151
|
Xie HG, Kim RB, Wood AJ, Stein CM. Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharmacol Toxicol 2001; 41:815-50. [PMID: 11264478 DOI: 10.1146/annurev.pharmtox.41.1.815] [Citation(s) in RCA: 392] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ethnicity is an important demographic variable contributing to interindividual variability in drug metabolism and response. In this rapidly expanding research area many genetic factors that account for the effects of ethnicity on pharmacokinetics, pharmacodynamics, and drug safety have been identified. This review focuses on recent developments that have improved understanding of the molecular mechanisms responsible for such interethnic differences. Genetic variations that may provide a molecular basis for ethnic differences in drug metabolizing enzymes (CYP 2C9, 2C19, 2D6, and 3A4), drug transporter (P-glycoprotein), drug receptors (adrenoceptors), and other functionally important proteins (eNOS and G proteins) are discussed. A better understanding of the molecular basis underlying ethnic differences in drug metabolism, transport, and response will contribute to improved individualization of drug therapy.
Collapse
Affiliation(s)
- H G Xie
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA.
| | | | | | | |
Collapse
|
152
|
Martin JH, Begg EJ, Kennedy MA, Roberts R, Barclay ML. Is cytochrome P450 2C9 genotype associated with NSAID gastric ulceration? Br J Clin Pharmacol 2001; 51:627-30. [PMID: 11422024 PMCID: PMC2014482 DOI: 10.1046/j.0306-5251.2001.01398.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AIMS The aim of this study was to explore whether genetic variation of cytochrome P450 2C9 (CYP2C9) contributes to NSAID-associated gastric ulceration. The hypothesis tested was that CYP2C9 poor metabolizer genotype would predict higher risk of gastric ulceration in patients on NSAIDs that are metabolized by CYP2C9, due to higher plasma NSAID concentrations. METHODS Peripheral blood DNA samples from 23 people with a history of gastric ulceration attributed to NSAIDs metabolized by CYP2C9, and from 32 people on NSAIDs without gastropathy, were analysed to determine CYP2C9 genotype. RESULTS The following genotypes were found: *1/*1 (wild type) in 70% of cases and 58% of controls, *1/*2 in 17% of cases and 29% of controls, *1/*3 in 13% of cases and 13% of controls. The difference between case and control nonwild-type genotype frequency was 11.5% (95% CI -14,37%), with the direction of the difference being against the hypothesis. No individuals with homozygote poor metaboliser genotype were identified. The differences in genotype frequencies between the two groups were not significant and the frequencies were similar to those in a large published population study. Ninety-five percent binomial confidence interval analysis confirms that there is no apparent clinically significant relationship between CYP2C9 genotype and risk of gastric ulceration although a small difference in risk in poor metabolizers cannot be excluded. CONCLUSIONS These results do not support the hypothesis that gastric ulceration resulting from NSAID usage is linked to the poor metabolizing genotypes of CYP2C9.
Collapse
Affiliation(s)
- J H Martin
- Department of Clinical Pharmacology, Christchurch Hospital, New Zealand
| | | | | | | | | |
Collapse
|
153
|
Abstract
Warfarin is the therapeutic of choice for maintenance anticoagualtion therapy. A principle caveat of this medication is that the dosage required to achieve the desired therapeutic effect varies up to 120-fold between individuals. Currently, there are no reliable means of prospectively identifying which patients will require either unusually high or low dosages. This dilemma puts patients at risk of therapeutic failure or potentially life-threatening overdosage during a prolonged trial-and-error period of establishing an individualized medication strategy. Pharmacogenetic research has revealed that extreme differences in the drug dose required to achieve the desired therapeutic response can be attributed to genetic variation in the genes encoding drug metabolizing enzymes, and cellular receptor proteins. The anticoagulant Warfarin represents a model system where there is evidence to suggest that both pharmacokinetic and pharmacodynamic mechanisms contribute to the overall variability in patient response. Here the current understanding concerning the influence of genetic variation in Warfarin pharmacokinetics is reviewed and the potential for similar genetic mechanism impacting on the pharmacodynamic response in man is explored. Diagnostic testing to identify subjects requiring low-dose Warfarin therapy is discussed in light of potential confounding or coexisting resistance to the drug effects.
Collapse
Affiliation(s)
- M W Linder
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
154
|
van der Weide J, Steijns LS, van Weelden MJ, de Haan K. The effect of genetic polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement. PHARMACOGENETICS 2001; 11:287-91. [PMID: 11434505 DOI: 10.1097/00008571-200106000-00002] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cytochrome P450 enzyme CYP2C9 catalyses the metabolism of numerous therapeutic agents, including the anti-epileptic drug phenytoin. CYP2C9 is genetically polymorphic: two allelic variants are known, CYP2C9*2 and CYP2C9*3, differing from the wild-type CYP2C9*1 by a single point mutation. Both mutant alleles are associated with markedly impaired metabolic capacity for many CYP2C9 substrates compared to the wild-type, resulting in raised serum drug levels upon a given dose. Because this may be relevant in treatment with phenytoin, we studied the effect of CYP2C9 genotype on phenytoin dose requirement in a group of 60 epileptic patients on long-term phenytoin therapy. CYP2C9 genotyping was performed by polymerase chain reaction analysis, phenytoin serum concentrations were measured by high-performance liquid chromatography analysis and related to the maintenance doses. For patients carrying at least one mutant CYP2C9 allele (n = 17), the mean phenytoin dose required to achieve a therapeutic serum concentration was about 37% lower than the mean dose required by wild-type individuals (199 mg/day versus 314 mg/day; P < 0.01). A low maintenance dose (< 200 mg/day) sufficed for 47% of carriers, while 58% of normals required a high dose (> 300 mg/day) for an effective serum level. The results show that there is a strong association between CYP2C9 allelic variants and phenytoin dose requirement. Since phenytoin has a narrow therapeutic index and genotyping may be carried out rapidly and at low cost, dosage adjustment based on CYP2C9 genotype, especially at the induction of therapy, would be of value in order to lower the risk of concentration dependent drug intoxications in carriers.
Collapse
Affiliation(s)
- J van der Weide
- Department of Clinical Chemistry, St Jansdal Hospital, Harderwijk, The Netherlands.
| | | | | | | |
Collapse
|
155
|
Abstract
Adverse drug reactions (ADRs) are a major clinical problem. Genetic factors can determine individual susceptibility to both dose-dependent and dose-independent ADRs. Determinants of susceptibility include kinetic factors, such as gene polymorphisms in cytochrome P450 enzymes, and dynamic factors, such as polymorphisms in drug targets. The relative importance of these factors will depend on the nature of the ADR; however, it is likely that more than one gene will be involved in most instances. In the future, whole genome single nucleotide polymorphism (SNP) profiling might allow an unbiased method of determining genetic predisposing factors for ADRs, but might be limited by the lack of adequate numbers of patient samples. The overall clinical utility of genotyping in preventing ADRs needs to be proven by the use of prospective randomized controlled clinical trials.
