequencing of a single case is often unsuccessful due to the large number of variants that need to be followed up for functional validation. Many approaches filter out common variants above a given frequency threshold (eg, 1%), and then prioritize the remaining variants according to their functional, structural and conservation properties. Here we present methods that leverage the genetic structure across different populations to improve filtering performance while accounting for the finite sample size of the reference panels. We show that leveraging genetic structure reduces the number of variants that need to be followed up by 16% in simulations and by up to 38% in empirical data of 20 exomes from individuals with monogenic disorders for which the causal variants are known.
Collapse
|
163
|
Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proc Natl Acad Sci U S A 2015; 112:3576-81. [PMID: 25730879 DOI: 10.1073/pnas.1424958112] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We sequenced the genomes of 200 individuals from 41 families multiply affected with bipolar disorder (BD) to identify contributions of rare variants to genetic risk. We initially focused on 3,087 candidate genes with known synaptic functions or prior evidence from genome-wide association studies. BD pedigrees had an increased burden of rare variants in genes encoding neuronal ion channels, including subunits of GABAA receptors and voltage-gated calcium channels. Four uncommon coding and regulatory variants also showed significant association, including a missense variant in GABRA6. Targeted sequencing of 26 of these candidate genes in an additional 3,014 cases and 1,717 controls confirmed rare variant associations in ANK3, CACNA1B, CACNA1C, CACNA1D, CACNG2, CAMK2A, and NGF. Variants in promoters and 5' and 3' UTRs contributed more strongly than coding variants to risk for BD, both in pedigrees and in the case-control cohort. The genes and pathways identified in this study regulate diverse aspects of neuronal excitability. We conclude that rare variants in neuronal excitability genes contribute to risk for BD.
Collapse
|
164
|
Kocak H, Ballew BJ, Bisht K, Eggebeen R, Hicks BD, Suman S, O'Neil A, Giri N, Maillard I, Alter BP, Keegan CE, Nandakumar J, Savage SA. Hoyeraal-Hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1. Genes Dev 2014; 28:2090-102. [PMID: 25233904 PMCID: PMC4180972 DOI: 10.1101/gad.248567.114] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Germline mutations in telomere biology genes cause dyskeratosis congenita (DC), an inherited bone marrow failure and cancer predisposition syndrome. Hoyeraal-Hreidarsson syndrome (HH) is a clinically severe variant of DC. Using exome sequencing, Kocak et al. identified mutations in ACD (encoding TPP1), a component of the telomeric shelterin complex, in one family affected by HH. Characterization of the mutations revealed that the single-amino-acid deletion affecting the TEL patch surface of the TPP1 protein significantly compromises both telomerase recruitment and processivity. Germline mutations in telomere biology genes cause dyskeratosis congenita (DC), an inherited bone marrow failure and cancer predisposition syndrome. DC is a clinically heterogeneous disorder diagnosed by the triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia; Hoyeraal-Hreidarsson syndrome (HH), a clinically severe variant of DC, also includes cerebellar hypoplasia, immunodeficiency, and intrauterine growth retardation. Approximately 70% of DC cases are associated with a germline mutation in one of nine genes, the products of which are all involved in telomere biology. Using exome sequencing, we identified mutations in Adrenocortical Dysplasia Homolog (ACD) (encoding TPP1), a component of the telomeric shelterin complex, in one family affected by HH. The proband inherited a deletion from his father and a missense mutation from his mother, resulting in extremely short telomeres and a severe clinical phenotype. Characterization of the mutations revealed that the single-amino-acid deletion affecting the TEL patch surface of the TPP1 protein significantly compromises both telomerase recruitment and processivity, while the missense mutation in the TIN2-binding region of TPP1 is not as clearly deleterious to TPP1 function. Our results emphasize the critical roles of the TEL patch in proper stem cell function and demonstrate that TPP1 is the second shelterin component (in addition to TIN2) to be implicated in DC.
