151
|
Jenkins BW, Buckhalter S, Perreault ML, Khokhar JY. Cannabis Vapor Exposure Alters Neural Circuit Oscillatory Activity in a Neurodevelopmental Model of Schizophrenia: Exploring the Differential Impact of Cannabis Constituents. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgab052. [PMID: 35036917 PMCID: PMC8752653 DOI: 10.1093/schizbullopen/sgab052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cannabis use is highly prevalent in patients with schizophrenia and worsens the course of the disorder. To understand how exposure to cannabis changes schizophrenia-related oscillatory disruptions, we investigated the impact of administering cannabis vapor containing either Δ9-tetrahydrocannabinol (THC) or balanced THC/cannabidiol (CBD) on oscillatory activity in the neonatal ventral hippocampal lesion (NVHL) rat model of schizophrenia. Male Sprague Dawley rats underwent lesion or sham surgeries on postnatal day 7. In adulthood, electrodes were implanted targeting the cingulate cortex (Cg), the prelimbic cortex (PrLC), the hippocampus (HIP), and the nucleus accumbens (NAc). Local field potential recordings were obtained after rats were administered either the "THC-only" cannabis vapor (8-18% THC/0% CBD) or the "Balanced THC:CBD" cannabis vapor (4-11% THC/8.5-15.5% CBD) in a cross-over design with a 2-week wash-out period between exposures. Compared to controls, NVHL rats had reduced baseline gamma power in the Cg, HIP, and NAc, and reduced HIP-Cg high-gamma coherence. THC-only vapor exposure broadly suppressed oscillatory power and coherence, even beyond the baseline reductions observed in NHVL rats. Balanced THC:CBD vapor, however, did not suppress oscillatory power and coherence, and in some instances enhanced power. For NVHL rats, THC-only vapor normalized the baseline HIP-Cg high-gamma coherence deficits. NHVL rats demonstrated a 20 ms delay in HIP theta to high-gamma phase coupling, which was not apparent in the PrLC and NAc after both exposures. In conclusion, cannabis vapor exposure has varying impacts on oscillatory activity in NVHL rats, and the relative composition of naturally occurring cannabinoids may contribute to this variability.
Collapse
Affiliation(s)
- Bryan W Jenkins
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Shoshana Buckhalter
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
152
|
Zhang KL, Li SJ, Pu XY, Wu FF, Liu H, Wang RQ, Liu BZ, Li Z, Li KF, Qian NS, Yang YL, Yuan H, Wang YY. Targeted up-regulation of Drp1 in dorsal horn attenuates neuropathic pain hypersensitivity by increasing mitochondrial fission. Redox Biol 2021; 49:102216. [PMID: 34954498 PMCID: PMC8718665 DOI: 10.1016/j.redox.2021.102216] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023] Open
Abstract
Mitochondria play an essential role in pathophysiology of both inflammatory and neuropathic pain (NP), but the mechanisms are not yet clear. Dynamin-related protein 1 (Drp1) is broadly expressed in the central nervous system and plays a role in the induction of mitochondrial fission process. Spared nerve injury (SNI), due to the dysfunction of the neurons within the spinal dorsal horn (SDH), is the most common NP model. We explored the neuroprotective role of Drp1 within SDH in SNI. SNI mice showed pain behavior and anxiety-like behavior, which was associated with elevation of Drp1, as well as increased density of mitochondria in SDH. Ultrastructural analysis showed SNI induced damaged mitochondria into smaller perimeter and area, tending to be circular. Characteristics of vacuole in the mitochondria further showed SNI induced the increased number of vacuole, widened vac-perimeter and vac-area. Stable overexpression of Drp1 via AAV under the control of the Drp1 promoter by intraspinal injection (Drp1 OE) attenuated abnormal gait and alleviated pain hypersensitivity of SNI mice. Mitochondrial ultrastructure analysis showed that the increased density of mitochondria induced by SNI was recovered by Drp1 OE which, however, did not change mitochondrial morphology and vacuole parameters within SDH. Contrary to Drp1 OE, down-regulation of Drp1 in the SDH by AAV-Drp1 shRNA (Drp1 RNAi) did not alter painful behavior induced by SNI. Ultrastructural analysis showed the treatment by combination of SNI and Drp1 RNAi (SNI + Drp1 RNAi) amplified the damages of mitochondria with the decreased distribution density, increased perimeter and area, as well as larger circularity tending to be more circular. Vacuole data showed SNI + Drp1 RNAi increased vacuole density, perimeter and area within the SDH mitochondria. Our results illustrate that mitochondria within the SDH are sensitive to NP, and targeted mitochondrial Drp1 overexpression attenuates pain hypersensitivity. Drp1 offers a novel therapeutic target for pain treatment.
Collapse
Affiliation(s)
- Kun-Long Zhang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China; Department of Rehabilitation Medicine, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Shu-Jiao Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xue-Yin Pu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fei-Fei Wu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Liu
- Department of Human Anatomy, Yan-An University, Yan'an, 716000, China
| | - Rui-Qing Wang
- Department of Human Anatomy, Yan-An University, Yan'an, 716000, China
| | - Bo-Zhi Liu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ze Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kai-Feng Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Nian-Song Qian
- Department of Oncology, First Medical Center, The General Hospital of the People's Liberation Army, Beijing, 100000, China
| | - Yan-Ling Yang
- Department of Liver and Gallbladder Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Ya-Yun Wang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China; State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
153
|
Enhancing Endocannabinoid Control of Stress with Cannabidiol. J Clin Med 2021; 10:jcm10245852. [PMID: 34945148 PMCID: PMC8704602 DOI: 10.3390/jcm10245852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023] Open
Abstract
The stress response is a well-defined physiological function activated frequently by life events. However, sometimes the stress response can be inappropriate, excessive, or prolonged; in which case, it can hinder rather than help in coping with the stressor, impair normal functioning, and increase the risk of somatic and mental health disorders. There is a need for a more effective and safe pharmacological treatment that can dampen maladaptive stress responses. The endocannabinoid system is one of the main regulators of the stress response. A basal endocannabinoid tone inhibits the stress response, modulation of this tone permits/curtails an active stress response, and chronic deficiency in the endocannabinoid tone is associated with the pathological complications of chronic stress. Cannabidiol is a safe exogenous cannabinoid enhancer of the endocannabinoid system that could be a useful treatment for stress. There have been seven double-blind placebo controlled clinical trials of CBD for stress on a combined total of 232 participants and one partially controlled study on 120 participants. All showed that CBD was effective in significantly reducing the stress response and was non-inferior to pharmaceutical comparators, when included. The clinical trial results are supported by the established mechanisms of action of CBD (including increased N-arachidonylethanolamine levels) and extensive real-world and preclinical evidence of the effectiveness of CBD for treating stress.
Collapse
|
154
|
Mohammed AM, Khardali IA, Oraiby ME, Hakami AF, Shaheen ES, Ageel IM, Abutawil EH, Abu-Taweel GM. Anxiety, depression-like behaviors and biochemistry disorders induced by cannabis extract in female mice. Saudi J Biol Sci 2021; 28:6097-6111. [PMID: 34764743 PMCID: PMC8570964 DOI: 10.1016/j.sjbs.2021.08.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022] Open
Abstract
Cannabis is an annual herbaceous plant sometimes grown for decoration and used as bird food that looks like flax. The study wanted to determine if a Cannabis extract may have an effect on how anxious and depressed the female mice behaved. forty healthy female mice were divided into four groups. Tap water was administered to the first group (control). Ethanol was administered to second group (positive control). The third and four groups were given 1 and 2 mg/kg cannabis extract respectively. Treatment continued for 14 days. After therapy, the light–dark chamber, forced swimming, tail suspension, plus lamb and open field tests were done to assess anxiety and depressive behavior. The results indicated that the anxiety and depression were increased in treated females significantly compared to control. Biochemical results showed that DA,5-HT, AChE, GSH, GST, CAT and SOD were decreased while TBARS, corticosterone and cortisol were increased. In conclusion, cannabis effects this kind of females’ behavior but the mechanisms are not clear yet. We need more researches on this trend.
Collapse
Affiliation(s)
- Atheer M Mohammed
- Department of Biology, College of Sciences, Jazan University, P.O. Box 2079, Jazan 45142, Saudi Arabia
| | | | - Magbool E Oraiby
- Poison Control and Medical Forensic Chemistry, Jazan, Saudi Arabia
| | - Abdulrahman F Hakami
- Department of Biology, College of Sciences, Jazan University, P.O. Box 2079, Jazan 45142, Saudi Arabia
| | | | - Ibrahim M Ageel
- Department of Biology, College of Sciences, Jazan University, P.O. Box 2079, Jazan 45142, Saudi Arabia
| | - Eyas H Abutawil
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Saudi Arabia
| | - Gasem M Abu-Taweel
- Department of Biology, College of Sciences, Jazan University, P.O. Box 2079, Jazan 45142, Saudi Arabia
| |
Collapse
|
155
|
The Benefits of Music Listening for Induced State Anxiety: Behavioral and Physiological Evidence. Brain Sci 2021; 11:brainsci11101332. [PMID: 34679397 PMCID: PMC8533701 DOI: 10.3390/brainsci11101332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Some clinical studies have indicated that neutral and happy music may relieve state anxiety. However, the brain mechanisms by which these effective interventions in music impact state anxiety remain unknown. METHODS In this study, we selected music with clinical effects for therapy, and 62 subjects were included using the evoked anxiety paradigm. After evoking anxiety with a visual stimulus, all subjects were randomly divided into three groups (listening to happy music, neutral music and a blank stimulus), and EEG signals were acquired. RESULTS We found that different emotional types of music might have different mechanisms in state anxiety interventions. Neutral music had the effect of alleviating state anxiety. The brain mechanisms supported that neutral music ameliorating state anxiety was associated with decreased power spectral density of the occipital lobe and increased brain functional connectivity between the occipital lobe and frontal lobe. Happy music also had the effect of alleviating state anxiety, and the brain mechanism was associated with enhanced brain functional connectivity between the occipital lobe and right temporal lobe. CONCLUSIONS This study may be important for a deep understanding of the mechanisms associated with state anxiety music interventions and may further contribute to future clinical treatment using nonpharmaceutical interventions.
