151
|
Pettengill JB, Rand H, Wang SS, Kautter D, Pightling A, Wang Y. Transient and resident pathogens: Intra-facility genetic diversity of Listeria monocytogenes and Salmonella from food production environments. PLoS One 2022; 17:e0268470. [PMID: 36048885 PMCID: PMC9436056 DOI: 10.1371/journal.pone.0268470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/01/2022] [Indexed: 11/18/2022] Open
Abstract
Food production facilities are often routinely tested over time for the presence of foodborne pathogens (e.g., Listeria monocytogenes or Salmonella enterica subsp. enterica). Strains detected in a single sampling event can be classified as transient; positive findings of the same strain across multiple sampling events can be classified as resident pathogens. We analyzed whole-genome sequence (WGS) data from 4,758 isolates (L. monocytogenes = 3,685; Salmonella = 1,073) from environmental samples taken by FDA from 536 U.S. facilities. Our primary objective was to determine the frequency of transient or resident pathogens within food production facilities. Strains were defined as isolates from the same facility that are less than 50 SNP (single-nucleotide polymorphisms) different from one another. Resident pathogens were defined as strains that had more than one isolate collected >59 days apart and from the same facility. We found 1,076 strains (median = 1 and maximum = 21 strains per facility); 180 were resident pathogens, 659 were transient, and 237 came from facilities that had only been sampled once. As a result, 21% of strains (180/ 839) from facilities with positive findings and that were sampled multiple times were found to be resident pathogens; nearly 1 in 4 (23%) of L. monocytogenes strains were found to be resident pathogens compared to 1 in 6 (16%) of Salmonella strains. Our results emphasize the critical importance of preventing the colonization of food production environments by foodborne pathogens, since when colonization does occur, there is an appreciable chance it will become a resident pathogen that presents an ongoing potential to contaminate product.
Collapse
Affiliation(s)
- James B. Pettengill
- Biostatistics and Bioinformatics Staff, Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, United States of America
- * E-mail:
| | - Hugh Rand
- Biostatistics and Bioinformatics Staff, Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, United States of America
| | - Shizhen S. Wang
- Biostatistics and Bioinformatics Staff, Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, United States of America
| | - Donald Kautter
- Division Of Plant Products & Beverages, Office of Food Safety, Center for Food Safety and Applied Nutrition; US Food and Drug Administration, College Park, MD, United States of America
| | - Arthur Pightling
- Biostatistics and Bioinformatics Staff, Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, United States of America
| | - Yu Wang
- Biostatistics and Bioinformatics Staff, Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, United States of America
| |
Collapse
|
152
|
Hinenoya A, Wang H, Patrick EM, Zeng X, Cao L, Li XP, Lindsey RL, Gillespie B, He Q, Yamasaki S, Lin J. Longitudinal surveillance and comparative characterization of Escherichia albertii in wild raccoons in the United States. Microbiol Res 2022; 262:127109. [DOI: 10.1016/j.micres.2022.127109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
153
|
Takei S, Lu YJ, Tohya M, Watanabe S, Misawa S, Tabe Y, Miida T, Mya S, Tin HH, Tada T, Kirikae T. Spread of Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates Producing NDM-Type Metallo-β-Lactamase in Myanmar. Microbiol Spectr 2022; 10:e0067322. [PMID: 35762817 PMCID: PMC9431462 DOI: 10.1128/spectrum.00673-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/30/2022] [Indexed: 11/20/2022] Open
Abstract
A total of 38 isolates of carbapenem-resistant Klebsiella pneumoniae harboring blaNDM were obtained during surveillance of 10 hospitals in Myanmar. Of these 38 isolates, 19 (50%) harbored genes encoding 16S rRNA methylases, such as armA or rmtB. The K. pneumoniae strains tested belonged to 17 sequence types (STs), including the high-risk clonal lineages ST101 and ST147. The ST101 and ST147 isolates carried IncFII plasmids harboring blaNDM-5 and IncFIB(pQil) plasmids harboring blaNDM-1, respectively. These results indicate that IncFII plasmids harboring blaNDM-5 and IncFIB(pQil) plasmids harboring blaNDM-1 have been spreading in K. pneumoniae ST101 and ST147 isolates, respectively, in Myanmar. IMPORTANCE The emergence of carbapenem-resistant K. pneumoniae has become a serious problem in medical settings worldwide. The present study demonstrated that carbapenem-resistant K. pneumoniae strains have been spreading in medical settings in Myanmar. In particular, plasmid genes encoding NDMs and 16S rRNA methylases have been spreading in K. pneumoniae high-risk clones.
Collapse
Affiliation(s)
- Satomi Takei
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yu Jie Lu
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mari Tohya
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shin Watanabe
- Department of Microbiome Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Misawa
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - San Mya
- National Health Laboratory, Yangon, Myanmar
| | | | - Tatsuya Tada
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Teruo Kirikae
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
154
|
Beall B, Chochua S, Li Z, Tran T, Varghese J, McGee L, Li Y, Metcalf BJ. Invasive Pneumococcal Disease Clusters Disproportionally Impact Persons Experiencing Homelessness, Injecting Drug Users, and the Western United States. J Infect Dis 2022; 226:332-341. [PMID: 35172327 PMCID: PMC11897999 DOI: 10.1093/infdis/jiac058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Invasive pneumococcal disease (IPD) isolates forming genomic clusters can reflect rapid disease transmission between vulnerable individuals. METHODS We performed whole genome sequencing of 2820 IPD isolates recovered during 2019 through Centers for Disease Control and Prevention's Active Bacterial Core surveillance to provide strain information (serotypes, resistance, genotypes), and 2778 of these genomes were analyzed to detect highly related genomic clusters. RESULTS Isolates from persons experiencing homelessness (PEH) were more often within genomic clusters than those from persons not experiencing homelessness (PNEH) (105/198 [53.0%] vs 592/2551 [23.2%]; P < .001). The 4 western sites accounted for 33.4% (929/2778) of isolates subjected to cluster analysis yet accounted for 48.7% (343/705) of clustering isolates (P < .001) and 75.8% (150/198) of isolates recovered from PEH (P < .001). Serotypes most frequent among PEH were (in rank order) 12F, 4, 3, 9N, 8, 20, and 22F, all of which were among the 10 serotypes exhibiting the highest proportions of clustering isolates among all cases. These serotypes accounted for 44.9% (1265/2820) of all IPD cases and are included within available vaccines. CONCLUSIONS We identified serotype-specific and geographic differences in IPD transmission. We show the vulnerability of PEH within different regions to rapidly spreading IPD transmission networks representing several pneumococcal serotypes included in available vaccines.
Collapse
Affiliation(s)
- Bernard Beall
- Respiratory Diseases Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention (retired), Atlanta, Georgia, USA
- Eagle Global Scientific, LLC, Atlanta, Georgia, USA
| | - Sopio Chochua
- Respiratory Diseases Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | | - Lesley McGee
- Respiratory Diseases Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yuan Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Benjamin J. Metcalf
- Respiratory Diseases Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
155
|
Ogaji YO, Lee RC, Sawbridge TI, Cocks BG, Daetwyler HD, Kaur S. De Novo Long-Read Whole-Genome Assemblies and the Comparative Pan-Genome Analysis of Ascochyta Blight Pathogens Affecting Field Pea. J Fungi (Basel) 2022; 8:884. [PMID: 36012871 PMCID: PMC9410150 DOI: 10.3390/jof8080884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Ascochyta Blight (AB) is a major disease of many cool-season legumes globally. In field pea, three fungal pathogens have been identified to be responsible for this disease in Australia, namely Peyronellaea pinodes, Peyronellaea pinodella and Phoma koolunga. Limited genomic resources for these pathogens have been generated, which has hampered the implementation of effective management strategies and breeding for resistant cultivars. Using Oxford Nanopore long-read sequencing, we report the first high-quality, fully annotated, near-chromosome-level nuclear and mitochondrial genome assemblies for 18 isolates from the Australian AB complex. Comparative genome analysis was performed to elucidate the differences and similarities between species and isolates using phylogenetic relationships and functional diversity. Our data indicated that P. pinodella and P. koolunga are heterothallic, while P. pinodes is homothallic. More homology and orthologous gene clusters are shared between P. pinodes and P. pinodella compared to P. koolunga. The analysis of the repetitive DNA content showed differences in the transposable repeat composition in the genomes and their expression in the transcriptomes. Significant repeat expansion in P. koolunga's genome was seen, with strong repeat-induced point mutation (RIP) activity being evident. Phylogenetic analysis revealed that genetic diversity can be exploited for species marker development. This study provided the much-needed genetic resources and characterization of the AB species to further drive research in key areas such as disease epidemiology and host-pathogen interactions.
Collapse
Affiliation(s)
- Yvonne O. Ogaji
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Robert C. Lee
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Tim I. Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Benjamin G. Cocks
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Hans D. Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Sukhjiwan Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
| |
Collapse
|
156
|
Saitz W, Montero DA, Pardo M, Araya D, De la Fuente M, Hermoso MA, Farfán MJ, Ginard D, Rosselló-Móra R, Rasko DA, Del Canto F, Vidal RM. Characterization of Adherent-Invasive Escherichia coli (AIEC) Outer Membrane Proteins Provides Potential Molecular Markers to Screen Putative AIEC Strains. Int J Mol Sci 2022; 23:ijms23169005. [PMID: 36012279 PMCID: PMC9409007 DOI: 10.3390/ijms23169005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 01/28/2023] Open
Abstract
Adherent-invasive E. coli (AIEC) is a pathotype associated with the etiopathogenesis of Crohn's disease (CD), albeit with an as-yet unclear role. The main pathogenic mechanisms described for AIEC are adherence to epithelial cells, invasion of epithelial cells, and survival and replication within macrophages. A few virulence factors have been described as participating directly in these phenotypes, most of which have been evaluated only in AIEC reference strains. To date, no molecular markers have been identified that can differentiate AIEC from other E. coli pathotypes, so these strains are currently identified based on the phenotypic characterization of their pathogenic mechanisms. The identification of putative AIEC molecular markers could be beneficial not only from the diagnostic point of view but could also help in better understanding the determinants of AIEC pathogenicity. The objective of this study was to identify molecular markers that contribute to the screening of AIEC strains. For this, we characterized outer membrane protein (OMP) profiles in a group of AIEC strains and compared them with the commensal E. coli HS strain. Notably, we found a set of OMPs that were present in the AIEC strains but absent in the HS strain. Moreover, we developed a PCR assay and performed phylogenomic analyses to determine the frequency and distribution of the genes coding for these OMPs in a larger collection of AIEC and other E. coli strains. As result, it was found that three genes (chuA, eefC, and fitA) are widely distributed and significantly correlated with AIEC strains, whereas they are infrequent in commensal and diarrheagenic E. coli strains (DEC). Additional studies are needed to validate these markers in diverse strain collections from different geographical regions, as well as investigate their possible role in AIEC pathogenicity.
Collapse
Affiliation(s)
- Waleska Saitz
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - David A. Montero
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Mirka Pardo
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Daniela Araya
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Marjorie De la Fuente
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Marcela A. Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Department of Gastroenterology and Hepatology, University Medical Center Groningen (UMCG), University of Groningen, 9712 Groningen, The Netherlands
| | - Mauricio J. Farfán
- Departamento de Pediatría y Cirugía Infantil Oriente, Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, Santiago 7500539, Chile
| | - Daniel Ginard
- Department of Gastroenterology and Palma Health Research Institute, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Ramon Rosselló-Móra
- Grupo de Microbiología Marina, Instituto Mediterráneo de Estudios Avanzados (IMEDEA; CSIC-UIB), 07190 Esporles, Illes Balears, Spain
| | - Dave A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Felipe Del Canto
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Correspondence: (F.D.C.); (R.M.V.)
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Correspondence: (F.D.C.); (R.M.V.)
| |
Collapse
|
157
|
Anthroponotic-Based Transfer of Staphylococcus to Dog: A Case Study. Pathogens 2022; 11:pathogens11070802. [PMID: 35890046 PMCID: PMC9316149 DOI: 10.3390/pathogens11070802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Although usually harmless, Staphylococcus spp. can cause nosocomial and community-onset skin and soft tissue infections in both humans and animals; thus, it is considered a significant burden for healthcare systems worldwide. Companion animals have been identified as potential reservoirs of pathogenic Staphylococcus with specific reference to Methicillin Resistant Staphylococcus aureus (MRSA). In this study, we investigated the circulation and the genetic relationships of a collection of Staphylococcus spp. isolates in a family composed of four adults (a mother, father, grandmother, and grandfather), one child, and a dog, which were sampled over three years. The routes of transmission among humans and between humans and the dog werelyzed. The results displayed the circulation of many Staphylococcus lineages, belonging to different species and sequence types (ST) and being related to both human and pet origins. However, among the observed host-switch events, one of them clearly underpinnthroponotic route from a human to a dog. This suggests that companion animals can potentially have a role as a carrier of Staphylococcus, thus posing a serious concern about MRSA spreading within human and animal microbial communities.