Collapse
Affiliation(s)
- Hande Kocak
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Bari J Ballew
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland 20850, USA
| | - Kamlesh Bisht
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Rebecca Eggebeen
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, NCI-Frederick, Rockville, Maryland 20850, USA
| | - Belynda D Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, NCI-Frederick, Rockville, Maryland 20850, USA
| | - Shalabh Suman
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, NCI-Frederick, Rockville, Maryland 20850, USA
| | - Adri O'Neil
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, NCI-Frederick, Rockville, Maryland 20850, USA
| | - Neelam Giri
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland 20850, USA
| | | | | | - Ivan Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA; Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA; Department of Cell and Developmental Biology, Ann Arbor, Michigan 48109, USA
| | - Blanche P Alter
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland 20850, USA
| | - Catherine E Keegan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA; Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland 20850, USA;
| |
Collapse
|
165
|
Stittrich AB, Lehman A, Bodian D, Ashworth J, Zong Z, Li H, Lam P, Khromykh A, Iyer R, Vockley J, Baveja R, Silva E, Dixon J, Leon E, Solomon B, Glusman G, Niederhuber J, Roach J, Patel M. Mutations in NOTCH1 cause Adams-Oliver syndrome. Am J Hum Genet 2014; 95:275-84. [PMID: 25132448 DOI: 10.1016/j.ajhg.2014.07.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/22/2014] [Indexed: 12/16/2022] Open
Abstract
Notch signaling determines and reinforces cell fate in bilaterally symmetric multicellular eukaryotes. Despite the involvement of Notch in many key developmental systems, human mutations in Notch signaling components have mainly been described in disorders with vascular and bone effects. Here, we report five heterozygous NOTCH1 variants in unrelated individuals with Adams-Oliver syndrome (AOS), a rare disease with major features of aplasia cutis of the scalp and terminal transverse limb defects. Using whole-genome sequencing in a cohort of 11 families lacking mutations in the four genes with known roles in AOS pathology (ARHGAP31, RBPJ, DOCK6, and EOGT), we found a heterozygous de novo 85 kb deletion spanning the NOTCH1 5' region and three coding variants (c.1285T>C [p.Cys429Arg], c.4487G>A [p.Cys1496Tyr], and c.5965G>A [p.Asp1989Asn]), two of which are de novo, in four unrelated probands. In a fifth family, we identified a heterozygous canonical splice-site variant (c.743-1 G>T) in an affected father and daughter. These variants were not present in 5,077 in-house control genomes or in public databases. In keeping with the prominent developmental role described for Notch1 in mouse vasculature, we observed cardiac and multiple vascular defects in four of the five families. We propose that the limb and scalp defects might also be due to a vasculopathy in NOTCH1-related AOS. Our results suggest that mutations in NOTCH1 are the most common cause of AOS and add to a growing list of human diseases that have a vascular and/or bony component and are caused by alterations in the Notch signaling pathway.
Collapse
|
166
|
Lehman A, Stittrich AB, Glusman G, Zong Z, Li H, Eydoux P, Senger C, Lyons C, Roach JC, Patel M. Diffuse angiopathy in Adams-Oliver syndrome associated with truncating DOCK6 mutations. Am J Med Genet A 2014; 164A:2656-62. [PMID: 25091416 DOI: 10.1002/ajmg.a.36685] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 06/18/2014] [Indexed: 11/11/2022]
Abstract
Adams-Oliver syndrome (AOS) is a rare malformation syndrome characterized by the presence of two anomalies: aplasia cutis congenita of the scalp and transverse terminal limb defects. Many affected individuals also have additional malformations, including a variety of intracranial anomalies such as periventricular calcification in keeping with cerebrovascular microbleeds, impaired neuronal migration, epilepsy, and microcephaly. Cardiac malformations can be present, as can vascular dysfunction in the forms of cutis marmorata telangiectasia congenita, pulmonary vein stenoses, and abnormal hepatic microvasculature. Elucidated genetic causes include four genes in different pathways, leading to a model of AOS as a multi-pathway disorder. We identified an infant with mild aplasia cutis congenita and terminal transverse limb defects, developmental delay and a severe, diffuse angiopathy with incomplete microvascularization. Whole-genome sequencing documented two rare truncating variants in DOCK6, a gene associated with a type of autosomal recessive AOS that recurrently features periventricular calcification and impaired neurodevelopment. We highlight an unexpectedly high frequency of likely deleterious mutations in this gene in the general population, relative to the rarity of the disease, and discuss possible explanations for this discrepancy.
Collapse
Affiliation(s)
- Anna Lehman
- Department of Medical Genetics and Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Whole-exome sequencing and functional studies identify RPS29 as a novel gene mutated in multicase Diamond-Blackfan anemia families. Blood 2014; 124:24-32. [PMID: 24829207 DOI: 10.1182/blood-2013-11-540278] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) is a cancer-prone inherited bone marrow failure syndrome. Approximately half of DBA patients have a germ-line mutation in a ribosomal protein gene. We used whole-exome sequencing to identify disease-causing genes in 2 large DBA families. After filtering, 1 nonsynonymous mutation (p.I31F) in the ribosomal protein S29 (RPS29[AUQ1]) gene was present in all 5 DBA-affected individuals and the obligate carrier, and absent from the unaffected noncarrier parent in 1 DBA family. A second DBA family was found to have a different nonsynonymous mutation (p.I50T) in RPS29. Both mutations are amino acid substitutions in exon 2 predicted to be deleterious and resulted in haploinsufficiency of RPS29 expression compared with wild-type RPS29 expression from an unaffected control. The DBA proband with the p.I31F RPS29 mutation had a pre-ribosomal RNA (rRNA) processing defect compared with the healthy control. We demonstrated that both RPS29 mutations failed to rescue the defective erythropoiesis in the rps29(-/-) mutant zebra fish DBA model. RPS29 is a component of the small 40S ribosomal subunit and essential for rRNA processing and ribosome biogenesis. We uncovered a novel DBA causative gene, RPS29, and showed that germ-line mutations in RPS29 can cause a defective erythropoiesis phenotype using a zebra fish model.
