151
|
Abstract
Fungal pathogens represent a major human threat affecting more than a billion people worldwide. Invasive infections are on the rise, which is of considerable concern because they are accompanied by an escalation of antifungal resistance. Deciphering the mechanisms underlying virulence traits and drug resistance strongly relies on genetic manipulation techniques such as generating mutant strains carrying specific mutations, or gene deletions. However, these processes have often been time-consuming and cumbersome in fungi due to a number of complications, depending on the species (e.g., diploid genomes, lack of a sexual cycle, low efficiency of transformation and/or homologous recombination, lack of cloning vectors, nonconventional codon usage, and paucity of dominant selectable markers). These issues are increasingly being addressed by applying clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 mediated genetic manipulation to medically relevant fungi. Here, we summarize the state of the art of CRISPR-Cas9 applications in four major human fungal pathogen lineages: Candida spp., Cryptococcus neoformans, Aspergillus fumigatus, and Mucorales. We highlight the different ways in which CRISPR has been customized to address the critical issues in different species, including different strategies to deliver the CRISPR-Cas9 elements, their transient or permanent expression, use of codon-optimized CAS9, and methods of marker recycling and scarless editing. Some approaches facilitate a more efficient use of homology-directed repair in fungi in which nonhomologous end joining is more commonly used to repair double-strand breaks (DSBs). Moreover, we highlight the most promising future perspectives, including gene drives, programmable base editors, and nonediting applications, some of which are currently available only in model fungi but may be adapted for future applications in pathogenic species. Finally, this review discusses how the further evolution of CRISPR technology will allow mycologists to tackle the multifaceted issue of fungal pathogenesis.
Collapse
Affiliation(s)
- Florent Morio
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Université, EA1155 –IICiMed, Nantes, France
| | - Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
154
|
Cresswell FV, Davis AG, Sharma K, Basu Roy R, Ganiem AR, Kagimu E, Solomons R, Wilkinson RJ, Bahr NC, Thuong NTT. Recent Developments in Tuberculous Meningitis Pathogenesis and Diagnostics. Wellcome Open Res 2019; 4:164. [PMID: 33364436 PMCID: PMC7739117 DOI: 10.12688/wellcomeopenres.15506.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of Tuberculous meningitis (TBM) is poorly understood, but contemporary molecular biology technologies have allowed for recent improvements in our understanding of TBM. For instance, neutrophils appear to play a significant role in the immunopathogenesis of TBM, and either a paucity or an excess of inflammation can be detrimental in TBM. Further, severity of HIV-associated immunosuppression is an important determinant of inflammatory response; patients with the advanced immunosuppression (CD4+ T-cell count of <150 cells/μL) having higher CSF neutrophils, greater CSF cytokine concentrations and higher mortality than those with CD4+ T-cell counts > 150 cells/μL. Host genetics may also influence outcomes with LT4AH genotype predicting inflammatory phenotype, steroid responsiveness and survival in Vietnamese adults with TBM. Whist in Indonesia, CSF tryptophan level was a predictor of survival, suggesting tryptophan metabolism may be important in TBM pathogenesis. These varying responses mean that we must consider whether a "one-size-fits-all" approach to anti-bacillary or immunomodulatory treatment in TBM is truly the best way forward. Of course, to allow for proper treatment, early and rapid diagnosis of TBM must occur. Diagnosis has always been a challenge but the field of TB diagnosis is evolving, with sensitivities of at least 70% now possible in less than two hours with GeneXpert MTB/Rif Ultra. In addition, advanced molecular techniques such as CRISPR-MTB and metagenomic next generation sequencing may hold promise for TBM diagnosis. Host-based biomarkers and signatures are being further evaluated in childhood and adult TBM as adjunctive biomarkers as even with improved molecular assays, cases are still missed. A better grasp of host and pathogen behaviour may lead to improved diagnostics, targeted immunotherapy, and possibly biomarker-based, patient-specific treatment regimens.
Collapse
Affiliation(s)
- Fiona V Cresswell
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Research Department, Infectious Diseases Institute, Kampala, PO Box 22418, Uganda
- MRC-UVRI-London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Angharad G. Davis
- University College London, London, WC1E6BT, UK
- Francis Crick Institute, London, NW1 1AT, UK
- Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, 7925, South Africa
| | - Kusum Sharma
- Department of Medical Microbiology, Post-graduate Department of Medical Education and Research, Chandigahr, India
| | - Robindra Basu Roy
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Ahmad Rizal Ganiem
- Department of Neurology, Hasan Sadikin Hospital, Faculty of Medicine. Universitas Padjadjaran, Bandung, Indonesia
| | - Enock Kagimu
- Research Department, Infectious Diseases Institute, Kampala, PO Box 22418, Uganda
| | - Regan Solomons
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Robert J. Wilkinson
- Francis Crick Institute, London, NW1 1AT, UK
- Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, 7925, South Africa
- Department of Infectious Diseases, Imperial College, London, W2 1PG, UK
| | - Nathan C Bahr
- Division of Infectious Diseases. Department of Medicine., University of Kansas, Kansas City, USA
| | | | - Tuberculous Meningitis International Research Consortium
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Research Department, Infectious Diseases Institute, Kampala, PO Box 22418, Uganda
- MRC-UVRI-London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- University College London, London, WC1E6BT, UK
- Francis Crick Institute, London, NW1 1AT, UK
- Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, 7925, South Africa
- Department of Medical Microbiology, Post-graduate Department of Medical Education and Research, Chandigahr, India
- Department of Neurology, Hasan Sadikin Hospital, Faculty of Medicine. Universitas Padjadjaran, Bandung, Indonesia
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
- Department of Infectious Diseases, Imperial College, London, W2 1PG, UK
- Division of Infectious Diseases. Department of Medicine., University of Kansas, Kansas City, USA
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| |
Collapse
|
155
|
Schubert RD, Hawes IA, Ramachandran PS, Ramesh A, Crawford ED, Pak JE, Wu W, Cheung CK, O'Donovan BD, Tato CM, Lyden A, Tan M, Sit R, Sowa GA, Sample HA, Zorn KC, Banerji D, Khan LM, Bove R, Hauser SL, Gelfand AA, Johnson-Kerner BL, Nash K, Krishnamoorthy KS, Chitnis T, Ding JZ, McMillan HJ, Chiu CY, Briggs B, Glaser CA, Yen C, Chu V, Wadford DA, Dominguez SR, Ng TFF, Marine RL, Lopez AS, Nix WA, Soldatos A, Gorman MP, Benson L, Messacar K, Konopka-Anstadt JL, Oberste MS, DeRisi JL, Wilson MR. Pan-viral serology implicates enteroviruses in acute flaccid myelitis. Nat Med 2019; 25:1748-1752. [PMID: 31636453 PMCID: PMC6858576 DOI: 10.1038/s41591-019-0613-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/13/2019] [Indexed: 11/26/2022]
Abstract
Since 2012, the United States has experienced a biennial spike in pediatric acute flaccid myelitis (AFM).1–6 Epidemiologic evidence suggests non-polio enteroviruses (EVs) are a potential etiology, yet EV RNA is rarely detected in cerebrospinal fluid (CSF).2 We interrogated CSF from children with AFM (n=42) and pediatric other neurologic disease controls (n=58) for intrathecal anti-viral antibodies using a phage display library expressing 481,966 overlapping peptides derived from all known vertebrate and arboviruses (VirScan). We also performed metagenomic next-generation sequencing (mNGS) of AFM CSF RNA (n=20 cases), both unbiased and with targeted enrichment for EVs. Using VirScan, the only viral family significantly enriched by the CSF of AFM cases relative to controls was Picornaviridae, with the most enriched Picornaviridae peptides belonging to the genus Enterovirus (n=29/42 cases versus 4/58 controls). EV VP1 ELISA confirmed this finding (n=22/26 cases versus 7/50 controls). mNGS did not detect additional EV RNA. Despite rare detection of EV RNA, pan-viral serology identified frequently high levels of CSF EV-specific antibodies in AFM compared to controls, providing further evidence for a causal role of non-polio EVs in AFM.
Collapse
Affiliation(s)
- Ryan D Schubert
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Isobel A Hawes
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Prashanth S Ramachandran
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Akshaya Ramesh
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Emily D Crawford
- Chan Zuckerberg Biohub, San Francisco, CA, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - John E Pak
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Wesley Wu
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Brian D O'Donovan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Amy Lyden
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Rene Sit
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gavin A Sowa
- School of Medicine, University of California, San Francisc, San Francisco, CA, USA
| | - Hannah A Sample
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Kelsey C Zorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Debarko Banerji
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Lillian M Khan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Riley Bove
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen L Hauser
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Amy A Gelfand
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bethany L Johnson-Kerner
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kendall Nash
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Tanuja Chitnis
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Joy Z Ding
- Division of Neurology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Hugh J McMillan
- Division of Neurology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Charles Y Chiu
- Department of Laboratory Medicine and Medicine, Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin Briggs
- Department of Pediatrics, Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Carol A Glaser
- Department of Pediatric Infectious Diseases, Kaiser Permanente Oakland Medical Center, Oakland, CA, USA
| | - Cynthia Yen
- Division of Communicable Disease Control, California Department of Public Health, Richmond, CA, USA
| | - Victoria Chu
- Division of Communicable Disease Control, California Department of Public Health, Richmond, CA, USA
| | - Debra A Wadford
- Division of Communicable Disease Control, California Department of Public Health, Richmond, CA, USA
| | - Samuel R Dominguez
- Children's Hospital Colorado and Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Terry Fei Fan Ng
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rachel L Marine
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Adriana S Lopez
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - W Allan Nix
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ariane Soldatos
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mark P Gorman
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Leslie Benson
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Kevin Messacar
- Children's Hospital Colorado and Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - M Steven Oberste
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph L DeRisi
- Chan Zuckerberg Biohub, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Michael R Wilson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA. .,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|