Collapse
|
158
|
Zhang Y, Chu H, Yu L, He F, Gao Y, Tang L. Analysis of the Taxonomy, Synteny, and Virulence Factors for Soft Rot Pathogen Pectobacterium aroidearum in Amorphophallus konjac Using Comparative Genomics. Front Microbiol 2022; 13:868709. [PMID: 35910650 PMCID: PMC9326479 DOI: 10.3389/fmicb.2022.868709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
Bacterial soft rot is a devastating disease for a wide range of crops, vegetables, and ornamental plants including konjac (Amorphophallus konjac). However, the pangenome and genomic plasticity of the konjac soft rot pathogens is little explored. In this study, we reported the complete genome sequences of 11 bacterial isolates that can cause typical soft rot symptoms in konjac by in vitro and in vivo pathogenicity tests. Based on in silico DNA-DNA hybridization, average nucleotide identity and phylogenomic analysis, all 11 isolates were determined to be Pectobacterium aroidearum. In addition, synteny analysis of these genomes revealed considerable chromosomal inversions, one of which is triggered by homologous recombination of ribose operon. Pangenome analysis and COG enrichment analysis showed that the pangenome of P. aroidearum is open and that accessory genes are enriched in replication, recombination, and repair. Variations in type IV secretion system and type VI secretion system were found, while plant cell wall degrading enzymes were conserved. Furthermore, sequence analyses also provided evidence for the presence of a type V secretion system in Pectobacterium. These findings advance our understanding of the pathogenicity determinants, genomic plasticity, and evolution of P. aroidearum.
Collapse
Affiliation(s)
- Yanan Zhang
- College of Biological Resource and Food Engineering, Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, China
| | - Honglong Chu
- College of Biological Resource and Food Engineering, Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, China
| | - Liqiong Yu
- College of Biological Resource and Food Engineering, Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, China
| | - Fei He
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Yong Gao
- College of Biological Resource and Food Engineering, Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, China
| | - Lizhou Tang
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
159
|
Gauthier DT, Doss JH, LaGatta M, Gupta T, Karls RK, Quinn FD. Genomic Degeneration and Reduction in the Fish Pathogen Mycobacterium shottsii. Microbiol Spectr 2022; 10:e0115821. [PMID: 35579461 PMCID: PMC9241763 DOI: 10.1128/spectrum.01158-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/26/2022] [Indexed: 01/17/2023] Open
Abstract
Mycobacterium shottsii is a dysgonic, nonpigmented mycobacterium originally isolated from diseased striped bass (Morone saxatilis) in the Chesapeake Bay, USA. Genomic analysis reveals that M. shottsii is a Mycobacterium ulcerans/Mycobacterium marinum clade (MuMC) member, but unlike the superficially similar M. pseudoshottsii, also isolated from striped bass, it is not an M. ulcerans ecovar, instead belonging to a transitional group of strains basal to proposed "Aronson" and "M" lineages. Although phylogenetically distinct from the human pathogen M. ulcerans, the M. shottsii genome shows parallel but nonhomologous genomic degeneration, including massive accumulation of pseudogenes accompanied by proliferation of unique insertion sequences (ISMysh01, ISMysh03), large-scale deletions, and genomic reorganization relative to typical M. marinum strains. Coupled with its observed ecological characteristics and loss of chromogenicity, the genomic structure of M. shottsii is suggestive of evolution toward a state of obligate pathogenicity, as observed for other Mycobacterium spp., including M. ulcerans, M. tuberculosis, and M. leprae. IMPORTANCE Morone saxatilis (striped bass) is an ecologically and economically important finfish species on the United States east coast. Mycobacterium shottsii and Mycobacterium pseudoshottsii were originally described in the early 2000s as novel species from outbreaks of visceral and dermal mycobacteriosis in this species. Biochemical and genetic characterization place these species within the Mycobacterium ulcerans/M. marinum clade (MuMC), and M. pseudoshottsii has been proposed as an ecovar of M. ulcerans. Here, we describe the complete genome of M. shottsii, demonstrating that it is clearly not an M. ulcerans ecovar; however, it has undergone parallel genomic modification suggestive of a transition to obligate pathogenicity. As in M. ulcerans, the M. shottsii genome demonstrates widespread pseudogene formation driven by proliferation of insertion sequences, as well as genomic reorganization. This work clarifies the phylogenetic position of M. shottsii relative to other MuMC members and provides insight into processes shaping its genomic structure.
Collapse
Affiliation(s)
- D. T. Gauthier
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, USA
| | - J. H. Doss
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, USA
| | - M. LaGatta
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Pathens Incorporated, Athens, Georgia, USA
| | - T. Gupta
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - R. K. Karls
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Pathens Incorporated, Athens, Georgia, USA
| | - F. D. Quinn
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Pathens Incorporated, Athens, Georgia, USA
| |
Collapse
|
160
|
Cheng RA, Orsi RH, Wiedmann M. The Number and Type of Chaperone-Usher Fimbriae Reflect Phylogenetic Clade Rather than Host Range in Salmonella. mSystems 2022; 7:e0011522. [PMID: 35467401 PMCID: PMC9238391 DOI: 10.1128/msystems.00115-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/03/2022] [Indexed: 01/21/2023] Open
Abstract
Salmonella is one of the most successful foodborne pathogens worldwide, owing in part to its ability to colonize or infect a wide range of hosts. Salmonella serovars are known to encode a variety of different fimbriae (hairlike organelles that facilitate binding to surfaces); however, the distribution, number, and sequence diversity of fimbriae encoded across different lineages of Salmonella were unknown. We queried whole-genome sequence (WGS) data for 242 Salmonella enterica subsp. enterica (subspecies enterica) isolates from the top 217 serovars associated with isolation from humans and agricultural animals; this effort identified 2,894 chaperone-usher (CU)-type fimbrial usher sequences, representing the most conserved component of CU fimbriae. On average, isolates encoded 12 different CU fimbrial ushers (6 to 18 per genome), although the distribution varied significantly (P = 1.328E-08) by phylogenetic clade, with isolates in section Typhi having significantly fewer fimbrial ushers than isolates in clade A2 (medians = 10 and 12 ushers, respectively). Characterization of fimbriae in additional non-enterica subspecies genomes suggested that 8 fimbrial ushers were classified as being unique to subspecies enterica isolates, suggesting that the majority of fimbriae were most likely acquired prior to the divergence of subspecies enterica. Characterization of mobile elements suggested that plasmids represent an important vehicle facilitating the acquisition of a wide range of fimbrial ushers, particularly for the acquisition of fimbriae from other Gram-negative genera. Overall, our results suggest that differences in the number and type of fimbriae encoded most likely reflect differences in phylogenetic clade rather than differences in host range. IMPORTANCE Fimbriae of the CU assembly pathway represent important organelles that mediate Salmonella's interactions with host tissues and abiotic surfaces. Our analyses provide a comprehensive overview of the diversity of CU fimbriae in Salmonella spp., highlighting that the majority of CU fimbriae are distributed broadly across multiple subspecies and suggesting that acquisition most likely occurred prior to the divergence of subspecies enterica. Our data also suggest that plasmids represent the primary vehicles facilitating the horizontal transfer of diverse CU fimbriae in Salmonella. Finally, the observed high sequence similarity between some ushers suggests that different names may have been assigned to closely related fimbrial ushers that likely should be represented by a single designation. This highlights the need to establish standard criteria for fimbria classification and nomenclature, which will also facilitate future studies seeking to associate virulence factors with adaptation to or differences in the likelihood of causing disease in a given host.
Collapse
Affiliation(s)
- Rachel A. Cheng
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Renato H. Orsi
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
161
|
Campioni F, Vilela FP, Cao G, Kastanis G, Dos Prazeres Rodrigues D, Costa RG, Tiba-Casas MR, Yin L, Allard M, Falcão JP. Whole genome sequencing analyses revealed that Salmonella enterica serovar Dublin strains from Brazil belonged to two predominant clades. Sci Rep 2022; 12:10555. [PMID: 35732677 PMCID: PMC9217926 DOI: 10.1038/s41598-022-14492-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
Salmonella Dublin is a cattle-associated serovar sporadically causing disease in humans. S. Dublin strains isolated in Brazil and in other countries were analyzed to determine their phylogenetic relationships, the presence of genes, plasmids, genomic regions related to virulence and antimicrobial resistance genes repertoire, using WGS analyses. Illumina was used to sequence the genome of 112 S. Dublin strains isolated in Brazil from humans (n = 82) and animals (n = 30) between 1983 and 2016. Furthermore, 87 strains from other countries were analyzed. WGSNP analysis revealed three different clades, in which the strains from Brazil belonged to two clades, A and C. Most of the genes and genomic regions searched varied among the strains studied. The siderophore genes iroB and iroC were exclusively found in strains from Brazil and pegD gene, related to fimbrial adherence determinants, were positive in 124 strains from clades A and B but absent in all the strains from clade C (n = 71). Eleven plasmid replicons were found in the strains from Brazil, and nine were exclusively found in strains from other countries. The antimicrobial resistance genes mdsA and mdsB, that encode an efflux pump, were found in all the strains studied. The strains from Brazil carried other resistance genes, such as tet(A) (n = 11), tet(B) (n = 4) and tet(C) (n = 4), blaTEM-1 (n = 4), catA1 (n = 1), aadA1 (n = 1), and sul1 (n = 1). In conclusion, S. Dublin strains isolated in Brazil presented some few unique genes not found in strains from other countries and were allocated into two distinct clades with strains of human and animal origin epidemiologically related. This fact stresses the zoonotic potential of S. Dublin circulating in Brazil for more than 30 years.
Collapse
Affiliation(s)
- Fábio Campioni
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | - Felipe Pinheiro Vilela
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | - Guojie Cao
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - George Kastanis
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Dália Dos Prazeres Rodrigues
- Laboratório de Enterobactérias, FIOCRUZ/Fundação Instituto Oswaldo Cruz, Avenida Brasil, 4365, Pavilhão Rocha Lima, 3°andar, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Renata Garcia Costa
- Laboratório de Enterobactérias, FIOCRUZ/Fundação Instituto Oswaldo Cruz, Avenida Brasil, 4365, Pavilhão Rocha Lima, 3°andar, Manguinhos, Rio de Janeiro, RJ, Brazil
| | | | - Lanlan Yin
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, MD, USA
| | - Marc Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA.
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
162
|
Podrzaj L, Burtscher J, Domig KJ. Comparative Genomics Provides Insights Into Genetic Diversity of Clostridium tyrobutyricum and Potential Implications for Late Blowing Defects in Cheese. Front Microbiol 2022; 13:889551. [PMID: 35722315 PMCID: PMC9201417 DOI: 10.3389/fmicb.2022.889551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Clostridium tyrobutyricum has been recognized as the main cause of late blowing defects (LBD) in cheese leading to considerable economic losses for the dairy industry. Although differences in spoilage ability among strains of this species have been acknowledged, potential links to the genetic diversity and functional traits remain unknown. In the present study, we aimed to investigate and characterize genomic variation, pan-genomic diversity and key traits of C. tyrobutyricum by comparing the genomes of 28 strains. A comparative genomics analysis revealed an “open” pangenome comprising 9,748 genes and a core genome of 1,179 genes shared by all test strains. Among those core genes, the majority of genes encode proteins related to translation, ribosomal structure and biogenesis, energy production and conversion, and amino acid metabolism. A large part of the accessory genome is composed of sets of unique, strain-specific genes ranging from about 5 to more than 980 genes. Furthermore, functional analysis revealed several strain-specific genes related to replication, recombination and repair, cell wall, membrane and envelope biogenesis, and defense mechanisms that might facilitate survival under stressful environmental conditions. Phylogenomic analysis divided strains into two clades: clade I contained human, mud, and silage isolates, whereas clade II comprised cheese and milk isolates. Notably, these two groups of isolates showed differences in certain hypothetical proteins, transcriptional regulators and ABC transporters involved in resistance to oxidative stress. To the best of our knowledge, this is the first study to provide comparative genomics of C. tyrobutyricum strains related to LBD. Importantly, the findings presented in this study highlight the broad genetic diversity of C. tyrobutyricum, which might help us understand the diversity in spoilage potential of C. tyrobutyricum in cheese and provide some clues for further exploring the gene modules responsible for the spoilage ability of this species.
Collapse
Affiliation(s)
- Lucija Podrzaj
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johanna Burtscher
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Konrad J Domig
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
163
|
Urbanowicz P, Izdebski R, Biedrzycka M, Literacka E, Hryniewicz W, Gniadkowski M. Genomic Epidemiology of MBL-Producing Pseudomonas putida Group Isolates in Poland. Infect Dis Ther 2022; 11:1725-1740. [PMID: 35689153 PMCID: PMC9334476 DOI: 10.1007/s40121-022-00659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Pseudomonas putida group are described as low-incidence opportunistic pathogens, but also as a significant reservoir of antimicrobial resistance (AMR) genes, including those of metallo-β-lactamases (MBLs). Our objective was the molecular and genomic characterization of MBL-producing P. putida (MPPP) group isolates from Poland, focusing on population structures, successful genotypes and MBL-encoding integrons. Methods During a country-wide MBL surveillance in Pseudomonas spp., 59 non-duplicate MPPP isolates were collected from 36 hospitals in 23 towns from 2003 to 2016. All of the isolates were subjected to whole-genome sequencing (WGS), followed by species identification, multi-locus sequence typing (MLST), single-nucleotide polymorphism (SNP)-based phylogenetic/clonality analysis, resistome determination, and susceptibility testing. Results The study collection comprised 12 species, of which P. alloputida (n = 19), P. monteilii (n = 15), and P. asiatica (n = 11) prevailed, while the others were P. kurunegalensis, P. putida, P. soli, P. mosselii, P. juntendi, and four potentially new species. MLST classified the isolates into 23 sequence types (STs) of which 21 were new, with three main clones, namely P. alloputida ST69, P.monteilii ST95 and P. asiatica ST15. The isolates produced VIM-like MBLs only, largely VIM-2 (n = 40), encoded by 24 different class 1 integrons (ten new), a number of which occurred also in P. aeruginosa and/or Enterobacterales in Poland. The plasmid pool was dominated by IncP-9, IncP-2, and pMOS94-like types. Multiple isolates were extensively drug-resistant. Conclusions This study, being one of the most comprehensive analyses of MPPP so far, has shown high diversity of the isolates in general, with three apparently international lineages, each internally diversified by MBL-encoding structures. Supplementary Information The online version contains supplementary material available at 10.1007/s40121-022-00659-z.
Collapse
Affiliation(s)
- Paweł Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Radosław Izdebski
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Marta Biedrzycka
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Elżbieta Literacka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725, Warsaw, Poland
| | - Waleria Hryniewicz
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, 00-725, Warsaw, Poland
| | - Marek Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| |
Collapse
|
164
|
Bi D, Zhu Y, Gao Y, Li H, Zhu X, Wei R, Xie R, Cai C, Wei Q, Qin H. Profiling Fusobacterium infection at high taxonomic resolution reveals lineage-specific correlations in colorectal cancer. Nat Commun 2022; 13:3336. [PMID: 35680952 PMCID: PMC9184491 DOI: 10.1038/s41467-022-30957-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
The bacterial genus Fusobacterium promotes colorectal cancer (CRC) development, but an understanding of its precise composition at the species level in the human gut and the relevant association with CRC is lacking. Herein, we devise a Fusobacterium rpoB amplicon sequencing (FrpoB-seq) method that enables the differentiation of Fusobacterium species and certain subspecies in the microbiota. By applying this method to clinical tissue and faecal samples from CRC patients, we detect 62 Fusobacterium species, including 45 that were previously undescribed. We additionally reveal that Fusobacterium species may display different lineage-dependent functions in CRC. Specifically, a lineage (designated L1) including F. nucleatum, F. hwasookii, F. periodonticum and their relatives (rather than any particular species alone) is overabundant in tumour samples and faeces from CRC patients, whereas a non-enriched lineage (designated L5) represented by F. varium and F. ulcerans in tumours has a positive association with lymphovascular invasion.
Collapse
Affiliation(s)
- Dexi Bi
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Yin Zhu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yaohui Gao
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hao Li
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xingchen Zhu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Rong Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ruting Xie
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chunmiao Cai
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
165
|
Tang B, Chang J, Luo Y, Jiang H, Liu C, Xiao X, Ji X, Yang H. Prevalence and characteristics of the mcr-1 gene in retail meat samples in Zhejiang Province, China. JOURNAL OF MICROBIOLOGY (SEOUL, KOREA) 2022; 60:610-619. [PMID: 35362896 DOI: 10.1007/s12275-022-1597-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 01/03/2023]
Abstract
Considering the serious threat to food safety and public health posed by pathogens with colistin resistance, colistin was banned as a growth promoter in 2017 in China. In recent years, the resistance rate of Escherichia coli isolated from animal intestines or feces to colistin has decreased. However, the prevalence and characteristics of the mcr-1 gene in retail meat have not been well explored. Herein, 106 mcr-1-negative and 16 mcr-1-positive E. coli isolates were randomly recovered from 120 retail meat samples and screened using colistin. The 106 E. coli isolates showed maximum resistance to sulfafurazole (73.58%) and tetracycline (62.26%) but susceptibility to colistin (0.00%). All 16 mcr-1-positive E. coli isolates showed resistance to colistin, were extended spectrum beta-lactamase (ESBL)-positive and exhibited complex multidrug resistance (MDR). For these 16 isolates, 17 plasmid replicons and 42 antibiotic resistance genes were identified, and at least 7 antibiotic resistance genes were found in each isolate. Acquired disinfectant resistance genes were identified in 75.00% (12/16) of the isolates. Furthermore, comparative genomic and phylogenetic analysis results indicated that these 16 mcr-1-positive E. coli isolates and the most prevalent mcr-1-harboring IncI2 plasmid in this study were closely related to other previously reported mcr-1-positive E. coli isolates and the IncI2 plasmid, respectively, showing their wide distribution. Taken together, our findings showed that retail meat products were a crucial reservoir of mcr-1 during the colistin ban period and should be continuously monitored.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310004, P. R. China.
| | - Jiang Chang
- School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, P. R. China
| | - Yi Luo
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, P. R. China
| | - Han Jiang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang, 310018, P. R. China
| | - Canying Liu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, P. R. China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310004, P. R. China
| | - Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310004, P. R. China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310004, P. R. China.
| |
Collapse
|
166
|
The c-di-GMP Phosphodiesterase PipA (PA0285) Regulates Autoaggregation and Pf4 Bacteriophage Production in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 2022; 88:e0003922. [PMID: 35638845 DOI: 10.1128/aem.00039-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In Pseudomonas aeruginosa PAO1, 41 genes encode proteins predicted to be involved in the production or degradation of c-di-GMP, a ubiquitous secondary messenger that regulates a variety of physiological behaviors closely related to biofilm and aggregate formation. Despite extensive effort, the entire picture of this important signaling network is still unclear, with one-third of these proteins remaining uncharacterized. Here, we show that the deletion of pipA, which produces a protein containing two PAS domains upstream of a GGDEF-EAL tandem, significantly increased the intracellular c-di-GMP level and promoted the formation of aggregates both on surfaces and in planktonic cultures. However, this regulatory effect was not contributed by either of the two classic pathways modulating biofilm formation, exopolysaccharide (EPS) overproduction or motility inhibition. Transcriptome sequencing (RNA-Seq) data revealed that the expression levels of 361 genes were significantly altered in a ΔpipA mutant strain compared to the wild type (WT), indicating the critical role of PipA in PAO1. The most remarkably downregulated genes were located on the Pf4 bacteriophage gene cluster, which corresponded to a 2-log reduction in the Pf4 phage production in the ΔpipA mutant. The sizes of aggregates in ΔpipA cultures were affected by exogenously added Pf4 phage in a concentration-dependent manner, suggesting the quantity of phage plays a part in regulating the formation of aggregates. Further analysis demonstrated that PipA is highly conserved across 83 P. aeruginosa strains. Our work therefore for the first time showed that a c-di-GMP phosphodiesterase can regulate bacteriophage production and provided new insights into the relationship between bacteriophage and bacterial aggregation. IMPORTANCE The c-di-GMP signaling pathways in P. aeruginosa are highly organized and well coordinated, with different diguanylate cyclases and phosphodiesterases playing distinct roles in a complex network. Understanding the function of each enzyme and the underlying regulatory mechanisms not only is crucial for revealing how bacteria decide the transition between motile and sessile lifestyles, but also greatly facilitates the development of new antibiofilm strategies. This work identified bacteriophage production as a novel phenotypic output controlled transcriptionally by a phosphodiesterase, PipA. Further analysis suggested that the quantity of phage may be important in regulating autoaggregation, as either a lack of phage or overproduction was associated with higher levels of aggregation. Our study therefore extended the scope of c-di-GMP-controlled phenotypes and discovered a potential signaling circuit that can be target for biofilm treatment.
Collapse
|
167
|
Zhou W, Wen H, Li Y, Gao Y, Zheng X, Yuan L, Zhu G, Yang Z. Whole-Genome Analysis Reveals That Bacteriophages Promote Environmental Adaptation of Staphylococcus aureus via Gene Exchange, Acquisition, and Loss. Viruses 2022; 14:v14061199. [PMID: 35746669 PMCID: PMC9230882 DOI: 10.3390/v14061199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
The study of bacteriophages is experiencing a resurgence owing to their antibacterial efficacy, lack of side effects, and low production cost. Nonetheless, the interactions between Staphylococcus aureus bacteriophages and their hosts remain unexplored. In this study, whole-genome sequences of 188 S. aureus bacteriophages—20 Podoviridae, 56 Herelleviridae, and 112 Siphoviridae—were obtained from the National Center for Biotechnology Information (NCBI, USA) genome database. A phylogenetic tree was constructed to estimate their genetic relatedness using single-nucleotide polymorphism analysis. Comparative analysis was performed to investigate the structural diversity and ortholog groups in the subdividing clusters. Mosaic structures and gene content were compared in relation to phylogeny. Phylogenetic analysis revealed that the bacteriophages could be distinguished into three lineages (I–III), including nine subdividing clusters and seven singletons. The subdividing clusters shared similar mosaic structures and core ortholog clusters, including the genes involved in bacteriophage morphogenesis and DNA packaging. Notably, several functional modules of bacteriophages 187 and 2368A shared more than 95% nucleotide sequence identity with prophages in the S. aureus strain RJ1267 and the Staphylococcus pseudintermedius strain SP_11306_4, whereas other modules exhibited little nucleotide sequence similarity. Moreover, the cluster phages shared similar types of holins, lysins, and DNA packaging genes and harbored diverse genes associated with DNA replication and virulence. The data suggested that the genetic diversity of S. aureus bacteriophages was likely due to gene replacement, acquisition, and loss among staphylococcal phages, which may have crossed species barriers. Moreover, frequent module exchanges likely occurred exclusively among the subdividing cluster phages. We hypothesize that during evolution, the S. aureus phages enhanced their DNA replication in host cells and the adaptive environment of their host.
Collapse
Affiliation(s)
- Wenyuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.Z.); (H.W.); (Y.L.); (Y.G.); (X.Z.); (L.Y.)
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225001, China;
| | - Hua Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.Z.); (H.W.); (Y.L.); (Y.G.); (X.Z.); (L.Y.)
| | - Yajie Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.Z.); (H.W.); (Y.L.); (Y.G.); (X.Z.); (L.Y.)
| | - Yajun Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.Z.); (H.W.); (Y.L.); (Y.G.); (X.Z.); (L.Y.)
| | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.Z.); (H.W.); (Y.L.); (Y.G.); (X.Z.); (L.Y.)
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.Z.); (H.W.); (Y.L.); (Y.G.); (X.Z.); (L.Y.)
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225001, China;
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.Z.); (H.W.); (Y.L.); (Y.G.); (X.Z.); (L.Y.)
- Correspondence: ; Tel./Fax: +86-(514)-87978096
| |
Collapse
|
168
|
Li Q, Qian C, Zhang X, Zhu T, Shi W, Gao M, Feng C, Xu M, Lin H, Lin L, Lu J, Lin X, Li K, Xu T, Bao Q, Li C, Zhang H. Colistin Resistance and Molecular Characterization of the Genomes of mcr-1-Positive Escherichia coli Clinical Isolates. Front Cell Infect Microbiol 2022; 12:854534. [PMID: 35601104 PMCID: PMC9120429 DOI: 10.3389/fcimb.2022.854534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Research on resistance against polymyxins induced by the mcr-1 gene is gaining interest. In this study, using agar dilution method, polymerase chain reaction, and comparative genomic analysis, we investigated the colistin resistance mechanism of clinical E. coli isolates. The minimum inhibitory concentration (MIC) analysis results revealed that of the 515 isolates tested, bacteria with significantly increased MIC levels against colistin were isolated in 2019. Approximately one-fifth (17.14% to 19.65%) of the isolates showed MIC values ≥1 mg/L against colistin in 2015, 2016, and 2017. However, in 2019, up to three-quarters (74.11%, 146/197) of the isolates showed MIC values ≥1 mg/L against colistin indicating an increase in colistin resistance. Six isolates (EC7518, EC4968, EC3769, EC16, EC117, EC195, 1.13%, 6/515) were found to carry the mcr-1 gene and a novel mcr-1 variant with Met2Ile mutation was identified in EC3769. All six strains showed higher MIC levels (MIC=4 mg/L) than any mcr-1-negative strains (MIC ≤ 2 mg/L). Whole-genome sequencing of the six mcr-1-positive isolates revealed that EC195 carried the highest number of resistance genes (n = 28), nearly a half more than those of the following EC117 (n = 19). Thus, EC195 showed a wider resistance spectrum and higher MIC levels against the antimicrobials tested than the other five isolates. Multi-locus sequence typing demonstrated that these mcr-1-positive strains belonged to six different sequence types. The six mcr-1 genes were located in three different incompatibility group plasmids (IncI2, IncHI2 and IncX4). The genetic context of mcr-1 was related to a sequence derived from Tn6330 (ISApl1-mcr-1-pap2-ISApl1). Investigations into the colistin resistance mechanism and characterization of the molecular background of the mcr genes may help trace the development and spread of colistin resistance in clinical settings.