Collapse
|
168
|
Ballew BJ, Joseph V, De S, Sarek G, Vannier JB, Stracker T, Schrader KA, Small TN, O'Reilly R, Manschreck C, Harlan Fleischut MM, Zhang L, Sullivan J, Stratton K, Yeager M, Jacobs K, Giri N, Alter BP, Boland J, Burdett L, Offit K, Boulton SJ, Savage SA, Petrini JHJ. A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson syndrome. PLoS Genet 2013; 9:e1003695. [PMID: 24009516 PMCID: PMC3757051 DOI: 10.1371/journal.pgen.1003695] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/11/2013] [Indexed: 11/18/2022] Open
Abstract
Dyskeratosis congenita (DC) is a heterogeneous inherited bone marrow failure and cancer predisposition syndrome in which germline mutations in telomere biology genes account for approximately one-half of known families. Hoyeraal Hreidarsson syndrome (HH) is a clinically severe variant of DC in which patients also have cerebellar hypoplasia and may present with severe immunodeficiency and enteropathy. We discovered a germline autosomal recessive mutation in RTEL1, a helicase with critical telomeric functions, in two unrelated families of Ashkenazi Jewish (AJ) ancestry. The affected individuals in these families are homozygous for the same mutation, R1264H, which affects three isoforms of RTEL1. Each parent was a heterozygous carrier of one mutant allele. Patient-derived cell lines revealed evidence of telomere dysfunction, including significantly decreased telomere length, telomere length heterogeneity, and the presence of extra-chromosomal circular telomeric DNA. In addition, RTEL1 mutant cells exhibited enhanced sensitivity to the interstrand cross-linking agent mitomycin C. The molecular data and the patterns of inheritance are consistent with a hypomorphic mutation in RTEL1 as the underlying basis of the clinical and cellular phenotypes. This study further implicates RTEL1 in the etiology of DC/HH and immunodeficiency, and identifies the first known homozygous autosomal recessive disease-associated mutation in RTEL1.
Collapse
Affiliation(s)
- Bari J. Ballew
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - Vijai Joseph
- Clinical Genetics Service, Department of Medicine, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Saurav De
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Grzegorz Sarek
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, South Mimms, United Kingdom
| | - Jean-Baptiste Vannier
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, South Mimms, United Kingdom
| | - Travis Stracker
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Kasmintan A. Schrader
- Clinical Genetics Service, Department of Medicine, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Trudy N. Small
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Richard O'Reilly
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Chris Manschreck
- Clinical Genetics Service, Department of Medicine, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Megan M. Harlan Fleischut
- Clinical Genetics Service, Department of Medicine, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Liying Zhang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - John Sullivan
- Clinical Genetics Service, Department of Medicine, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Kelly Stratton
- Clinical Genetics Service, Department of Medicine, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, United States of America
| | - Kevin Jacobs
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, United States of America
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - Blanche P. Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - Joseph Boland
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, United States of America
| | - Laurie Burdett
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, United States of America
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Cancer Genetics and Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Simon J. Boulton
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, South Mimms, United Kingdom
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - John H. J. Petrini
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
169
|
Ballew BJ, Yeager M, Jacobs K, Giri N, Boland J, Burdett L, Alter BP, Savage SA. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita. Hum Genet 2013; 132:473-80. [PMID: 23329068 PMCID: PMC3600110 DOI: 10.1007/s00439-013-1265-8] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/06/2013] [Indexed: 01/09/2023]
Abstract
Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. In addition, inheritance of only the missense mutation led to very short telomeres in the proband's brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein-protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC.