Collapse
|
156
|
Kruk-Slomka M, Biala G. Cannabidiol Attenuates MK-801-Induced Cognitive Symptoms of Schizophrenia in the Passive Avoidance Test in Mice. Molecules 2021; 26:molecules26195977. [PMID: 34641522 PMCID: PMC8513030 DOI: 10.3390/molecules26195977] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia is a chronic mental disorder that disturbs feelings and behavior. The symptoms of schizophrenia fall into three categories: positive, negative, and cognitive. Cognitive symptoms are characterized by memory loss or attentional deficits, and are especially difficult to treat. Thus, there is intense research into the development of new treatments for schizophrenia-related responses. One of the possible strategies is connected with cannabidiol (CBD), a cannabinoid compound. This research focuses on the role of CBD in different stages of memory (acquisition, consolidation, retrieval) connected with fear conditioning in the passive avoidance (PA) learning task in mice, as well as in the memory impairment typical of cognitive symptoms of schizophrenia. Memory impairment was provoked by an acute injection of the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (animal model of schizophrenia). Our results revealed that an acute injection of CBD (30 mg/kg; intraperitoneally (i.p.) improved all phases of long-term fear memory in the PA test in mice. Moreover, the acute injection of non-effective doses of CBD (1 or 5 mg/kg; i.p.) attenuated the memory impairment provoked by MK-801 (0.6 mg/kg; i.p.) in the consolidation and retrieval stages of fear memory, but not in the acquisition of memory. The present findings confirm that CBD has a positive influence on memory and learning processes in mice, and reveals that this cannabinoid compound is able to attenuate memory impairment connected with hypofunction of glutamate transmission in a murine model of schizophrenia.
Collapse
|
157
|
The Effect of Medical Cannabis on Pain Level and Quality of Sleep among Rheumatology Clinic Outpatients. Pain Res Manag 2021; 2021:1756588. [PMID: 34531934 PMCID: PMC8440085 DOI: 10.1155/2021/1756588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 01/20/2023]
Abstract
Introduction Medical cannabis (MC) is becoming increasingly popular for the treatment of chronic pain conditions. In this study, we evaluated the effect of MC treatment on pain level and quality of sleep of patients with different medical conditions at the rheumatology clinic. Methods Patients licensed for the use of MC at the rheumatology clinics at different settings were located and contacted. Their demographic and clinical parameters were documented, including type of medical cannabis consumed, way of consumption, and current monthly consumed amount. These patients were contacted by phone and asked about the effect on pain level and quality of sleep. Results A total of 351 patients were located, and 319 completed the questionnaire. Mean age was 46 ± 12 years, 76% were female, 82% had fibromyalgia, ∼9% had mechanical problems, ∼4% had inflammatory problems, ∼4% had neurological problems, and ∼1% had other problems. The average monthly consumed dose of MC was 31, 35, 36, and 32 g, with mean pain level reduction of 77%, 82%, 83%, and 57%, and mean sleep quality improvement of 78%, 71%, 87%, and 76% among patients with fibromyalgia, mechanical, neuropathic, and inflammatory problems, respectively. Mean THC and CBD contents were 18.38% ± 4.96 and 2.62% ± 4.87, respectively. The THC concentration, duration of MC consumption, and MC consumption dose had independent significant correlations with pain reduction while only the duration of MC consumption had an independent significant correlation with sleep quality improvement. Conclusions MC had a favorable effect on pain level and quality of sleep among all spectrums of problems at the rheumatology clinic.
Collapse
|
158
|
Xiong Y, Lim CS. Understanding the Modulatory Effects of Cannabidiol on Alzheimer's Disease. Brain Sci 2021; 11:brainsci11091211. [PMID: 34573232 PMCID: PMC8472755 DOI: 10.3390/brainsci11091211] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 11/23/2022] Open
Abstract
Alzheimer’s disease (AD), the most common neurodegenerative disease, is characterized by progressive cognitive impairment. The deposition of amyloid beta (Aβ) and hyperphosphorylated tau is considered the hallmark of AD pathology. Many therapeutic approaches such as Food and Drug Administration-approved cholinesterase inhibitors and N–methyl–D–aspartate receptor antagonists have been used to intervene in AD pathology. However, current therapies only provide limited symptomatic relief and are ineffective in preventing AD progression. Cannabidiol (CBD), a phytocannabinoid devoid of psychoactive responses, provides neuroprotective effects through both cannabinoid and noncannabinoid receptors. Recent studies using an AD mouse model have suggested that CBD can reverse cognitive deficits along with Aβ-induced neuroinflammatory, oxidative responses, and neuronal death. Furthermore, CBD can reduce the accumulation of Aβ and hyperphosphorylation of tau, suggesting the possibility of delaying AD progression. Particularly, the noncannabinoid receptor, peroxisome proliferator-activated receptor gamma, has been suggested to be involved in multiple functions of CBD. Therefore, understanding the underlying mechanisms of CBD is necessary for intervening in AD pathology in depth and for the translation of preclinical studies into clinical settings. In this review, we summarize recent studies on the effect of CBD in AD and suggest problems to be overcome for the therapeutic use of CBD.
Collapse
Affiliation(s)
- Yinyi Xiong
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan 54538, Korea;
- Department of Rehabilitation, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Chae-Seok Lim
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan 54538, Korea;
- Correspondence: ; Tel.: +82-63-850-6765; Fax: +82-63-850-7262
| |
Collapse
|
159
|
Alexander C, Vasefi M. Cannabidiol and the corticoraphe circuit in post-traumatic stress disorder. IBRO Neurosci Rep 2021; 11:88-102. [PMID: 34485973 PMCID: PMC8408530 DOI: 10.1016/j.ibneur.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 01/06/2023] Open
Abstract
Post-Traumatic Stress Disorder (PTSD), characterized by re-experiencing, avoidance, negative affect, and impaired memory processing, may develop after traumatic events. PTSD is complicated by impaired plasticity and medial prefrontal cortex (mPFC) activity, hyperactivity of the amygdala, and impaired fear extinction. Cannabidiol (CBD) is a promising candidate for treatment due to its multimodal action that enhances plasticity and calms hyperexcitability. CBD’s mechanism in the mPFC of PTSD patients has been explored extensively, but literature on the mechanism in the dorsal raphe nucleus (DRN) is lacking. Following the PRISMA guidelines, we examined current literature regarding CBD in PTSD and overlapping symptomologies to propose a mechanism by which CBD treats PTSD via corticoraphe circuit. Acute CBD inhibits excess 5-HT release from DRN to amygdala and releases anandamide (AEA) onto amygdala inputs. By first reducing amygdala and DRN hyperactivity, CBD begins to ameliorate activity disparity between mPFC and amygdala. Chronic CBD recruits the mPFC, creating harmonious corticoraphe signaling. DRN releases enough 5-HT to ameliorate mPFC hypoactivity, while the mPFC continuously excites DRN 5-HT neurons via glutamate. Meanwhile, AEA regulates corticoraphe activity to stabilize signaling. AEA prevents DRN GABAergic interneurons from inhibiting 5-HT release so the DRN can assist the mPFC in overcoming its hypoactivity. DRN-mediated restoration of mPFC activity underlies CBD’s mechanism on fear extinction and learning of stress coping. CBD reduces PTSD symptoms via the DRN and corticoraphe circuit. Acute effects of CBD reduce DRN-amygdala excitatory signaling to lessen the activity disparity between amygdala and mPFC. Chronic CBD officially resolves mPFC hypoactivity by facilitating 5-HT release from DRN to mPFC. CBD-facilitated endocannabinoid signaling stabilizes DRN activity and restores mPFC inhibitory control. Chronically administered CBD acts via the corticoraphe circuit to favor fear extinction over fear memory reconsolidation.
Collapse
Key Words
- 2-AG, 2-arachidonoylglycerol
- 5-HT, Serotonin
- 5-HT1AR, 5-HT Receptor Type 1A
- 5-HT2AR, 5-HT Receptor Type 2 A
- AEA, Anandamide
- CB1R, Cannabinoid Receptor Type 1
- CB2R, Cannabinoid Receptor Type 2
- CBD, Cannabidiol
- COVID-19, SARS-CoV-2
- Cannabidiol
- DRN, Dorsal Raphe Nucleus
- ERK1/2, Extracellular Signal-Related Kinases Type 1 or Type 2
- FAAH, Fatty Acid Amide Hydrolase
- GABA, Gamma-Aminobutyric Acid
- GPCRs, G-Protein Coupled Receptors
- NMDAR, N-Methyl-D-aspartate Receptors
- PET, Positron Emission Tomography
- PFC, DRN and Raphe
- PFC, Prefrontal Cortex
- PTSD
- PTSD, Post-Traumatic Stress Disorder
- SSNRI, Selective Norepinephrine Reuptake Inhibitor
- SSRI, Selective Serotonin Reuptake Inhibitor
- Serotonin
- TRPV1, Transient Receptor Potential Vanilloid 1 Channels
- Traumatic Stress
- fMRI, Functional Magnetic Resonance Imaging
- mPFC, Medial Prefrontal Cortex
Collapse
Affiliation(s)
- Claire Alexander
- Department of Biology, Lamar University, Beaumont, TX 77710, USA
| | - Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX 77710, USA
| |
Collapse
|
160
|
L’usage du cannabidiol dans le sport : une bonne idée ? Sci Sports 2021. [DOI: 10.1016/j.scispo.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
161
|
Citalopram and Cannabidiol: In Vitro and In Vivo Evidence of Pharmacokinetic Interactions Relevant to the Treatment of Anxiety Disorders in Young People. J Clin Psychopharmacol 2021; 41:525-533. [PMID: 34121064 DOI: 10.1097/jcp.0000000000001427] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cannabidiol (CBD), a major nonintoxicating constituent of cannabis, exhibits anxiolytic properties in preclinical and human studies and is of interest as a novel intervention for treating anxiety disorders. Existing first-line pharmacotherapies for these disorders include selective serotonin reuptake inhibitor and other antidepressants. Cannabidiol has well-described inhibitory action on cytochrome P450 (CYP450) drug-metabolizing enzymes and significant drug-drug interactions (DDIs) between CBD and various anticonvulsant medications (eg, clobazam) have been described in the treatment of epilepsy. Here, we examined the likelihood of DDIs when CBD is added to medications prescribed in the treatment of anxiety. METHODS The effect of CBD on CYP450-mediated metabolism of the commonly used antidepressants fluoxetine, sertraline, citalopram, and mirtazapine were examined in vitro. Cannabidiol-citalopram interactions were also examined in vivo in patients (n = 6) with anxiety disorders on stable treatment with citalopram or escitalopram who received ascending daily doses of adjunctive CBD (200-800 mg) over 12 weeks in a recent clinical trial. RESULTS Cannabidiol minimally affected the metabolism of sertraline, fluoxetine, and mirtazapine in vitro. However, CBD significantly inhibited CYP3A4 and CYP2C19-mediated metabolism of citalopram and its stereoisomer escitalopram at physiologically relevant concentrations, suggesting a possible in vivo DDI. In patients on citalopram or escitalopram, the addition of CBD significantly increased citalopram plasma concentrations, although it was uncertain whether this also increased selective serotonin reuptake inhibitor-mediated adverse events. CONCLUSIONS Further pharmacokinetic examination of the interaction between CBD and citalopram/escitalopram is clearly warranted, and clinicians should be vigilant around the possibility of treatment-emergent adverse effects when CBD is introduced to patients taking these antidepressants.
Collapse
|
162
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int J Mol Sci 2021; 22:9472. [PMID: 34502379 PMCID: PMC8430969 DOI: 10.3390/ijms22179472] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems. In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development. The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases. This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as "C. sativa L." or "medical cannabis"), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
163
|
Gross C, Ramirez DA, McGrath S, Gustafson DL. Cannabidiol Induces Apoptosis and Perturbs Mitochondrial Function in Human and Canine Glioma Cells. Front Pharmacol 2021; 12:725136. [PMID: 34456736 PMCID: PMC8385407 DOI: 10.3389/fphar.2021.725136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Cannabidiol (CBD), the major non-psychoactive compound found in cannabis, is frequently used both as a nutraceutical and therapeutic. Despite anecdotal evidence as an anticancer agent, little is known about the effect CBD has on cancer cells. Given the intractability and poor prognoses of brain cancers in human and veterinary medicine, we sought to characterize the in vitro cytotoxicity of CBD on human and canine gliomas. Glioma cells treated with CBD showed a range of cytotoxicity from 4.9 to 8.2 μg/ml; canine cells appeared to be more sensitive than human. Treatment with >5 μg/ml CBD invariably produced large cytosolic vesicles. The mode of cell death was then interrogated using pharmacologic inhibitors. Inhibition of apoptosis was sufficient to rescue CBD-mediated cytotoxicity. Inhibition of RIPK3, a classical necroptosis kinase, also rescued cells from death and prevented the formation of the large cytosolic vesicles. Next, cellular mitochondrial activity in the presence of CBD was assessed and within 2 hours of treatment CBD reduced oxygen consumption in a dose dependent manner with almost complete ablation of activity at 10 μg/ml CBD. Fluorescent imaging with a mitochondrial-specific dye revealed that the large cytosolic vesicles were, in fact, swollen mitochondria. Lastly, calcium channels were pharmacologically inhibited and the effect on cell death was determined. Inhibition of mitochondrial channel VDAC1, but not the TRPV1 channel, rescued cells from CBD-mediated cytotoxicity. These results demonstrate the cytotoxic nature of CBD in human and canine glioma cells and suggest a mechanism of action involving dysregulation of calcium homeostasis and mitochondrial activity.
Collapse
Affiliation(s)
- Chase Gross
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Dominique A Ramirez
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Stephanie McGrath
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Daniel L Gustafson
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States.,University of Colorado Cancer Center, Aurora, CO, United States
| |
Collapse
|
164
|
Cannabidiol treatment in hand osteoarthritis and psoriatic arthritis: a randomized, double-blind placebo-controlled trial. Pain 2021; 163:1206-1214. [PMID: 34510141 DOI: 10.1097/j.pain.0000000000002466] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Cannabidiol (CBD) is increasingly used as analgesic medication even though the recent International Association for the Study of Pain presidential task force on cannabis and cannabinoid analgesia found a lack of trials examining CBD for pain management. The present trial examines CBD as add on analgesic therapy in patients with hand osteoarthritis or psoriatic arthritis experiencing moderate pain intensity despite therapy. Using a randomized double-blind, placebo-controlled design, patients received synthetic CBD 20-30mg or placebo daily for 12 weeks. Primary outcome was pain intensity during the last 24 hours (0-100mm); safety outcomes were percentage of patients experiencing adverse events and a characterization of serious adverse events. Explorative outcomes included change in Pittsburgh Sleep Quality Index (PSQI), Hospital Anxiety and Depression Scale (HADS), Pain Catastrophizing Scale (PCS) and Health Assessment Questionnaire (HAQ-DI).One hundred and thirty-six patients were randomized 129 were included in the primary analysis. Between group difference in pain intensity at 12 weeks was 0.23mm (95%CI -9.41 to 9.90; p = 0.96). 22% patients receiving CBD and 21% receiving placebo experienced a reduction in pain intensity of more than 30mm. We found neither clinically nor statistically significant effect of CBD for pain intensity in patients with hand osteoarthritis and psoriatic arthritis when compared to placebo. Additionally, no statistically significant effects were found on sleep quality, depression, anxiety, or pain catastrophizing scores.
Collapse
|
165
|
Shikh EV, Khaytovich ED, Perkov AV. Clinical and pharmacological approaches to the choice of a drug for a tension-type headache relief. TERAPEVT ARKH 2021; 93:862-868. [DOI: 10.26442/00403660.2021.08.200920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
The article goes to describe clinical and pharmacological approaches to choosing a drug with an optimal efficacy/safety profile, providing the necessary analgesic effect in tension-type headache. TRPV1 brain receptors are considered the main action point of the mediator.
Aim. The purpose of this study is a comparative analysis of the pharmacodynamic and pharmacokinetic parameters of ibuprofen and paracetamol as a part of fixed dose combination and as monotherapy in tension type headaches.
Materials and methods. Comparative dissolution kinetics test; Comparative analysis of pharmacokinetic parameters using the PubMed/MEDLINE database.
Results. The median Tmax of ibuprofen as a part of a fixed-dose combination and as a monotherapy is 75 minutes. The median Tmax of paracetamol is 30 min when taken in a fixed dose combination and 40 min as a monotherapy. In patients who received the fixed dose combination, the concentration of ibuprofen in the blood plasma after 10 minutes 6.64 g/ml-1; after 20 minutes 16.81 g/ml-1, while when taken in the same dose in as a monotherapy, respectively, 0.58 and 9.00 g/ml-1. The mean plasma concentrations of paracetamol after 10 and 20 minutes in patients receiving the fixed combination were 5.43 and 14.54 g/ml-1, respectively, compared with 0.33 and 9.19 g/ml-1 for paracetamol as monotherapy. dissolution kinetics test of the Paracytolgin: after 5 minutes, 20% of paracetamol passed into the solution in a system with a pH of 1.2; in a system with a pH of 4.5 36.4%; in a system with a pH of 6.8 33.5%; after 10 minutes, respectively 68.5, 98.0 and 89.6%. After 15 minutes, almost complete dissolution was noted in all systems: 98.5, 98.8 and 100.5%, respectively.
Discussion. The combination of ibuprofen and paracetamol makes it possible to enhance the analgesic effect as a result of additive action by the help of central mechanisms. The fixed dose combination of ibuprofen and paracetamol significantly increases the rate of absorption of paracetamol, which has potential therapeutic benefits in terms of a faster analgesias onset.
Conclusion. The fixed dose combination of ibuprofen and paracetamol provides faster and long-term anaesthesia with a comparatively lower dosage of each analgesic.
Collapse
|
166
|
Yu CHJ, Rupasinghe HPV. Cannabidiol-based natural health products for companion animals: Recent advances in the management of anxiety, pain, and inflammation. Res Vet Sci 2021; 140:38-46. [PMID: 34391060 DOI: 10.1016/j.rvsc.2021.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/18/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022]
Abstract
Recent advances in cannabidiol (CBD) use in canines and felines for anxiety management, pain management, and anti-inflammatory effects were reviewed using a literature search conducted with the following keywords: CBD, anxiety, inflammation, pain, dogs, cats, and companion animals. For decades, research on CBD has been hindered due to the status of cannabis (C. sativa L.) as an illicit drug. Limited safety data show that CBD is well-tolerated in dogs, with insufficient information on the safety profile of CBD in cats. Upon oral supplementation of CBD, elevation in liver enzymes was observed for both dogs and cats, and pharmacokinetics of CBD are different in the two species. There is a significant gap in the literature on the therapeutic use of CBD in cats, with no feline data on anxiety, pain, and inflammation management. There is evidence that chronic osteoarthritic pain in dogs can be reduced by supplementation with CBD. Furthermore, experiments are required to better understand whether CBD has an influence on noise-induced fear and anxiolytic response. Preliminary evidence exists to support the analgesic properties of CBD in treating chronic canine osteoarthritis; however, there are inter- and intra-species differences in pharmacokinetics, tolerance, dosage, and safety of CBD. Therefore, to validate the anxiety management, pain management, and anti-inflammatory efficacy of CBD, it is essential to conduct systematic, randomized, and controlled trials. Further, the safety and efficacious dose of CBD in companion animals warrants investigation.
Collapse
Affiliation(s)
- Cindy H J Yu
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
167
|
Zieglowski L, Kümmecke AM, Ernst L, Palme R, Weiskirchen R, Talbot SR, Tolba RH. Assessing the severity of laparotomy and partial hepatectomy in male rats-A multimodal approach. PLoS One 2021; 16:e0255175. [PMID: 34339407 PMCID: PMC8328343 DOI: 10.1371/journal.pone.0255175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/10/2021] [Indexed: 11/18/2022] Open
Abstract
This study assessed the postoperative severity after three different visceral surgical interventions in rats by using objective parameters pertaining to various disciplines. The objective was to evaluate whether the degree of severity increases with the invasiveness of the intervention and whether this is in accordance with the EU Directive 2010/63. 136 adult male WistarHan rats were assigned to three groups: Sham-laparotomy (Sham) [7 days post-surgical survival time]; 50% partial hepatectomy (PH); 70% PH [PH groups with 1, 3, or 7 days post-surgical survival times]. Post-surgical severity assessment was performed via several multimodal assessment tools: I) model-specific score sheet focusing on body weight, general condition, spontaneous behavior, and the animals' willingness to move as well as on wound healing; II) Open Field tests evaluating the total distance and velocity an animal moved within 10 minutes and its rearing behavior during the test; III) telemetric data analyzing heart rate and blood pressure; and IV) analysis of blood (AST, ALT, and hemogram) and fecal samples (fecal corticosterone metabolites). Significant differences among the experimental groups and models were observed. We demonstrated that the Open Field test can detect significant changes in severity levels. Sham-laparotomy and removal of 50% of the liver mass were associated with comparable severity (mild-moderate); the severity parameters returned to baseline levels within seven days. Removal of 70% of the liver tissue seemed to be associated with a moderate severity grade and entailed a longer recovery period (>7 days) for complete regeneration. We recommend the use of Open Field tests as part of multimodal objective severity assessment.
Collapse
Affiliation(s)
- Leonie Zieglowski
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Anna Maria Kümmecke
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lisa Ernst
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Faculty of Medicine, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University, Aachen, Germany
| | - Steven R. Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - René H. Tolba
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
168
|
Esh CJ, Chrismas BCR, Mauger AR, Taylor L. Pharmacological hypotheses: Is acetaminophen selective in its cyclooxygenase inhibition? Pharmacol Res Perspect 2021; 9:e00835. [PMID: 34278737 PMCID: PMC8287062 DOI: 10.1002/prp2.835] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The precise mechanistic action of acetaminophen (ACT; paracetamol) remains debated. ACT's analgesic and antipyretic actions are attributed to cyclooxygenase (COX) inhibition preventing prostaglandin (PG) synthesis. Two COX isoforms (COX1/2) share 60% sequence structure, yet their functions vary. COX variants have been sequenced among various mammalian species including humans. A COX1 splice variant (often termed COX3) is purported by some as the elusive target of ACT's mechanism of action. Yet a physiologically functional COX3 isoform has not been sequenced in humans, refuting these claims. ACT may selectively inhibit COX2, with evidence of a 4.4-fold greater COX2 inhibition than COX1. However, this is markedly lower than other available selective COX2 inhibitors (up to 433-fold) and tempered by proof of potent COX1 inhibition within intact cells when peroxide tone is low. COX isoform inhibition by ACT may depend on subtle in vivo physiological variations specific to ACT. In vivo ACT efficacy is reliant on intact cells and low peroxide tone while the arachidonic acid concentration state can dictate the COX isoform preferred for PG synthesis. ACT is an effective antipyretic (COX2 preference for PG synthesis) and can reduce afebrile core temperature (likely COX1 preference for PG synthesis). Thus, we suggest with specificity to human in vivo physiology that ACT: (i) does not act on a third COX isoform; (ii) is not selective in its COX inhibition; and (iii) inhibition of COX isoforms are determined by subtle and nuanced physiological variations. Robust research designs are required in humans to objectively confirm these hypotheses.
Collapse
Affiliation(s)
- Christopher J Esh
- Aspetar-Qatar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support, Aspire Zone, Doha, Qatar
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Bryna C R Chrismas
- Department of Physical Education, College of Education, Qatar University, Doha, Qatar
| | - Alexis R Mauger
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, UK
| | - Lee Taylor
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
| |
Collapse
|
169
|
Silva-Cardoso GK, Lazarini-Lopes W, Hallak JE, Crippa JA, Zuardi AW, Garcia-Cairasco N, Leite-Panissi CRA. Cannabidiol effectively reverses mechanical and thermal allodynia, hyperalgesia, and anxious behaviors in a neuropathic pain model: Possible role of CB1 and TRPV1 receptors. Neuropharmacology 2021; 197:108712. [PMID: 34274349 DOI: 10.1016/j.neuropharm.2021.108712] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023]
Abstract
The incidence of chronic pain is high in the general population and it is closely related to anxiety disorders, which promote negative effects on the quality of life. The cannabinoid system has essential participation in the pain sensitivity circuit. In this perspective, cannabidiol (CBD) is considered a promising strategy for treating neuropathic pain. Our study aimed to evaluate the effects of sub-chronic systemic treatment with CBD (0.3, 3, 10, or 30 mg/kg, i.p.) in male in rats submitted to chronic constriction injury of the sciatic nerve (CCI) or not (SHAM) and assessed in nociceptive tests (von Frey, acetone, and hot plate, three days CBD's treatment) and in the open field test (OFT, two days CBD's treatment). We performed a screening immunoreactivity of CB1 and TRPV1 receptors in cortical and limbic regions tissues, which were collected after 1.5 h of behavioral tests on the 24th experimental day. This study presents a dose-response curve to understand better the effects of low doses (3 mg/kg) on CBD's antiallodynic and anxiolytic effects. Also, low doses of CBD were able to (1) reverse mechanical and thermal allodynia (cold) and hyperalgesia, (2) reverse anxious behaviors (reduction of the % of grooming and freezing time, and increase of the % of center time in the OFT) induced by chronic pain. The peripheral neuropathy promoted the increase in the expression of CB1 and TRPV1 receptors in the anterior cingulate cortex (ACC), anterior insular cortex (AIC), basolateral amygdala (BLA), dorsal hippocampus (DH), and ventral hippocampus (VH). CBD potentiated this effect in the ACC, AIC, BLA, DH, and VH regions. These results provide substantial evidence of the role of the ACC-AIC-BLA corticolimbic circuit, and BLA-VH for pain regulation. These results can be clinically relevant since they contribute to the evidence of CBD's beneficial effects on treating chronic pain and associated comorbidities such as anxiety.
Collapse
Affiliation(s)
- Gleice K Silva-Cardoso
- Department of Psychology, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - Willian Lazarini-Lopes
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - Jaime E Hallak
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - Antonio W Zuardi
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | - Christie R A Leite-Panissi
- Department of Psychology, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil.
| |
Collapse
|
170
|
Cannabidiol has therapeutic potential for myofascial pain in female and male parkinsonian rats. Neuropharmacology 2021; 196:108700. [PMID: 34246682 DOI: 10.1016/j.neuropharm.2021.108700] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
The musculoskeletal orofacial pain is a complex symptom of Parkinson's disease (PD) resulting in stomatognathic system dysfunctions aggravated by the disease rigidity and postural instability. We tested the effect of cannabidiol (CBD), a non-psychotomimetic constituent of Cannabis sativa, in PD-related myofascial pain. Wistar adult female and male rats orofacial allodynic and hyperalgesic responses were tested by Von Frey and formalin tests, before and 21 days past 6-OHDA lesion. Algesic response was tested after masseter muscle injection of CBD (10, 50, 100 μg in 10 μL) or vehicle. Males compared to females in all estrous cycles' phases presented reduced orofacial allodynia and hyperalgesia. According to the estrous cycle's phases, females presented distinct orofacial nociceptive responses, being the estrus phase well-chosen for nociceptive analysis after 6-OHDA lesion (phase with fewer hormone alterations and adequate length). Dopaminergic neuron lesion decreased mechanical and inflammatory nociceptive thresholds in females and males in a higher proportion in females. CBD local treatment reduced the increased orofacial allodynia and hyperalgesia, in males and females. The female rats were more sensitive to CBD effect considering allodynia, responding to the lowest dose. Although females and males respond to the effect of three doses of CBD in the formalin test, males showed a superior reduction in the hyperalgesic response. These results indicate that hemiparkinsonian female in the estrus phase and male answer differently to the different doses of CBD therapy and nociceptive tests. CBD therapy is effective for parkinsonism-induced orofacial nociception.
Collapse
|
171
|
Arout CA, Haney M, Herrmann ES, Bedi G, Cooper ZD. A placebo-controlled investigation of the analgesic effects, abuse liability, safety and tolerability of a range of oral cannabidiol doses in healthy humans. Br J Clin Pharmacol 2021; 88:347-355. [PMID: 34223660 DOI: 10.1111/bcp.14973] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
AIMS Preclinical studies demonstrate that cannabidiol (CBD) elicits an antinociceptive response in animal models of neuropathic pain; in humans, limited data are available to support such analgesic effects. Few studies have examined CBD's analgesic effects when administered without other compounds, and little is known regarding dose-dependent effects in noncannabis users. METHODS This double-blind, placebo-controlled, within-subject outpatient clinical laboratory study sought to determine the analgesic effects, abuse liability, safety and tolerability of acute CBD (0, 200, 400 and 800 mg orally) in healthy noncannabis-using volunteers (n = 17; 8 men, 9 women). Outcomes included experimental pain threshold and pain tolerance using the cold pressor test (CPT), subjective ratings of CPT painfulness and bothersomeness, subjective ratings of abuse liability and mood, and cardiovascular measures, which were assessed at baseline and several time points after drug administration. Data analyses included repeated measures analysis of variance (ANOVA) with planned comparisons. RESULTS CBD failed to consistently affect pain threshold and tolerance in the CPT relative to placebo. All doses of CBD increased ratings of painfulness compared to placebo (P < .01). Further, CBD had dose-dependent, modest effects on mood and subjective drug effects associated with abuse liability. Oral CBD was safe and well tolerated, producing small decreases in blood pressure (P < .01). CONCLUSION CBD did not elicit consistent dose-dependent analgesia and in fact increased pain on some measures. Future studies exploring CBD-induced pain relief should consider using a more extensive pain assessment paradigm in different participant populations.
Collapse
Affiliation(s)
- Caroline A Arout
- Division on Substance Use Disorders, New York Psychiatric Institute and Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Margaret Haney
- Division on Substance Use Disorders, New York Psychiatric Institute and Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Evan S Herrmann
- Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, USA
| | - Gillinder Bedi
- Centre for Youth Mental Health, The University of Melbourne and Substance Use Research Group, Melbourne, Australia
| | - Ziva D Cooper
- University of California, Los Angeles Cannabis Research Initiative, Jane & Terry Semel Institute for Neuroscience & Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Los Angeles, CA, USA.,Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
172
|
Naik H, Trojian TH. Therapeutic Potential for Cannabinoids in Sports Medicine: Current Literature Review. Curr Sports Med Rep 2021; 20:345-350. [PMID: 34234089 DOI: 10.1249/jsr.0000000000000858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ABSTRACT Cannabidiol and other cannabinoids are being used more frequently for sports medicine-related conditions. This review will help sports medicine clinicians answer questions that their athletes and active patients have about the potential effectiveness of cannabinoids on common sports medicine conditions. In the article, the authors compare cannabidiol and delta-9-tetrahydrocannabinol effects, noting the difference on the endocannabinoid and nonendocannabinoid receptors. The theoretical benefits of these two compounds and the current legality in the United States surrounding cannabidiol and delta-9-tetrahydrocannabinol use also are addressed.
Collapse
|
173
|
Finn DP, Haroutounian S, Hohmann AG, Krane E, Soliman N, Rice ASC. Cannabinoids, the endocannabinoid system, and pain: a review of preclinical studies. Pain 2021; 162:S5-S25. [PMID: 33729211 PMCID: PMC8819673 DOI: 10.1097/j.pain.0000000000002268] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT This narrative review represents an output from the International Association for the Study of Pain's global task force on the use of cannabis, cannabinoids, and cannabis-based medicines for pain management, informed by our companion systematic review and meta-analysis of preclinical studies in this area. Our aims in this review are (1) to describe the value of studying cannabinoids and endogenous cannabinoid (endocannabinoid) system modulators in preclinical/animal models of pain; (2) to discuss both pain-related efficacy and additional pain-relevant effects (adverse and beneficial) of cannabinoids and endocannabinoid system modulators as they pertain to animal models of pathological or injury-related persistent pain; and (3) to identify important directions for future research. In service of these goals, this review (1) provides an overview of the endocannabinoid system and the pharmacology of cannabinoids and endocannabinoid system modulators, with specific relevance to animal models of pathological or injury-related persistent pain; (2) describes pharmacokinetics of cannabinoids in rodents and humans; and (3) highlights differences and discrepancies between preclinical and clinical studies in this area. Preclinical (rodent) models have advanced our understanding of the underlying sites and mechanisms of action of cannabinoids and the endocannabinoid system in suppressing nociceptive signaling and behaviors. We conclude that substantial evidence from animal models supports the contention that cannabinoids and endocannabinoid system modulators hold considerable promise for analgesic drug development, although the challenge of translating this knowledge into clinically useful medicines is not to be underestimated.
Collapse
Affiliation(s)
- David P Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, Human Biology Building, National University of Ireland Galway, University Road, Galway, Ireland
| | - Simon Haroutounian
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Andrea G Hohmann
- Psychological and Brain Sciences, Program in Neuroscience, and Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Elliot Krane
- Departments of Anesthesiology, Perioperative, and Pain Medicine, & Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Nadia Soliman
- Pain Research, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - Andrew SC Rice
- Pain Research, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
174
|
Malvestio RB, Medeiros P, Negrini-Ferrari SE, Oliveira-Silva M, Medeiros AC, Padovan CM, Luongo L, Maione S, Coimbra NC, de Freitas RL. Cannabidiol in the prelimbic cortex modulates the comorbid condition between the chronic neuropathic pain and depression-like behaviour in rats: The role of medial prefrontal cortex 5-HT 1A and CB 1 receptors. Brain Res Bull 2021; 174:323-338. [PMID: 34192579 DOI: 10.1016/j.brainresbull.2021.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 01/06/2023]
Abstract
The prelimbic division (PrL) of the medial prefrontal cortex (mPFC) is a cerebral division that is putatively implicated in the chronic pain and depression. We investigated the activity of PrL cortex neurons in Wistar rats that underwent chronic constriction injury (CCI) of sciatic nerve and were further subjected to the forced swimming (FS) test and mechanical allodynia (by von Frey test). The effect of blockade of synapses with cobalt chloride (CoCl2), and the treatment of the PrL cortex with cannabidiol (CBD), the CB1 receptor antagonist AM251 and the 5-HT1A receptor antagonist WAY-100635 were also investigated. Our results showed that CoCl2 decreased the time spent immobile during the FS test but did not alter mechanical allodynia. CBD (at 15, 30 and 60 nmol) in the PrL cortex also decreased the frequency and duration of immobility; however, only the dose of 30 nmol of CBD attenuated mechanical allodynia in rats with chronic NP. AM251 and WAY-100635 in the PrL cortex attenuated the antidepressive and analgesic effect caused by CBD but did not alter the immobility and the mechanical allodynia when administered alone. These data show that the PrL cortex is part of the neural substrate underlying the comorbidity between NP and depression. Also, the previous blockade of CB1 cannabinoid receptors and 5-HT1A serotonergic receptors in the PrL cortex attenuated the antidepressive and analgesics effect of the CBD. They also suggest that CBD could be a potential medicine for the treatment of depressive and pain symptoms in patients with chronic NP/depression comorbidity.
Collapse
Affiliation(s)
- R B Malvestio
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - P Medeiros
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - S E Negrini-Ferrari
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - M Oliveira-Silva
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - A C Medeiros
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - C M Padovan
- Laboratory of Neurobiology of Stress and Depression, Department of Psychology, Ribeirão Preto School of Philosophy, Sciences and Literature of the University of São Paulo (FFCLRP-USP), Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - L Luongo
- Department of Experimental Medicine, Division of Pharmacology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy; IRCCS Neuromed, 86077, Pozzilli-Caserta, Italy
| | - S Maione
- Department of Experimental Medicine, Division of Pharmacology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy; IRCCS Neuromed, 86077, Pozzilli-Caserta, Italy
| | - N C Coimbra
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - R L de Freitas
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil; Biomedical Sciences Institute (ICB), Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, 700, Alfenas, 37130-000, Minas Gerais, Brazil.
| |
Collapse
|
175
|
Paudel P, Ross S, Li XC. Molecular Targets of Cannabinoids Associated with Depression. Curr Med Chem 2021; 29:1827-1850. [PMID: 34165403 DOI: 10.2174/0929867328666210623144658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
Novel therapeutic strategies are needed to address depression, a major neurological disorder affecting hundreds of millions of people worldwide. Cannabinoids and their synthetic derivatives have demonstrated numerous neurological activities and may potentially be developed into new treatments for depression. This review highlights cannabinoid (CB) receptors, monoamine oxidase (MAO), N-methyl-D-aspartate (NMDA) receptor, gamma-aminobutyric acid (GABA) receptor, and cholecystokinin (CCK) receptor as key molecular targets of cannabinoids that are associated with depression. The anti-depressant activity of cannabinoids and their binding modes with cannabinoid receptors are discussed, providing insights into rational design and discovery of new cannabinoids or cannabimimetic agents with improved druggable properties.
Collapse
Affiliation(s)
- Pradeep Paudel
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Samir Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Xing-Cong Li
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
176
|
Cannabidiol Inhibition of Murine Primary Nociceptors: Tight Binding to Slow Inactivated States of Na v1.8 Channels. J Neurosci 2021; 41:6371-6387. [PMID: 34131037 DOI: 10.1523/jneurosci.3216-20.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/11/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The nonpsychoactive phytocannabinoid cannabidiol (CBD) has been shown to have analgesic effects in animal studies but little is known about its mechanism of action. We examined the effects of CBD on intrinsic excitability of primary pain-sensing neurons. Studying acutely dissociated capsaicin-sensitive mouse DRG neurons at 37°C, we found that CBD effectively inhibited repetitive action potential firing, from 15-20 action potentials evoked by 1 s current injections in control to 1-3 action potentials with 2 μm CBD. Reduction of repetitive firing was accompanied by a reduction of action potential height, widening of action potentials, reduction of the afterhyperpolarization, and increased propensity to enter depolarization block. Voltage-clamp experiments showed that CBD inhibited both TTX-sensitive and TTX-resistant (TTX-R) sodium currents in a use-dependent manner. CBD showed strong state-dependent inhibition of TTX-R channels, with fast binding to inactivated channels during depolarizations and slow unbinding on repolarization. CBD alteration of channel availability at various voltages suggested that CBD binds especially tightly [K d (dissociation constant), ∼150 nm] to the slow inactivated state of TTX-R channels, which can be substantially occupied at voltages as negative as -40 mV. Remarkably, CBD was more potent in inhibiting TTX-R channels and inhibiting action potential firing than the local anesthetic bupivacaine. We conclude that CBD might produce some of its analgesic effects by direct effects on neuronal excitability, with tight binding to the slow inactivated state of Nav1.8 channels contributing to effective inhibition of repetitive firing by modest depolarizations.SIGNIFICANCE STATEMENT Cannabidiol (CBD) has been shown to inhibit pain in various rodent models, but the mechanism of this effect is unknown. We describe the ability of CBD to inhibit repetitive action potential firing in primary nociceptive neurons from mouse dorsal root ganglia and analyze the effects on voltage-dependent sodium channels. We find that CBD interacts with TTX-resistant sodium channels in a state-dependent manner suggesting particularly tight binding to slow inactivated states of Nav1.8 channels, which dominate the overall inactivation of Nav1.8 channels for small maintained depolarizations from the resting potential. The results suggest that CBD can exert analgesic effects in part by directly inhibiting repetitive firing of primary nociceptors and suggest a strategy of identifying compounds that bind selectively to slow inactivated states of Nav1.8 channels for developing effective analgesics.
Collapse
|
177
|
Petrie GN, Nastase AS, Aukema RJ, Hill MN. Endocannabinoids, cannabinoids and the regulation of anxiety. Neuropharmacology 2021; 195:108626. [PMID: 34116110 DOI: 10.1016/j.neuropharm.2021.108626] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cannabis has been used for hundreds of years, with its ability to dampen feelings of anxiety often reported as a primary reason for use. Only recently has the specific role cannabinoids play in anxiety been thoroughly investigated. Here we discuss the body of evidence describing how endocannabinoids and exogenous cannabinoids are capable of regulating the generation and termination of anxiety states. Disruption of the endogenous cannabinoid (eCB) system following genetic manipulation, pharmacological intervention or stress exposure reliably leads to the generation of an anxiety state. On the other hand, upregulation of eCB signaling is capable of alleviating anxiety-like behaviors in multiple paradigms. When considering exogenous cannabinoid administration, cannabinoid receptor 1 (CB1) agonists have a biphasic, dose-dependent effect on anxiety such that low doses are anxiolytic while high doses are anxiogenic, a phenomenon that is evident in both rodent models and humans. Translational studies investigating a loss of function mutation in the gene for fatty acid amide hydrolase, the enzyme responsible for metabolizing AEA, have also shown that AEA signaling regulates anxiety in humans. Taken together, evidence reviewed here has outlined a convincing argument for cannabinoids being powerful regulators of both the manifestation and amelioration of anxiety symptoms, and highlights the therapeutic potential of targeting the eCB system for the development of novel classes of anxiolytics. This article is part of the special issue on 'Cannabinoids'.
Collapse
Affiliation(s)
- Gavin N Petrie
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Andrei S Nastase
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Robert J Aukema
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
178
|
Mahurkar-Joshi S, Rankin CR, Videlock EJ, Soroosh A, Verma A, Khandadash A, Iliopoulos D, Pothoulakis C, Mayer EA, Chang L. The Colonic Mucosal MicroRNAs, MicroRNA-219a-5p, and MicroRNA-338-3p Are Downregulated in Irritable Bowel Syndrome and Are Associated With Barrier Function and MAPK Signaling. Gastroenterology 2021; 160:2409-2422.e19. [PMID: 33617890 PMCID: PMC8169529 DOI: 10.1053/j.gastro.2021.02.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Alterations in microRNA (miRNA) and in the intestinal barrier are putative risk factors for irritable bowel syndrome (IBS). We aimed to identify differentially expressed colonic mucosal miRNAs, their targets in IBS compared to healthy controls (HCs), and putative downstream pathways. METHODS Twenty-nine IBS patients (15 IBS with constipation [IBS-C], 14 IBS with diarrhea [IBS-D]), and 15 age-matched HCs underwent sigmoidoscopy with biopsies. A nCounter array was used to assess biopsy specimen-associated miRNA levels. A false discovery rate (FDR) < 10% was considered significant. Real-time polymerase chain reaction (PCR) was used to validate differentially expressed genes. To assess barrier function, trans-epithelial electrical resistance (TEER) and dextran flux assays were performed on Caco-2 intestinal epithelial cells that were transfected with miRNA-inhibitors or control inhibitors. Protein expression of barrier function associated genes was confirmed using western blots. RESULTS Four out of 247 miRNAs tested were differentially expressed in IBS compared to HCs (FDR < 10%). Real-time PCR validation suggested decreased levels of miR-219a-5p and miR-338-3p in IBS (P = .026 and P = .004), and IBS-C (P = .02 and P = .06) vs. HCs as the strongest associations. Inhibition of miR-219a-5p resulted in altered expression of proteasome/barrier function genes. Functionally, miR-219a-5p inhibition enhanced the permeability of intestinal epithelial cells as TEER was reduced (25-50%, P < .05) and dextran flux was increased (P < .01). Additionally, inhibition of miR-338-3p in cells caused alterations in the mitogen-activated protein kinase (MAPK) signaling pathway genes. CONCLUSION Two microRNAs that potentially affect permeability and visceral nociception were identified to be altered in IBS patients. MiR-219a-5p and miR-338-3p potentially alter barrier function and visceral hypersensitivity via neuronal and MAPK signaling and could be therapeutic targets in IBS.
Collapse
Affiliation(s)
- Swapna Mahurkar-Joshi
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Carl Robert Rankin
- UCLA Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Elizabeth Jane Videlock
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Artin Soroosh
- UCLA Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Abhishek Verma
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ariela Khandadash
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Dimitrios Iliopoulos
- UCLA Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- UCLA Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
179
|
Cahill SP, Lunn SE, Diaz P, Page JE. Evaluation of Patient Reported Safety and Efficacy of Cannabis From a Survey of Medical Cannabis Patients in Canada. Front Public Health 2021; 9:626853. [PMID: 34095048 PMCID: PMC8172603 DOI: 10.3389/fpubh.2021.626853] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/22/2021] [Indexed: 11/18/2022] Open
Abstract
With the medical use of cannabis permitted in Canada since 2001, patients seek to use this botanical drug to treat a range of medical conditions. However, many healthcare practitioners express the need for further scientific evidence around the use of medical cannabis. This real-world evidence study aimed to address the paucity of scientific data by surveying newly registered medical cannabis patients, before beginning medical cannabis treatment, and at one follow up 6 weeks after beginning medical cannabis treatment. The goal was to collect data on efficacy, safety and cannabis product type information to capture the potential impact medical cannabis had on patient-reported quality of life (QOL) and several medical conditions over a 6-week period using validated questionnaires. The 214 participants were mainly male (58%) and 57% of the population was older than 50. The most frequently reported medical conditions were recurrent pain, post-traumatic stress disorder (PTSD), anxiety, sleep disorders [including restless leg syndrome (RLS)], and arthritis and other rheumatic disorders. Here we report that over 60% of our medical cannabis cohort self-reported improvements in their medical conditions. With the use of validated surveys, we found significant improvements in recurrent pain, PTSD, and sleep disorders after 6 weeks of medical cannabis treatment. Our findings from patients who reported arthritis and other rheumatic disorders are complex, showing improvements in pain and global activity sub-scores, but not overall changes in validated survey scores. We also report that patients who stated anxiety as their main medical condition did not experience significant changes in their anxiety after 6 weeks of cannabis treatment, though there were QOL improvements. While these results show that patients find cannabis treatment effective for a broad range of medical conditions, cannabis was not a remedy for all the conditions investigated. Thus, there is a need for future clinical research to support the findings we have reported. Additionally, while real-world evidence has not historically been utilized by regulatory bodies, we suggest changes in public policy surrounding cannabis should occur to reflect patient reported efficacy of cannabis from real-world studies due to the uniqueness of medical cannabis's path to legalization.
Collapse
Affiliation(s)
| | | | | | - Jonathan E. Page
- Aurora Cannabis Inc., Edmonton, AB, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
180
|
Aebersold A, Duff M, Sloan L, Song ZH. Cannabidiol Signaling in the Eye and Its Potential as an Ocular Therapeutic Agent. Cell Physiol Biochem 2021; 55:1-14. [PMID: 33984199 PMCID: PMC8807061 DOI: 10.33594/000000371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/01/2022] Open
Abstract
Cannabidiol (CBD), the major non-intoxicating constituent of Cannabis sativa, has gained recent attention due to its putative therapeutic uses for a wide variety of diseases. CBD was discovered in the 1940s and its structure fully characterized in the 1960s. However, for many years most research efforts related to cannabis derived chemicals have focused on D9-tetrahydrocannabinol (THC). In contrast to THC, the lack of intoxicating psychoactivity associated with CBD highlights the potential of this cannabinoid for clinical drug development. This review details in vitro and in vivo studies of CBD related to the eye, the therapeutic potential of cannabidiol for various ocular conditions, and molecular targets and mechanisms for CBD-induced ocular effects. In addition, challenges of CBD applications for clinical ocular therapeutics and future directions are discussed.
Collapse
Affiliation(s)
- Alyssa Aebersold
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Max Duff
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lucy Sloan
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA,
| |
Collapse
|
181
|
Wilkerson JL, Bilbrey JA, Felix JS, Makriyannis A, McMahon LR. Untapped endocannabinoid pharmacological targets: Pipe dream or pipeline? Pharmacol Biochem Behav 2021; 206:173192. [PMID: 33932409 DOI: 10.1016/j.pbb.2021.173192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
It has been established that the endogenous cannabinoid (endocannabinoid) system plays key modulatory roles in a wide variety of pathological conditions. The endocannabinoid system comprises both cannabinoid receptors, their endogenous ligands including 2-arachidonoylglycerol (2-AG), N-arachidonylethanolamine (anandamide, AEA), and enzymes that regulate the synthesis and degradation of endogenous ligands which include diacylglycerol lipase alpha (DAGL-α), diacylglycerol lipase beta (DAGL-β), fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), α/β hydrolase domain 6 (ABHD6). As the endocannabinoid system exerts considerable involvement in the regulation of homeostasis and disease, much effort has been made towards understanding endocannabinoid-related mechanisms of action at cellular, physiological, and pathological levels as well as harnessing the various components of the endocannabinoid system to produce novel therapeutics. However, drug discovery efforts within the cannabinoid field have been slower than anticipated to reach satisfactory clinical endpoints and raises an important question into the validity of developing novel ligands that therapeutically target the endocannabinoid system. To answer this, we will first examine evidence that supports the existence of an endocannabinoid system role within inflammatory diseases, neurodegeneration, pain, substance use disorders, mood disorders, as well as metabolic diseases. Next, this review will discuss recent clinical studies, within the last 5 years, of cannabinoid compounds in context to these diseases. We will also address some of the challenges and considerations within the cannabinoid field that may be important in the advancement of therapeutics into the clinic.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Joshua A Bilbrey
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jasmine S Felix
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Departments of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
182
|
Buckner JD, Morris PE, Abarno CN, Glover NI, Lewis EM. Biopsychosocial Model Social Anxiety and Substance Use Revised. Curr Psychiatry Rep 2021; 23:35. [PMID: 33864136 DOI: 10.1007/s11920-021-01249-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW To review data published in the past 5 years to evaluate the utility of our biopsychosocial model of social anxiety's relation to substance misuse to evaluate the model's utility and update it. RECENT FINDINGS Data support the utility of our revised model-e.g., socially anxious persons report using substances to manage subjective anxiety, despite evidence that some substances may not have a direct effect on physiological responding. Other factors with promise include social influence, cognitive processes (e.g., post-event processing), and avoidance. Data highlight the importance of context as socially anxious persons use some substances more in some high-risk situations, despite lack of relation between social anxiety and use generally. Sociocultural factors remain understudied. This updated model is a theory- and data-driven model of the relations between social anxiety and substance misuse that can inform future work to improve substance-related outcomes among this especially vulnerable group.
Collapse
Affiliation(s)
- Julia D Buckner
- Department of Psychology, Louisiana State University, 236 Audubon Hall, Baton Rouge, LA, 70803, USA.
| | - Paige E Morris
- Department of Psychology, Louisiana State University, 236 Audubon Hall, Baton Rouge, LA, 70803, USA
| | - Cristina N Abarno
- Department of Psychology, Louisiana State University, 236 Audubon Hall, Baton Rouge, LA, 70803, USA
| | - Nina I Glover
- Department of Psychology, Louisiana State University, 236 Audubon Hall, Baton Rouge, LA, 70803, USA
| | - Elizabeth M Lewis
- Department of Psychology, Louisiana State University, 236 Audubon Hall, Baton Rouge, LA, 70803, USA
| |
Collapse
|
183
|
Chaves YC, Genaro K, Crippa JA, da Cunha JM, Zanoveli JM. Cannabidiol induces antidepressant and anxiolytic-like effects in experimental type-1 diabetic animals by multiple sites of action. Metab Brain Dis 2021; 36:639-652. [PMID: 33464458 DOI: 10.1007/s11011-020-00667-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
Cannabidiol (CBD), a phytocannabinoid compound, presents antidepressant and anxiolytic-like effects in the type-1 diabetes mellitus(DM1) animal model. Although the underlying mechanism remains unknown, the type-1A serotonin receptor (5-HT1A) and cannabinoids type-1 (CB1) and type-2 (CB2) receptors seem to play a central role in mediating the beneficial effects on emotional responses. We aimed to study the involvement of these receptors on an antidepressant- and anxiolytic-like effects of CBD and on some parameters of the diabetic condition itself. After 2 weeks of the DM1 induction in male Wistar rats by streptozotocin (60 mg/kg; i.p.), animals were treated continuously for 2-weeks with the 5-HT1A receptor antagonist WAY100635 (0.1 mg/kg, i.p.), CB1 antagonist AM251 (1 mg/kg i.p.) or CB2 antagonist AM630 (1 mg/kg i.p.) before the injection of CBD (30 mg/kg, i.p.) or vehicle (VEH, i.p.) and then, they were submitted to the elevated plus-maze and forced swimming tests. Our findings show the continuous treatment with CBD improved all parameters evaluated in these diabetic animals. The previous treatment with the antagonists - 5-HT1A, CB1, or CB2 - blocked the CBD-induced antidepressant-like effect whereas only the blockade of 5-HT1A or CB1 receptors was able to inhibit the CBD-induced anxiolytic-like effect. Regarding glycemic control, only the blockade of CB2 was able to inhibit the beneficial effect of CBD in reducing the glycemia of diabetic animals. These findings indicated a therapeutic potential for CBD in the treatment of depression/anxiety associated with diabetes pointing out a complex intrinsic mechanism in which 5-HT1A, CB1, and/or CB2 receptors are differently recruited.
Collapse
MESH Headings
- Animals
- Anti-Anxiety Agents/pharmacology
- Anti-Anxiety Agents/therapeutic use
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Cannabidiol/pharmacology
- Cannabidiol/therapeutic use
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/psychology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/psychology
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Serotonin, 5-HT1A/metabolism
Collapse
Affiliation(s)
- Yane Costa Chaves
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Karina Genaro
- Institute of Neurosciences and Behavior (INeC), University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - José Alexandre Crippa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute of Science and Technology for Translational Medicine (INCT-TM- CNPq), Ribeirão Preto, São Paulo, Brazil
| | - Joice Maria da Cunha
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
- Institute of Neurosciences and Behavior (INeC), University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Janaína Menezes Zanoveli
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil.
- Institute of Neurosciences and Behavior (INeC), University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
184
|
Gromer D, Kiser DP, Pauli P. Thigmotaxis in a virtual human open field test. Sci Rep 2021; 11:6670. [PMID: 33758204 PMCID: PMC7988123 DOI: 10.1038/s41598-021-85678-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Animal models are used to study neurobiological mechanisms in mental disorders. Although there has been significant progress in the understanding of neurobiological underpinnings of threat-related behaviors and anxiety, little progress was made with regard to new or improved treatments for mental disorders. A possible reason for this lack of success is the unknown predictive and cross-species translational validity of animal models used in preclinical studies. Re-translational approaches, therefore, seek to establish cross-species translational validity by identifying behavioral operations shared across species. To this end, we implemented a human open field test in virtual reality and measured behavioral indices derived from animal studies in three experiments (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{N}=31$$\end{document}N=31, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{N}=30$$\end{document}N=30, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{N}=80$$\end{document}N=80). In addition, we investigated the associations between anxious traits and such behaviors. Results indicated a strong similarity in behavior across species, i.e., participants in our study—like rodents in animal studies—preferred to stay in the outer region of the open field, as indexed by multiple behavioral parameters. However, correlational analyses did not clearly indicate that these behaviors were a function of anxious traits of participants. We conclude that the realized virtual open field test is able to elicit thigmotaxis and thus demonstrates cross-species validity of this aspect of the test. Modulatory effects of anxiety on human open field behavior should be examined further by incorporating possible threats in the virtual scenario and/or by examining participants with higher anxiety levels or anxiety disorder patients.
Collapse
Affiliation(s)
- Daniel Gromer
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany.
| | - Dominik P Kiser
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany
| | - Paul Pauli
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany.,Center of Mental Health, Medical Faculty, University of Würzburg, Würzburg, Germany
| |
Collapse
|
185
|
Cannabidiol and Other Cannabinoids in Demyelinating Diseases. Int J Mol Sci 2021; 22:ijms22062992. [PMID: 33804243 PMCID: PMC8001020 DOI: 10.3390/ijms22062992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
A growing body of preclinical evidence indicates that certain cannabinoids, including cannabidiol (CBD) and synthetic derivatives, may play a role in the myelinating processes and are promising small molecules to be developed as drug candidates for management of demyelinating diseases such as multiple sclerosis (MS), stroke and traumatic brain injury (TBI), which are three of the most prevalent demyelinating disorders. Thanks to the properties described for CBD and its interesting profile in humans, both the phytocannabinoid and derivatives could be considered as potential candidates for clinical use. In this review we will summarize current advances in the use of CBD and other cannabinoids as future potential treatments. While new research is accelerating the process for the generation of novel drug candidates and identification of druggable targets, the collaboration of key players such as basic researchers, clinicians and pharmaceutical companies is required to bring novel therapies to the patients.
Collapse
|
186
|
Mabou Tagne A, Fotio Y, Lin L, Squire E, Ahmed F, Rashid TI, Karimian Azari E, Piomelli D. Palmitoylethanolamide and hemp oil extract exert synergistic anti-nociceptive effects in mouse models of acute and chronic pain. Pharmacol Res 2021; 167:105545. [PMID: 33722712 DOI: 10.1016/j.phrs.2021.105545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022]
Abstract
The use of products derived from hemp - i.e., cannabis varieties with low Δ9-tetrahydrocannabinol (Δ9-THC) content - as self-medication for pain and other health conditions is gaining in popularity but preclinical and clinical evidence for their effectiveness remains very limited. In the present study, we assessed the efficacy of a full-spectrum hemp oil extract (HOE; 10, 50 and 100 mg-kg-1; oral route), alone or in combination with the anti-inflammatory and analgesic agent palmitoylethanolamide (PEA; 10, 30, 100 and 300 mg-kg-1; oral route), in the formalin and chronic constriction injury (CCI) tests. We found that HOE exerts modest antinociceptive effects when administered alone, whereas the combination of sub-effective oral doses of HOE and PEA produces a substantial greater-than-additive alleviation of pain-related behaviors. Transcription of interleukin (IL)-6 and IL-10 increased significantly in lumbar spinal cord tissue on day 7 after CCI surgery, an effect that was attenuated to the same extent by HOE alone or by the HOE/PEA combination. Pharmacokinetic experiments show that co-administration of HOE enhances and prolongs systemic exposure to PEA. Collectively, our studies lend support to possible beneficial effects of using HOE in combination with PEA to treat acute and chronic pain.
Collapse
Affiliation(s)
- Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Lin Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Erica Squire
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Tarif Ibne Rashid
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | | | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA; Department of Biological Chemistry, University of California, Irvine, CA 92697-4625, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-4625, USA.
| |
Collapse
|
187
|
Maccioni P, Bratzu J, Carai MAM, Colombo G, Gessa GL. Reducing Effect of Cannabidiol on Alcohol Self-Administration in Sardinian Alcohol-Preferring Rats. Cannabis Cannabinoid Res 2021; 7:161-169. [PMID: 33998889 PMCID: PMC9070735 DOI: 10.1089/can.2020.0132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Introduction: Cannabidiol (CBD) is a major cannabinoid extracted from Cannabis sativa with no abuse potential. Data from recent rodent studies suggest that amelioration of alcohol-motivated behaviors may be one of the numerous pharmacological effects of CBD. This study was designed to contribute to this research, assessing the effect of CBD on operant oral alcohol self-administration in selectively bred Sardinian alcohol-preferring (sP) rats, a validated animal model of excessive alcohol consumption. In addition, this study investigated the effect of CBD on operant self-administration of a highly palatable chocolate solution in Wistar rats. Materials and Methods: Male sP rats were trained to lever respond for alcohol (15% v/v) under the fixed ratio 4 (FR4) schedule of reinforcement. Once lever responding had stabilized, rats were exposed to test sessions under the FR4 and progressive ratio (PR) schedules of reinforcement. Test sessions were preceded by acute treatment with CBD (0, 6.25, 12.5, and 25 mg/kg or 0, 25, 50, and 100 mg/kg, i.p.; each dose range was tested in an independent experiment). Male Wistar rats were trained to lever respond for a chocolate solution (5% w/v chocolate powder) under the FR10 schedule of reinforcement. Once lever responding had stabilized, rats were exposed to test sessions under the same schedule. Test sessions were preceded by acute treatment with CBD (0, 6.25, 12.5, and 25 mg/kg or 0, 25, 50, and 100 mg/kg, i.p., in two independent experiments). Results: Under the FR schedule, treatment with doses of CBD ≥12.5 mg/kg markedly reduced lever responding for alcohol and amount of self-administered alcohol. Under the PR schedule, treatment with CBD produced a slight tendency toward a decrease in lever responding and breakpoint for alcohol. Finally, no dose of CBD affected lever responding for the chocolate solution and amount of self-administered chocolate solution. Discussion: These results extend previous data on CBD ability to affect alcohol-motivated behaviors to an animal model of genetically-determined proclivity to high alcohol consumption. Because of the predictive validity of sP rats, these results may be of relevance in view of possible future studies testing CBD in patients affected by alcohol use disorder.
Collapse
Affiliation(s)
- Paola Maccioni
- Section of Cagliari, Neuroscience Institute, National Research Council of Italy, Monserrato, Italy
| | - Jessica Bratzu
- Section of Cagliari, Neuroscience Institute, National Research Council of Italy, Monserrato, Italy
| | | | - Giancarlo Colombo
- Section of Cagliari, Neuroscience Institute, National Research Council of Italy, Monserrato, Italy
| | - Gian Luigi Gessa
- Section of Cagliari, Neuroscience Institute, National Research Council of Italy, Monserrato, Italy
| |
Collapse
|
188
|
Rinehart L, Spencer S. Which came first: Cannabis use or deficits in impulse control? Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110066. [PMID: 32795592 PMCID: PMC7750254 DOI: 10.1016/j.pnpbp.2020.110066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/12/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Impulse control deficits are often found to co-occur with substance use disorders (SUDs). On the one hand, it is well known that chronic intake of drugs of abuse remodels the brain with significant consequences for a range of cognitive behaviors. On the other hand, individual variation in impulse control may contribute to differences in susceptibility to SUDs. Both of these relationships have been described, thus leading to a "chicken or the egg" debate which remains to be fully resolved. Does impulsivity precede drug use or does it manifest as a function of problematic drug usage? The link between impulsivity and SUDs has been most strongly established for cocaine and alcohol use disorders using both preclinical models and clinical data. Much less is known about the potential link between impulsivity and cannabis use disorder (CUD) or the directionality of this relationship. The initiation of cannabis use occurs most often during adolescence prior to the brain's maturation, which is recognized as a critical period of development. The long-term effects of chronic cannabis use on the brain and behavior have started to be explored. In this review we will summarize these observations, especially as they pertain to the relationship between impulsivity and CUD, from both a psychological and biological perspective. We will discuss impulsivity as a multi-dimensional construct and attempt to reconcile the results obtained across modalities. Finally, we will discuss possible avenues for future research with emerging longitudinal data.
Collapse
Affiliation(s)
- Linda Rinehart
- University of Minnesota, Department of Psychiatry and Behavioral Sciences
| | - Sade Spencer
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, USA.
| |
Collapse
|
189
|
Giacobbe J, Marrocu A, Di Benedetto MG, Pariante CM, Borsini A. A systematic, integrative review of the effects of the endocannabinoid system on inflammation and neurogenesis in animal models of affective disorders. Brain Behav Immun 2021; 93:353-367. [PMID: 33383145 DOI: 10.1016/j.bbi.2020.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/09/2022] Open
Abstract
The endocannabinoid (eCB) system is considered relevant in the pathophysiology of affective disorders, and a potential therapeutic target, as its hypoactivity is considered an important risk factor of depression. However, the biological mechanisms whereby the eCB system affects mood remain elusive. Through a systematic review, thirty-seven articles were obtained from the PubMed/Medline, Web of Science, Embase, PsychInfo, and CINAHL databases, investigating the role of the eCB system on the immune system and neurogenesis, as well as resulting behavioural effects in rodent models of affective disorders. Overall, activation of the eCB system appears to decrease depressive-like behaviour and to be anti-inflammatory, while promoting neuro- and synaptogenesis in various models. Activation of cannabinoid receptors (CBRs) is shown to be crucial in improving depressive-like and anxiety-like behaviour, although cannabidiol administration suggests a role of additional mechanisms. CB1R signalling, as well as fatty acid amide hydrolase (FAAH) inhibition, are associated with decreased pro-inflammatory cytokines. Moreover, activation of CBRs is required for neurogenesis, which is also upregulated by FAAH inhibitors. This review is the first to assess the association between the eCB system, immune system and neurogenesis, alongside behavioural outcomes, across rodent models of affective disorders. We confirm the therapeutic potential of eCB system activation in depression and anxiety, highlighting immunoregulation as an important mechanism whereby dysfunctional behaviour and neurogenesis can be improved.
Collapse
Affiliation(s)
- Juliette Giacobbe
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Alessia Marrocu
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Maria Grazia Di Benedetto
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom; Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
190
|
Mechtler LL, Gengo FM, Bargnes VH. Cannabis and Migraine: It's Complicated. Curr Pain Headache Rep 2021; 25:16. [PMID: 33630181 DOI: 10.1007/s11916-020-00931-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The use of cannabis for the treatment of migraine has become an area of interest with the legalization of medical cannabis in the USA. Understanding the mechanisms of cannabinoids, available studies, and best clinical recommendations is crucial for headache providers to best serve patients. RECENT FINDINGS Patients utilizing medical cannabis for migraine have reported improvement in migraine profile and common comorbidities. Reduction in prescription medication is also common, especially opioids. Side effects exist, with the majority being mild. Not enough data is available for specific dose recommendations, but THC and CBD appear to mediate these observed effects. The purpose of this article is twofold: review the limited research surrounding cannabis for migraine disease and reflect on clinical management experiences to provide recommendations that best capture the potential use of cannabis for migraine.
Collapse
Affiliation(s)
- Laszlo L Mechtler
- Dent Neurologic Institute, 3980 Sheridan Drive, Suite 600, Amherst, NY, 14226, USA.
| | - Fran M Gengo
- Dent Neurologic Institute, 3980 Sheridan Drive, Suite 300, Amherst, NY, 14226, USA
| | - Vincent H Bargnes
- Dent Neurologic Institute, 3980 Sheridan Drive, Suite 600, Amherst, NY, 14226, USA
| |
Collapse
|
191
|
Mori MA, Meyer E, da Silva FF, Milani H, Guimarães FS, Oliveira RMW. Differential contribution of CB1, CB2, 5-HT1A, and PPAR-γ receptors to cannabidiol effects on ischemia-induced emotional and cognitive impairments. Eur J Neurosci 2021; 53:1738-1751. [PMID: 33522084 DOI: 10.1111/ejn.15134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/03/2020] [Accepted: 01/17/2021] [Indexed: 01/08/2023]
Abstract
An ever-increasing body of preclinical studies has shown the multifaceted neuroprotective profile of cannabidiol (CBD) against impairments caused by cerebral ischemia. In this study, we have explored the neuropharmacological mechanisms of CBD action and its impact on functional recovery using a model of transient global cerebral ischemia in mice. C57BL/6J mice were subjected to bilateral common carotid artery occlusion (BCCAO) for 20 min and received vehicle or CBD (10 mg/Kg) 0.5 hr before and 3, 24, and 48 hr after reperfusion. To investigate the neuropharmacological mechanisms of CBD, the animals were injected with CB1 (AM251, 1 mg/kg), CB2 (AM630, 1 mg/kg), 5-HT1A (WAY-100635, 10 mg/kg), or PPAR-γ (GW9662, 3 mg/kg) receptor antagonists 0.5 hr prior to each injection of CBD. The animals were evaluated using a multi-task testing battery that included the open field, elevated zero maze, Y-maze (YM), and forced swim test. CBD prevented anxiety-like behavior, memory impairments, and despair-like behaviors induced by BCCAO in mice. The anxiolytic-like effects of CBD in BCCAO mice were attenuated by CB1 , CB2 , 5-HT1A , and PPAR-γ receptor antagonists. In the YM, both CBD and the CB1 receptor antagonist AM251 increased the exploration of the novel arm in ischemic animals, indicating beneficial effects of these treatments in the spatial memory performance. Together, these findings indicate the involvement of CB1 , CB2 , 5-HT1A, and PPAR-γ receptors in the functional recovery induced by CBD in BCCAO mice.
Collapse
Affiliation(s)
- Marco Aurélio Mori
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Francielly F da Silva
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | | | | |
Collapse
|
192
|
Cannabidiol as a Potential Treatment for Anxiety and Mood Disorders: Molecular Targets and Epigenetic Insights from Preclinical Research. Int J Mol Sci 2021; 22:ijms22041863. [PMID: 33668469 PMCID: PMC7917759 DOI: 10.3390/ijms22041863] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
Cannabidiol (CBD) is the most abundant non-psychoactive component of cannabis; it displays a very low affinity for cannabinoid receptors, facilitates endocannabinoid signaling by inhibiting the hydrolysis of anandamide, and stimulates both transient receptor potential vanilloid 1 and 2 and serotonin type 1A receptors. Since CBD interacts with a wide variety of molecular targets in the brain, its therapeutic potential has been investigated in a number of neuropsychiatric diseases, including anxiety and mood disorders. Specifically, CBD has received growing attention due to its anxiolytic and antidepressant properties. As a consequence, and given its safety profile, CBD is considered a promising new agent in the treatment of anxiety and mood disorders. However, the exact molecular mechanism of action of CBD still remains unknown. In the present preclinical review, we provide a summary of animal-based studies that support the use of CBD as an anxiolytic- and antidepressant-like compound. Next, we describe neuropharmacological evidence that links the molecular pharmacology of CBD to its behavioral effects. Finally, by taking into consideration the effects of CBD on DNA methylation, histone modifications, and microRNAs, we elaborate on the putative role of epigenetic mechanisms in mediating CBD’s therapeutic outcomes.
Collapse
|
193
|
O'Sullivan SE, Stevenson CW, Laviolette SR. Could Cannabidiol Be a Treatment for Coronavirus Disease-19-Related Anxiety Disorders? Cannabis Cannabinoid Res 2021; 6:7-18. [PMID: 33614948 PMCID: PMC7891214 DOI: 10.1089/can.2020.0102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease-19 (COVID-19)-related anxiety and post-traumatic stress symptoms (PTSS) or post-traumatic stress disorder (PTSD) are likely to be a significant long-term issue emerging from the current pandemic. We hypothesize that cannabidiol (CBD), a chemical isolated from Cannabis sativa with reported anxiolytic properties, could be a therapeutic option for the treatment of COVID-19-related anxiety disorders. In the global over-the-counter CBD market, anxiety, stress, depression, and sleep disorders are consistently the top reasons people use CBD. In small randomized controlled clinical trials, CBD (300-800 mg) reduces anxiety in healthy volunteers, patients with social anxiety disorder, those at clinical high risk of psychosis, in patients with Parkinson's disease, and in individuals with heroin use disorder. Observational studies and case reports support these findings, extending to patients with anxiety and sleep disorders, Crohn's disease, depression, and in PTSD. Larger ongoing trials in this area continue to add to this evidence base with relevant patient cohorts, sample sizes, and clinical end-points. Pre-clinical studies reveal the molecular targets of CBD in these indications as the cannabinoid receptor type 1 and cannabinoid receptor type 2 (mainly in fear memory processing), serotonin 1A receptor (mainly in anxiolysis) and peroxisome proliferator-activated receptor gamma (mainly in the underpinning anti-inflammatory/antioxidant effects). Observational and pre-clinical data also support CBD's therapeutic value in improving sleep (increased sleep duration/quality and reduction in nightmares) and depression, which are often comorbid with anxiety. Together these features of CBD make it an attractive novel therapeutic option in COVID-related PTSS that merits investigation and testing through appropriately designed randomized controlled trials.
Collapse
Affiliation(s)
| | - Carl W. Stevenson
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Steven R. Laviolette
- Department of Anatomy and Cell Biology and Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| |
Collapse
|
194
|
Bitencourt RM, Takahashi RN, Carlini EA. From an Alternative Medicine to a New Treatment for Refractory Epilepsies: Can Cannabidiol Follow the Same Path to Treat Neuropsychiatric Disorders? Front Psychiatry 2021; 12:638032. [PMID: 33643100 PMCID: PMC7905048 DOI: 10.3389/fpsyt.2021.638032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022] Open
Abstract
Although cannabis has been known for ages as an "alternative medicine" to provide relief from seizures, pain, anxiety, and inflammation, there had always been a limited scientific review to prove and establish its use in clinics. Early studies carried out by Carlini's group in Brazil suggested that cannabidiol (CBD), a non-psychotropic phytocannabinoid present in Cannabis sativa, has anticonvulsant properties in animal models and reduced seizure frequency in limited human trials. Over the past few years, the potential use of cannabis extract in refractory epilepsy, including childhood epilepsies such as Dravet's syndrome and Lennox-Gastaut Syndrome, has opened a new era of treating epileptic patients. Thus, a considerable number of pre-clinical and clinical studies have provided strong evidence that phytocannabinoids has anticonvulsant properties, as well as being promising in the treatment of different neuropsychiatric disorders, such as depression, anxiety, post-traumatic stress disorder (PTSD), addiction, neurodegenerative disorders and autism spectrum disorder (ASD). Given the advances of cannabinoids, especially CBD, in the treatment of epilepsy, would the same expectation regarding the treatment of other neuropsychiatric disorders be possible? The present review highlights some contributions from Brazilian researchers and other studies reported elsewhere on the history, pre-clinical and clinical data underlying the use of cannabinoids for the already widespread treatment of refractory epilepsies and the possibility of use in the treatment of some neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rafael M. Bitencourt
- Laboratory of Behavioral Neuroscience, Graduate Program in Health Sciences, University of Southern Santa Catarina, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Reinaldo N. Takahashi
- