151
|
Iatrogenic iron overload and its potential consequences in patients on hemodialysis. Presse Med 2017; 46:e312-e328. [PMID: 29153377 DOI: 10.1016/j.lpm.2017.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
Iron overload was considered rare in hemodialysis patients until recently, but its clinical frequency is now increasingly recognized. The liver is the main site of iron storage and the liver iron concentration (LIC) is closely correlated with total iron stores in patients with secondary hemosiderosis and genetic hemochromatosis. Magnetic resonance imaging (MRI) is now the gold standard method for estimating and monitoring LIC. Studies of LIC in hemodialysis patients by magnetic susceptometry thirteen years ago and recently by quantitative MRI have demonstrated a relation between the risk of iron overload and the use of intravenous (IV) iron products prescribed at doses determined by the iron biomarker cutoffs contained in current anemia management guidelines. These findings have challenged the validity of both iron biomarker cutoffs and current clinical guidelines, especially with respect to recommended IV iron doses. Moreover, three recent long-term observational studies suggested that excessive IV iron doses might be associated with an increased risk of cardiovascular events and death in hemodialysis patients. It has been hypothesized that iatrogenic iron overload in the era of erythropoiesis-stimulating agents might silently increase complications in dialysis patients without creating obvious, clinical signs and symptoms. High hepcidin-25 levels were recently linked to fatal and nonfatal cardiovascular events in dialysis patients. It has been postulated that the main pathophysiological pathway leading to these events might involve the pleiotropic master hormone hepcidin, which regulates iron metabolism, leading to activation of macrophages in atherosclerotic plaques and then to clinical cardiovascular events. Thus, the potential iron overload toxicity linked to chronic administration of IV iron therapy is now becoming one of the most controversial topics in the management of anemia in hemodialysis patients.
Collapse
|
152
|
Ryu B, Kim CY, Oh H, Kim U, Kim J, Jung CR, Lee BH, Lee S, Chang SN, Lee JM, Chung HM, Park JH. Development of an alternative zebrafish model for drug-induced intestinal toxicity. J Appl Toxicol 2017; 38:259-273. [PMID: 29027214 DOI: 10.1002/jat.3520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - C-Yoon Kim
- Department of Medicine, School of Medicine; Konkuk University; Seoul 05029 Republic of Korea
| | - Hanseul Oh
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit; Korea Research Institute of Bioscience and Biotechnology; Daejeon 34141 Republic of Korea
| | - Byoung-Hee Lee
- National Institute of Biological Resources; Incheon 22689 Republic of Korea
| | - Seungki Lee
- National Institute of Biological Resources; Incheon 22689 Republic of Korea
| | - Seo-Na Chang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Ji Min Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Hyung-Min Chung
- Department of Medicine, School of Medicine; Konkuk University; Seoul 05029 Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| |
Collapse
|
153
|
Lustgarten MS, Fielding RA. Metabolites related to renal function, immune activation, and carbamylation are associated with muscle composition in older adults. Exp Gerontol 2017; 100:1-10. [PMID: 29030163 DOI: 10.1016/j.exger.2017.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 12/25/2022]
Abstract
Reduced skeletal muscle density in older adults is associated with insulin resistance, decreased physical function, and an increased all-cause mortality risk. To elucidate mechanisms that may underlie the maintenance of skeletal muscle density, we conducted a secondary analysis of previously published muscle composition and serum metabolomic data in 73 older adults (average age, 78y). Multivariable-adjusted linear regression was used to examine associations between 321 metabolites with muscle composition, defined as the ratio between normal density (NDM) with low density (LDM) thigh muscle cross sectional area (NDM/LDM). Sixty metabolites were significantly (p≤0.05 and q<0.30) associated with NDM/LDM. Decreased renal function and the immune response have been previously linked with reduced muscle density, but the mechanisms underlying these connections are less clear. Metabolites that were significantly associated with muscle composition were then tested for their association with circulating markers of renal function (blood urea nitrogen, creatinine, uric acid), and with the immune response (neutrophils/lymphocytes) and activation (kynurenine/tryptophan). 43 significant NDM/LDM metabolites (including urea) were co-associated with at least 1 marker of renal function; 23 of these metabolites have been previously identified as uremic solutes. The neutrophil/lymphocyte ratio was significantly associated with NDM/LDM (β±SE: -0.3±0.1, p=0.01, q=0.04). 35 significant NDM/LDM metabolites were co-associated with immune activation. Carbamylation (defined as homocitrulline/lysine) was identified as a pathway that may link renal function and immune activation with muscle composition, as 29 significant NDM/LDM metabolites were co-associated with homocitrulline/lysine, with at least 2 markers of renal function, and with kynurenine/tryptophan. When considering that elevated urea and uremic metabolites have been linked with an increased systemic microbial burden, that antimicrobial defense can be reduced in the presence of carbamylation, and that adipocytes can promote host defense, we propose the novel hypothesis that the age-related increase in adipogenesis within muscle may be a compensatory antimicrobial response to protect against an elevated microbial burden.
Collapse
Affiliation(s)
- Michael S Lustgarten
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, MA, USA.
| | - Roger A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, MA, USA
| |
Collapse
|
154
|
Jabbari B, Vaziri ND. The nature, consequences, and management of neurological disorders in chronic kidney disease. Hemodial Int 2017; 22:150-160. [PMID: 28799704 DOI: 10.1111/hdi.12587] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Perhaps no other organ in the body is affected as often and in as many ways as the brain is in patients with chronic kidney disease (CKD). Several factors contribute to the neurological disorders in CKD including accumulation of uremic toxins, metabolic and hemodynamic disorders, oxidative stress, inflammation, and impaired blood brain barrier among others. The neurological disorders in CKD involve both peripheral and central nervous system. The peripheral neurological symptoms of CKD are due to somatic and cranial peripheral neuropathies as well as a myopathy. The central neurological symptoms of CKD are due to the cortical predominantly cortical, or subcortical lesions. Cognitive decline, encephalopathy, cortical myoclonus, asterixis and epileptic seizures are distinct features of the cortical disorders of CKD. Diffuse white matter disease due to ischemia and hypoxia may be an important cause of subcortical encephalopathy. A special and more benign form of subcortical disorder caused by brain edema in CKD is termed posterior reversible encephalopathy. Subcortical pathology especially when it affects the basal ganglia causes a number of movement disorders including Parkinsonism, chorea and dystonia. A stimulus-sensitive reflex myoclonus is believed to originate from the medullary structures. Sleep disorder and restless leg syndrome are common in CKD and have both central and peripheral origin. This article provides an overview of the available data on the nature, prevalence, pathophysiology, consequences and treatment of neurological complications of CKD.
Collapse
Affiliation(s)
- Bahman Jabbari
- Department of Neurology, Division of Movement disorders, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nosratola D Vaziri
- Departments of Medicine, Physiology and Biophysics, Division of Nephrology and Hypertension, University of California, Irvine, USA
| |
Collapse
|
155
|
Qu W, Yuan X, Zhao J, Zhang Y, Hu J, Wang J, Li J. Dietary advanced glycation end products modify gut microbial composition and partially increase colon permeability in rats. Mol Nutr Food Res 2017. [DOI: 10.1002/mnfr.201700118] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wanting Qu
- College of Food Science and Engineering; Northwest A&F University; Yangling P. R. China
| | - Xiaojin Yuan
- College of Food Science and Engineering; Northwest A&F University; Yangling P. R. China
| | - Jinsong Zhao
- College of Food Science and Engineering; Northwest A&F University; Yangling P. R. China
| | - Yingxiao Zhang
- College of Food Science and Engineering; Northwest A&F University; Yangling P. R. China
| | - Jing Hu
- College of Food Science and Engineering; Northwest A&F University; Yangling P. R. China
| | - Jiawei Wang
- Shaanxi Research Institute of Agricultural Products Processing Technology; Xi'an P. R. China
| | - Juxiu Li
- College of Food Science and Engineering; Northwest A&F University; Yangling P. R. China
| |
Collapse
|
156
|
Kooman JP, Dekker MJ, Usvyat LA, Kotanko P, van der Sande FM, Schalkwijk CG, Shiels PG, Stenvinkel P. Inflammation and premature aging in advanced chronic kidney disease. Am J Physiol Renal Physiol 2017; 313:F938-F950. [PMID: 28701312 DOI: 10.1152/ajprenal.00256.2017] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
Systemic inflammation in end-stage renal disease is an established risk factor for mortality and a catalyst for other complications, which are related to a premature aging phenotype, including muscle wasting, vascular calcification, and other forms of premature vascular disease, depression, osteoporosis, and frailty. Uremic inflammation is also mechanistically related to mechanisms involved in the aging process, such as telomere shortening, mitochondrial dysfunction, and altered nutrient sensing, which can have a direct effect on cellular and tissue function. In addition to uremia-specific causes, such as abnormalities in the phosphate-Klotho axis, there are remarkable similarities between the pathophysiology of uremic inflammation and so-called "inflammaging" in the general population. Potentially relevant, but still somewhat unexplored in this respect, are abnormal or misplaced protein structures, as well as abnormalities in tissue homeostasis, which evoke danger signals through damage-associated molecular patterns, as well as the senescence-associated secretory phenotype. Systemic inflammation, in combination with the loss of kidney function, can impair the resilience of the body to external and internal stressors by reduced functional and structural tissue reserves, and by impairing normal organ crosstalk, thus providing an explanation for the greatly increased risk of homeostatic breakdown in this population. In this review, the relationship between uremic inflammation and a premature aging phenotype, as well as potential causes and consequences, are discussed.
Collapse
Affiliation(s)
- Jeroen P Kooman
- Maastricht University Medical Center, Maastricht, Netherlands;
| | | | - Len A Usvyat
- Fresenius Medical Care North America, Waltham, Massachusetts
| | - Peter Kotanko
- Renal Research Institute, New York, New York.,Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Paul G Shiels
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Peter Stenvinkel
- Divsion of Renal Medicine, Department of Clinical Science Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
157
|
Urea, a true uremic toxin: the empire strikes back. Clin Sci (Lond) 2017; 131:3-12. [PMID: 27872172 DOI: 10.1042/cs20160203] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/12/2016] [Accepted: 09/28/2016] [Indexed: 01/18/2023]
Abstract
Blood levels of urea rise with progressive decline in kidney function. Older studies examining acute urea infusion suggested that urea was well-tolerated at levels 8-10× above normal values. More recent in vitro and in vivo work argue the opposite and demonstrate both direct and indirect toxicities of urea, which probably promote the premature aging phenotype that is pervasive in chronic kidney disease (CKD). Elevated urea at concentrations typically encountered in uremic patients induces disintegration of the gut epithelial barrier, leading to translocation of bacterial toxins into the bloodstream and systemic inflammation. Urea induces apoptosis of vascular smooth muscle cells as well as endothelial dysfunction, thus directly promoting cardiovascular disease. Further, urea stimulates oxidative stress and dysfunction in adipocytes, leading to insulin resistance. Finally, there are widespread indirect effects of elevated urea as a result of the carbamylation reaction, where isocyanic acid (a product of urea catabolism) alters the structure and function of proteins in the body. Carbamylation has been linked with renal fibrosis, atherosclerosis and anaemia. In summary, urea is a re-emerging Dark Force in CKD pathophysiology. Trials examining low protein diet to minimize accumulation of urea and other toxins suggest a clinical benefit in terms of slowing progression of CKD.