Collapse
Affiliation(s)
- Bari J. Ballew
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 20877
| | - Kevin Jacobs
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 20877
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892
| | - Joseph Boland
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 20877
| | - Laurie Burdett
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 20877
| | - Blanche P. Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892
| |
Collapse
|
170
|
Nekhai S, Xu M, Foster A, Kasvosve I, Diaz S, Machado RF, Castro OL, Kato GJ, Taylor JG, Gordeuk VR. Reduced sensitivity of the ferroportin Q248H mutant to physiological concentrations of hepcidin. Haematologica 2012; 98:455-63. [PMID: 23065513 DOI: 10.3324/haematol.2012.066530] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ferroportin Q248H mutation has an allele frequency of 2.2-13.4% in African populations and is associated with a mild tendency to increased serum ferritin in the general population. Some investigators have reported that ferroportin Q248H is degraded after exposure to hepcidin in exactly the same manner as wild-type ferroportin, but supraphysiological concentrations of hepcidin were used. The aim of our study was to determine whether ferroportin Q248H may have reduced sensitivity to physiological concentrations of hepcidin. The sensitivity of ferroportin Q248H to hepcidin was determined in 293T cells transiently expressing ferroportin using immunoblotting and fluorescence analysis. Ferritin concentrations were measured in these cells and also in human primary monocytes derived from humans with different ferroportin genotypes. The effect of Q248H on serum iron measures was examined in patients with sickle cell anemia. Immunoblotting and fluorescence analysis showed decreased sensitivity of ferroportin Q248H to physiological concentrations of hepcidin. Lower ferritin concentrations were observed after incubation with iron and hepcidin in 293T cells expressing ferroportin Q248H and in primary monocytes from ferroportin Q248H subjects. In sickle cell anemia, ferroportin Q248H heterozygotes had lower serum ferritin concentrations than wild-type subjects, consistent with enhanced iron release by macrophage ferroportin Q248H. A clinical benefit of ferroportin Q248H was suggested by lower echocardiographic estimates of pulmonary artery pressure in patients carrying mutant alleles. In conclusion, our results suggest that ferroportin Q248H protein is resistant to physiological concentrations of hepcidin and that this mutation has discernible effects on iron metabolism-related clinical complications of sickle cell anemia. They provide a mechanistic explanation for the effect of ferroportin Q248H on iron status in individuals of African descent and suggest that these changes in iron metabolism may be beneficial under certain disease-specific circumstances. (ClinicalTrials.gov Identifier:NCT00011648).
Collapse
Affiliation(s)
- Sergei Nekhai
- Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington, DC, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Song T, Hwang KB, Hsing M, Lee K, Bohn J, Kong SW. gSearch: a fast and flexible general search tool for whole-genome sequencing. Bioinformatics 2012; 28:2176-7. [PMID: 22730434 DOI: 10.1093/bioinformatics/bts358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Various processes such as annotation and filtering of variants or comparison of variants in different genomes are required in whole-genome or exome analysis pipelines. However, processing different databases and searching among millions of genomic loci is not trivial. RESULTS gSearch compares sequence variants in the Genome Variation Format (GVF) or Variant Call Format (VCF) with a pre-compiled annotation or with variants in other genomes. Its search algorithms are subsequently optimized and implemented in a multi-threaded manner. The proposed method is not a stand-alone annotation tool with its own reference databases. Rather, it is a search utility that readily accepts public or user-prepared reference files in various formats including GVF, Generic Feature Format version 3 (GFF3), Gene Transfer Format (GTF), VCF and Browser Extensible Data (BED) format. Compared to existing tools such as ANNOVAR, gSearch runs more than 10 times faster. For example, it is capable of annotating 52.8 million variants with allele frequencies in 6 min. AVAILABILITY gSearch is available at http://ml.ssu.ac.kr/gSearch. It can be used as an independent search tool or can easily be integrated to existing pipelines through various programming environments such as Perl, Ruby and Python.
Collapse
Affiliation(s)
- Taemin Song
- School of Computer Science and Engineering, Soongsil University, Seoul 156-743, South Korea
| | | | | | | | | | | |
Collapse
|
172
|
Novel rare variants in congenital cardiac arrhythmia genes are frequent in drug-induced torsades de pointes. THE PHARMACOGENOMICS JOURNAL 2012; 13:325-9. [PMID: 22584458 PMCID: PMC3422407 DOI: 10.1038/tpj.2012.14] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 04/04/2012] [Accepted: 04/11/2012] [Indexed: 11/09/2022]
Abstract
Marked prolongation of the QT interval and polymorphic ventricular tachycardia following medication (drug-induced long QT syndrome, diLQTS) is a severe adverse drug reaction (ADR) that phenocopies congenital long QT syndrome (cLQTS) and is one of the leading causes for drug withdrawal and relabeling. We evaluated the frequency of rare non-synonymous variants in genes contributing to the maintenance of heart rhythm in cases of diLQTS using targeted capture coupled to next-generation sequencing. Eleven of 31 diLQTS subjects (36%) carried a novel missense mutation in genes with known congenital arrhythmia associations or with a known cLQTS mutation. In the 26 Caucasian subjects, 23% carried a highly conserved rare variant predicted to be deleterious to protein function in these genes compared with only 2-4% in public databases (P<0.003). We conclude that the rare variation in genes responsible for congenital arrhythmia syndromes is frequent in diLQTS. Our findings demonstrate that diLQTS is a pharmacogenomic syndrome predisposed by rare genetic variants.
Collapse
|