Collapse
Affiliation(s)
- M Pirmohamed
- Department of Pharmacology and Therapeutics, The University of Liverpool, Ashton Street, Liverpool, UK L69 3GE.
| | | |
Collapse
|
156
|
Abstract
Pharmacogenetics encompasses the involvement of genes in an individual's response to drugs. As such, the field covers a vast area including basic drug discovery research, the genetic basis of pharmacokinetics and pharmacodynamics, new drug development, patient genetic testing and clinical patient management. Ultimately, the goal of pharmacogenetics is to predict a patient's genetic response to a specific drug as a means of delivering the best possible medical treatment. By predicting the drug response of an individual, it will be possible to increase the success of therapies and reduce the incidence of adverse side effects.
Collapse
Affiliation(s)
- B B Spear
- Abbott Laboratories, D424 Bldg. AP6A, 100 Abbott Park Road, North Chicago, IL 60064-6008, USA.
| | | | | |
Collapse
|
157
|
Tang C, Shou M, Rushmore TH, Mei Q, Sandhu P, Woolf EJ, Rose MJ, Gelmann A, Greenberg HE, De Lepeleire I, Van Hecken A, De Schepper PJ, Ebel DL, Schwartz JI, Rodrigues AD. In-vitro metabolism of celecoxib, a cyclooxygenase-2 inhibitor, by allelic variant forms of human liver microsomal cytochrome P450 2C9: correlation with CYP2C9 genotype and in-vivo pharmacokinetics. PHARMACOGENETICS 2001; 11:223-35. [PMID: 11337938 DOI: 10.1097/00008571-200104000-00006] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In-vitro studies were conducted to assess the impact of CYP2C9 genotype on the metabolism (methyl hydroxylation) and pharmacokinetics of celecoxib, a novel cyclooxygenase-2 inhibitor and CYP2C9 substrate. When compared to cDNA-expressed wild-type CYP2C9 (CYP2C9*1), the Vmax/Km ratio for celecoxib methyl hydroxylation was reduced by 34% and 90% in the presence of recombinant CYP2C9*2 and CYP2C9*3, respectively. These data indicated that the amino acid substitution at position 359 (Ile to Leu) elicited a more pronounced effect on the metabolism of celecoxib than did a substitution at position 144 (Arg to Cys). The Vmax/Km ratio was also decreased in microsomes of livers genotyped CYP2C9*1/*2 (47% decrease, mean of two livers), or CYP2C9*1/*3 (59% decrease, one liver). In all cases, these changes were largely reflective of a decrease in Vmax, with a minimal change in Km. Based on simulations of the in-vitro data obtained with the recombinant CYP2C9 proteins, it was anticipated that the pharmacokinetics of celecoxib (as a much as a five-fold increase in plasma AUC) would be altered (versus CYP2C9*1/*1 subjects) in subjects genotyped heterozygous or homozygous for the CYP2C9*2 (Cys144) or CYP2C9*3 (Leu359) allele. In a subsequent clinical study, the AUC of celecoxib was increased (versus CYP2C9*1/*1 subjects) approximately 2.2-fold (range, 1.6-3-fold) in two CYP2C9*1/*3 subjects and one CYP2C9*3/*3 subject receiving a single oral dose (200 mg) of the drug. In contrast, there was no significant change in celecoxib AUC in two subjects genotyped CYP2C9*1/*2.
Collapse
Affiliation(s)
- C Tang
- Drug Metabolism, Merck Research Laboratories, West Point, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
The major progress made in the understanding of the genetic basis of inter-individual variation in drug response, alongside the rapid advances in technology, provides major new opportunities to ensure the safe introduction of a new chemical entity into clinical practice. In essence, the aim is to get the right drug into the right patient using knowledge of factors that influence both benefit and risk. The stage of the drug development process at which genetic analysis needs to be undertaken is dependent on the frequency of the event, and the availability of clinical samples. Thus, common adverse events, or assessment of efficacy, will be feasible for testing in phases I-III. However, when a rare event is being studied, for example idiosyncratic toxicity, prospective analysis becomes impossible. Thus, retrospective studies using available drugs is important as it may provide paradigms for future drug development. Additionally, prospective collection of samples will be important so that rare adverse events identified during phase IV can then be analysed using toxicogenetic approaches. Ultimately, information obtained from toxicogenetics must be included in the Specific Product Characteristics (SPC) and thus formally translated into clinical practice in order to contraindicate the drug in specific patients with a genetically determined susceptibility to drug toxicity.
Collapse
Affiliation(s)
- B K Park
- Department of Pharmacology and Therapeutics, The University of Liverpool, P.O. Box 147, Ashton Street, L69 3GE, Liverpool, UK.
| | | |
Collapse
|
159
|
Miller VP, Stresser DM, Blanchard AP, Turner S, Crespi CL. Fluorometric high-throughput screening for inhibitors of cytochrome P450. Ann N Y Acad Sci 2001; 919:26-32. [PMID: 11083094 DOI: 10.1111/j.1749-6632.2000.tb06864.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid screening for cytochrome P450 inhibitors is part of the current paradigm for avoiding development of drugs likely to give clinical pharmacokinetic drug-drug interactions and associated toxicities. We have developed microtiter plate-based, direct, fluorometric assays for the activities of the principal human drug-metabolizing enzymes, CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, as well as for CYP2A6, which is an important enzyme in environmental toxicology. These assays are rapid and compatible with existing high-throughput assay instrumentation. For CYP1A2, CYP2C8, CYP2C9, CYP2C19, and CYP2D6, the potency of enzyme inhibition (IC50) is consistent regardless of the probe substrate or assay method employed. In contrast, CYP3A4 inhibition for an individual inhibitor shows significant differences in potency (>300-fold) depending on the probe substrate being used. We have investigated these differences through the use of several structurally distinct fluorescent substrates for CYP3A4 and several classical substrate probes (e.g., testosterone, nifedipine, and midazolam), with a panel of known, clinically significant, CYP3A4 inhibitors. The use of multiple probe substrates appears to be needed to characterize the inhibition potential of xenobiotics for CYP3A4.
Collapse
Affiliation(s)
- V P Miller
- GENTEST Corporation, Woburn, Massachusetts 01801, USA.
| | | | | | | | | |
Collapse
|
160
|
Abstract
Warfarin is an anticoagulant available as a racemic mixture. The R- and S-isomers differ with respect to relative plasma concentrations, clearance, potency, sites of metabolism, and cytochrome P450 (CYP) isoenzymes responsible for metabolism. S-Warfarin, the more potent isomer, is metabolized primarily by CYP2C9. Genetic polymorphisms resulting from single amino acid substitutions reduce the metabolic capability of 2C9. A reduction in warfarin metabolism due to genetic polymorphism may explain the increased warfarin response and bleeding episodes in some patients. Clinical studies showed an increased plasma level of S-warfarin, decreased clearance of S-warfarin, increased frequency of bleeding, and prolongation of hospitalization in patients with variant CYP2C9 alleles. Adverse outcomes associated with warfarin possibly could be avoided by identifying patients with variant alleles before therapy and starting therapy at low dosages.
Collapse
Affiliation(s)
- A R Redman
- Department of Pharmacy Practice, Mercer University Southern School of Pharmacy, Atlanta, Georgia 30341, USA
| |
Collapse
|
161
|
Thijssen HH, Verkooijen IW, Frank HL. The possession of the CYP2C9*3 allele is associated with low dose requirement of acenocoumarol. PHARMACOGENETICS 2000; 10:757-60. [PMID: 11186138 DOI: 10.1097/00008571-200011000-00010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- H H Thijssen
- Department of Pharmacology, University of Maastricht, The Netherlands.
| | | | | |
Collapse
|
162
|
Pirmohamed M, Alfirevic A, Vilar J, Stalford A, Wilkins EG, Sim E, Park BK. Association analysis of drug metabolizing enzyme gene polymorphisms in HIV-positive patients with co-trimoxazole hypersensitivity. PHARMACOGENETICS 2000; 10:705-13. [PMID: 11186133 DOI: 10.1097/00008571-200011000-00005] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The use of co-trimoxazole in HIV-positive patients has been associated with a high frequency (40-80%) of hypersensitivity reactions. This has been attributed to the bioactivation of the sulphonamide component, sulphamethoxazole (SMX), to its toxic hydroxylamine and nitroso metabolites. The aim of this study was to determine whether functionally significant polymorphisms in the genes coding for enzymes involved in SMX metabolism influence susceptibility to SMX hypersensitivity. HIV-positive patients with (n = 56) and without (n = 89) SMX hypersensitivity were genotyped for allelic variants in CYP2C9, GSTM1, GSTT1, GSTP1 and NAT2 using polymerase chain reaction (PCR) and/or PCR-restriction fragment length polymorphism analysis. The CYP2C9*2/*3 genotype and CYP2C9*3 allele frequencies were nine- and 2.5-fold higher in the hypersensitive group compared to non-sensitive patients, respectively, although they were not statistically significant when corrected for multiple testing. There were no differences in the frequencies of the GSTM1 and GSTT1 null genotypes, and the slow acetylator genotype, between hypersensitive and non-sensitive patients, while GSTP1 frequency was lower (although non-significant) in the hypersensitive group [21% versus 32%, odds ratio (OR) = 0.5, Pc = 0.24]. Comparison of the genotype frequencies in HIV-positive and -negative patients showed that the NAT2 slow acetylator genotype frequency in the HIV-positive patients (74%) was significantly (Pc = 0.0003, OR = 2.3) higher than in control subjects (56%). Our results show that genetic polymorphisms in drug metabolizing enzymes are unlikely to be major predisposing factors in determining individual susceptibility to co-trimoxazole hypersensitivity in HIV-positive patients.
Collapse
Affiliation(s)
- M Pirmohamed
- Department of Pharmacology and Terapeutics, The University of Liverpool, UK.
| | | | | | | | | | | | | |
Collapse
|
163
|
Abstract
When initiating warfarin therapy, clinicians should avoid loading doses that can raise the International Normalized Ratio (INR) excessively; instead, warfarin should be initiated with a 5-mg dose (or 2 to 4 mg in the very elderly). With a 5-mg initial dose, the INR will not rise appreciably in the first 24 hours, except in rare patients who will ultimately require a very small daily dose (0.5 to 2.0 mg). Adjusting a steady-state warfarin dose depends on the measured INR values and clinical factors: the dose does not need to be adjusted for a single INR that is slightly out of range, and most changes should alter the total weekly dose by 5% to 20%. The INR should be monitored frequently (eg, 2 to 4 times per week) immediately after initiation of warfarin; subsequently, the interval between INR tests can be lengthened gradually (up to a maximum of 4 to 6 weeks) in patients with stable INR values. Patients who have an elevated INR will need more frequent testing and may also require vitamin K1. For example, a nonbleeding patient with an INR of 9 can be given low-dose vitamin K1 (eg, 2.5 mg phytonadione, by mouth). Patients who have an excessive INR with clinically important bleeding require clotting factors (eg, fresh-frozen plasma) as well as vitamin K1.
Collapse
Affiliation(s)
- B F Gage
- Division of General Medical Science (BFG), Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
164
|
Freeman BD, Zehnbauer BA, McGrath S, Borecki I, Buchman TG. Cytochrome P450 polymorphisms are associated with reduced warfarin dose. Surgery 2000; 128:281-5. [PMID: 10923005 DOI: 10.1067/msy.2000.107283] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Warfarin use is complicated by an erratic dose response. Interpatient variability associated with warfarin therapy may be partly attributable to polymorphisms of the cytochrome P450 (CYP) complex. The purpose of this study was to ascertain the frequency and influence of CYP polymorphisms on warfarin dosing in our patient population. METHODS Patients receiving warfarin therapy were recruited from the inpatient divisions of our hospital. Genotyping for known polymorphic alleles of the CYP subfamilies CYP2C9 (CYP2C9*1, CYP2C9*2, and CYP2C9*3) and CYP2A6 (CYP2A6*1, CYP2A6*2) with the use of standard methods of polymerase chain reaction amplification was performed. An unpaired t test was used to statistically compare genotypes. RESULTS Genotype frequency in 38 patients is as follows: CYP2C9*1/CYP2C9*1, 71%; CYP2C9*1/CYP2C9*2, 21%; CYP2C9*2/CYP2C9*2, 3%; CYP2C9*1/CYP2C9*3, 5%; CYP2A6*1/CYP2A6*1, 95%; CYP2A6*1/CYP2A6*2, 5%. Compared to a wild-type genotype, the presence of the CYP2C9*2, CYP2C9*3, or CYP2A6*2 allele was associated with a significant reduction in weekly warfarin dose (mean weekly warfarin dose [+/- SE] for wild-type genotype was 0.397 +/- 0.024 mg/kg/wk vs 0.307 +/- 0.03 mg/kg/wk for carriers of CYP2C9*2, CYP2C9*3, or CYP2A6*2 polymorphism; P =.03). CONCLUSIONS Polymorphisms that impair warfarin metabolism are common, occurring in 34% of patients, and are associated with increased warfarin sensitivity. The use of genotypic information to prescribe more accurate doses of warfarin may increase the safety and efficacy of this medication.
Collapse
Affiliation(s)
- B D Freeman
- Departments of Surgery, Pathology, and Biostatistics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
165
|
Crespi CL, Stresser DM. Fluorometric screening for metabolism-based drug--drug interactions. J Pharmacol Toxicol Methods 2000; 44:325-31. [PMID: 11274899 DOI: 10.1016/s1056-8719(00)00112-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Inhibition of cytochromes P-450 (CYP) is a principal mechanism for metabolism-based drug interactions. In vitro methods for quantitatively measuring the extent of CYP inhibition are well-established. Classical methods use drug molecules as substrates and HPLC-based analysis. However, methodologies, which do not require HPLC separations for data acquisition generally offer higher throughputs and lower costs. Multiwell plate-based, direct, fluorometric assays for the activities of the five principal drug-metabolizing enzymes are available and parameters for the use of these substrates to measure CYP inhibition have been established. This methodology is quantitative, rapid, reproducible, and compatible with common high throughput screening instrumentation. This article describes approaches to establishing this methodology in a drug-discovery support program.
Collapse
Affiliation(s)
- C L Crespi
- GENTEST Corporation, 6 Henshaw Street, Woburn, MA 01801, USA.
| | | |
Collapse
|
166
|
Brockmöller J, Kirchheiner J, Meisel C, Roots I. Pharmacogenetic diagnostics of cytochrome P450 polymorphisms in clinical drug development and in drug treatment. Pharmacogenomics 2000; 1:125-51. [PMID: 11256586 DOI: 10.1517/14622416.1.2.125] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The current use and future perspectives of molecular genetic characterisation of cytochrome P450 enzymes (CYP) for drug development and drug treatment are summarised. CYP genes are highly polymorphic and the enzymes play a key role in the elimination of the majority of drugs from the human body. Frequent variants of some enzymes, CYP2A6, 2C9, 2C19 and 2D6, should be analysed in participants of clinical trials whenever these enzymes may play a role. It is suggested that a CYP genotype certificate is handed out to the volunteers or patients to avoid replicate analyses, and to allow that this information is available for future research and also for treatment with eventually needed drugs. Guidelines on what CYP alleles have to be analysed in drug development, as well as on analytical validation and CYP genotype data handling will be required. Treatment with several drugs may be improved by prior genotyping. The concepts and problems of CYP genotype-based clinical dose recommendations are presented and illustrated for selected drugs. The requirement for prospective trials on the medical and economic benefits of routine CYP genotyping is emphasised. Specific operationally defined recommendations dependent on genotype are a prerequisite for such studies and this review presents tentative CYP genotype-based dose recommendations systematically calculated from published data. Because of the multiplicity of factors involved, these doses will not be the optimal doses for each given individual, but should be more adequate than doses generally recommended for an average total population. Those CYP alleles and polymorphically metabolised drugs which are currently most interesting in drug development and drug treatment are reviewed, and more complete information is available from websites cited in this article.
Collapse
Affiliation(s)
- J Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Charité, Humboldt University, Berlin, Germany.
| | | | | | | |
Collapse
|
167
|
Imai J, Ieiri I, Mamiya K, Miyahara S, Furuumi H, Nanba E, Yamane M, Fukumaki Y, Ninomiya H, Tashiro N, Otsubo K, Higuchi S. Polymorphism of the cytochrome P450 (CYP) 2C9 gene in Japanese epileptic patients: genetic analysis of the CYP2C9 locus. PHARMACOGENETICS 2000; 10:85-9. [PMID: 10739176 DOI: 10.1097/00008571-200002000-00011] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J Imai
- Division of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
|
169
|
Hiratsuka M, Agatsuma Y, Mizugaki M. Rapid detection of CYP2C9*3 alleles by real-time fluorescence PCR based on SYBR Green. Mol Genet Metab 1999; 68:357-62. [PMID: 10562462 DOI: 10.1006/mgme.1999.2919] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CYP2C9 catalyzes the metabolism of important drugs such as phenytoin, S-warfarin, tolbutamide, losartan, and nonsteroidal anti-inflammatory drugs. A functional polymorphism of the CYP2C9 gene has been described. The single-base mutation of A1061C (Ile359Leu) in the CYP2C9 gene termed CYP2C9*3 was found at a frequency of about 2.1% in Japanese. We developed a rapid mutation analysis method for detecting the CYP2C9*1 genotype. This method is a marriage of two emerging technologies: allele-specific amplification primers for target DNA and a new double-stranded DNA-selective fluorescent dye, SYBR Green. Genotypes are separated according to the different threshold cycles of the wild-type and mutant primers. We applied this procedure to DNA extracted from the blood of healthy Japanese volunteers. The CYP2C9 wild-type CYP2C9*1/CYP2C9*1 and heterozygous CYP2C9*1/CYP2C9*3 genotypes of the CYP2C9 alleles detected by the assay were consistent with the results obtained from restriction enzyme cleavage. No genotype of CYP2C9*3/CYP2C9*3 was found in these samples. Using plasmid DNA containing a point mutation of CYP2C9*3 as template, the assay separated the three genotypes. We conclude that this simple, rapid, and inexpensive procedure is applicable to routine high-throughput assays.
Collapse
Affiliation(s)
- M Hiratsuka
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, 980-8574, Japan
| | | | | |
Collapse
|
170
|
Roberts GW, Druskeit T, Jorgensen LE, Wing LM, Gallus AS, Miller C, Cosh D, Eaton VS. Comparison of an age adjusted warfarin loading protocol with empirical dosing and Fennerty's protocol. AUSTRALIAN AND NEW ZEALAND JOURNAL OF MEDICINE 1999; 29:731-6. [PMID: 10630656 DOI: 10.1111/j.1445-5994.1999.tb01623.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIM A warfarin loading protocol adjusting doses for age was compared to both Fennerty's protocol (Fenn) and empirical dosing (Emp). METHODS Patients beginning warfarin were randomised to receive doses according to either the age adjusted (Age) protocol or Fenn. Data were retrospectively collected for patients who had begun warfarin in the previous six months to represent empirical dosing. The study was performed on inpatients being commenced on warfarin for the first time at two teaching hospitals. MAIN OUTCOME MEASURES Endpoints were time to reach a stable, therapeutic International Normalised Ratio (INR) between 2-3, the number of patients experiencing an INR > or =4 in the first week and the number of patients who had a dose held in the first week. RESULTS Thirty-five patients were assessed in the Age group, 28 in the Fenn group, and 123 patients for the Emp group. Patients using the Age protocol achieved a stable, therapeutic INR more rapidly than either the Fenn (p=0.003, log rank test) or Emp (p<0.001) group. The Age group had a lower proportion of patients experiencing an INR > or =4 in the first week (p<0.05) as well as a lower proportion having doses held in the first week (p<0.01). There were no differences between Emp and Fenn for any of the endpoints. CONCLUSION Adjustment of warfarin loading doses for age exhibits clear superiority over the use of Fenn or Emp. This becomes increasingly important as the average age of patients being warfarinised increases, with the recognition that atrial fibrillation requires anticoagulation. Fenn consistently overdosed elderly patients, especially those aged 80 years and older.
Collapse
Affiliation(s)
- G W Roberts
- Pharmacy Department, Repatriation General Hospital, Adelaide, SA.
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
Physicians and pharmacists routinely advise patients receiving warfarin to take acetaminophen for pain or fever because of its relative safety; however, a recent study questioned the safety of such practice. A comprehensive search of MEDLINE and IPA for human studies and case reports from 1966-1999 revealed evidence that acetaminophen may potentiate the effect of warfarin by a mechanism that has yet to be elucidated. Due to lack of a safer alternative, acetaminophen still should be the analgesic and antipyretic of choice in patients taking warfarin, as long as excessive amounts and prolonged administration (> 1.3 g acetaminophen/day for > 2 wks) are avoided. With the high degree of interpatient variability and the unpredictability of various drug-drug interactions with warfarin, close and frequent monitoring of international normalized ratios is the key for safe oral anticoagulation therapy.
Collapse
Affiliation(s)
- K L Shek
- Department of Pharmacy Practice, University of Illinois at Chicago, College of Pharmacy, 60612, USA
| | | | | |
Collapse
|
172
|
Aynacioglu AS, Brockmöller J, Bauer S, Sachse C, Güzelbey P, Ongen Z, Nacak M, Roots I. Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol 1999; 48:409-15. [PMID: 10510154 PMCID: PMC2014334 DOI: 10.1046/j.1365-2125.1999.00012.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AIMS The genetically polymorphic cytochrome P450 enzyme CYP2C9 metabolizes many important drugs. We studied the frequency of the amino acid variants cysteine144 (CYP2C9*2 ) and leucine359 (CYP2C9*3 ) in a Turkish population and the correlation between genotype and phenotype using phenytoin as probe drug. METHODS CYP2C9 alleles *2 and *3 were measured in 499 unrelated Turkish subjects by PCR and restriction fragment length pattern analysis. Phenotyping was performed in a subgroup of 101 volunteers with a single oral dose of 300 mg phenytoin and concentration analysis in serum drawn 12 h after dosage. RESULTS CYP2C9 allele frequencies in 499 unrelated Turkish subjects were 0.794 for CYP2C9*1, 0.106 for CYP2C9*2 and 0. 100 for CYP2C9*3. Mean phenytoin serum concentrations at 12 h after dosage were 4.16 mg l-1 (95% CI 3.86-4.46) in carriers of the genotype CYP2C9*1/1, 5.52 mg l-1 (4.66-6.39) in CYP2C9*1/2, and 5.65 mg l-1 (4.86-6.43) in CYP2C9*1/3. These differences were significant and accounted for 31% of total variability in phenytoin trough levels. Mean 12 h concentration ratios of 5-(para-hydroxyphenyl)-5-phenylhydantoin/phenytoin (p-HPPH/P) were 0. 43 (0.39-0.47) for CYP2C9*1/1 compared with 0.26 (0.21-0.31) for CYP2C9*1/2, 0.14 (0.13-0.14) for CYP2C9*2/2, 0.21 (0.18-0.24) for CYP2C9*1/3, and 0.02 for CYP2C9*3/3; all mutant genotypes were significantly different compared with CYP2C9*1/1. CONCLUSIONS Frequency of the two CYP2C9 variants in Turkish subjects was in a similar range as in other Caucasian populations. A significant proportion of the interindividual variability in phenytoin trough levels is explained by the genotypes. The 12 h serum concentrations after a single phenytoin dose may be used for routine phenotyping of CYP2C9 mediated metabolic clearance and the p-HPPH/P ratios may be even more sensitive indicators of CYP2C9 activity.
Collapse
Affiliation(s)
- A S Aynacioglu
- Institute of Clinical Pharmacology, University Clinic Charité, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
173
|
van Iersel ML, Verhagen H, van Bladeren PJ. The role of biotransformation in dietary (anti)carcinogenesis. Mutat Res 1999; 443:259-70. [PMID: 10415444 DOI: 10.1016/s1383-5742(99)00023-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fact that dietary compounds influence the susceptibility of human beings to cancer, is widely accepted. One of the possible mechanisms that is responsible for these (anti)carcinogenic effects is that dietary constituents may modulate biotransformation enzymes, thereby affecting the (anti)carcinogenic potential of other compounds. This ambiguous theme is the basis for the present paper. The possible effects of enzymatic bioactivation and detoxification of dietary constituents are discussed using two representative examples of phase I and phase II biotransformation enzymes i.e., cytochrome P450 and glutathione S-transferase. Furthermore, the impact of genetic polymorphisms of these two enzyme systems is considered. Although it is very difficult on the basis of the enzyme inducing or inhibiting properties of dietary compounds, especially to characterize them as anticarcinogenic, for certain constituents it is acknowledged that they have anticarcinogenic properties. As such, this provides for an important mechanistic substantiation of the established cancer chemopreventive effect of a diet rich in fruits and vegetables.
Collapse
Affiliation(s)
- M L van Iersel
- WUR/TNO Centre for Food Toxicology, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands.
| | | | | |
Collapse
|
174
|
Aithal GP, Day CP, Kesteven PJ, Daly AK. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999; 353:717-9. [PMID: 10073515 DOI: 10.1016/s0140-6736(98)04474-2] [Citation(s) in RCA: 819] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND The cytochrome P450 CYP2C9 is responsible for the metabolism of S-warfarin. Two known allelic variants CYP2C9*2 and CYP2C9*3 differ from the wild type CYP2C9*1 by a single aminoacid substitution in each case. The allelic variants are associated with impaired hydroxylation of S-warfarin in in-vitro expression systems. We have studied the effect of CYP2C9 polymorphism on the in-vivo warfarin dose requirement. METHODS Patients with a daily warfarin dose requirement of 1.5 mg or less (low-dose group, n=36), randomly selected patients with a wide range of dose requirements from an anticoagulant clinic in north-east England (clinic control group, n=52), and 100 healthy controls from the community in the same region were studied. Genotyping for the CYP2C9*2 and CYP2C9*3 alleles was done by PCR analysis. Case notes were reviewed to assess the difficulties encountered during the induction of warfarin therapy and bleeding complications in the low-dose and clinic control groups. FINDINGS The odds ratio for individuals with a low warfarin dose requirement having one or more CYP2C9 variant alleles compared with the normal population was 6.21 (95% CI 2.48-15.6). Patients in the low-dose group were more likely to have difficulties at the time of induction of warfarin therapy (5.97 [2.26-15.82]) and have increased risk of major bleeding complications (rate ratio 3.68 [1.43-9.50]) when compared with randomly selected clinic controls. INTERPRETATION We have shown that there is a strong association between CYP2C9 variant alleles and low warfarin dose requirement. CYP2C9 genotyping may identify a subgroup of patients who have difficulty at induction of warfarin therapy and are potentially at a higher risk of bleeding complications.
Collapse
Affiliation(s)
- G P Aithal
- Department of Medicine, University of Newcastle upon Tyne Medical School, UK
| | | | | | | |
Collapse
|
175
|
Abstract
AIMS Ethnic differences in drug disposition have been described for many drugs. Despite the widespread use of tolbutamide in Asian populations, the pharmacokinetics of tolbutamide, a CYP2C9 substrate, have not been described in ethnic Chinese. METHODS The pharmacokinetics of tolbutamide (500 mg orally) were studied in 10 young, healthy volunteers (seven male/three female; age 21-29 years), each of whom had four ethnic Chinese grandparents. Plasma concentrations of tolbutamide were measured for 32 h post-dose by high performance liquid chromatography. The concentrations of hydroxytolbutamide and carboxytolbutamide were also measured in urine for 32 h post-dose. Noncompartmental pharmacokinetic parameters were calculated using standard equations and compared with those previously reported in Caucasian subjects using the Mann-Whitney U test. RESULTS Pharmacokinetic parameters in Chinese (mean+/-s.d.) including Cmax (63+/-11 microg ml(-1)), tmax (median 3.3 h; range 1.6-6.0 h), V/F (9.1+/-1.7 l) and t1/2, (9.1 h; harmonic mean) were similar to the values in Caucasians. CL/F (637+/-88 ml h(-1)) was higher in Chinese than Caucasians. The urinary recoveries of hydroxytolbutamide (13+/-1% of dose) and carboxytolbutamide (68+/-5% of dose) and the partial apparent metabolic clearance (0.15+/-0.02 ml min(-1) kg(-1)) in Chinese were comparable with Caucasians. CONCLUSIONS The pharmacokinetics of tolbutamide have been described in ethnic Chinese and the disposition is similar to that reported in Caucasians. This study suggests that there is no substantial ethnic difference in the tolbutamide hydroxylase activity of CYP2C9.
Collapse
Affiliation(s)
- A S Gross
- Department of Clinical Pharmacology, Royal North Shore Hospital, St Leonards NSW, Australia
| | | | | |
Collapse
|
176
|
Yasar U, Eliasson E, Dahl ML, Johansson I, Ingelman-Sundberg M, Sjöqvist F. Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun 1999; 254:628-31. [PMID: 9920790 DOI: 10.1006/bbrc.1998.9992] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome P450 2C9 (CYP2C9) catalysis the metabolism of important drugs such as phenytoin, S-warfarin, tolbutamide, losartan, torasemide, and nonsteroidal anti-inflammatory drugs. A functional polymorphism of the CYP2C9 gene has been described. The variant alleles include CYP2C9*2 having a point mutation in exon 3 causing an Arg144Cys exchange, and CYP2C9*3 with a point mutation in exon 7 resulting in an Ile359Leu exchange. Genotyping of these variant forms was carried out in 430 Swedish healthy volunteers and three different methods were compared. Sequence analysis of the different PCR products revealed that other genes in the CYP2C locus were co-amplified in one of the methods applied, whereas the other two methods were specific for CYP2C9. The frequencies of the CYP2C9*1, CYP2C9*2 and CYP2C9*3 alleles in the population examined were found to be 0.819, 0.107, and 0.074, respectively. The need for careful evaluation of the genotyping procedure by sequence analysis of PCR products is emphasised.
Collapse
Affiliation(s)
- U Yasar
- Division of Clinical Pharmacology, Karolinska Institutet, Huddinge University Hospital, Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
177
|
Mamiya K, Ieiri I, Shimamoto J, Yukawa E, Imai J, Ninomiya H, Yamada H, Otsubo K, Higuchi S, Tashiro N. The effects of genetic polymorphisms of CYP2C9 and CYP2C19 on phenytoin metabolism in Japanese adult patients with epilepsy: studies in stereoselective hydroxylation and population pharmacokinetics. Epilepsia 1998; 39:1317-23. [PMID: 9860067 DOI: 10.1111/j.1528-1157.1998.tb01330.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim of this study was to clarify the effects of genetic polymorphisms of cytochrome P450 (CYP) 2C9 and 2C19 on the metabolism of phenytoin (PHT). In addition, a population pharmacokinetic analysis was performed. METHODS The genotype of CYP2C9 (Arg144/Cys, Ile359/Leu) and CYP2C19(*1, *2 or *3) in 134 Japanese adult patients with epilepsy treated with PHT were determined, and their serum concentrations of 5-(4-hydroxyphenyl)-5-phenylhydantoin (p-HPPH) enantiomers, being major metabolites of PHT, were measured. A population pharmacokinetic analysis (NONMEM analysis) was performed to evaluate whether genetic polymorphism of CYP2C9/19 affects the clinical use of PHT by using the 336 dose-serum concentration data. RESULTS The mean maximal elimination rate (Vmax) was 42% lower in the heterozygote for Leu359 allele in CYP2C9, and the mean Michaelis-Menten constants (Km) in the heterozygous extensive metabolizers and the poor metabolizers of CYP2C19 were 22 and 54%, respectively, higher than those without the mutations in CYP2C9/19 genes. (R)- and (S)-p-HPPH/PHT ratios were lower in patients with mutations in CYP2C9 or CYP2C19 gene than those in patients without mutations. CONCLUSIONS Although the hydroxylation capacity of PHT was impaired with mutations of CYP2C9/19, the impairment was greater for CYP2C9. In view of the clinical use of PHT, two important conclusions were derived from this population study. First, the serum PHT concentration in patients with the Leu359 allele in CYP2C9 would increase dramatically even at lower daily doses. Second, the patients with CYP2C19 mutations should be treated carefully at higher daily doses of PHT.
Collapse
Affiliation(s)
- K Mamiya
- Department of Neuropsychiatry, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Abstract
Six cytochrome P450 enzymes mediate the oxidative metabolism of most drugs in common use: CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4. These enzymes have selective substrate specificity, and their activity is characterized by marked interindividual variation. Some of these systems (CYP2C19, CYP2D6) are polymorphically distributed; thus, a subset of the population may be genetically deficient in enzyme activity. Phenotyping procedures designed to identify subjects with impaired metabolism who may be at increased risk for drug toxicity have been developed and validated. This has been supplemented in recent years by the availability of genetic analysis and the identification of specific alleles that are associated with altered (i.e., reduced, deficient, or increased) enzyme activity. The potential of genotyping to predict pharmacodynamics holds great promise for the future because it does not involve the administration of exogenous compound and is not confounded by drug therapy. Drug interactions caused by the inhibition or induction of oxidative drug metabolism may be of great clinical importance because they may result in drug toxicity or therapeutic failure. Further understanding of cytochrome P450 complexity may allow, through a combined in vitro-in vivo approach, the reliable prediction and possible prevention of deleterious drug interactions.
Collapse
Affiliation(s)
- Y Caraco
- Hadassah University Hospital, Division of Medicine, Jerusalem, Israel
| |
Collapse
|
179
|
Yamazaki H, Inoue K, Chiba K, Ozawa N, Kawai T, Suzuki Y, Goldstein JA, Guengerich FP, Shimada T. Comparative studies on the catalytic roles of cytochrome P450 2C9 and its Cys- and Leu-variants in the oxidation of warfarin, flurbiprofen, and diclofenac by human liver microsomes. Biochem Pharmacol 1998; 56:243-51. [PMID: 9698079 DOI: 10.1016/s0006-2952(98)00133-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
S-Warfarin 7-hydroxylation, S-flurbiprofen 4'-hydroxylation, and diclofenac 4'-hydroxylation activities were determined in liver microsomes of 30 humans of which 19 were wild-type (Arg144.Ile359), 8 were heterozygous Cys (Cys144.Ile359), and 3 were heterozygous Leu (Arg144.Leu359) allelic variants of the cytochrome P450 2C9 (CYP2C9) gene. All of the human samples examined contained P450 protein(s) immunoreactive with anti-CYP2C9 antibodies in liver microsomes. Individuals with the Cys144 allele of CYP2C9 had similar, but slightly lower, activities for the oxidations of these substrates than those of wild-type CYP2C9. One of the three human samples heterozygous for the Leu359 allele had very low Vmax and high Km values for the oxidation of three substrates examined, while the other two individuals gave kinetic parameters comparable to those seen in the wild-type and Cys144 CYP2C9. Reverse transcriptase-polymerase chain reaction analysis, however, showed that all of the three human samples with the heterozygous Leu359 variant were found to express both Ile359 and Leu359 variants at relatively similar extents in liver RNA of three humans. These results suggest that the Cys144 variant of CYP2C9 catalyzes the CYP2C9 substrates at rates comparative to, but slightly lower than, those of wild-type CYP2C9, while the Leu359-allelic variant has slower rates for the oxidation of these drug substrates. Activities for the oxidation of these CYP2C9 substrates in humans with heterozygous Leu359 allele is likely to be dependent on the levels of expression of each of the wild- and Leu-variants in the livers. However, one of the humans with a heterozygous Leu allele was found to have very low activities towards the oxidation of CYP2C9 substrates. The basis of this defect in catalytic functions towards CYP2C9 substrates is unknown.
Collapse
Affiliation(s)
- H Yamazaki
- Osaka Prefectural Institute of Public Health, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Kimura M, Ieiri I, Mamiya K, Urae A, Higuchi S. Genetic polymorphism of cytochrome P450s, CYP2C19, and CYP2C9 in a Japanese population. Ther Drug Monit 1998; 20:243-7. [PMID: 9631918 DOI: 10.1097/00007691-199806000-00001] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genotypings of two mutations (*2 and *3) in CYP2C19 and the amino acid variants (Arg144/Cys, Tyr358/Cys, Ile359/Leu, and Gly417/Asp) in CYP2C9 were carried out in 140 unrelated Japanese subjects. Thirty-three subjects (23.6%) were genotypically identified as poor metabolizers of CYP2C19, and the allele frequencies of the CYP2C19*2 and CYP2C19*3 were 0.35 and 0.11, respectively. The authors' findings are in agreement with the 18% to 23% prevalence of poor metabolizers in the Japanese populations previously phenotyped. In CYP2C9, all subjects were homozygous (CYP2C9*1) for Arg144, Tyr358, Ile359, and Gly417, except for five subjects (3.6%) who were heterozygous for the Leu359 (CYP2C9*3). The frequencies of Arg144, Tyr358, Ile359, Leu359, and Gly417 variants were 1.0, 1.0, 0.982, 0.018, and 1.0, respectively. The low frequency of the Cys144 allele (CYP2C9*2) in the Japanese population is different from the frequency recently found in British subjects (allele frequency, 0.125 to 0.192). The results suggest that the known interindividual variations in the CYP2C9 sequence among Japanese subjects is small, and that Ile359/Leu is one possible site showing interracial polymorphism.
Collapse
Affiliation(s)
- M Kimura
- Division of Pharmaceutical Sciences, Kyushu University, Kyushu Pharmacology Research Clinic, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
181
|
Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45:525-38. [PMID: 9663807 PMCID: PMC1873650 DOI: 10.1046/j.1365-2125.1998.00721.x] [Citation(s) in RCA: 572] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/1998] [Accepted: 01/07/1998] [Indexed: 11/20/2022] Open
Abstract
Accumulating evidence indicates that CYP2C9 ranks amongst the most important drug metabolizing enzymes in humans. Substrates for CYP2C9 include fluoxetine, losartan, phenytoin, tolbutamide, torsemide, S-warfarin, and numerous NSAIDs. CYP2C9 activity in vivo is inducible by rifampicin. Evidence suggests that CYP2C9 substrates may also be induced variably by carbamazepine, ethanol and phenobarbitone. Apart from the mutual competitive inhibition which may occur between alternate substrates, numerous other drugs have been shown to inhibit CYP2C9 activity in vivo and/or in vitro. Clinically significant inhibition may occur with coadministration of amiodarone, fluconazole, phenylbutazone, sulphinpyrazone, sulphaphenazole and certain other sulphonamides. Polymorphisms in the coding region of the CYP2C9 gene produce variants at amino acid residues 144 (Arg144Cys) and 359 (Ile359Leu) of the CYP2C9 protein. Individuals homozygous for Leu359 have markedly diminished metabolic capacities for most CYP2C9 substrates, although the frequency of this allele is relatively low. Consistent with the modulation of enzyme activity by genetic and other factors, wide interindividual variability occurs in the elimination and/or dosage requirements of prototypic CYP2C9 substrates. Individualisation of dose is essential for those CYP2C9 substrates with a narrow therapeutic index.
Collapse
Affiliation(s)
- J O Miners
- Department of Clinical Pharmacology, Flinders Medical Centre and Flinders University School of Medicine, Bedford Park, SA, Australia
| | | |
Collapse
|
182
|
Kitteringham NR, Pirmohamed M, Park BK. 3 The pharmacology of the cytochrome P450 enzyme system. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0950-3501(98)80028-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
183
|
Takahashi H, Kashima T, Nomizo Y, Muramoto N, Shimizu T, Nasu K, Kubota T, Kimura S, Echizen H. Metabolism of warfarin enantiomers in Japanese patients with heart disease having different CYP2C9 and CYP2C19 genotypes. Clin Pharmacol Ther 1998; 63:519-28. [PMID: 9630825 DOI: 10.1016/s0009-9236(98)90103-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine whether genetic polymorphism of cytochrome P450 (CYP) 2C9 affects the in vivo metabolism of warfarin enantiomers. METHODS Eighty-six Japanese patients heart disease who were given warfarin participated in the study. Plasma unbound concentrations of warfarin enantiomers and urinary (S)-7-hydroxywarfarin concentrations were measured by means of a chiral HPLC and ultrafiltration technique to calculate the unbound oral clearance (CLpo,u) for the enantiomers and the formation clearance (CLm) for (S)-warfarin 7-hydroxylation. Genotyping for CYP2C9 (the wild type [wt], Arg144/Cys, and I1e359/Leu) and for CYP2C19 (wt, ml, and m2) was performed with a polymerase chain reaction method. RESULTS Three patients were heterozygous for the CYP2C9 Leu359 mutation but none were homozygous for the mutation (the allele frequency of 0.017). None had a CYP2C9 Cys144 allele. The medians for (S)-warfarin CLpo,u and its 7-hydroxylation CLm obtained from heterozygotes of CYP2C9 Leu359 were significantly less than those obtained from homozygotes of the wt allele, as follows: 234 ml/min (range, 156 to 269 ml/min) versus 632 ml/min (range, 180 to 2070 ml/min) (p < 0.001) and 0.20 ml/min (range, 0.05 to 0.77 ml/min) versus 0.80 ml/min (range, 0.05 to 14.9 ml/min) (p < 0.05), respectively. In contrast, no difference was observed in (R)-warfarin CLpo,u between the groups. The allele frequencies for CYP2C19 m1 and CYP2C19 m2 were 0.26 and 0.14, respectively, indicating 15% of patients were genotypically poor metabolizers of CYP2C19. No difference in CLpo,u for warfarin enantiomers was observed between the assumed CYP2C19 phenotypes. CONCLUSION Heterozygotes for CYP2C9 I1e359/Leu allele have reduced in vivo metabolism of (S)-warfarin but not (R)-warfarin. Because (S)-warfarin has a greater anticoagulant potency than its (R)-congener, the genetic polymorphism of CYP2C9 may partly account for the large interpatient variability in therapeutic dosages of warfarin.
Collapse
Affiliation(s)
- H Takahashi
- Department of Pharmacotherapy, Meiji College of Pharmacy, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Lasker JM, Wester MR, Aramsombatdee E, Raucy JL. Characterization of CYP2C19 and CYP2C9 from human liver: respective roles in microsomal tolbutamide, S-mephenytoin, and omeprazole hydroxylations. Arch Biochem Biophys 1998; 353:16-28. [PMID: 9578596 DOI: 10.1006/abbi.1998.0615] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Individuals with drug metabolism polymorphisms involving CYP2C enzymes exhibit deficient oxidation of important therapeutic agents, including S-mephenytoin, omeprazole, warfarin, tolbutamide, and nonsteroidal anti-inflammatory drugs. While recombinant CYP2C19 and CYP2C9 proteins expressed in yeast or Escherichia coli have been shown to oxidize these agents, the capacity of the corresponding native P450s isolated from human liver to do so is ill defined. To that end, we purified CYP2C19, CYP2C9, and CYP2C8 from human liver samples using conventional chromatographic techniques and examined their capacity to oxidize S-mephenytoin, omeprazole, and tolbutamide. Upon reconstitution, CYP2C19 metabolized S-mephenytoin and omeprazole at rates that were 11- and 8-fold higher, respectively, than those of intact liver microsomes, whereas neither CYP2C9 nor CYP2C8 displayed appreciable metabolic activity with these substrates. CYP2C19 also proved an efficient catalyst of tolbutamide metabolism, exhibiting a turnover rate similar to CYP2C9 preparations (2.0-6.4 vs 2.4-4.3 nmol hydroxytolbutamide formed/min/nmol P450). The kinetic parameters of CYP2C19-mediated tolbutamide hydroxylation (Km = 650 microM, Vmax = 3.71 min-1) somewhat resembled those of the CYP2C9-catalyzed reaction (Km = 178-407 microM, Vmax = 2.95-7.08 min-1). Polyclonal CYP2C19 antibodies markedly decreased S-mephenytoin 4'-hydroxylation (98% inhibition) and omeprazole 5-hydroxylation (85% inhibition) by human liver microsomes. CYP2C19 antibodies also potently inhibited (>90%) microsomal tolbutamide hydroxylation, which was similar to the inhibition (>85%) observed with antibodies to CYP2C9. Moreover, excellent correlations were found between immunoreactive CYP2C19 content, S-mephenytoin 4'-hydroxylase activity (r = 0.912; P < 0. 001), and omeprazole 5-hydroxylase activity (r = 0.906; P < 0.001) in liver samples from 13-17 different subjects. A significant relationship was likewise observed between microsomal tolbutamide hydroxylation and CYP2C9 content (r = 0.664; P < 0.02) but not with CYP2C19 content (r = 0.393; P = 0.184). Finally, immunoquantitation revealed that in these human liver samples, expression of CYP2C9 (88. 5 +/- 36 nmol/mg) was 5-fold higher than that of CYP2C19 (17.8 +/- 14 nmol/mg) and nearly 8-fold higher than that of CYP2C8 (11.5 +/- 12 nmol/mg). Our results, like those obtained with recombinant CYP2C enzymes, indicate that CYP2C19 is a primary determinant of S-mephenytoin 4'-hydroxylation and low-Km omeprazole 5-hydroxylation in human liver. Despite its tolbutamide hydroxylase activity, the low levels of hepatic CYP2C19 expression (relative to CYP2C9) may preclude an important role for this enzyme in hepatic tolbutamide metabolism and any polymorphisms thereof.
Collapse
Affiliation(s)
- J M Lasker
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
185
|
Crespi CL, Penman BW. Use of cDNA-expressed human cytochrome P450 enzymes to study potential drug-drug interactions. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 43:171-88. [PMID: 9342176 DOI: 10.1016/s1054-3589(08)60205-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complementary DNA (cDNA)-expressed human cytochrome P450 enzymes provide a reproducible, consistent source of single enzymes for many types of studies. The use of single enzymes systems, relative to multienzyme systems, has distinct advantages and disadvantages depending on the specific application. cDNA-expressed materials have advantages in the analysis of cytochrome P450 form-selective metabolism of a drug or drug candidate. This analysis can be accomplished by direct incubation of the drug with microsomes prepared from cells expressing a single cytochrome P450 form coupled with analysis of either metabolite formation or loss of parent compound. This approach allows the unambiguous assignment of specific biotransformations to specific enzymes. However, extending these data to the balance of enzymes present in human liver microsomes can be problematic. New approaches for relating rates of metabolism for cDNA-expressed enzymes to human liver microsomes metabolism are being developed (Crespi, 1995). In addition, cDNA-expressed enzymes can be used to study the cytochrome P450 form-selective inhibition by drugs or drug candidates. This analysis is accomplished through the study of the inhibition of the metabolism of a model substrate by the drug or drug candidate. Through these analyses, apparent Ki values can be obtained and compared to Ki values for known, clinically significant inhibitors of the same enzyme. For this application, cDNA-expressed, single enzyme systems have distinct advantages because of greater flexibility in the choice of model substrates and the lack of competing pathways of metabolism. Specific data for the use of cDNA-expressed CYP2C9, CYP2D6, and CYP3A4 are presented.
Collapse
Affiliation(s)
- C L Crespi
- GENTEST Corporation, Woburn, Massachusetts 01801, USA
| | | |
Collapse
|
186
|
Odani A, Hashimoto Y, Otsuki Y, Uwai Y, Hattori H, Furusho K, Inui K. Genetic polymorphism of the CYP2C subfamily and its effect on the pharmacokinetics of phenytoin in Japanese patients with epilepsy. Clin Pharmacol Ther 1997; 62:287-92. [PMID: 9333104 DOI: 10.1016/s0009-9236(97)90031-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To examine the genetic polymorphism of CYP2C9 and CYP2C19 and its effect on the pharmacokinetics of phenytoin among 44 Japanese patients with epilepsy. METHODS Polymerase chain reaction tests with leukocyte deoxyribonucleic acid were used to detect the mutations for the amino acid substitution (Arg144-->Cys and Ile359-->Leu) in CgammaP2C9 and for the defective allele (m1 and m2) in CgammaP2C19. The pharmacokinetic parameters of phenytoin in individual patients were estimated by means of empirical bayesian analysis, in which the prior information was the population parameters for Japanese patients with epilepsy. RESULTS Of the 44 patients, none had the CgammaP2C9 mutation for the Cys144 allele, whereas six patients were heterozygous for the wild-type (wt) and Leu359 allele (wt/Leu359) in cgammaP2C9. The maximal elimination rate (Vmax) of phenytoin among patients with heterozygous wt/Leu359 in CgammaP2C9 was 33% lower than that among patients with normal CgammaP2C9. A total of 21 patients were heterozygous for the CgammaP2C19 mutation (wt/m1 or wt/m2), and five patients had the homozygous or heterozygous mutations in CgammaP2C19 (m1/m1 or m1/m2). The Vmax values of phenytoin were slightly decreased (up to 14%) among patients with CgammaP2C19 mutations compared with patients with normal CgammaP2C19. CONCLUSION The findings indicated that the genetic polymorphisms of CYP2C isozymes play an important role in the pharmacokinetic variability of phenytoin and that the mutation in CYP2C9 proteins (Ile359-->Leu) is a determinant of impaired metabolism of the drug among Japanese persons.
Collapse
Affiliation(s)
- A Odani
- Department of Pharmacy, Kyoto University Hospital, Faculty of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|