Collapse
|
158
|
Shiels PG, McGuinness D, Eriksson M, Kooman JP, Stenvinkel P. The role of epigenetics in renal ageing. Nat Rev Nephrol 2017. [PMID: 28626222 DOI: 10.1038/nrneph.2017.78] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An ability to separate natural ageing processes from processes specific to morbidities is required to understand the heterogeneity of age-related organ dysfunction. Mechanistic insight into how epigenetic factors regulate ageing throughout the life course, linked to a decline in renal function with ageing, is already proving to be of value in the analyses of clinical and epidemiological cohorts. Noncoding RNAs provide epigenetic regulatory circuits within the kidney, which reciprocally interact with DNA methylation processes, histone modification and chromatin. These interactions have been demonstrated to reflect the biological age and function of renal allografts. Epigenetic factors control gene expression and activity in response to environmental perturbations. They also have roles in highly conserved signalling pathways that modulate ageing, including the mTOR and insulin/insulin-like growth factor signalling pathways, and regulation of sirtuin activity. Nutrition, the gut microbiota, inflammation and environmental factors, including psychosocial and lifestyle stresses, provide potential mechanistic links between the epigenetic landscape of ageing and renal dysfunction. Approaches to modify the renal epigenome via nutritional intervention, targeting the methylome or targeting chromatin seem eminently feasible, although caution is merited owing to the potential for intergenerational and transgenerational effects.
Collapse
Affiliation(s)
- Paul G Shiels
- Section of Epigenetics, Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Dagmara McGuinness
- Section of Epigenetics, Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Maria Eriksson
- Department of Biosciences and Nutrition (BioNut), H2, Eriksson, Novum 141, 83 Huddinge, Sweden
| | - Jeroen P Kooman
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastrich, Netherlands
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Huddinge, Karolinska Institutet, SE-14157 Stockholm, Sweden
| |
Collapse
|
159
|
Koh GY, Rowling MJ. Resistant starch as a novel dietary strategy to maintain kidney health in diabetes mellitus. Nutr Rev 2017; 75:350-360. [DOI: 10.1093/nutrit/nux006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
160
|
Kortman GAM, Reijnders D, Swinkels DW. Oral iron supplementation: Potential implications for the gut microbiome and metabolome in patients with CKD. Hemodial Int 2017; 21 Suppl 1:S28-S36. [PMID: 28328083 DOI: 10.1111/hdi.12553] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Patients with chronic kidney disease (CKD) and loss of kidney function are at increased risk for morbidity and mortality. The risks of CKD are attributed to "uremia," an increased concentration of uremic retention solutes (toxins) in the plasma. Recently, a colo-renal axis became clearly apparent and uremia has been associated with an altered gut microbiome composition and metabolism. There is a high prevalence of anemia in patients with CKD, for which patients are often treated with oral or intravenous iron. Recent in vivo and in vitro studies have reported adverse effects of oral iron supplementation on the gut microbiota composition, gut metabolome, and intestinal health, which in turn may result in an increased production of uremic toxins. It may also affect circulating levels of other microbe-derived molecules, that can act as mediators of immune regulation. Changes in body iron levels have also been reported to exert subtle effects on host immune function by modulating immune cell proliferation and differentiation, and by directly regulating cytokine formation and antimicrobial immune effector mechanisms. Based on the foregoing it is conceivable that oral iron supplementation in iron deficient predialysis CKD patients adversely changes gut microbiota composition, the gut and systemic metabolome, and host immunity and infection. Future studies are needed to confirm these hypotheses and to assess whether, compared to IV iron supplementation, oral iron supplementation negatively impacts on morbidity of CKD, and whether these adverse effects depend on the iron bioavailability of the iron formulation to the microbiota.
Collapse
Affiliation(s)
- Guus A M Kortman
- Department of Laboratory Medicine - Translational Metabolic Laboratory-830, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorien Reijnders
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dorine W Swinkels
- Department of Laboratory Medicine - Translational Metabolic Laboratory-830, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
161
|
Rostoker G, Vaziri ND, Fishbane S. Iatrogenic Iron Overload in Dialysis Patients at the Beginning of the 21st Century. Drugs 2017; 76:741-57. [PMID: 27091216 PMCID: PMC4848337 DOI: 10.1007/s40265-016-0569-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron overload used to be considered rare in hemodialysis patients but its clinical frequency is now increasingly realized. The liver is the main site of iron storage and the liver iron concentration (LIC) is closely correlated with total iron stores in patients with secondary hemosideroses and genetic hemochromatosis. Magnetic resonance imaging is now the gold standard method for LIC estimation and monitoring in non-renal patients. Studies of LIC in hemodialysis patients by quantitative magnetic resonance imaging and magnetic susceptometry have demonstrated a strong relation between the risk of iron overload and the use of intravenous (IV) iron products prescribed at doses determined by the iron biomarker cutoffs contained in current anemia management guidelines. These findings have challenged the validity of both iron biomarker cutoffs and current clinical guidelines, especially with respect to recommended IV iron doses. Three long-term observational studies have recently suggested that excessive IV iron doses may be associated with an increased risk of cardiovascular events and death in hemodialysis patients. We postulate that iatrogenic iron overload in the era of erythropoiesis-stimulating agents may silently increase complications in dialysis patients without creating frank clinical signs and symptoms. High hepcidin-25 levels were recently linked to fatal and nonfatal cardiovascular events in dialysis patients. It is therefore tempting to postulate that the main pathophysiological pathway leading to these events may involve the pleiotropic master hormone hepcidin (synergized by fibroblast growth factor 23), which regulates iron metabolism. Oxidative stress as a result of IV iron infusions and iron overload, by releasing labile non-transferrin-bound iron, might represent a ‘second hit’ on the vascular bed. Finally, iron deposition in the myocardium of patients with severe iron overload might also play a role in the pathogenesis of sudden death in some patients.
Collapse
Affiliation(s)
- Guy Rostoker
- Division of Nephrology and Dialysis, Hôpital Privé Claude Galien, Ramsay-Générale de Santé, Quincy sous Sénart, France. .,Service de Néphrologie et de Dialyse, HP Claude Galien, 20 route de Boussy, Quincy sous Sénart, 91480, France.
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, University of California, Irvine, CA, USA
| | - Steven Fishbane
- Division of Nephrology, Hofstra North-Shore-LIJ School of Medicine, Great Neck, New York, NY, USA
| |
Collapse
|
162
|
Zha Y, Qian Q. Protein Nutrition and Malnutrition in CKD and ESRD. Nutrients 2017; 9:nu9030208. [PMID: 28264439 PMCID: PMC5372871 DOI: 10.3390/nu9030208] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/23/2017] [Indexed: 01/28/2023] Open
Abstract
Elevated protein catabolism and protein malnutrition are common in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). The underlying etiology includes, but is not limited to, metabolic acidosis intestinal dysbiosis; systemic inflammation with activation of complements, endothelin-1 and renin-angiotensin-aldosterone (RAAS) axis; anabolic hormone resistance; energy expenditure elevation; and uremic toxin accumulation. All of these derangements can further worsen kidney function, leading to poor patient outcomes. Many of these CKD-related derangements can be prevented and substantially reversed, representing an area of great potential to improve CKD and ESRD care. This review integrates known information and recent advances in the area of protein nutrition and malnutrition in CKD and ESRD. Management recommendations are summarized. Thorough understanding the pathogenesis and etiology of protein malnutrition in CKD and ESRD patients will undoubtedly facilitate the design and development of more effective strategies to optimize protein nutrition and improve outcomes.
Collapse
Affiliation(s)
- Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guizhou 550002, China.
| | - Qi Qian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
163
|
Nallu A, Sharma S, Ramezani A, Muralidharan J, Raj D. Gut microbiome in chronic kidney disease: challenges and opportunities. Transl Res 2017; 179:24-37. [PMID: 27187743 PMCID: PMC5086447 DOI: 10.1016/j.trsl.2016.04.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/12/2016] [Accepted: 04/16/2016] [Indexed: 02/07/2023]
Abstract
More than 100 trillion microbial cells that reside in the human gut heavily influence nutrition, metabolism, and immune function of the host. Gut dysbiosis, seen commonly in patients with chronic kidney disease (CKD), results from qualitative and quantitative changes in host microbiome profile and disruption of gut barrier function. Alterations in gut microbiota and a myriad of host responses have been implicated in progression of CKD, increased cardiovascular risk, uremic toxicity, and inflammation. We present a discussion of dysbiosis, various uremic toxins produced from dysbiotic gut microbiome, and their roles in CKD progression and complications. We also review the gut microbiome in renal transplant, highlighting the role of commensal microbes in alteration of immune responses to transplantation, and conclude with therapeutic interventions that aim to restore intestinal dysbiosis.
Collapse
Affiliation(s)
- Anitha Nallu
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC
| | - Shailendra Sharma
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC
| | - Ali Ramezani
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC
| | - Jagadeesan Muralidharan
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC
| | - Dominic Raj
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC.
| |
Collapse
|
164
|
Kieffer DA, Martin RJ, Adams SH. Impact of Dietary Fibers on Nutrient Management and Detoxification Organs: Gut, Liver, and Kidneys. Adv Nutr 2016; 7:1111-1121. [PMID: 28140328 PMCID: PMC5105045 DOI: 10.3945/an.116.013219] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Increased dietary fiber (DF) intake elicits a wide range of physiologic effects, not just locally in the gut, but systemically. DFs can greatly alter the gut milieu by affecting the gut microbiome, which in turn influences the gut barrier, gastrointestinal immune and endocrine responses, and nitrogen cycling and microbial metabolism. These gut-associated changes can then alter the physiology and biochemistry of the body's other main nutrient management and detoxification organs, the liver and kidneys. The molecular mechanisms by which DF alters the physiology of the gut, liver, and kidneys is likely through gut-localized events (i.e., bacterial nitrogen metabolism, microbe-microbe, and microbe-host cell interactions) coupled with specific factors that emanate from the gut in response to DF, which signal to or affect the physiology of the liver and kidneys. The latter may include microbe-derived xenometabolites, peptides, or bioactive food components made available by gut microbes, inflammation signals, and gut hormones. The intent of this review is to summarize how DF alters the gut milieu to specifically affect intestinal, liver, and kidney functions and to discuss the potential local and systemic signaling networks that are involved.