Collapse
Affiliation(s)
- Qiaoling Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Changrui Qian
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueya Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tingting Zhu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weina Shi
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengdi Gao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunlin Feng
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ming Xu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hailong Lin
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Teng Xu
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
| | - Qiyu Bao
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Hailin Zhang, ; Changchong Li, ; Qiyu Bao,
| | - Changchong Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Hailin Zhang, ; Changchong Li, ; Qiyu Bao,
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Hailin Zhang, ; Changchong Li, ; Qiyu Bao,
| |
Collapse
|
169
|
Comparison of Two Distinct Subpopulations of Klebsiella pneumoniae ST16 Co-Occurring in a Single Patient. Microbiol Spectr 2022; 10:e0262421. [PMID: 35467408 PMCID: PMC9241866 DOI: 10.1128/spectrum.02624-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The higher resistance rate to ceftazidime-avibactam (CZA) is mainly related to carbapenem resistance, especially New Delhi metallo-β-lactamase (NDM). The CZA-susceptible Klebsiella pneumoniae (K191663) and the later CZA-resistant isolates (K191724, K191725, K191773) co-producing NDM-4 and OXA-181 were obtained from the same hospitalized patient returning from Vietnam. Our study aims to elucidate the diversity of K. pneumoniae ST16 through comparative analysis of whole-genome sequencing (WGS) data and identify the potential evolution of plasmids by sequencing longitudinal clinical isolates during antibiotic treatment. Firstly, multilocus sequence typing analysis and phylogenic analysis suggested that these strains belong to the two lineages of K. pneumoniae ST16. Surprisingly, the CZA-resistant strains were closely related to K. pneumoniae ST16 described in South Korea, instead of the blaNDM-4- or blaOXA-181-carrying ST16 reported in Vietnam. Secondly, blaNDM-4, blaTEM-1B, and rmtB co-existed on a self-conjugative IncFII(Yp)-like plasmid, which played a significant role in CZA resistance. It could transfer into the recipient Escherichia coli J53 at high frequency, indicating the risk of mobile carbapenemases. In addition, the loss of 12-kbp fragment occurred in blaNDM-4-positive isolate (K191773), which was likely caused by insertion sequence-mediated homologous recombination. Last but not least, as a repressor of acrAB operon system, acrR was truncated by a frameshift mutation in K191663. Thus, our study provided baseline information for monitoring the occurrence and development of bacterial resistance. IMPORTANCE As a leading health care-acquired infection pathogen, Klebsiella pneumoniae is threatening a large number of inpatients due to its diverse antibiotic resistance and virulence factors. Heretofore, with a growing number of reports about the coexistence of several carbapenemases in carbapenem-resistant K. pneumoniae (CRKP), epidemiologic surveillance has been strengthened. Nevertheless, the nosocomial outbreaks by CRKP ST16 are gradually increasing worldwide. Our study provides a deeper insight into the diversification of clinical isolates of CRKP ST16 in China. In addition, the comparison analysis of resistant plasmids may reveal the transmission of carbapenemase-encoding genes. Furthermore, our study also highlights the importance of longitudinal specimen collection and continuous monitoring during the treatment, which play a crucial role in understanding the development of antibiotic resistance and the evolution of resistance plasmids.
Collapse
|
170
|
Lin Y, Yang L, Qiu S, Yang C, Wang K, Li J, Jia L, Li P, Song H. Rapid Identification and Source Tracing of a Salmonella Typhimurium Outbreak in China by Metagenomic and Whole-Genome Sequencing. Foodborne Pathog Dis 2022; 19:259-265. [PMID: 35420907 DOI: 10.1089/fpd.2021.0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Salmonella spp. are among the most prevalent foodborne pathogens. Rapid identification of etiologic agents during foodborne outbreaks is of great importance. In this study, we report a traceback investigation of a Salmonella outbreak in China. Metagenomic sequencing of suspected food samples was performed on MinION and MiSeq platforms. Real-time nanopore sequencing analysis identified reads belonging to the Enterobacteriaceae family. MiSeq sequencing identified 63 reads specifically mapped to Salmonella. Conventional methods including quantitative-PCR and culture-based isolation confirmed as Salmonella enterica serovar Typhimurium. The foodborne outbreak of Salmonella Typhimurium was further recognized by whole-genome sequencing and pulsed-field gel electrophoresis analysis. Our study demonstrates the ability of metagenomic sequencing to rapidly identify enteric pathogens directly from food samples. These results highlight the capacity of metagenomic sequencing to deliver actionable information rapidly and to expedite the tracing and identification of etiologic agents during foodborne outbreaks.
Collapse
Affiliation(s)
- Yanfeng Lin
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Lang Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shaofu Qiu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chaojie Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Kaiying Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jinhui Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Leili Jia
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Peng Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
171
|
Whole-Genome Sequencing-Based Re-Identification of Pseudomonas putida/ fluorescens Clinical Isolates Identified by Biochemical Bacterial Identification Systems. Microbiol Spectr 2022; 10:e0249121. [PMID: 35389240 PMCID: PMC9045174 DOI: 10.1128/spectrum.02491-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The genus Pseudomonas, a complex Gram-negative genus, includes species isolated from various environments, plants, animals, and humans. We compared whole-genome sequencing (WGS) with clinical bacteriological methods and evaluated matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to identify Pseudomonas species. Clinical isolates (N = 42) identified as P. putida or P. fluorescens by a bacterial identification system based on biochemical properties were reexamined by another identification system based on biochemical properties, two systems based on MALDI-TOF MS, and WGS. WGS revealed that 30 of the 42 isolates belonged to one of 14 known Pseudomonas species, respectively. The remaining 12 belonged to one of 9 proposed novel Pseudomonas species, respectively. MALDI-TOF MS analysis showed that the 9 novel species had unique major peaks. These results suggest that WGS is the optimal method to identify Pseudomonas species and that MALDI-TOF MS may complement WGS in identification. Based on their morphologic, physiologic, and biochemical properties, we propose nine novel Pseudomonas species. IMPORTANCE Most of the clinical isolates, identified as P. putida or P. fluorescens, were misidentified in clinical laboratories. Whole-genome sequencing (WGS) revealed that these isolates belonged to different Pseudomonas species, including novel species. WGS is a gold-standard method to identify Pseudomonas species, and MALDI-TOF MS analysis has the potential to complement WGS to reliably identify them.
Collapse
|
172
|
Xiong ZR, Cobo M, Whittal RM, Snyder AB, Worobo RW. Purification and characterization of antifungal lipopeptide produced by Bacillus velezensis isolated from raw honey. PLoS One 2022; 17:e0266470. [PMID: 35385565 PMCID: PMC8985968 DOI: 10.1371/journal.pone.0266470] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/21/2022] [Indexed: 01/22/2023] Open
Abstract
Raw honey contains a diverse microbiota originating from honeybees, plants, and soil. Some gram-positive bacteria isolated from raw honey are known for their ability to produce secondary metabolites that have the potential to be exploited as antimicrobial agents. Currently, there is a high demand for natural, broad-spectrum, and eco-friendly bio-fungicides in the food industry. Naturally occurring antifungal products from food-isolated bacteria are ideal candidates for agricultural applications. To obtain novel antifungals from natural sources, we isolated bacteria from raw clover and orange blossom honey to evaluate their antifungal-producing potential. Two Bacillus velezensis isolates showed strong antifungal activity against food-isolated fungal strains. Antifungal compound production was optimized by adjusting the growth conditions of these bacterial isolates. Extracellular proteinaceous compounds were purified via ammonium sulfate precipitation, solid phase extraction, and RP-HPLC. Antifungal activity of purified products was confirmed by deferred overlay inhibition assay. Mass spectrometry (MS) was performed to determine the molecular weight of the isolated compounds. Whole genome sequencing (WGS) was conducted to predict secondary metabolite gene clusters encoded by the two antifungal-producing strains. Using MS and WGS data, we determined that the main antifungal compound produced by these two Bacillus velezensis isolates was iturin A, a lipopeptide exhibiting broad spectrum antifungal activity.
Collapse
Affiliation(s)
- Zirui Ray Xiong
- Department of Food Science, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| | - Mario Cobo
- Department of Food Science, Cornell University, Ithaca, NY, United States of America
| | - Randy M. Whittal
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Abigail B. Snyder
- Department of Food Science, Cornell University, Ithaca, NY, United States of America
| | - Randy W. Worobo
- Department of Food Science, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
173
|
Nolen LD, Topaz N, Miernyk K, Bressler S, Massay SC, Geist M, Zulz T, Singleton R. Evaluating a Cluster and the Overall Trend of Invasive Haemophilus influenzae Serotype b in Alaska 2005-2019. Pediatr Infect Dis J 2022; 41:e120-e125. [PMID: 35067639 DOI: 10.1097/inf.0000000000003470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In 2019, 5 cases of invasive Haemophilus influenzae serotype b (Hib) occurred in the Anchorage region of Alaska over a period of 16 days. No cases had occurred in Alaska in the preceding 26 months. METHODS Alaska Hib isolates from 2005 through 2019 were analyzed using whole-genome sequencing (WGS). Rates were compared with the CDC's Active Bacterial Core surveillance (ABCs) data. RESULTS A total of 33 cases of invasive Hib occurred in Alaska from 2005 through 2019. Of the 5 cases associated with the cluster, 2 (40%) occurred in adults and all occurred in the Anchorage region. In contrast, only 14% (4/28) of the noncluster cases occurred in this region (P < 0.01). Two cluster cases were linked epidemiologically and the bacteria were nearly identical. The other 3 cluster cases were caused by 3 genetically distinct bacteria. When the full period was evaluated, the unadjusted rate of invasive Hib disease in Alaska was 15.5 times higher in Alaska Native (AN) people than non-AN people [1.3/100,000 vs. 0.07/100,000, 95% confidence intervals (CI): 10.2-22.5). The age-adjusted rate of invasive Hib disease in Alaska was 9.4 times higher than the ABCs rate (95% CI: 6.3-14.1). CONCLUSIONS While clustered in time and space, the 5 cases in 2019 were not due to a single bacterial strain. AN people continue to have elevated rates of invasive Hib infection compared with both non-AN people in Alaska and the ABCs population.
Collapse
Affiliation(s)
- Leisha D Nolen
- From the Arctic Investigations Program, Centers for Disease Control and Prevention, Anchorage, Alaska
| | - Nadav Topaz
- Meningitis and Vaccine Preventable Disease Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Karen Miernyk
- From the Arctic Investigations Program, Centers for Disease Control and Prevention, Anchorage, Alaska
| | - Sara Bressler
- From the Arctic Investigations Program, Centers for Disease Control and Prevention, Anchorage, Alaska
| | - Stephanie C Massay
- Section of Epidemiology, Alaska Department of Health and Social Services, Anchorage, Alaska
| | - Mary Geist
- University of Washington School of Medicine, Seattle, Washington
| | - Tammy Zulz
- From the Arctic Investigations Program, Centers for Disease Control and Prevention, Anchorage, Alaska
| | - Rosalyn Singleton
- From the Arctic Investigations Program, Centers for Disease Control and Prevention, Anchorage, Alaska
| |
Collapse
|
174
|
Chin GJWL, Law SV, Rodrigues KF, Jani J, Anton A. Dataset of genome sequence, de novo assembly, and functional annotation of Ruegeria sp. (PBVC088), a marine bacterium associated with the toxin-producing harmful dinoflagellate, Pyrodinium bahamense var. compressum. Data Brief 2022; 41:107881. [PMID: 35198665 PMCID: PMC8844759 DOI: 10.1016/j.dib.2022.107881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
The dataset comprises a whole-genome sequence of Ruegeria sp. PBVC088, a symbiotic (Gram-negative) bacterium associated with Pyrodinium bahamense var. compressum, which has been associated with harmful algal blooms in the coastal waters of west Sabah, Malaysia. Harmful algal blooms contribute to economic losses for the aquaculture industry, as well as human illnesses and fatalities due to paralytic shellfish poisoning. Bacteria-algae dynamics have posited that the interaction is potentially responsible for the toxin production during a toxic harmful algal bloom event. Despite the expanding body of literature on the capabilities of these bacteria to metabolize, produce, and modify toxins autonomously, it has yet to be confirmed that these toxin-producing bacteria are capable of autonomous toxin synthesis. Saxitoxin, a paralytic shellfish poisoning toxin, is produced by a unique biosynthetic pathway, where the genetic basis for the saxitoxin production was first reported in the saxitoxin-producing cyanobacteria strain Cylindrospermopsis raciborskii T3 (NCBI accession no. DQ787200). The genes responsible for saxitoxin biosynthesis in dinoflagellates, have yet to be fully elucidated. The identification of cyanobacteria saxitoxin biosynthesis genes (sxt) may eventually lead to the identification of homologous genes within the dinoflagellates. Previous studies on the diversity of the bacterial communities associated with the same toxic P. bahamense harmful alga has been carried out by using both the culture-dependent 16S ribosomal RNA gene sequence analysis and culture-independent 16S metagenomic sequence analysis. This study extends the knowledge pertaining to the genomic aspect of an associated bacterium isolated from P. bahamense alga by adopting a whole genome sequencing approach. Here, we report the genome sequencing, de novo assembly, and annotation data of a bacterium, Ruegeria sp. PBVC088, associated with harmful alga P. bahamense, which can be referenced by researchers to identify the genes and pathways related to toxin biosynthesis from a much larger data set. The genome of Ruegeria sp. PBVC088 was sequenced using the Illumina MiSeq platform with 250 bp paired-end reads. The number of reads generated from the MiSeq sequencer was 1,135,484, with an estimated coverage of 100X. The estimated genome size for the marine bacterium was computed to be 5.78 Mb. Annotation of the genome predicted 5,689 gene sequences, which were assigned putative functions based on homology to existing protein sequences in public databases. In addition, annotation of genes related to saxitoxin biosynthesis pathway was also performed. Raw fastq reads and the final version of the genome assembly have been deposited in the National Center for Biotechnology Information (NCBI) (BioProject: PRJNA324753, WGS: LZNT00000000, SRA: SRR3646181). The genome data provided here are expected to better understand the genetic processes involved in saxitoxin biosynthesis in marine bacteria associated with dinoflagellates.
Collapse
Affiliation(s)
- Grace Joy Wei Lie Chin
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia
- Unit for Harmful Algal Bloom Studies, Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia
- Corresponding author at: Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia. @gracejoychin
| | - Salley Venda Law
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia
| | - Kenneth Francis Rodrigues
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia
- Unit for Harmful Algal Bloom Studies, Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia
| | - Jaeyres Jani
- Faculty of Medicine and Health Science, Borneo Medical and Health Research Center, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia
| | - Ann Anton
- Unit for Harmful Algal Bloom Studies, Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia
| |
Collapse
|
175
|
Revealing the microbial heritage of traditional Brazilian cheeses through metagenomics. Food Res Int 2022; 157:111265. [DOI: 10.1016/j.foodres.2022.111265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 01/02/2023]
|
176
|
Mastor NNI, Subbiah VK, Bakar WNWA, Begum K, Alam MJ, Hoque MZ. Draft genome sequence data of a clinical Enterococcus faecalis isolate SHH039 from a patient with cholecystitis from a tertiary care hospital in Sabah, Malaysia. Data Brief 2022; 41:108019. [PMID: 35295870 PMCID: PMC8919231 DOI: 10.1016/j.dib.2022.108019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 10/28/2022] Open
Abstract
An Enterococcus faecalis strain SHH039 was isolated from a 68 year old man who was hospitalised with cholecystitis. The genomic sequence of this isolate which had a size of 2,990,081 bp and 2,663 proteins with functional assignments is presented here. Analysis of the genome revealed Enterococcus faecalis with multiple antibiotic resistance genes which may be associated with acute cholecystitis. It may be not clear if the infection symptoms are the consequence of enterococci manifestation. However, this opportunistic organism may play a minor role in the disease.
Collapse
Affiliation(s)
- Nur Nashyiroh Izayati Mastor
- Department of Pathobiology & Medical Diagnostics, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Sabah, Malaysia
- Biotechnology Research Institute, University Malaysia Sabah, Sabah, Malaysia
| | - Vijay Kumar Subbiah
- Biotechnology Research Institute, University Malaysia Sabah, Sabah, Malaysia
| | - Wan Nazirah Wan Abu Bakar
- Department of Pathology, Queen Elizabeth Hospital, Ministry of Health Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Khurshida Begum
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - M. Jahangir Alam
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Mohammad Zahirul Hoque
- Department of Pathobiology & Medical Diagnostics, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Sabah, Malaysia
| |
Collapse
|
177
|
Keller LJ, Lakemeyer M, Bogyo M. Integration of bioinformatic and chemoproteomic tools for the study of enzyme conservation in closely related bacterial species. Methods Enzymol 2022; 664:1-22. [PMID: 35331369 DOI: 10.1016/bs.mie.2021.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Activity-based protein profiling (ABPP) is a commonly utilized technique to globally characterize the endogenous activity of multiple enzymes within a related family. While it has been used extensively to identify enzymes that are differentially active across various mammalian tissues, recent efforts have expanded this technique to studying bacteria. As ABPP is applied to diverse sets of bacterial strains found in microbial communities, there is also an increasing need for robust tools for assessing the conservation of enzymes across closely related bacterial species and strains. In this chapter, we detail the integration of gel-based ABPP with basic bioinformatic tools to enable the analysis of enzyme activity, distribution, and homology. We use as an example the family of serine hydrolases identified in the skin commensal bacterium Staphylococcus epidermidis.
Collapse
Affiliation(s)
- Laura J Keller
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA, United States
| | - Markus Lakemeyer
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Matthew Bogyo
- Department of Pathology, Stanford University, Stanford, CA, United States; Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
178
|
Topaz N, Tsang R, Deghmane AE, Claus H, Lâm TT, Litt D, Bajanca-Lavado MP, Pérez-Vázquez M, Vestrheim D, Giufrè M, Van Der Ende A, Gaillot O, Kuch A, McElligott M, Taha MK, Wang X. Phylogenetic Structure and Comparative Genomics of Multi-National Invasive Haemophilus influenzae Serotype a Isolates. Front Microbiol 2022; 13:856884. [PMID: 35401483 PMCID: PMC8988223 DOI: 10.3389/fmicb.2022.856884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Recent reports have indicated a rise of invasive disease caused by Haemophilus influenzae serotype a (Hia) in North America and some European countries. The whole-genome sequences for a total of 410 invasive Hia isolates were obtained from 12 countries spanning the years of 1998 to 2019 and underwent phylogenetic and comparative genomic analysis in order to characterize the major strains causing disease and the genetic variation present among factors contributing to virulence and antimicrobial resistance. Among 410 isolate sequences received, 408 passed our quality control and underwent genomic analysis. Phylogenetic analysis revealed that the Hia isolates formed four genetically distinct clades: clade 1 (n = 336), clade 2 (n = 13), clade 3 (n = 3) and clade 4 (n = 56). A low diversity subclade 1.1 was found in clade 1 and contained almost exclusively North American isolates. The predominant sequence types in the Hia collection were ST-56 (n = 125), ST-23 (n = 98) and ST-576 (n = 51), which belonged to clade 1, and ST-62 (n = 54), which belonged to clade 4. Clades 1 and 4 contained predominantly North American isolates, and clades 2 and 3 predominantly contained European isolates. Evidence of the presence of capsule duplication was detected in clade 1 and 2 isolates. Seven of the virulence genes involved in endotoxin biosynthesis were absent from all Hia isolates. In general, the presence of known factors contributing to β-lactam antibiotic resistance was low among Hia isolates. Further tests for virulence and antibiotic susceptibility would be required to determine the impact of these variations among the isolates.
Collapse
Affiliation(s)
- Nadav Topaz
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Raymond Tsang
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Ala-Eddine Deghmane
- Centre National de Référence des Méningocoques, Institut Pasteur, Paris, France
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Thiên-Trí Lâm
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - David Litt
- Respiratory and Vaccine Preventable Bacterial Reference Unit, Public Health England, London, United Kingdom
| | - Maria Paula Bajanca-Lavado
- Haemophilus Influenzae Reference Laboratory, Department of Infectious Disease, National Institute of Health, Lisbon, Portugal
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Didrik Vestrheim
- Norwegian Institute of Public Health, Division of Infection Control and Environmental Health, Oslo, Norway
| | - Maria Giufrè
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Arie Van Der Ende
- Department of Medical Microbiology and Infection Prevention and the Netherlands Reference Laboratory for Bacterial Meningitis, University of Amsterdam, Amsterdam, Netherlands
| | - Olivier Gaillot
- Service de Bactériologie-Hygiène, CHU Lille, Lille, France
- CNRS, INSERM, U1019-UMR 8204, Center for Infection and Immunity, CHU Lille, Lille, France
| | - Alicja Kuch
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Martha McElligott
- Irish Meningitis and Sepsis Reference Laboratory, Children’s Health Ireland at Temple Street, Dublin, Ireland
| | - Muhamed-Kheir Taha
- Centre National de Référence des Méningocoques, Institut Pasteur, Paris, France
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
179
|
van der Putten BCL, Huijsmans NAH, Mende DR, Schultsz C. Benchmarking the topological accuracy of bacterial phylogenomic workflows using in silico evolution. Microb Genom 2022; 8. [PMID: 35290758 PMCID: PMC9176278 DOI: 10.1099/mgen.0.000799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic analyses are widely used in microbiological research, for example to trace the progression of bacterial outbreaks based on whole-genome sequencing data. In practice, multiple analysis steps such as de novo assembly, alignment and phylogenetic inference are combined to form phylogenetic workflows. Comprehensive benchmarking of the accuracy of complete phylogenetic workflows is lacking. To benchmark different phylogenetic workflows, we simulated bacterial evolution under a wide range of evolutionary models, varying the relative rates of substitution, insertion, deletion, gene duplication, gene loss and lateral gene transfer events. The generated datasets corresponded to a genetic diversity usually observed within bacterial species (≥95 % average nucleotide identity). We replicated each simulation three times to assess replicability. In total, we benchmarked 19 distinct phylogenetic workflows using 8 different simulated datasets. We found that recently developed k-mer alignment methods such as kSNP and ska achieve similar accuracy as reference mapping. The high accuracy of k-mer alignment methods can be explained by the large fractions of genomes these methods can align, relative to other approaches. We also found that the choice of de novo assembly algorithm influences the accuracy of phylogenetic reconstruction, with workflows employing SPAdes or skesa outperforming those employing Velvet. Finally, we found that the results of phylogenetic benchmarking are highly variable between replicates. We conclude that for phylogenomic reconstruction, k-mer alignment methods are relevant alternatives to reference mapping at the species level, especially in the absence of suitable reference genomes. We show de novo genome assembly accuracy to be an underappreciated parameter required for accurate phylogenomic reconstruction.
Collapse
Affiliation(s)
- Boas C L van der Putten
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Niek A H Huijsmans
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel R Mende
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Constance Schultsz
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
180
|
Taki Y, Watanabe S, Sato’o Y, Tan XE, Ono HK, Kiga K, Aiba Y, Sasahara T, Azam AH, Thitiananpakorn K, Veeranarayanan S, Li FY, Zhang Y, Kawaguchi T, Hossain S, Maniruzzaman, Hu DL, Cui L. The Association Between Onset of Staphylococcal Non-menstrual Toxic Shock Syndrome With Inducibility of Toxic Shock Syndrome Toxin-1 Production. Front Microbiol 2022; 13:765317. [PMID: 35369432 PMCID: PMC8964310 DOI: 10.3389/fmicb.2022.765317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Non-menstrual toxic shock syndrome (non-mTSS) is a life-threatening disease caused by Staphylococcus aureus strains producing superantigens, such as staphylococcal enterotoxins A, B, C, and toxic shock syndrome toxin-1 (TSST-1). However, little is known about why the TSS cases are rare, although S. aureus strains frequently carry a tst gene, which encodes TSST-1. To answer this question, the amount of TSST-1 produced by 541 clinical isolates was measured in both the presence and absence of serum supplementation to growth media. Then a set of S. aureus strains with similar genetic backgrounds isolated from patients presenting with non-mTSS and those with clinical manifestations other than non-mTSS was compared for their TSST-1 inducibility by human serum, and their whole-genome sequences were determined. Subsequently, the association of mutations identified in the tst promoter of non-mTSS strains with TSST-1 inducibility by human serum was evaluated by constructing promoter replacement mutants and green fluorescent protein (GFP) reporter recombinants. Results showed that 39 out of 541 clinical isolates (7.2%), including strains isolated from non-mTSS patients, had enhanced production of TSST-1 in the presence of serum. TSST-1 inducibility by human serum was more clearly seen in non-mTSS strains of clonal complex (CC)-5. Moreover, the whole-genome sequence analysis identified a set of sequence variations at a putative SarA-binding site of the tst promoter. This sequence variation was proven to be partially responsible for the induction of TSST-1 production by human serum. We conclude that the onset of staphylococcal toxic shock syndrome caused by TSST-1-producing CC-5 strains seem at least partially initiated by serum induction of TSST-1, which is regulated by the mutation of putative SarA-binding site at the tst promoter.
Collapse
Affiliation(s)
- Yusuke Taki
- Division of Bacteriology, Jichi Medical School, Tochigi, Japan
- Department of Gastroenterological Surgery, Shizuoka General Hospital, Shizuoka, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Jichi Medical School, Tochigi, Japan
| | - Yusuke Sato’o
- Division of Bacteriology, Jichi Medical School, Tochigi, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Jichi Medical School, Tochigi, Japan
| | - Hisaya K. Ono
- Department of Zoonoses, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Jichi Medical School, Tochigi, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Jichi Medical School, Tochigi, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Jichi Medical School, Tochigi, Japan
| | | | | | | | - Feng-Yu Li
- Division of Bacteriology, Jichi Medical School, Tochigi, Japan
| | - Yuancheng Zhang
- Division of Bacteriology, Jichi Medical School, Tochigi, Japan
| | | | - Sarah Hossain
- Division of Bacteriology, Jichi Medical School, Tochigi, Japan
| | - Maniruzzaman
- Division of Bacteriology, Jichi Medical School, Tochigi, Japan
| | - Dong-Liang Hu
- Department of Zoonoses, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Longzhu Cui
- Division of Bacteriology, Jichi Medical School, Tochigi, Japan
| |
Collapse
|
181
|
Tang B, Chang J, Chen Y, Lin J, Xiao X, Xia X, Lin J, Yang H, Zhao G. Escherichia fergusonii, an Underrated Repository for Antimicrobial Resistance in Food Animals. Microbiol Spectr 2022; 10:e0161721. [PMID: 35138151 PMCID: PMC8826826 DOI: 10.1128/spectrum.01617-21] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/16/2022] [Indexed: 12/03/2022] Open
Abstract
A total of 1,400 samples of food animals (pigs, chickens, and ducks) were collected between July and September 2019 in China to uncover the prevalence of E. fergusonii and its potential role in the evolution of antimicrobial resistance (AMR). An isolation of E. fergusonii was performed and pulsed-field gel electrophoresis (PFGE) was used to uncover the genetic relationship. The AMR of E. fergusonii isolates was comprehensively characterized using broth microdilution-based antimicrobial susceptibility testing, S1-PFGE, southern hybridization, whole-genome sequencing, and in-depth bioinformatics analysis. As a result, a total of 133 E. fergusonii isolates were obtained. These isolates could be grouped into 41 PFGE subclades, suggesting a diverse genetic relationship. The resistance phenotypes of sulfafurazole (97.74%) and tetracycline (94.74%) were the most frequently found. Of the E. fergusonii isolates, 51.88% were extended spectrum beta-lactamase (ESBL)-positive. Forty-three different AMR genes were revealed based on 25 genome sequences harboring mcr-1. Briefly, aph(6)-Id, aph(3'')-Ib and tet(A) genes were the most frequently observed, with the highest rate being 76.00% (19/25). Three mcr-1-harboring plasmids were identified after Nanopore sequencing, including pTB31P1 (IncHI2-IncHI2A, 184,652 bp), pTB44P3 (IncI2, 62,882 bp), and pTB91P1 (IncHI2-IncHI2A, 255,882 bp). Additionally, 25 E. fergusonii isolates harboring mcr-1 were clustered together with other E. fergusonii isolates from different regions and sources available in GenBank, suggesting a possible random process of mcr-1 transmission in E. fergusonii. In conclusion, E. fergusonii is widespread in food animals in China and might be an important reservoir of AMR genes, especially mcr-1, and facilitate the evolution of AMR. IMPORTANCEE. fergusonii, a member of the genus Escherichia, has been reported to transmit via the food chain and cause diseases in humans. However, the prevalence of multidrug-resistant E. fergusonii, especially mcr-1-positive E. fergusonii isolates, has rarely been reported. Here, we collected 1,400 samples from food animals in three provinces of China and obtained 133 E. fergusonii isolates (9.5%). We found that the prevalence of E. fergusonii isolates was diverse, with high levels of antimicrobial resistance. Among them, 18.8% E. fergusonii isolates carried the colistin resistance gene mcr-1. Thus, E. fergusonii may facilitate the evolution of colistin resistance as a reservoir of mcr-1. As far as we know, the prevalence and AMR of E. fergusonii in the food animals in this study was first reported in China. These findings increase our understanding of the role of E. fergusonii in public health and the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiang Chang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yifei Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jiahui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
182
|
Hou J, Mao D, Zhang Y, Huang R, Li L, Wang X, Luo Y. Long-term spatiotemporal variation of antimicrobial resistance genes within the Serratia marcescens population and transmission of S. marcescens revealed by public whole-genome datasets. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127220. [PMID: 34844350 DOI: 10.1016/j.jhazmat.2021.127220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The development of antimicrobial resistance (AMR) is accelerated by the selective pressure exerted by the widespread use of antimicrobial drugs, posing an increasing danger to public health. However, long-term spatiotemporal variation in AMR genes in microorganisms, particularly in bacterial pathogens in response to antibiotic consumption, is not fully understood. Here, we used the NCBI RefSeq database to collect 478 whole-genome sequences for Serratia marcescens ranging from 1961 up to 2019, to document global long-term AMR trends in S. marcescens populations. In total, 100 AMR gene subtypes (16 AMR gene types) were detected in the genomes of S. marcescens populations. We identified 3 core resistance genes in S. marcescens genomes, and a high diversity of AMR genes was observed in S. marcescens genomes after corresponding antibiotics were discovered and introduced into clinical practice, suggesting the adaptation of S. marcescens populations to challenges with therapeutic antibiotics. Our findings indicate spatiotemporal variation of AMR genes in S. marcescens populations in relation to antibiotic consumption and suggest the potential transmission of S. marcescens isolates harboring AMR genes among countries and between the environment and the clinic, representing a public health threat that necessitates international solidarity to overcome.
Collapse
Affiliation(s)
- Jie Hou
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yulin Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Ruiyang Huang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Linyun Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Xiaolong Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
183
|
Whole-Genome Sequencing of Streptomycin-Resistant Mycobacterium tuberculosis Strain SBH145 from Sabah, Malaysia. Microbiol Resour Announc 2022; 11:e0104021. [PMID: 34989616 PMCID: PMC8759369 DOI: 10.1128/mra.01040-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This paper reports on the whole-genome sequencing of a streptomycin-resistant Mycobacterium tuberculosis strain that was isolated from a patient with pulmonary tuberculosis in Sabah state of Malaysian Borneo. The strain belongs to the EAI2-Manila family of lineage 1 and is clustered with M. tuberculosis strains from the Philippines, India, and Taiwan.
Collapse
|
184
|
McTaggart AR, James TY, Shivas RG, Drenth A, Wingfield BD, Summerell BA, Duong TA. Population genomics reveals historical and ongoing recombination in the Fusarium oxysporum species complex. Stud Mycol 2022; 99:100132. [PMID: 35027981 PMCID: PMC8693468 DOI: 10.1016/j.simyco.2021.100132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Fusarium oxysporum species complex (FOSC) is a group of closely related plant pathogens long-considered strictly clonal, as sexual stages have never been recorded. Several studies have questioned whether recombination occurs in FOSC, and if it occurs its nature and frequency are unknown. We analysed 410 assembled genomes to answer whether FOSC diversified by occasional sexual reproduction interspersed with numerous cycles of asexual reproduction akin to a model of predominant clonal evolution (PCE). We tested the hypothesis that sexual reproduction occurred in the evolutionary history of FOSC by examining the distribution of idiomorphs at the mating locus, phylogenetic conflict and independent measures of recombination from genome-wide SNPs and genes. A phylogenomic dataset of 40 single copy orthologs was used to define structure a priori within FOSC based on genealogical concordance. Recombination within FOSC was tested using the pairwise homoplasy index and divergence ages were estimated by molecular dating. We called SNPs from assembled genomes using a k-mer approach and tested for significant linkage disequilibrium as an indication of PCE. We clone-corrected and tested whether SNPs were randomly associated as an indication of recombination. Our analyses provide evidence for sexual or parasexual reproduction within, but not between, clades of FOSC that diversified from a most recent common ancestor about 500 000 years ago. There was no evidence of substructure based on geography or host that might indicate how clades diversified. Competing evolutionary hypotheses for FOSC are discussed in the context of our results.
Collapse
Affiliation(s)
- A R McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, 4102, Queensland, Australia
| | - T Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - R G Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, 4350, Australia
| | - A Drenth
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, 4102, Queensland, Australia
| | - B D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa
| | - B A Summerell
- Australian Institute of Botanical Science, Royal Botanic Gardens & Domain Trust, Sydney, Australia
| | - T A Duong
- Department of Biochemistry, Genetics and Microbiology, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa
| |
Collapse
|
185
|
Li T, Ning N, Iacobino A, Zhang L, Wang H, Franciosa G. Novel Putative Transposable Element Associated with the Subtype E5 Botulinum Toxin Gene Cluster of Neurotoxigenic Clostridium butyricum Type E Strains from China. Int J Mol Sci 2022; 23:906. [PMID: 35055088 PMCID: PMC8776182 DOI: 10.3390/ijms23020906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Previously, a whole-genome comparison of three Clostridium butyricum type E strains from Italy and the United States with different C. botulinum type E strains indicated that the bont/e gene might be transferred between the two clostridia species through transposition. However, transposable elements (TEs) have never been identified close to the bont/e gene. Herein, we report the whole genome sequences for four neurotoxigenic C. butyricum type E strains that originated in China. An analysis of the obtained genome sequences revealed the presence of a novel putative TE upstream of the bont/e gene in the genome of all four strains. Two strains of environmental origin possessed an additional copy of the putative TE in their megaplasmid. Similar putative TEs were found in the megaplasmids and, less frequently, in the chromosomes of several C. butyricum strains, of which two were neurotoxigenic C. butyricum type E strains, and in the chromosome of a single C. botulinum type E strain. We speculate that the putative TE might potentially transpose the bont/e gene at the intracellular and inter-cellular levels. However, the occasional TE occurrence in the clostridia genomes might reflect rare transposition events.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (T.L.); (N.N.); (L.Z.)
| | - Nianzhi Ning
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (T.L.); (N.N.); (L.Z.)
| | - Angelo Iacobino
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Liangyan Zhang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (T.L.); (N.N.); (L.Z.)
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (T.L.); (N.N.); (L.Z.)
| | - Giovanna Franciosa
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
186
|
Development of a Genomics-Based Approach To Identify Putative Hypervirulent Nontyphoidal Salmonella Isolates: Salmonella enterica Serovar Saintpaul as a Model. mSphere 2022; 7:e0073021. [PMID: 34986312 PMCID: PMC8731237 DOI: 10.1128/msphere.00730-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While differences in human virulence have been reported across nontyphoidal Salmonella (NTS) serovars and associated subtypes, a rational and scalable approach to identify Salmonella subtypes with differential ability to cause human diseases is not available. Here, we used NTS serovar Saintpaul (S. Saintpaul) as a model to determine if metadata and associated whole-genome sequence (WGS) data in the NCBI Pathogen Detection (PD) database can be used to identify (i) subtypes with differential likelihoods of causing human diseases and (ii) genes and single nucleotide polymorphisms (SNPs) potentially responsible for such differences. S. Saintpaul SNP clusters (n = 211) were assigned different epidemiology types (epi-types) based on statistically significant over- or underrepresentation of human clinical isolates, including human associated (HA; n = 29), non-human associated (NHA; n = 23), and other (n = 159). Comparative genomic analyses identified 384 and 619 genes overrepresented among isolates in 5 HA and 4 NHA SNP clusters most significantly associated with the respective isolation source. These genes included 5 HA-associated virulence genes previously reported to be present on Gifsy-1/Gifsy-2 prophages. Additionally, premature stop codons in 3 and 7 genes were overrepresented among the selected HA and NHA SNP clusters, respectively. Tissue culture experiments with strains representing 4 HA and 3 NHA SNP clusters did not reveal evidence for enhanced invasion or intracellular survival for HA strains. However, the presence of sodCI (encoding a superoxide dismutase), found in 4 HA and 1 NHA SNP clusters, was positively correlated with intracellular survival in macrophage-like cells. Post hoc analyses also suggested a possible difference in intracellular survival among S. Saintpaul lineages. IMPORTANCE Not all Salmonella isolates are equally likely to cause human disease, and Salmonella control strategies may unintentionally focus on serovars and subtypes with high prevalence in source populations but are rarely associated with human clinical illness. We describe a framework leveraging WGS data in the NCBI PD database to identify Salmonella subtypes over- and underrepresented among human clinical cases. While we identified genomic signatures associated with HA/NHA SNP clusters, tissue culture experiments failed to identify consistent phenotypic characteristics indicative of enhanced human virulence of HA strains. Our findings illustrate the challenges of defining hypo- and hypervirulent S. Saintpaul and potential limitations of phenotypic assays when evaluating human virulence, for which in vivo experiments are essential. Identification of sodCI, an HA-associated virulence gene associated with enhanced intracellular survival, however, illustrates the potential of the framework and is consistent with prior work identifying specific genomic features responsible for enhanced or reduced virulence of nontyphoidal Salmonella.
Collapse
|
187
|
Chen CW, Yuan L, Zhang YS, Mgomi FC, Wang Y, Yang ZQ, Jiao XA. Comparision of biological and genomic characteristics of five virulent bacteriophages against Enterobacter hormaechei. Microb Pathog 2022; 162:105375. [PMID: 34974119 DOI: 10.1016/j.micpath.2021.105375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022]
Abstract
Enterobacter hormaechei is a zoonotic bacteria that may cause respiratory diseases in animals and neonatal sepsis in humans. Bacteriophages are increasingly considered as potential biocontrol agents to control pathogens in the food industry. In this study, five E. hormaechei virulent phages, named as Ehp-YZU08, Ehp-YZU10, Ehp-YZU9-1, Ehp-YZU9-2 and Ehp-YZU9-3, were isolated from sewage in China and analyzed for their biological and whole-genome characteristics, and a comparative genomic analysis was performed to study the functional genes and phylogenetic evolution of phages. The results showed that four of the phage strains belong to the Podoviridae family and one belongs to the Myoviridae family. The burst sizes were 70-283 PFU/cell after a latent period of 5-40 min. Phages were able to survive in a pH range of 5-10 and resist temperatures up to 60 °C for 60 min. The sequencing results showed that the full length of the genomes of the five phages ranged from 39,502 to 173,418 bp. Each phage contained multiple genes related to phage replication, and genes related to bacterial virulence or drug resistance were not found. The five phages belonged to three different groups by a construction of a phylogenetic tree, and the significant genetic evolutionary distance from each E. hormaechei phage was observed. The inhibition assay showed that all five phages could completely inhibit the growth of E. hormaechei at 37 °C within 8 h, suggesting that the phages in this study have great potential for the development of biocontrol agents against E. hormaechei in the food industry.
Collapse
Affiliation(s)
- Cao-Wei Chen
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Lei Yuan
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Yuan-Song Zhang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Fedrick C Mgomi
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Yang Wang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Zhen-Quan Yang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| |
Collapse
|
188
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1237-1246. [DOI: 10.1093/jac/dkac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/13/2022] [Indexed: 11/12/2022] Open
|
189
|
Zhao Q, Shen Y, Chen G, Luo Y, Cui S, Tian Y. Prevalence and Molecular Characterization of Fluoroquinolone-Resistant Escherichia coli in Healthy Children. Front Cell Infect Microbiol 2021; 11:743390. [PMID: 34966693 PMCID: PMC8710580 DOI: 10.3389/fcimb.2021.743390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/25/2021] [Indexed: 01/27/2023] Open
Abstract
Faecal E. coli can act as reservoirs for resistance genes. Here, we analyzed prevalence of drug resistance in faecal E. coli isolated from healthy children at a single kindergarten in Beijing, China, then used whole genome sequencing to characterize fluoroquinolone-non-susceptible strains. Our results revealed high resistance to ampicillin (54.0%), trimethoprim/sulphurmethoxazole (47.5%) and tetracycline (58.9%) among 576 faecal E. coli isolates, 49.2% of which exhibited multidrug resistance. A total of 113 E. coli isolates were not susceptible to ciprofloxacin, with four sequence types, namely ST1193 (25.7%), ST773 (13.3%), ST648 (8.8%) and ST131 (7.1%) found to be the most prevalent (54.9%). With regards to resistance to quinolones, we detected chromosomal mutations in gyrA, parC, and parE in 111 (98.2%), 105 (92.9%), and 67 (61.1%) isolates, respectively. bla CTX-M (37.2%) was the major ESBL gene, whereas bla CTX-M-14 (12.4%) and bla CTX-M-27 (11.5%) were the most frequent subtypes. A total of 90 (79.6%) ExPEC and 65 (57.5%) UPEC isolates were classified. Overall, these findings revealed clonal spread of certain prevalent STs, namely ST1193, ST773, ST648 and ST131 E. coli isolates in healthy children within a single kindergarten in Beijing, China, affirming the seriousness of the multidrug resistance problem and potential pathogenicity of E. coli isolates in healthy children. Therefore, there is an urgent need for increased surveillance to enhance control of this problem.
Collapse
Affiliation(s)
- Qiang Zhao
- Department of Laboratory Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China.,Birth Defects Prevention and Control Technology Research Center, Chinese PLA General Hospital, Beijing, China
| | - Yueyun Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Gang Chen
- Department of Laboratory Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yanping Luo
- Department of Laboratory Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shenghui Cui
- Department of Food Science, National Institutes for Food and Drug Control, Beijing, China
| | - Yaping Tian
- Birth Defects Prevention and Control Technology Research Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
190
|
Whole-Genome Analysis of Multidrug-Resistant Salmonella Enteritidis Strains Isolated from Poultry Sources in Korea. Pathogens 2021; 10:pathogens10121615. [PMID: 34959570 PMCID: PMC8707440 DOI: 10.3390/pathogens10121615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
The Salmonella Enterica subsp. Enterica serovar Enteritidis is one of main serovars isolated from human patients with food poisoning and poultry without clinical signs. Consumption of poultry products contaminated with Salmonella Enteritidis is a common source of human salmonellosis; 82 Salmonella spp. were isolated from 291 samples of retail chicken meat, 201 one-day-old chicks, 30 internal organs of chickens, 156 chicken eggs, 100 duck eggs, 38 straw bedding samples, 18 samples of retail duck meat, and 19 swab samples from slaughterhouses in 2019 and 2020. An antibiotic susceptibility test was performed for all isolates, revealing 33 multidrug-resistant (MDR) strains. The whole genome of 33 MDR strains isolated in 2019 and 2020 and 10 strains isolated in 2011, 2012, and 2017 was sequenced using the MinION sequencing protocol. Within these 43 samples, 5 serovars were identified: S. Enteritidis, S. Agona, S. Virchow, S. Albany, and S. Bareilly. The most common serovar was S. Enteritidis (26/43), which showed the highest resistance to ampicillin (100%), followed by nalidixic acid (90%) and colistin (83%). Core genome multilocus sequence typing analysis showed that the S. Enteritidis strains isolated from different sources and in different years were clustered together. In addition, the S. Enteritidis strains isolated since 2011 consistently harbored the same antibiotic resistance patterns.
Collapse
|
191
|
Lin S, Sun B, Shi X, Xu Y, Gu Y, Gu X, Ma X, Wan T, Xu J, Su J, Lou Y, Zheng M. Comparative Genomic and Pan-Genomic Characterization of Staphylococcus epidermidis From Different Sources Unveils the Molecular Basis and Potential Biomarkers of Pathogenic Strains. Front Microbiol 2021; 12:770191. [PMID: 34867904 PMCID: PMC8634615 DOI: 10.3389/fmicb.2021.770191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Coagulase-negative Staphylococcus (CoNS) is the most common pathogen causing traumatic endophthalmitis. Among which, Staphylococcus epidermidis is the most common species that colonizes human skin, eye surfaces, and nasal cavity. It is also the main cause of nosocomial infection, specially foreign body-related bloodstream infections (FBR-BSIs). Although some studies have reported the genome characteristics of S. epidermidis, the genome of ocular trauma-sourced S. epidermidis strain and a comprehensive understanding of its pathogenicity are still lacking. Our study sequenced, analyzed, and reported the whole genomes of 11 ocular trauma-sourced samples of S. epidermidis that caused traumatic endophthalmitis. By integrating publicly available genomes, we obtained a total of 187 S. epidermidis samples from healthy and diseased eyes, skin, respiratory tract, and blood. Combined with pan-genome, phylogenetic, and comparative genomic analyses, our study showed that S. epidermidis, regardless of niche source, exhibits two founder lineages with different pathogenicity. Moreover, we identified several potential biomarkers associated with the virulence of S. epidermidis, including essD, uhpt, sdrF, sdrG, fbe, and icaABCDR. EssD and uhpt have high homology with esaD and hpt in Staphylococcus aureus, showing that the genomes of S. epidermidis and S. aureus may have communicated during evolution. SdrF, sdrG, fbe, and icaABCDR are related to biofilm formation. Compared to S. epidermidis from blood sources, ocular-sourced strains causing intraocular infection had no direct relationship with biofilm formation. In conclusion, this study provided additional data resources for studies on S. epidermidis and improved our understanding of the evolution and pathogenicity among strains of different sources.
Collapse
Affiliation(s)
- Shudan Lin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bianjin Sun
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Xinrui Shi
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yi Xu
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yunfeng Gu
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Xiaobin Gu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueli Ma
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Tian Wan
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jie Xu
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jianzhong Su
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meiqin Zheng
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
192
|
Li C, Tyson GH, Hsu CH, Harrison L, Strain E, Tran TT, Tillman GE, Dessai U, McDermott PF, Zhao S. Long-Read Sequencing Reveals Evolution and Acquisition of Antimicrobial Resistance and Virulence Genes in Salmonella enterica. Front Microbiol 2021; 12:777817. [PMID: 34867920 PMCID: PMC8640207 DOI: 10.3389/fmicb.2021.777817] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is a significant and phylogenetically diverse zoonotic pathogen. To understand its genomic heterogeneity and antimicrobial resistance, we performed long-read sequencing on Salmonella isolated from retail meats and food animals. A collection of 134 multidrug-resistant isolates belonging to 33 serotypes were subjected to PacBio sequencing. One major locus of diversity among these isolates was the presence and orientation of Salmonella pathogenic islands (SPI), which varied across different serotypes but were largely conserved within individual serotypes. We also identified insertion of an IncQ resistance plasmid into the chromosome of fourteen strains of serotype I 4,[5],12:i:- and the Salmonella genomic island 1 (SGI-1) in five serotypes. The presence of various SPIs, SGI-1 and integrated plasmids contributed significantly to the genomic variability and resulted in chromosomal resistance in 55.2% (74/134) of the study isolates. A total of 93.3% (125/134) of isolates carried at least one plasmid, with isolates carrying up to seven plasmids. We closed 233 plasmid sequences of thirteen replicon types, along with twelve hybrid plasmids. Some associations between Salmonella isolate source, serotype, and plasmid type were seen. For instance, IncX plasmids were more common in serotype Kentucky from retail chicken. Plasmids IncC and IncHI had on average more than five antimicrobial resistance genes, whereas in IncX, it was less than one per plasmid. Overall, 60% of multidrug resistance (MDR) strains that carried >3 AMR genes also carried >3 heavy metal resistance genes, raising the possibility of co-selection of antimicrobial resistance in the presence of heavy metals. We also found nine isolates representing four serotypes that carried virulence plasmids with the spv operon. Together, these data demonstrate the power of long-read sequencing to reveal genomic arrangements and integrated plasmids with a high level of resolution for tracking and comparing resistant strains from different sources. Additionally, the findings from this study will help expand the reference set of closed Salmonella genomes that can be used to improve genome assembly from short-read data commonly used in One Health antimicrobial resistance surveillance.
Collapse
Affiliation(s)
- Cong Li
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Gregory H Tyson
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Chih-Hao Hsu
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Lucas Harrison
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Errol Strain
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Thu-Thuy Tran
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Glenn E Tillman
- Food Safety and Inspection Service, United States Department of Agriculture, Athens, GA, United States
| | - Uday Dessai
- Food Safety and Inspection Service, United States Department of Agriculture, Washington, DC, United States
| | - Patrick F McDermott
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Shaohua Zhao
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
193
|
Mahoney DBJ, Falardeau J, Hingston P, Chmielowska C, Carroll LM, Wiedmann M, Jang SS, Wang S. Associations between Listeria monocytogenes genomic characteristics and adhesion to polystyrene at 8 °C. Food Microbiol 2021; 102:103915. [PMID: 34809941 DOI: 10.1016/j.fm.2021.103915] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 09/22/2021] [Indexed: 11/04/2022]
Abstract
Listeria monocytogenes remains a threat to the food system and has led to numerous foodborne outbreaks worldwide. L. monocytogenes can establish itself in food production facilities by adhering to surfaces, resulting in increased resistance to environmental stressors. The aim of this study was to evaluate the adhesion ability of L. monocytogenes at 8 °C and to analyse associations between the observed phenotypes and genetic factors such as internalin A (inlA) genotypes, stress survival islet 1 (SSI-1) genotype, and clonal complex (CC). L. monocytogenes isolates (n = 184) were grown at 8 °C and 100% relative humidity for 15 days. The growth was measured by optical density at 600 nm every 24 h. Adherent cells were stained using crystal violet and quantified spectrophotometrically. Genotyping of inlA and SSI-1, multi-locus sequence typing, and a genome-wide association study (GWAS) were performed to elucidate the phenotype-genotype relationships in L. monocytogenes cold adhesion. Among all inlA genotypes, truncated inlA isolates had the highest mean adhered cells, ABS595nm = 0.30 ± 0.15 (Tukey HSD; P < 0.05), while three-codon deletion inlA isolates had the least mean adhered cells (Tukey HSD; P < 0.05). When SSI-1 was present, more cells adhered; less cells adhered when SSI-1 was absent (Welch's t-test; P < 0.05). Adhesion was associated with clonal complexes which have low clinical frequency, while reduced adhesion was associated with clonal complexes which have high frequency. The results of this study support that premature stop codons in the virulence gene inlA are associated with increased cold adhesion and that an invasion enhancing deletion in inlA is associated with decreased cold adhesion. This study also provides evidence to suggest that there is an evolutionary trade off between virulence and adhesion in L. monocytogenes. These results provide a greater understanding of L. monocytogenes adhesion which will aid in the development of strategies to reduce L. monocytogenes in the food system.
Collapse
Affiliation(s)
| | - Justin Falardeau
- Department of Food, Nutrition, and Health, University of British Columbia, Vancouver, BC, Canada
| | - Patricia Hingston
- Department of Food, Nutrition, and Health, University of British Columbia, Vancouver, BC, Canada
| | - Cora Chmielowska
- Department of Bacterial Genetics, University of Warsaw, Warsaw, Poland
| | - Laura M Carroll
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Sung Sik Jang
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Siyun Wang
- Department of Food, Nutrition, and Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
194
|
Extensive Genome Exploration of Clostridium botulinum Group III Field Strains. Microorganisms 2021; 9:microorganisms9112347. [PMID: 34835472 PMCID: PMC8624178 DOI: 10.3390/microorganisms9112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
In animals, botulism is commonly sustained by botulinum neurotoxin C, D or their mosaic variants, which are produced by anaerobic bacteria included in Clostridium botulinum group III. In this study, a WGS has been applied to a large collection of C. botulinum group III field strains in order to expand the knowledge on these BoNT-producing Clostridia and to evaluate the potentiality of this method for epidemiological investigations. Sixty field strains were submitted to WGS, and the results were analyzed with respect to epidemiological information and compared to published sequences. The strains were isolated from biological or environmental samples collected in animal botulism outbreaks which occurred in Italy from 2007 to 2016. The new sequenced strains belonged to subspecific groups, some of which were already defined, while others were newly characterized, peculiar to Italian strains and contained genomic features not yet observed. This included, in particular, two new flicC types (VI and VII) and new plasmids which widen the known plasmidome of the species. The extensive genome exploration shown in this study improves the C. botulinum and related species classification scheme, enriching it with new strains of rare genotypes and permitting the highest grade of discrimination among strains for forensic and epidemiological applications.
Collapse
|
195
|
Philip N, Jani J, Azhari NN, Sekawi Z, Neela VK. In vivo and in silico Virulence Analysis of Leptospira Species Isolated From Environments and Rodents in Leptospirosis Outbreak Areas in Malaysia. Front Microbiol 2021; 12:753328. [PMID: 34803975 PMCID: PMC8602918 DOI: 10.3389/fmicb.2021.753328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
The zoonotic disease leptospirosis is caused by pathogenic species of the genus Leptospira. With the advancement of studies in leptospirosis, several new species are being reported. It has always been a query, whether Leptospira species, serovars, and strains isolated from different geographical locations contribute to the difference in the disease presentations and severity. In an epidemiological surveillance study performed in Malaysia, we isolated seven novel intermediate and saprophytic species (Leptospira semungkisensis, Leptospira fletcheri, Leptospira langatensis, Leptospira selangorensis, Leptospira jelokensis, Leptospira perdikensis, Leptospira congkakensis) from environments and three pathogenic species from rodents (Leptospira borgpetersenii strain HP364, Leptospira weilii strain SC295, Leptospira interrogans strain HP358) trapped in human leptospirosis outbreak premises. To evaluate the pathogenic potential of these isolates, we performed an in vivo and in silico virulence analysis. Environmental isolates and strain HP364 did not induce any clinical manifestations in hamsters. Strain SC295 caused inactivity and weight loss with histopathological changes in kidneys, however, all hamsters survived until the end of the experiment. Strain HP358 showed a high virulent phenotype as all infected hamsters died or were moribund within 7 days postinfection. Lungs, liver, and kidneys showed pathological changes with hemorrhage as the main presentation. In silico analysis elucidated the genome size of strain HP358 to be larger than strains HP364 and SC295 and containing virulence genes reported in Leptospira species and a high number of specific putative virulence factors. In conclusion, L. interrogans strain HP358 was highly pathogenic with fatal outcome. The constituent of Leptospira genomes may determine the level of disease severity and that needs further investigations.
Collapse
Affiliation(s)
- Noraini Philip
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Jaeyres Jani
- Borneo Medical and Health Research Center, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Nurul Natasya Azhari
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Vasantha Kumari Neela
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
196
|
Hudson LK, Andershock WE, Yan R, Golwalkar M, M’ikanatha NM, Nachamkin I, Thomas LS, Moore C, Qian X, Steece R, Garman KN, Dunn JR, Kovac J, Denes TG. Phylogenetic Analysis Reveals Source Attribution Patterns for Campylobacter spp. in Tennessee and Pennsylvania. Microorganisms 2021; 9:microorganisms9112300. [PMID: 34835426 PMCID: PMC8625337 DOI: 10.3390/microorganisms9112300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
Campylobacteriosis is the most common bacterial foodborne illness in the United States and is frequently associated with foods of animal origin. The goals of this study were to compare clinical and non-clinical Campylobacter populations from Tennessee (TN) and Pennsylvania (PA), use phylogenetic relatedness to assess source attribution patterns, and identify potential outbreak clusters. Campylobacter isolates studied (n = 3080) included TN clinical isolates collected and sequenced for routine surveillance, PA clinical isolates collected from patients at the University of Pennsylvania Health System facilities, and non-clinical isolates from both states for which sequencing reads were available on NCBI. Phylogenetic analyses were conducted to categorize isolates into species groups and determine the population structure of each species. Most isolates were C. jejuni (n = 2132, 69.2%) and C. coli (n = 921, 29.9%), while the remaining were C. lari (0.4%), C. upsaliensis (0.3%), and C. fetus (0.1%). The C. jejuni group consisted of three clades; most non-clinical isolates were of poultry (62.7%) or cattle (35.8%) origin, and 59.7 and 16.5% of clinical isolates were in subclades associated with poultry or cattle, respectively. The C. coli isolates grouped into two clades; most non-clinical isolates were from poultry (61.2%) or swine (29.0%) sources, and 74.5, 9.2, and 6.1% of clinical isolates were in subclades associated with poultry, cattle, or swine, respectively. Based on genomic similarity, we identified 42 C. jejuni and one C. coli potential outbreak clusters. The C. jejuni clusters contained 188 clinical isolates, 19.6% of the total C. jejuni clinical isolates, suggesting that a larger proportion of campylobacteriosis may be associated with outbreaks than previously determined.
Collapse
Affiliation(s)
- Lauren K. Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA;
| | | | - Runan Yan
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (R.Y.); (J.K.)
| | - Mugdha Golwalkar
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | | | - Irving Nachamkin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Linda S. Thomas
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Christina Moore
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Xiaorong Qian
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Richard Steece
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Katie N. Garman
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | - John R. Dunn
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (R.Y.); (J.K.)
| | - Thomas G. Denes
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA;
- Correspondence:
| |
Collapse
|
197
|
Cohn AR, Orsi RH, Carroll LM, Chen R, Wiedmann M, Cheng RA. Characterization of Basal Transcriptomes Identifies Potential Metabolic and Virulence-Associated Adaptations Among Diverse Nontyphoidal Salmonella enterica Serovars. Front Microbiol 2021; 12:730411. [PMID: 34721328 PMCID: PMC8552914 DOI: 10.3389/fmicb.2021.730411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 01/18/2023] Open
Abstract
The zoonotic pathogen Salmonella enterica includes >2,600 serovars, which differ in the range of hosts they infect and the severity of disease they cause. To further elucidate the mechanisms behind these differences, we performed transcriptomic comparisons of nontyphoidal Salmonella (NTS) serovars with the model for NTS pathogenesis, S. Typhimurium. Specifically, we used RNA-seq to characterize the understudied NTS serovars S. Javiana and S. Cerro, representing a serovar frequently attributed to human infection via contact with amphibians and reptiles, and a serovar primarily associated with cattle, respectively. Whole-genome sequence (WGS) data were utilized to ensure that strains characterized with RNA-seq were representative of their respective serovars. RNA extracted from representative strains of each serovar grown to late exponential phase in Luria-Bertani (LB) broth showed that transcript abundances of core genes were significantly higher (p<0.001) than those of accessory genes for all three serovars. Inter-serovar comparisons identified that transcript abundances of genes in Salmonella Pathogenicity Island (SPI) 1 were significantly higher in both S. Javiana and S. Typhimurium compared to S. Cerro. Together, our data highlight potential transcriptional mechanisms that may facilitate S. Cerro and S. Javiana survival in and adaptation to their respective hosts and impact their ability to cause disease in others. Furthermore, our analyses demonstrate the utility of omics approaches in advancing our understanding of the diversity of metabolic and virulence mechanisms of different NTS serovars.
Collapse
Affiliation(s)
- Alexa R Cohn
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Laura M Carroll
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ruixi Chen
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Rachel A Cheng
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
198
|
Wallis A, Yannuzzi IM, Choi MW, Spafford J, Fenn M, Ramachandran P, Timme R, Pettengill JB, Cagle R, Ottesen A, Cox KD. Investigating the Distribution of Strains of Erwinia amylovora and Streptomycin Resistance in Apple Orchards in New York Using Clustered Regularly Interspaced Short Palindromic Repeat Profiles: A 6-Year Follow-Up. PLANT DISEASE 2021; 105:3554-3563. [PMID: 33599513 DOI: 10.1094/pdis-12-20-2585-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fire blight, caused by the bacterium Erwinia amylovora, is one of the most important diseases of apple. The antibiotic streptomycin is routinely used in the commercial apple industries of New York (NY) and New England to manage the disease. In 2002 and again, from 2011 to 2014, outbreaks of streptomycin resistance (SmR) were reported and investigated in NY. Motivated by new grower reports of control failures, we conducted a follow-up investigation of the distribution of SmR and E. amylovora strains for major apple production regions of NY over the last 6 years (2015 to 2020). Characterization of clustered regularly interspaced short palindromic repeat (CRISPR) profiles revealed that a few "cosmopolitan" strains were widely prevalent across regions, whereas many other "resident" strains were confined to one location. In addition, we uncovered novel CRISPR profile diversity in all investigated regions. SmR E. amylovora was detected only in a small area spanning two counties from 2017 to 2020 and was always associated with one CRISPR profile (41:23:38), which matched the profile of SmR E. amylovora, discovered in 2002. This suggests the original SmR E. amylovora was never fully eradicated and went undetected because of several seasons of low disease pressure in this region. Investigation of several representative isolates under controlled greenhouse conditions indicated significant differences in aggressiveness on 'Gala' apples. Potential implications of strain differences include the propensity of strains to become distributed across wide geographic regions and associated resistance management practices. Results from this work will directly influence sustainable fire blight management recommendations for commercial apple industries in NY state and other regions.
Collapse
Affiliation(s)
- Anna Wallis
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Isabella M Yannuzzi
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Mei-Wah Choi
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - John Spafford
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Matthew Fenn
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Padmini Ramachandran
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740
| | - Ruth Timme
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740
| | - James B Pettengill
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740
| | - Robin Cagle
- Department of Microbiology, University of Washington, Seattle, WA 98185
| | - Andrea Ottesen
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740
| | - Kerik D Cox
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| |
Collapse
|
199
|
Luo D, Wang X, Feng X, Tian M, Wang S, Tang SL, Ang P, Yan A, Luo H. Population differentiation of Rhodobacteraceae along with coral compartments. THE ISME JOURNAL 2021; 15:3286-3302. [PMID: 34017056 PMCID: PMC8528864 DOI: 10.1038/s41396-021-01009-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/04/2023]
Abstract
Coral mucus, tissue, and skeleton harbor compositionally different microbiota, but how these coral compartments shape the microbial evolution remains unexplored. Here, we sampled bacteria inhabiting a prevalent coral species Platygyra acuta and sequenced genomes of 234 isolates comprising two populations in Rhodobacteraceae, an alphaproteobacterial lineage representing a significant but variable proportion (5-50%) of the coral microbiota. The Ruegeria population (20 genomes) contains three clades represented by eight, six, and six isolates predominantly sampled from the skeleton (outgroup), mucus (clade-M), and skeleton (clade-S), respectively. The clade-M possesses functions involved in the utilization of coral osmolytes abundant in the mucus (e.g., methylamines, DMSP, taurine, and L-proline), whereas the clade-S uniquely harbors traits that may promote adaptation to the low-energy and diurnally anoxic skeleton (e.g., sulfur oxidation and swimming motility). These between-clade genetic differences were largely supported by physiological assays. Expanded analyses by including genomes of 24 related isolates (including seven new genomes) from other marine environments suggest that clade-M and clade-S may have diversified in non-coral habitats, but they also consolidated a key role of distinct coral compartments in diversifying many of the above-mentioned traits. The unassigned Rhodobacteraceae population (214 genomes) varies only at a few dozen nucleotide sites across the whole genomes, but the number of between-compartment migration events predicted by the Slatkin-Maddison test supported that dispersal limitation between coral compartments is another key mechanism diversifying microbial populations. Collectively, our results suggest that different coral compartments represent ecologically distinct and microgeographically separate habitats that drive the evolution of the coral microbiota.
Collapse
Affiliation(s)
- Danli Luo
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaojun Wang
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoyuan Feng
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Mengdan Tian
- grid.194645.b0000000121742757School of Biological Sciences, The University of Hong Kong, Shatin, Hong Kong SAR
| | - Sishuo Wang
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Sen-Lin Tang
- grid.506939.0Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Put Ang
- grid.10784.3a0000 0004 1937 0482Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Aixin Yan
- grid.194645.b0000000121742757School of Biological Sciences, The University of Hong Kong, Shatin, Hong Kong SAR
| | - Haiwei Luo
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
200
|
Phylogeographic Clustering Suggests that Distinct Clades of Salmonella enterica Serovar Mississippi Are Endemic in Australia, the United Kingdom, and the United States. mSphere 2021; 6:e0048521. [PMID: 34550008 PMCID: PMC8550085 DOI: 10.1128/msphere.00485-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Salmonella enterica serovar Mississippi is the 2nd and 14th leading cause of human clinical salmonellosis in the Australian island state of Tasmania and the United States, respectively. Despite its public health relevance, relatively little is known about this serovar. Comparison of whole-genome sequence (WGS) data of S. Mississippi isolates with WGS data for 317 additional S. enterica serovars placed one clade of S. Mississippi within S. enterica clade B (“clade B Mississippi”) and the other within section Typhi in S. enterica clade A (“clade A Mississippi”), suggesting that these clades evolved from different ancestors. Phylogenetic analysis of 364 S. Mississippi isolates from Australia, the United Kingdom, and the United States suggested that the isolates cluster geographically, with U.S. and Australian isolates representing different subclades (Ai and Aii, respectively) within clade A Mississippi and clade B isolates representing the predominant S. Mississippi isolates in the United Kingdom. Intraclade comparisons suggested that different mobile elements, some of which encode virulence factors, are responsible for the observed differences in gene content among isolates within these clades. Specifically, genetic differences among clade A isolates reflect differences in prophage contents, while differences among clade B isolates are due to the acquisition of a 47.1-kb integrative conjugative element (ICE). Phylogenies inferred from antigenic components (fliC, fljB, and O-antigen-processing genes) support that clade A and B Mississippi isolates acquired these loci from different ancestral serovars. Overall, these data support that different S. Mississippi phylogenetic clades are endemic in Australia, the United Kingdom, and the United States. IMPORTANCE The number of known so-called “polyphyletic” serovars (i.e., phylogenetically distinct clades with the same O and H antigenic formulas) continues to increase as additional Salmonella isolates are sequenced. While serotyping remains a valuable tool for reporting and monitoring Salmonella, more discriminatory analyses for classifying polyphyletic serovars may improve surveillance efforts for these serovars, as we found that for S. Mississippi, distinct genotypes predominate at different geographic locations. Our results suggest that the acquisition of genes encoding O and H antigens from different ancestors led to the emergence of two Mississippi clades. Furthermore, our results suggest that different mobile elements contribute to the microevolution and diversification of isolates within these two clades, which has implications for the acquisition of novel adaptations, such as virulence factors.
Collapse
|