Collapse
Affiliation(s)
- Dorothy A Kieffer
- Graduate Group in Nutritional Biology and
- Department of Nutrition, University of California, Davis, Davis, CA
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA
| | - Roy J Martin
- Graduate Group in Nutritional Biology and
- Department of Nutrition, University of California, Davis, Davis, CA
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA
| | - Sean H Adams
- Graduate Group in Nutritional Biology and
- Department of Nutrition, University of California, Davis, Davis, CA
- Arkansas Children's Nutrition Center, Little Rock, AR; and
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
165
|
Vaziri ND, Khazaeli M, Nunes ACF, Harley KT, Said H, Alipour O, Lau WL, Pahl MV. Effects of end-stage renal disease and dialysis modalities on blood ammonia level. Hemodial Int 2016; 21:343-347. [PMID: 27804262 DOI: 10.1111/hdi.12510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Uremia results in a characteristic breath odor (uremic fetor) which is largely due to its high ammonia content. Earlier studies have shown a strong correlation between breath ammonia and blood urea levels and a 10-fold reduction in breath ammonia after hemodialysis in patients with chronic kidney disease. Potential sources of breath ammonia include: (i) local ammonia production from hydrolysis of urea in the oropharyngeal and respiratory tracts by bacterial flora, and (ii) release of circulating blood ammonia by the lungs. While the effects of uremia and hemodialysis on breath ammonia are well known their effects on blood ammonia are unknown and were explored here. METHODS Blood samples were obtained from 23 hemodialysis patients (immediately before and after dialysis), 14 peritoneal dialysis patients, and 10 healthy controls. Blood levels of ammonia, creatinine, urea, and electrolytes were measured. FINDINGS No significant difference was found in baseline blood ammonia between hemodialysis, peritoneal dialysis and control groups. Hemodialysis procedure led to a significant reduction in urea concentration (P < 0.001) which was paradoxically accompanied by a modest but significant (P < 0.05) rise in blood ammonia level in 10 of the 23 patients studied. Change in blood ammonia pre- and post-hemodialysis correlated with change in serum bicarbonate levels (r = 0.61, P < 0.01). On subgroup analysis of patients who had a rise in blood ammonia levels after dialysis, there was a strong correlation with drop in mean arterial pressure (r = 0.88, P < 0.01). The nadir intradialytic systolic blood pressure trended lower in the hemodialysis patients who had a rise in blood ammonia compared to the patients who manifested a fall in blood ammonia (124 ± 8 vs. 136 ± 6 mmHg respectively, P = 0.27). DISCUSSION Fall in blood urea following hemodialysis in ESRD patients was paradoxically accompanied by a modest rise in blood ammonia levels in 43% of the patients studied, contrasting prior reported effects of hemodialysis on breath ammonia. In this subgroup of patients, changes in blood ammonia during hemodialysis correlated with rise in blood bicarbonate and fall in mean arterial blood pressure.
Collapse
Affiliation(s)
- Nosratola D Vaziri
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Mahyar Khazaeli
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Ane C F Nunes
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Kevin T Harley
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Hyder Said
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Omeed Alipour
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Wei Ling Lau
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| | - Madeleine V Pahl
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
166
|
Kikuchi M, Ueno M, Itoh Y, Suda W, Hattori M. Uremic Toxin-Producing Gut Microbiota in Rats with Chronic Kidney Disease. Nephron Clin Pract 2016; 135:51-60. [PMID: 27701177 DOI: 10.1159/000450619] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/31/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In patients with chronic kidney disease (CKD), many metabolites of gut microbiota retain in the body as uremic toxins (UTs). However, the kinds of bacteria producing UTs are rarely discussed. METHODS We analyzed UT production and the composition of gut microbiota in CKD rats and cecectomized rats. AST-120, a spherical carbon adsorbent, was administrated to evaluate how the precursors of UT affect gut microbiota. Serum and urine levels of UTs were quantified by liquid chromatography/electrospray ionization-tandem mass spectrometry. Gut microbiota were analyzed using 454-pyrosequencing of the 16S rRNA gene. Operational taxonomic unit (OTU) clustering and UniFrac analysis were performed to compare gut microbiota among the groups. RESULTS Serum and urine levels of indoxyl sulfate and phenyl sulfate were higher in CKD versus control rats (p < 0.05). AST-120 administration decreased UT production (p < 0.01) and changed overall gut microbiota composition in CKD rats. UT urinary excretion and gut microbiota composition changed in cecectomized rats, with the relative abundance of Clostridia- and Bacteroidia-affiliated species being significantly reduced (p < 0.01). We identified candidate indole- and phenol-producing intestinal microbiota, 3 Clostridia, and 2 Bacteroidia. These OTUs have a tryptophanase/tyrosine phenol-lyase gene in the closest sequenced genome out of the OTUs declined following cecectomy. CONCLUSION Our data suggest that UT production is correlated with a subset of indigenous gut microbiota. However, UT may be induced by other non-symbiotic microbiota that are influenced by factors other than microbiota populations. The relationship between specific microbiota and UTs in patients requires further clarification.
Collapse
Affiliation(s)
- Mami Kikuchi
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Tokyo, Japan
| | | | | | | | | |
Collapse
|
167
|
Lau WL, Huisa BN, Fisher M. The Cerebrovascular-Chronic Kidney Disease Connection: Perspectives and Mechanisms. Transl Stroke Res 2016; 8:67-76. [PMID: 27628245 PMCID: PMC5241336 DOI: 10.1007/s12975-016-0499-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/21/2016] [Accepted: 08/25/2016] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) is an independent risk factor for the development of cerebrovascular disease, particularly small vessel disease which can manifest in a variety of phenotypes ranging from lacunes to microbleeds. Small vessel disease likely contributes to cognitive dysfunction in the CKD population. Non-traditional risk factors for vascular injury in uremia include loss of calcification inhibitors, hyperphosphatemia, increased blood pressure variability, elastinolysis, platelet dysfunction, and chronic inflammation. In this review, we discuss the putative pathways by which these mechanisms may promote cerebrovascular disease and thus increase risk of future stroke in CKD patients.
Collapse
Affiliation(s)
- Wei Ling Lau
- Department of Medicine, Division of Nephrology, University of California, Irvine, CA, USA
| | - Branko N Huisa
- Department of Neurology, University of California, San Diego, CA, USA
| | - Mark Fisher
- Departments of Neurology, Anatomy & Neurobiology, and Pathology & Laboratory Medicine, University of California, Irvine, CA, USA. .,Department of Neurology, UC Irvine Medical Center, 101 The City Drive South, Shanbrom Hall, Room 121, Orange, CA, 92868, USA.
| |
Collapse
|
168
|
Gut microbiota in renal physiology: focus on short-chain fatty acids and their receptors. Kidney Int 2016; 90:1191-1198. [PMID: 27575555 DOI: 10.1016/j.kint.2016.06.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/14/2022]
Abstract
A number of recent studies have begun to explore a new and exciting area: the interaction between the gut microbiome and renal physiology. In particular, multiple studies have focused on the role of microbially produced short chain fatty acids, which are generally thought to promote health. This review will focus on what is known to date regarding the influence of the microbiome on renal function, with emphasis on the cell biology, physiology, and clinical implications of short chain fatty acids and short chain fatty acid receptors. It is clear that microbe-host interactions are an exciting and ever-expanding field, which has implications for how we view diseases such as hypertension, acute kidney injury, and chronic kidney disease. However, it is important to recognize that although the potential promise of this area is extremely enticing, we are only the very edge of this new field.
Collapse
|
169
|
Zhang B, Shen C, Jin J, Song Y, Zhao Z, Zhang X, Wang G, Fan Y, Mi Y, Hu S, Cui Y, Zhou L, He Z, Yu W, Han W. Pretreatment serum pseudocholinesterase level as a novel prognostic biomarker for upper tract urothelial carcinoma. Int Urol Nephrol 2016; 48:1993-1999. [PMID: 27554671 DOI: 10.1007/s11255-016-1401-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/17/2016] [Indexed: 11/28/2022]
Abstract
PURPOSE Pretreatment serum pseudocholinesterase (PChE) has been reported to be a prognostic predictor in several cancers. However, the prognostic significance of serum PChE level in patients with upper tract urothelial carcinoma (UTUC) remains unknown. METHODS A total of 180 patients who underwent radical nephroureterectomy (RNU) for UTUC were included in this retrospective analysis. The associations of pretreatment serum PChE levels with clinicopathological characteristics and clinical outcomes were assessed. RESULTS The median (IQR) pretreatment serum PChE level was 6385 (5449-7260) IU/L, and an optimal cutoff value of 5336 IU/L was set according to ROC analysis. Decreased pretreatment serum PChE levels were significantly correlated with older patient age, higher preoperative chronic kidney disease (CKD) stage and pT stage (all P < 0.05). On multivariate analysis, adjusting for preoperative variables, decreased pretreatment serum PChE levels independently predicted higher pT stage (P = 0.011). Moreover, Kaplan-Meier curves suggested that patients with PChE levels <5336 IU/L were predicted to have a shorter overall survival (OS) and cancer-specific survival (CSS) than those with PChE levels ≥5336 IU/L (both P < 0.001). On multivariate analysis, decreased pretreatment serum PChE levels were significantly associated with shorter OS (HR 0.553; 95 %CI 0.322-0.951; P = 0.032) and CSS (HR 0.484; 95 %CI 0.269-0.870; P = 0.015). CONCLUSIONS Decreased pretreatment serum PChE level is an independent predictor for higher pT stage, shorter OS and CSS in patients with UTUC. Pretreatment serum PChE levels may act as a simple and effective parameter to predict prognosis for UTUC patients after RNU.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, People's Republic of China
| | - Cheng Shen
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, People's Republic of China
| | - Jie Jin
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, People's Republic of China
| | - Yi Song
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, People's Republic of China
| | - Zheng Zhao
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, People's Republic of China
| | - Xiaochun Zhang
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, People's Republic of China
| | - Gang Wang
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, People's Republic of China
| | - Yu Fan
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, People's Republic of China
| | - Yue Mi
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, People's Republic of China
| | - Shuai Hu
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, People's Republic of China
| | - Yun Cui
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, People's Republic of China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, People's Republic of China
| | - Zhisong He
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, People's Republic of China
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, People's Republic of China.
| | - Wenke Han
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, People's Republic of China.
| |
Collapse
|
170
|
Andersen K, Kesper MS, Marschner JA, Konrad L, Ryu M, Kumar Vr S, Kulkarni OP, Mulay SR, Romoli S, Demleitner J, Schiller P, Dietrich A, Müller S, Gross O, Ruscheweyh HJ, Huson DH, Stecher B, Anders HJ. Intestinal Dysbiosis, Barrier Dysfunction, and Bacterial Translocation Account for CKD-Related Systemic Inflammation. J Am Soc Nephrol 2016; 28:76-83. [PMID: 27151924 DOI: 10.1681/asn.2015111285] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 11/03/2022] Open
Abstract
CKD associates with systemic inflammation, but the underlying cause is unknown. Here, we investigated the involvement of intestinal microbiota. We report that collagen type 4 α3-deficient mice with Alport syndrome-related progressive CKD displayed systemic inflammation, including increased plasma levels of pentraxin-2 and activated antigen-presenting cells, CD4 and CD8 T cells, and Th17- or IFNγ-producing T cells in the spleen as well as regulatory T cell suppression. CKD-related systemic inflammation in these mice associated with intestinal dysbiosis of proteobacterial blooms, translocation of living bacteria across the intestinal barrier into the liver, and increased serum levels of bacterial endotoxin. Uremia did not affect secretory IgA release into the ileum lumen or mucosal leukocyte subsets. To test for causation between dysbiosis and systemic inflammation in CKD, we eradicated facultative anaerobic microbiota with antibiotics. This eradication prevented bacterial translocation, significantly reduced serum endotoxin levels, and fully reversed all markers of systemic inflammation to the level of nonuremic controls. Therefore, we conclude that uremia associates with intestinal dysbiosis, intestinal barrier dysfunction, and bacterial translocation, which trigger the state of persistent systemic inflammation in CKD. Uremic dysbiosis and intestinal barrier dysfunction may be novel therapeutic targets for intervention to suppress CKD-related systemic inflammation and its consequences.
Collapse
Affiliation(s)
- Kirstin Andersen
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| | - Marie Sophie Kesper
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| | - Julian A Marschner
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| | - Lukas Konrad
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| | - Mi Ryu
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| | - Santhosh Kumar Vr
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| | - Onkar P Kulkarni
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| | - Shrikant R Mulay
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| | - Simone Romoli
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| | - Jana Demleitner
- Walther Straub Institut für Pharmakologie und Toxikologie and
| | - Patrick Schiller
- Max von Pettenkofer Institut, Universität München, Munich, Germany.,German Center for Infection Research, Ludwig Maximilians University Munich, Munich, Germany
| | | | - Susanna Müller
- Pathologisches Institut, Ludwig Maximilians Universität, Munich, Germany
| | - Oliver Gross
- Clinic of Nephrology and Rheumatology, University Medical Centre Göttingen, Göttingen, Germany; and
| | | | - Daniel H Huson
- Centre for Bioinformatics, Tübingen University, Tübingen, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institut, Universität München, Munich, Germany.,German Center for Infection Research, Ludwig Maximilians University Munich, Munich, Germany
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität and
| |
Collapse
|
171
|
Vaziri ND, Zhao YY, Pahl MV. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment. Nephrol Dial Transplant 2016; 31:737-746. [PMID: 25883197 DOI: 10.1093/ndt/gfv095] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/16/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) results in systemic inflammation and oxidative stress which play a central role in CKD progression and its adverse consequences. Although many of the causes and consequences of oxidative stress and inflammation in CKD have been extensively explored, little attention had been paid to the intestine and its microbial flora as a potential source of these problems. Our recent studies have revealed significant disruption of the colonic, ileal, jejunal and gastric epithelial tight junction in different models of CKD in rats. Moreover, the disruption of the epithelial barrier structure and function found in uremic animals was replicated in cultured human colonocytes exposed to uremic human plasma in vitro We have further found significant changes in the composition and function of colonic bacterial flora in humans and animals with advanced CKD. Together, uremia-induced impairment of the intestinal epithelial barrier structure and function and changes in composition of the gut microbiome contribute to the systemic inflammation and uremic toxicity by accommodating the translocation of endotoxin, microbial fragments and other noxious luminal products in the circulation. In addition, colonic bacteria are the main source of several well-known pro-inflammatory uremic toxins such as indoxyl sulfate, p-cresol sulfate, trimethylamine-N-oxide and many as-yet unidentified retained compounds in end-stage renal disease patients. This review is intended to provide an overview of the effects of CKD on the gut microbiome and intestinal epithelial barrier structure and their role in the pathogenesis of systemic inflammation and uremic toxicity. In addition, potential interventions aimed at mitigating these abnormalities are briefly discussed.
Collapse
Affiliation(s)
- Nosratola D Vaziri
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine Medical Center, Orange, CA, USA
| | - Ying-Yong Zhao
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine Medical Center, Orange, CA, USA
| | - Madeleine V Pahl
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine Medical Center, Orange, CA, USA
| |
Collapse
|
172
|
Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R, Raj DS. Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. Am J Kidney Dis 2016; 67:483-98. [PMID: 26590448 PMCID: PMC5408507 DOI: 10.1053/j.ajkd.2015.09.027] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/25/2015] [Indexed: 02/08/2023]
Abstract
Also known as the "second human genome," the gut microbiome plays important roles in both the maintenance of health and the pathogenesis of disease. The symbiotic relationship between host and microbiome is disturbed due to the proliferation of dysbiotic bacteria in patients with chronic kidney disease (CKD). Fermentation of protein and amino acids by gut bacteria generates excess amounts of potentially toxic compounds such as ammonia, amines, thiols, phenols, and indoles, but the generation of short-chain fatty acids is reduced. Impaired intestinal barrier function in patients with CKD permits translocation of gut-derived uremic toxins into the systemic circulation, contributing to the progression of CKD, cardiovascular disease, insulin resistance, and protein-energy wasting. The field of microbiome research is still nascent, but is evolving rapidly. Establishing symbiosis to treat uremic syndrome is a novel concept, but if proved effective, it will have a significant impact on the management of patients with CKD.
Collapse
Affiliation(s)
- Ali Ramezani
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré University Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Ouest-ersailles-Saint-Quentin-en-Yvelines (UVSQ), Boulogne-Billancourt/Paris, France; INSERM U1018, Research Centre in Epidemiology and Population Health (CESP) Team 5, University of Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ), Villejuif, France
| | - Björn Meijers
- Division of Nephrology, Department of Microbiology and Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Evenepoel
- Division of Nephrology, Department of Microbiology and Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, University Hospital, Ghent, Belgium
| | - Dominic S Raj
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC.
| |
Collapse
|
173
|
Kieffer DA, Piccolo BD, Vaziri ND, Liu S, Lau WL, Khazaeli M, Nazertehrani S, Moore ME, Marco ML, Martin RJ, Adams SH. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am J Physiol Renal Physiol 2016; 310:F857-71. [PMID: 26841824 DOI: 10.1152/ajprenal.00513.2015] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/28/2016] [Indexed: 02/06/2023] Open
Abstract
Patients and animals with chronic kidney disease (CKD) exhibit profound alterations in the gut environment including shifts in microbial composition, increased fecal pH, and increased blood levels of gut microbe-derived metabolites (xenometabolites). The fermentable dietary fiber high amylose maize-resistant starch type 2 (HAMRS2) has been shown to alter the gut milieu and in CKD rat models leads to markedly improved kidney function. The aim of the present study was to identify specific cecal bacteria and cecal, blood, and urinary metabolites that associate with changes in kidney function to identify potential mechanisms involved with CKD amelioration in response to dietary resistant starch. Male Sprague-Dawley rats with adenine-induced CKD were fed a semipurified low-fiber diet or a high-fiber diet [59% (wt/wt) HAMRS2] for 3 wk (n = 9 rats/group). The cecal microbiome was characterized, and cecal contents, serum, and urine metabolites were analyzed. HAMRS2-fed rats displayed decreased cecal pH, decreased microbial diversity, and an increased Bacteroidetes-to-Firmicutes ratio. Several uremic retention solutes were altered in the cecal contents, serum, and urine, many of which had strong correlations with specific gut bacteria abundances, i.e., serum and urine indoxyl sulfate were reduced by 36% and 66%, respectively, in HAMRS2-fed rats and urine p-cresol was reduced by 47% in HAMRS2-fed rats. Outcomes from this study were coincident with improvements in kidney function indexes and amelioration of CKD outcomes previously reported for these rats, suggesting an important role for microbial-derived factors and gut microbe metabolism in regulating host kidney function.
Collapse
Affiliation(s)
- Dorothy A Kieffer
- Obesity and Metabolism Research Unit, United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California; Graduate Group in Nutritional Biology and Department of Nutrition, University of California, Davis, California
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Shuman Liu
- Division of Nephrology, University of California, Irvine, California
| | - Wei L Lau
- Division of Nephrology, University of California, Irvine, California
| | - Mahyar Khazaeli
- Division of Nephrology, University of California, Irvine, California
| | | | - Mary E Moore
- Department of Food Science and Technology, University of California, Davis, California; and
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, California; and
| | - Roy J Martin
- Obesity and Metabolism Research Unit, United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Sean H Adams
- Graduate Group in Nutritional Biology and Department of Nutrition, University of California, Davis, California; Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
174
|
Vaziri ND. Effect of Synbiotic Therapy on Gut-Derived Uremic Toxins and the Intestinal Microbiome in Patients with CKD. Clin J Am Soc Nephrol 2016; 11:199-201. [PMID: 26772192 DOI: 10.2215/cjn.13631215] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Nosratola D Vaziri
- Division of Nephrology and Hypertension, University of California, Irvine, California
| |
Collapse
|
175
|
Sampaio-Maia B, Simões-Silva L, Pestana M, Araujo R, Soares-Silva IJ. The Role of the Gut Microbiome on Chronic Kidney Disease. ADVANCES IN APPLIED MICROBIOLOGY 2016; 96:65-94. [PMID: 27565581 DOI: 10.1016/bs.aambs.2016.06.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease (CKD) is estimated to affect nearly 500 million people worldwide and cardiovascular (CV) disease is a major cause of death in this population. However, therapeutic interventions targeting traditional CV risks are not effective at lowering the incidence of CV events or at delaying the progression of the disease in CKD patients. In recent years, disturbances of normal gut microbiome were recognized in the pathogenesis of diverse chronic diseases. Gut dysbiosis is being unraveled in CKD and pointed as a nontraditional risk factor for CV risk and CKD progression. The most often reported changes in gut microbiome in CKD are related to the lower levels of Bifidobacteriaceae and Lactobacillaceae and to higher levels of Enterobacteriaceae. Although metagenomics brought us an amplified vision on the microbial world that inhabits the human host, it still lacks the sensitivity to characterize the microbiome up to species level, not revealing alterations that occur within specific genus. Here, we review the current state-of-the-art concerning gut dysbiosis in CKD and its role in pathophysiological mechanisms in CKD, particularly in relation with CV risk. Also, the strategies towards prevention and treatment of gut dysbiosis in CKD progression will be discussed.
Collapse
Affiliation(s)
| | | | - M Pestana
- University of Porto, Porto, Portugal; São João Hospital Center, Porto, EPE, Portugal
| | - R Araujo
- University of Porto, Porto, Portugal; Flinders University, Adelaide, SA, Australia
| | | |
Collapse
|
176
|
Increased Hepato-Splanchnic Vasoconstriction in Diabetics during Regular Hemodialysis. PLoS One 2015; 10:e0145411. [PMID: 26713734 PMCID: PMC4695079 DOI: 10.1371/journal.pone.0145411] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
Background and Objectives Ultrafiltration (UF) of excess fluid activates numerous compensatory mechanisms during hemodialysis (HD). The increase of both total peripheral and splanchnic vascular resistance is considered essential in maintaining hemodynamic stability. The aim of this study was to evaluate the extent of UF-induced changes in hepato-splanchnic blood flow and resistance in a group of maintenance HD patients during regular dialysis. Design, Setting, Participants, & Measurements Hepato-splanchnic flow resistance index (RI) and hepato-splanchnic perfusion index (QI) were measured in 12 chronic HD patients using a modified, non-invasive Indocyaningreen (ICG) dilution method. During a midweek dialysis session we determined RI, QI, ICG disappearance rate (kICG), plasma volume (Vp), hematocrit (Hct), mean arterial blood pressure (MAP) and heart rate (HR) at four times in hourly intervals (t1 to t4). Dialysis settings were standardized and all patient studies were done in duplicate. Results In the whole study group mean UF volume was 1.86 ± 0.46 L, Vp dropped from 3.65 ± 0.77L at t1 to 3.40 ± 0.78L at t4, and all patients remained hemodynamically stable. In all patients RI significantly increased from 12.40 ± 4.21 mmHg∙s∙m2/mL at t1 to 14.94 ± 6.36 mmHg∙s∙m2/mL at t4 while QI significantly decreased from 0.61 ± 0.22 at t1 to 0.52 ± 0.20 L/min/m2 at t4, indicating active vasoconstriction. In diabetic subjects, however, RI was significantly larger than in non-diabetics at all time points. QI was lower in diabetic subjects. Conclusions In chronic HD-patients hepato-splanchnic blood flow substantially decreases during moderate UF as a result of an active splanchnic vasoconstriction. Our data indicate that diabetic HD-patients are particularly prone to splanchnic ischemia and might therefore have an increased risk for bacterial translocation, endotoxemia and systemic inflammation.
Collapse
|
177
|
Worasilchai N, Leelahavanichkul A, Kanjanabuch T, Thongbor N, Lorvinitnun P, Sukhontasing K, Finkelman M, Chindamporn A. (1→3)-β-D-glucan and galactomannan testing for the diagnosis of fungal peritonitis in peritoneal dialysis patients, a pilot study. Med Mycol 2015; 53:338-46. [PMID: 25851260 DOI: 10.1093/mmy/myv007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fungal peritonitis is an uncommon but serious complication of peritoneal dialysis (PD) due to the fact that routine culture to recovered the etiologic agents are time consuming and KOH staining has very low sensitivity. Peritoneal (1→3)-β-D-glucan (BG) or galactomannan (GM), both fungal cell wall components, are candidate biomarkers of fungal peritonitis. Hence, a comparative cross-sectional analysis of peritoneal dialysis fluid (PDF) BG (Fungitell, Cape Cod, MA, USA) and GM (Platelia Aspergillus Ag kits, Bio-rad, France) from all PD patients with and without fungal peritonitis (13 cases, identified by culture), over a 1 year period, was performed. PDF of the fungal peritonitis group showed very high BG (494 ± 19 pg/ml) and high GM (3.41 ± 1.24) similar results were noted in specimens from cases of peritonitis with other causes, especially gram negative bacterial peritonitis. A BG cut-off value at 240 pg/ml and GM at 0.5 showed sensitivity/ specificity at 100%/ 83% and 77%/ 58%, respectively. A concomitantly positive GM reduced the false positive rate of BG from nonfungal peritonitis. In conclusion, BG and GM in peritoneal fluid with provisional cut-off values were applicable as surrogate biomarkers for the diagnosis of fungal peritonitis in PD patients.
Collapse
Affiliation(s)
- Navaporn Worasilchai
- Interdisciplinary Program, Medical Microbiology, Graduate School Department of Microbiology
| | | | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine Kidney and Metabolic Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nisa Thongbor
- Supprasitthiprasong Hospital, Ubon Ratchathanee,Thailand
| | | | | | | | | |
Collapse
|
178
|
Ghosh SS, Righi S, Krieg R, Kang L, Carl D, Wang J, Massey HD, Sica DA, Gehr TWB, Ghosh S. High Fat High Cholesterol Diet (Western Diet) Aggravates Atherosclerosis, Hyperglycemia and Renal Failure in Nephrectomized LDL Receptor Knockout Mice: Role of Intestine Derived Lipopolysaccharide. PLoS One 2015; 10:e0141109. [PMID: 26580567 PMCID: PMC4651339 DOI: 10.1371/journal.pone.0141109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/04/2015] [Indexed: 01/06/2023] Open
Abstract
A high fat meal, frequently known as western diet (WD), exacerbates atherosclerosis and diabetes. Both these diseases are frequently associated with renal failure. Recent studies have shown that lipopolysaccharide (LPS) leaks into the circulation from the intestine in the setting of renal failure and after WD. However, it is not clear how renal function and associated disorders are affected by LPS. This study demonstrates that circulatory LPS exacerbates renal insufficiency, atherosclerosis and glucose intolerance. Renal insufficiency was induced by 2/3 nephrectomy in LDL receptor knockout mice. Nx animals were given normal diet (Nx) or WD (Nx+WD). The controls were sham operated animals on normal diet (control) and WD (WD). To verify if LPS plays a role in exaggerating renal insufficiency, polymyxin (PM), a known LPS antagonist, and curcumin (CU), a compound known to ameliorate chronic kidney disease (CKD), was given to Nx animals on western diet (Nx+WD+PM and Nx+WD+CU, respectively). Compared to control, all other groups displayed increased circulatory LPS. The Nx+WD cohort had the highest levels of LPS. Nx group had significant renal insufficiency and glucose intolerance but not atherosclerosis. WD had intense atherosclerosis and glucose intolerance but it did not show signs of renal insufficiency. Compared to other groups, Nx+WD had significantly higher cytokine expression, macrophage infiltration in the kidney, renal insufficiency, glucose intolerance and atherosclerosis. PM treatment blunted the expression of cytokines, deterioration of renal function and associated disorders, albeit not to the levels of Nx, and was significantly inferior to CU. PM is a non-absorbable antibiotic with LPS binding properties, hence its beneficial effect can only be due to its effect within the GI tract. We conclude that LPS may not cause renal insufficiency but can exaggerate kidney failure and associated disorders following renal insufficiency.
Collapse
Affiliation(s)
- Siddhartha S. Ghosh
- Divisions of Nephrology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Samuel Righi
- Divisions of Nephrology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Richard Krieg
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Le Kang
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Daniel Carl
- Divisions of Nephrology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jing Wang
- Division of Pulmonary Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - H. Davis Massey
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Domenic A. Sica
- Divisions of Nephrology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Todd W. B. Gehr
- Divisions of Nephrology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Shobha Ghosh
- Division of Pulmonary Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
179
|
Vanholder RC, Eloot S, Glorieux GLRL. Future Avenues to Decrease Uremic Toxin Concentration. Am J Kidney Dis 2015; 67:664-76. [PMID: 26500179 DOI: 10.1053/j.ajkd.2015.08.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/19/2015] [Indexed: 01/13/2023]
Abstract
In this article, we review approaches for decreasing uremic solute concentrations in chronic kidney disease and in particular, in end-stage renal disease (ESRD). The rationale to do so is the straightforward relation between concentration and biological (toxic) effect for most toxins. The first section is devoted to extracorporeal strategies (kidney replacement therapy). In the context of high-flux hemodialysis and hemodiafiltration, we discuss increasing dialyzer blood and dialysate flows, frequent and/or extended dialysis, adsorption, bioartificial kidney, and changing physical conditions within the dialyzer (especially for protein-bound toxins). The next section focuses on the intestinal generation of uremic toxins, which in return is stimulated by uremic conditions. Therapeutic options are probiotics, prebiotics, synbiotics, and intestinal sorbents. Current data are conflicting, and these issues need further study before useful therapeutic concepts are developed. The following section is devoted to preservation of (residual) kidney function. Although many therapeutic options may overlap with therapies provided before ESRD, we focus on specific aspects of ESRD treatment, such as the risks of too-strict blood pressure and glycemic regulation and hemodynamic changes during dialysis. Finally, some recommendations are given on how research might be organized with regard to uremic toxins and their effects, removal, and impact on outcomes of uremic patients.
Collapse
Affiliation(s)
| | - Sunny Eloot
- Nephrology Department, University Hospital, Gent, Belgium
| | | |
Collapse
|
180
|
Wing MR, Patel SS, Ramezani A, Raj DS. Gut microbiome in chronic kidney disease. Exp Physiol 2015; 101:471-7. [PMID: 26337794 DOI: 10.1113/ep085283] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/28/2015] [Indexed: 12/24/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review addresses the contribution of the altered gut microbiome to uraemic syndrome, with specific reference to gut microbiome-derived uraemic toxins. It also discusses the potential treatment options to normalize the disturbed microbiome in chronic kidney disease (CKD). What advances does it highlight? This review highlights the importance of the gut-kidney connection and how the altered microbial landscape in the intestine contributes to dysmetabolism and inflammation in CKD. Recent findings linking gut-derived uraemic toxins to progression of CKD, cardiovascular disease and mortality are also discussed. Finally, we briefly explain targeted therapies that have been studied to restore intestinal symbiosis in CKD. The human intestine is now recognized as an important metabolic organ powered by gut microbiota. This review addresses the alteration in the gut microbiome in patients with chronic kidney disease (CKD) and its consequence. We describe the major uraemic toxins, p-cresol sulfate, indoxyl sulfate and trimethylamine N-oxide, which are produced by the gut microbiome, and how these metabolites contribute to progression of CKD and associated cardiovascular disease. Translocation of endotoxin from the gut into the systemic circulation contributes to inflammation in CKD. Targeting the gut microbiome to restore symbiosis may prove to be a potent strategy in reducing inflammation and production of these uraemic toxins.
Collapse
Affiliation(s)
- Maria R Wing
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC, USA
| | - Samir S Patel
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC, USA
| | - Ali Ramezani
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC, USA
| | - Dominic S Raj
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC, USA
| |
Collapse
|
181
|
Montalbetti N, Rued AC, Clayton DR, Ruiz WG, Bastacky SI, Prakasam HS, Eaton AF, Kullmann FA, Apodaca G, Carattino MD. Increased urothelial paracellular transport promotes cystitis. Am J Physiol Renal Physiol 2015; 309:F1070-81. [PMID: 26423859 DOI: 10.1152/ajprenal.00200.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/24/2015] [Indexed: 12/11/2022] Open
Abstract
Changes in the urothelial barrier are observed in patients with cystitis, but whether this leads to inflammation or occurs in response to it is currently unknown. To determine whether urothelial barrier dysfunction is sufficient to promote cystitis, we employed in situ adenoviral transduction to selectively overexpress the pore-forming tight junction-associated protein claudin-2 (CLDN-2). As expected, the expression of CLDN-2 in the umbrella cells increased the permeability of the paracellular route toward ions, but not to large organic molecules. In vivo studies of bladder function revealed higher intravesical basal pressures, reduced compliance, and increased voiding frequency in rats transduced with CLDN-2 vs. controls transduced with green fluorescent protein. While the integrity of the urothelial barrier was preserved in the rats transduced with CLDN-2, we found that the expression of this protein in the umbrella cells initiated an inflammatory process in the urinary bladder characterized by edema and the presence of a lymphocytic infiltrate. Taken together, these results are consistent with the notion that urothelial barrier dysfunction may be sufficient to trigger bladder inflammation and to alter bladder function.
Collapse
Affiliation(s)
- Nicolas Montalbetti
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anna C Rued
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dennis R Clayton
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wily G Ruiz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sheldon I Bastacky
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - H Sandeep Prakasam
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amity F Eaton
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - F Aura Kullmann
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| |
Collapse
|
182
|
Poesen R, Windey K, Neven E, Kuypers D, De Preter V, Augustijns P, D'Haese P, Evenepoel P, Verbeke K, Meijers B. The Influence of CKD on Colonic Microbial Metabolism. J Am Soc Nephrol 2015; 27:1389-99. [PMID: 26400570 DOI: 10.1681/asn.2015030279] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 08/03/2015] [Indexed: 01/01/2023] Open
Abstract
There is increasing interest in the colonic microbiota as a relevant source of uremic retention solutes accumulating in CKD. Renal disease can also profoundly affect the colonic microenvironment and has been associated with a distinct colonic microbial composition. However, the influence of CKD on the colonic microbial metabolism is largely unknown. Therefore, we studied fecal metabolite profiles of hemodialysis patients and healthy controls using a gas chromatography-mass spectrometry method. We observed a clear discrimination between both groups, with 81 fecal volatile organic compounds detected at significantly different levels in hemodialysis patients and healthy controls. To further explore the differential impact of renal function loss per se versus the effect of dietary and other CKD-related factors, we also compared fecal metabolite profiles between patients on hemodialysis and household contacts on the same diet, which revealed a close resemblance. In contrast, significant differences were noted between the fecal samples of rats 6 weeks after 5/6th nephrectomy and those of sham-operated rats, still suggesting an independent influence of renal function loss. Thus, CKD associates with a distinct colonic microbial metabolism, although the effect of renal function loss per se in humans may be inferior to the effects of dietary and other CKD-related factors. The potential beneficial effect of therapeutics targeting colonic microbiota in patients with CKD remains to be examined.
Collapse
Affiliation(s)
- Ruben Poesen
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Karen Windey
- Translational Research for Gastrointestinal Disorders (Targid) and Leuven Food Science and Nutrition Research Centre (LFoRCe), University of Leuven, B-3000 Leuven, Belgium
| | - Ellen Neven
- Laboratory of Pathophysiology, University of Antwerp, B-2610 Wilrijk, Belgium; and
| | - Dirk Kuypers
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Vicky De Preter
- Laboratory of Pathophysiology, University of Antwerp, B-2610 Wilrijk, Belgium; and
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, University of Leuven, B-3000 Leuven, Belgium
| | - Patrick D'Haese
- Laboratory of Pathophysiology, University of Antwerp, B-2610 Wilrijk, Belgium; and
| | - Pieter Evenepoel
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Kristin Verbeke
- Translational Research for Gastrointestinal Disorders (Targid) and Leuven Food Science and Nutrition Research Centre (LFoRCe), University of Leuven, B-3000 Leuven, Belgium
| | - Björn Meijers
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, B-3000 Leuven, Belgium;
| |
Collapse
|
183
|
Probiotics and chronic kidney disease. Kidney Int 2015; 88:958-66. [PMID: 26376131 DOI: 10.1038/ki.2015.255] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 02/06/2023]
Abstract
Probiotics are the focus of a thorough investigation as a natural biotreatment due to their various health-promoting effects and inherent ability to fight specific diseases including chronic kidney disease (CKD). Indeed, intestinal microbiota has recently emerged as an important player in the progression and complications of CKD. Because many of the multifactorial physiological functions of probiotics are highly strain specific, preselection of appropriate probiotic strains based on their expression of functional biomarkers is critical. The interest in developing new research initiatives on probiotics in CKD have increased over the last decade with the goal of fully exploring their therapeutic potentials. The efficacy of probiotics to decrease uremic toxin production and to improve renal function has been investigated in in vitro models and in various animal and human CKD studies. However to date, the quality of intervention trials investigating this novel CKD therapy is still lacking. This review outlines potential mechanisms of action and efficacy of probiotics as a new CKD management tool, with a particular emphasis on uremic toxin production and inflammation.
Collapse
|
184
|
Koh ES, Lee K, Kim SH, Kim YO, Jin DC, Song HC, Choi EJ, Kim YL, Kim YS, Kang SW, Kim NH, Yang CW, Kim YK. Serum β2-Microglobulin Predicts Mortality in Peritoneal Dialysis Patients: A Prospective Cohort Study. Am J Nephrol 2015; 42:91-8. [PMID: 26339999 DOI: 10.1159/000439060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/27/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS β2-Microglobulin (β2-M) is a surrogate marker of middle-molecule uremic toxins and is associated with mortality in chronic hemodialysis patients. However, the impact of serum β2-M levels on mortality in peritoneal dialysis (PD) patients is uncertain. The purpose of this study was to examine the association of serum β2-M levels with all-cause mortality in PD patients. METHODS A total of 771 PD patients were selected from the Clinical Research Center registry for end-stage renal disease cohort in Korea. Patients were categorized into 3 groups by tertiles of serum β2-M levels. The primary outcome was all-cause mortality. RESULTS The median value of serum β2-M was 23.6 mg/l (interquartile range 14.8-33.4 mg/l), and the median follow-up period was 39 months. The Kaplan-Meier analysis showed that the all-cause mortality rate was significantly different according to tertiles of serum β2-M in PD patients (p=0.03, log-rank). Multivariate Cox proportional analysis showed that the hazards ratio for all-cause mortality was 1.02 (95% CI 1.01-1.04, p=0.006) per 1 mg/l increase in β2-M after adjustment for multiple confounding factors that relate to malnutrition and inflammation marker. However, serum β2-M was not associated with all-cause mortality after adjustment for residual renal clearance. CONCLUSIONS These results are supportive of the potential role of the serum β2-M level as a predictor of mortality in PD patients.
Collapse
Affiliation(s)
- Eun Sil Koh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Unexpected Abscess Localization of the Anterior Abdominal Wall in an ADPKD Patient Undergoing Hemodialysis. Case Rep Nephrol 2015; 2015:982575. [PMID: 26301109 PMCID: PMC4537735 DOI: 10.1155/2015/982575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/02/2015] [Accepted: 07/22/2015] [Indexed: 12/02/2022] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the most common monogenic disorders and the leading inheritable cause of end-stage renal disease worldwide. Cystic and noncystic extrarenal manifestations are correlated with variable clinical presentations so that an inherited disorder is now considered a systemic disease. Kidney and liver cystic infections are the most common infectious complications in ADPKD patients. Furthermore, it is well known that ADPKD is commonly associated with colonic diverticular disease which recently has been reported to be linked to increased risk of infection on hemodialysis patients. Herein, we present a case of anterior abdominal wall abscess caused by Enterococcus faecalis in a patient with ADPKD undergoing hemodialysis. Although the precise pathway of infection remains uncertain, the previous medical history as well as the clinical course of our patient led us to hypothesize an alternative route of infection from the gastrointestinal tract through an aberrant intestinal barrier into the bloodstream and eventually to an atypical location.
Collapse
|
186
|
Oral Administration of P. gingivalis Induces Dysbiosis of Gut Microbiota and Impaired Barrier Function Leading to Dissemination of Enterobacteria to the Liver. PLoS One 2015. [PMID: 26218067 PMCID: PMC4517782 DOI: 10.1371/journal.pone.0134234] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although periodontitis has been implicated as a risk factor for various systemic diseases, the precise mechanisms by which periodontitis induces systemic disease remain to be elucidated. We have previously revealed that repeated oral administration of Porphyromonas gingivalis elicits endotoxemia via changes in the gut microbiota of the ileum, and thereby induces systemic inflammation and insulin resistance. However, it is not clear to what extent a single administration of P. gingivalis could affect gut microbiota composition, gut barrier function, and subsequent influx of gut microbiota into the liver. Therefore, in the present study, C57BL/6 mice were orally administered P. gingivalis (strain W83) once and compared to sham-inoculated mice. The phylogenetic structure and diversity of microbial communities in the gut and liver were analyzed by pyrosequencing the 16S ribosomal RNA genes. Serum endotoxin activity was determined by a Limulus amebocyte lysate test. Gene expression in the intestine and expression of 16S rRNA genes in the blood and liver were examined by quantitative polymerase chain reaction. Administration of P. gingivalis significantly altered gut microbiota, with an increased proportion of phylum Bacteroidetes, a decreased proportion of phylum Firmicutes, and increased serum endotoxin levels. In the intestinal tissues, gene expression of tjp-1 and occludin, which are involved in intestinal permeability, were downregulated. Higher amounts of bacterial DNA were detected in the liver of infected mice. Importantly, changes in gut microbiota preceded systemic inflammatory changes. These results further support the idea that disturbance of the gut microbiota composition by orally derived periodontopathic bacteria may be a causal mechanism linking periodontitis and systemic disease.
Collapse
|
187
|
Poesen R, Ramezani A, Claes K, Augustijns P, Kuypers D, Barrows IR, Muralidharan J, Evenepoel P, Meijers B, Raj DS. Associations of Soluble CD14 and Endotoxin with Mortality, Cardiovascular Disease, and Progression of Kidney Disease among Patients with CKD. Clin J Am Soc Nephrol 2015; 10:1525-33. [PMID: 26153127 DOI: 10.2215/cjn.03100315] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/05/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES CD14 plays a key role in the innate immunity as pattern-recognition receptor of endotoxin. Higher levels of soluble CD14 (sCD14) are associated with overall mortality in hemodialysis patients. The influence of kidney function on plasma sCD14 levels and its relationship with adverse outcomes in patients with CKD not yet on dialysis is unknown. This study examines the associations between plasma levels of sCD14 and endotoxin with adverse outcomes in patients with CKD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We measured plasma levels of sCD14 and endotoxin in 495 Leuven Mild-to-Moderate CKD Study participants. Mild-to-moderate CKD was defined as presence of kidney damage or eGFR<60 ml/min per 1.73 m(2) for ≥3 months, with exclusion of patients on RRT. Study participants were enrolled between November 2005 and September 2006. RESULTS Plasma sCD14 was negatively associated with eGFR (ρ=-0.34, P<0.001). During a median follow-up of 54 (interquartile range, 23-58) months, 53 patients died. Plasma sCD14 was predictive of mortality, even after adjustment for renal function, Framingham risk factors, markers of mineral bone metabolism, and nutritional and inflammatory parameters (hazard ratio [HR] per SD higher of 1.90; 95% confidence interval [95% CI],1.32 to 2.74; P<0.001). After adjustment for the same risk factors, plasma sCD14 was also a predictor of cardiovascular disease (HR, 1.30; 95% CI, 1.00 to 1.69; P=0.05). Although plasma sCD14 was associated with progression of CKD, defined as reaching ESRD or doubling of serum creatinine in models adjusted for CKD-specific risk factors (HR, 1.24; 95% CI, 1.01 to 1.52; P=0.04), significance was lost when adjusted for proteinuria (HR, 1.19; 95% CI, 0.96 to 1.48; P=0.11). There was neither correlation between plasma endotoxin and sCD14 (ρ=-0.06, P=0.20) nor was endotoxin independently associated with adverse outcome during follow-up. CONCLUSIONS Plasma sCD14 is elevated in patients with decreased kidney function and associated with mortality and cardiovascular disease in patients with CKD not yet on dialysis.
Collapse
Affiliation(s)
- Ruben Poesen
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ali Ramezani
- Division of Renal Diseases and Hypertension, George Washington University, Washington, DC
| | - Kathleen Claes
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, University of Leuven, Leuven, Belgium; and
| | - Dirk Kuypers
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ian R Barrows
- George Washington University School of Medicine, Washington, DC
| | | | - Pieter Evenepoel
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Björn Meijers
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Dominic S Raj
- Division of Renal Diseases and Hypertension, George Washington University, Washington, DC;
| |
Collapse
|
188
|
Bankir L, Roussel R, Bouby N. Protein- and diabetes-induced glomerular hyperfiltration: role of glucagon, vasopressin, and urea. Am J Physiol Renal Physiol 2015; 309:F2-23. [DOI: 10.1152/ajprenal.00614.2014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
A single protein-rich meal (or an infusion of amino acids) is known to increase the glomerular filtration rate (GFR) for a few hours, a phenomenon known as “hyperfiltration.” It is important to understand the factors that initiate this upregulation because it becomes maladaptive in the long term. Several mediators and paracrine factors have been shown to participate in this upregulation, but they are not directly triggered by protein intake. Here, we explain how a rise in glucagon and in vasopressin secretion, directly induced by protein ingestion, might be the initial factors triggering the hepatic and renal events leading to an increase in the GFR. Their effects include metabolic actions in the liver and stimulation of sodium chloride reabsorption in the thick ascending limb. Glucagon is not only a glucoregulatory hormone. It is also important for the excretion of nitrogen end products by stimulating both urea synthesis in the liver (along with gluconeogenesis from amino acids) and urea excretion by the kidney. Vasopressin allows the concentration of nitrogenous end products (urea, ammonia, etc.) and other protein-associated wastes in a hyperosmotic urine, thus allowing a very significant water economy characteristic of all terrestrial mammals. No hyperfiltration occurs in the absence of one or the other hormone. Experimental results suggest that the combined actions of these two hormones, along with the complex intrarenal handling of urea, lead to alter the composition of the tubular fluid at the macula densa and to reduce the intensity of the signal activating the tubuloglomerular feedback control of GFR, thus allowing GFR to raise. Altogether, glucagon, vasopressin, and urea contribute to set up the best compromise between efficient urea excretion and water economy.
Collapse
Affiliation(s)
- Lise Bankir
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Diderot, Sorbonne-Paris-Cité, Paris, France; and
| | - Ronan Roussel
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Diderot, Sorbonne-Paris-Cité, Paris, France; and
- Diabétologie Endocrinologie Nutrition, DHU FIRE, Hôpital Bichat, AP-HP, Paris, France
| | - Nadine Bouby
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Diderot, Sorbonne-Paris-Cité, Paris, France; and
| |
Collapse
|
189
|
Lau WL, Kalantar-Zadeh K, Vaziri ND. The Gut as a Source of Inflammation in Chronic Kidney Disease. Nephron Clin Pract 2015; 130:92-8. [PMID: 25967288 PMCID: PMC4485546 DOI: 10.1159/000381990] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/30/2015] [Indexed: 12/20/2022] Open
Abstract
Chronic inflammation is a non-traditional risk factor for cardiovascular mortality in the chronic kidney disease (CKD) population. In recent years, the gastrointestinal tract has emerged as a major instigator of systemic inflammation in CKD. Postmortem studies previously discovered gut wall inflammation throughout the digestive tract in chronic dialysis patients. In CKD animals, colon wall inflammation is associated with breakdown of the epithelial tight junction barrier ('leaky gut') and translocation of bacterial DNA and endotoxin into the bloodstream. Gut bacterial DNA and endotoxin have also been detected in the serum from CKD and dialysis patients, whereby endotoxin levels increase with the CKD stage and correlate with the severity of systemic inflammation in the dialysis population. The CKD diet that is low in plant fiber and symbiotic organisms (in adherence with low potassium, low phosphorus intake) can alter the normal gut microbiome, leading to overgrowth of bacteria that produce uremic toxins such as cresyl and indoxyl molecules. The translocation of these toxins from the 'leaky gut' into the bloodstream further promotes systemic inflammation, adverse cardiovascular outcomes and CKD progression. Data are lacking on optimal fiber and yogurt consumption in CKD that would favor growth of a more symbiotic microbiome while avoiding potassium and phosphorus overload. Prebiotic and probiotic formulations have shown promise in small clinical trials, in terms of lowering serum levels of uremic toxins and improving quality of life. The evidence points to a strong relationship between intestinal inflammation and adverse outcomes in CKD, and more trials investigating gut-targeted therapeutics are needed.
Collapse
Affiliation(s)
- Wei Ling Lau
- Division of Nephrology and Hypertension, University of California Irvine, Orange, Calif., USA
| | | | | |
Collapse
|
190
|
Lau WL, Liu SM, Pahlevan S, Yuan J, Khazaeli M, Ni Z, Chan JY, Vaziri ND. Role of Nrf2 dysfunction in uremia-associated intestinal inflammation and epithelial barrier disruption. Dig Dis Sci 2015; 60:1215-22. [PMID: 25399330 DOI: 10.1007/s10620-014-3428-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/05/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gut inflammation is prevalent in chronic kidney disease (CKD) and likely contributes to systemic inflammation via disruption of the epithelial tight junction with subsequent endotoxin and bacterial translocation. AIMS To study the expression profile of inflammatory and tight junction proteins in the colon from CKD rats compared to healthy controls, and demonstrate the role of Nrf2 (transcription factor nuclear factor erythroid 2-related factor 2) using a potent Nrf2 activator. METHODS CKD was induced via 5/6 nephrectomy in Sprague-Dawley rats, and dh404 (2 mg/kg/day) was used to study the effects of systemic Nrf2 activation. The experimental groups included sham, CKD and CKD+ dh404 rats. Blood and colon tissues were analyzed after a 10-week study period. RESULTS Colon from CKD rats showed histological evidence of colitis, depletion of epithelial tight junction proteins, significant reduction of Nrf2 and its measured target gene products (NQO1, catalase, and CuZn SOD), activation of NFkB, and upregulation of pro-inflammatory molecules (COX-2, MCP-1, iNOS, and gp91(phox)). Treatment with dh404 attenuated colonic inflammation, restored Nrf2 activity and levels of NQO1, catalase and CuZn SOD, decreased NFkB and lowered expression of COX-2, MCP-1, iNOS, and gp91(phox). This was associated with restoration of colonic epithelial tight junction proteins (occludin and claudin-1). CONCLUSIONS CKD rats exhibited colitis, disruption of colonic epithelial tight junction, activation of inflammatory mediators, and impairment of Nrf2 pathway. Treatment with an Nrf2 activator restored Nrf2 activity, attenuated colonic inflammation, and restored epithelial tight junction proteins.
Collapse
Affiliation(s)
- Wei Ling Lau
- Division of Nephrology and Hypertension, Department of Medicine, University of California-Irvine, C362 Medical Sciences I, Irvine, CA, 92697, USA,
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Nishikawa M, Ishimori N, Takada S, Saito A, Kadoguchi T, Furihata T, Fukushima A, Matsushima S, Yokota T, Kinugawa S, Tsutsui H. AST-120 ameliorates lowered exercise capacity and mitochondrial biogenesis in the skeletal muscle from mice with chronic kidney disease via reducing oxidative stress. Nephrol Dial Transplant 2015; 30:934-42. [DOI: 10.1093/ndt/gfv103] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/23/2015] [Indexed: 01/08/2023] Open
|
192
|
Affiliation(s)
- Madeleine V. Pahl
- Division of Nephrology and Hypertension; Department of Medicine; University of California; Irvine Orange California
| | - Nosratola D. Vaziri
- Division of Nephrology and Hypertension; Department of Medicine; University of California; Irvine Orange California
| |
Collapse
|
193
|
Hagmann H, Brinkkoetter PT. ROS and oxidative stress in CKD patients: is it the mitochondria that keeps CKD patients in bed? Nephrol Dial Transplant 2015; 30:867-8. [PMID: 25735768 DOI: 10.1093/ndt/gfv052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 01/26/2023] Open
Affiliation(s)
- Henning Hagmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Paul Thomas Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
194
|
Vanholder R, Glorieux G. The intestine and the kidneys: a bad marriage can be hazardous. Clin Kidney J 2015; 8:168-79. [PMID: 25815173 PMCID: PMC4370304 DOI: 10.1093/ckj/sfv004] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/13/2015] [Indexed: 12/20/2022] Open
Abstract
The concept that the intestine and chronic kidney disease influence each other, emerged only recently. The problem is multifaceted and bidirectional. On one hand, the composition of the intestinal microbiota impacts uraemic retention solute production, resulting in the generation of essentially protein-bound uraemic toxins with strong biological impact such as vascular damage and progression of kidney failure. On the other hand, the uraemic status affects the composition of intestinal microbiota, the generation of uraemic retention solutes and their precursors and causes disturbances in the protective epithelial barrier of the intestine and the translocation of intestinal microbiota into the body. All these elements together contribute to the disruption of the metabolic equilibrium and homeostasis typical to uraemia. Several measures with putative impact on intestinal status have recently been tested for their influence on the generation or concentration of uraemic toxins. These include dietary measures, prebiotics, probiotics, synbiotics and intestinal sorbents. Unfortunately, the quality and the evidence base of many of these studies are debatable, especially in uraemia, and often results within one study or among studies are contradictory. Nevertheless, intestinal uraemic metabolite generation remains an interesting target to obtain in the future as an alternative or additive to dialysis to decrease uraemic toxin generation. In the present review, we aim to summarize (i) the role of the intestine in uraemia by producing uraemic toxins and by generating pathophysiologically relevant changes, (ii) the role of uraemia in modifying intestinal physiology and (iii) the therapeutic options that could help to modify these effects and the studies that have assessed the impact of these therapies.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, 0K12 , University Hospital , Ghent B9000 , Belgium
| | - Griet Glorieux
- Nephrology Section, 0K12 , University Hospital , Ghent B9000 , Belgium
| |
Collapse
|
195
|
Mafra D, Lobo JC, Barros AF, Koppe L, Vaziri ND, Fouque D. Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiol 2015; 9:399-410. [PMID: 24762311 DOI: 10.2217/fmb.13.165] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The normal intestinal microbiota plays a major role in the maintenance of health and disease prevention. In fact, the alteration of the intestinal microbiota has been shown to contribute to the pathogenesis of several pathological conditions, including obesity and insulin resistance, among others. Recent studies have revealed profound alterations of the gut microbial flora in patients and animals with chronic kidney disease (CKD). Alterations in the composition of the microbiome in CKD may contribute to the systemic inflammation and accumulation of gut-derived uremic toxins, which play a central role in the pathogenesis of accelerated cardiovascular disease and numerous other CKD-associated complications. This review is intended to provide a concise description of the potential role of the CKD-associated changes in the gut microbiome and its potential role the pathogenesis of inflammation and uremic toxicity. In addition, the potential efficacy of pre- and pro-biotics in the restoration of the microbiome is briefly described.
Collapse
Affiliation(s)
- Denise Mafra
- Medical Sciences Graduate Program, Federal University Fluminense (UFF), Niterói-RJ, Brazil
| | | | | | | | | | | |
Collapse
|
196
|
Gastrointestinal Tract Commensal Bacteria and Probiotics: Influence on End-Organ Physiology. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2015; 70:1-33. [PMID: 26462363 DOI: 10.1007/978-3-0348-0927-6_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacteria represent the earliest form of independent life on this planet. Bacterial development has included cooperative symbiosis with plants (e.g., Leguminosae family and nitrogen fixing bacteria in soil) and animals (e.g., the gut microbiome). It is generally agreed upon that the fusion of two prokaryotes evolutionarily gave rise to the eukaryotic cell in which mitochondria may be envisaged as a genetically functional mosaic, a relic from one of the prokaryotes. This is expressed by the appearance of mitochondria in eukaryotic cells (an alpha-proteobacteria input), a significant endosymbiotic evolutionary event. As such, the evolution of human life has been complexly connected to bacterial activities. Hence, microbial colonization of mammals has been a progressively driven process. The interactions between the human host and the microbiome inhabiting the gastrointestinal tract (GIT) for example, afford the human host the necessary cues for the development of regulated signals that in part are induced by reactive oxygen species (ROS). This regulated activity then promotes immunological tolerance and metabolic regulation and stability, which then helps establish control of local and extraintestinal end-organ (e.g., kidneys) physiology. Pharmacobiotics, the targeted administration of live probiotic cultures, is an advancing area of potential therapeutics, either directly or as adjuvants. Hence the continued scientific understanding of the human microbiome in health and disease may further lead to fine tuning the targeted delivery of probiotics for a therapeutic gain.
Collapse
|
197
|
Heung M, Koyner JL. Entanglement of Sepsis, Chronic Kidney Disease, and Other Comorbidities in Patients Who Develop Acute Kidney Injury. Semin Nephrol 2015; 35:23-37. [DOI: 10.1016/j.semnephrol.2015.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
198
|
Lisowska-Myjak B. Uremic toxins and their effects on multiple organ systems. Nephron Clin Pract 2014; 128:303-11. [PMID: 25531673 DOI: 10.1159/000369817] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nearly all body organs and systems are affected by the toxicity of uremic compounds retained in the course of renal dysfunction. Knowledge about the origin, chemical structure and composition of the retained endogenous substances responsible for these symptoms is far from complete. Organic retention solutes present a great variety of properties which makes their accurate classification extremely difficult. Their potential toxicity remains to be elucidated with meticulous observation of clearly formulated rules guiding the process. Toxicity assessment is a complex process because not just one but several retained compounds may be simultaneously involved in the same biological and metabolic processes. The search for new uremic compounds and combining them into panels of substances involved in the same pathophysiological processes seems to offer a novel approach to identifying and explaining any so far unexplored specific effects of endogenous compounds on the body organs and systems.
Collapse
Affiliation(s)
- Barbara Lisowska-Myjak
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
199
|
Vaziri ND, Liu SM, Lau WL, Khazaeli M, Nazertehrani S, Farzaneh SH, Kieffer DA, Adams SH, Martin RJ. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS One 2014; 9:e114881. [PMID: 25490712 PMCID: PMC4260945 DOI: 10.1371/journal.pone.0114881] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/14/2014] [Indexed: 12/30/2022] Open
Abstract
Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammonia leading to endotoxemia and bacterial translocation; and restriction of potassium-rich fruits and vegetables which are common sources of fermentable fiber. Restriction of these foods leads to depletion of bacteria that convert indigestible carbohydrates to short chain fatty acids which are important nutrients for colonocytes and regulatory T lymphocytes. We hypothesized that a high resistant starch diet attenuates CKD progression. Male Sprague Dawley rats were fed a chow containing 0.7% adenine for 2 weeks to induce CKD. Rats were then fed diets supplemented with amylopectin (low-fiber control) or high fermentable fiber (amylose maize resistant starch, HAM-RS2) for 3 weeks. CKD rats consuming low fiber diet exhibited reduced creatinine clearance, interstitial fibrosis, inflammation, tubular damage, activation of NFkB, upregulation of pro-inflammatory, pro-oxidant, and pro-fibrotic molecules; impaired Nrf2 activity, down-regulation of antioxidant enzymes, and disruption of colonic epithelial tight junction. The high resistant starch diet significantly attenuated these abnormalities. Thus high resistant starch diet retards CKD progression and attenuates oxidative stress and inflammation in rats. Future studies are needed to explore the impact of HAM-RS2 in CKD patients.
Collapse
Affiliation(s)
- Nosratola D. Vaziri
- Division of Nephrology, University of California Irvine, Irvine, California, United States of America
| | - Shu-Man Liu
- Division of Nephrology, University of California Irvine, Irvine, California, United States of America
| | - Wei Ling Lau
- Division of Nephrology, University of California Irvine, Irvine, California, United States of America
| | - Mahyar Khazaeli
- Division of Nephrology, University of California Irvine, Irvine, California, United States of America
| | - Sohrab Nazertehrani
- Division of Nephrology, University of California Irvine, Irvine, California, United States of America
| | - Seyed H. Farzaneh
- Division of Nephrology, University of California Irvine, Irvine, California, United States of America
| | - Dorothy A. Kieffer
- Graduate Group in Nutritional Biology and Department of Nutrition, University of California Davis, Sacramento, California, United States of America
- Obesity & Metabolism Research Unit, USDA-ARS Western Human Nutrition Research Center, Davis, California, United States of America
| | - Sean H. Adams
- Graduate Group in Nutritional Biology and Department of Nutrition, University of California Davis, Sacramento, California, United States of America
- Obesity & Metabolism Research Unit, USDA-ARS Western Human Nutrition Research Center, Davis, California, United States of America
| | - Roy J. Martin
- Graduate Group in Nutritional Biology and Department of Nutrition, University of California Davis, Sacramento, California, United States of America
| |
Collapse
|
200
|
Curcumin and chronic kidney disease (CKD): major mode of action through stimulating endogenous intestinal alkaline phosphatase. Molecules 2014; 19:20139-56. [PMID: 25474287 PMCID: PMC6271001 DOI: 10.3390/molecules191220139] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 12/22/2022] Open
Abstract
Curcumin, an active ingredient in the traditional herbal remedy and dietary spice turmeric (Curcuma longa), has significant anti-inflammatory properties. Chronic kidney disease (CKD), an inflammatory disease, can lead to end stage renal disease resulting in dialysis and transplant. Furthermore, it is frequently associated with other inflammatory disease such as diabetes and cardiovascular disorders. This review will focus on the clinically relevant inflammatory molecules that play a role in CKD and associated diseases. Various enzymes, transcription factors, growth factors modulate production and action of inflammatory molecules; curcumin can blunt the generation and action of these inflammatory molecules and ameliorate CKD as well as associated inflammatory disorders. Recent studies have shown that increased intestinal permeability results in the leakage of pro-inflammatory molecules (cytokines and lipopolysaccharides) from gut into the circulation in diseases such as CKD, diabetes and atherosclerosis. This change in intestinal permeability is due to decreased expression of tight junction proteins and intestinal alkaline phosphatase (IAP). Curcumin increases the expression of IAP and tight junction proteins and corrects gut permeability. This action reduces the levels of circulatory inflammatory biomolecules. This effect of curcumin on intestine can explain why, despite poor bioavailability, curcumin has potential anti-inflammatory effects in vivo and beneficial effects on CKD.
Collapse
|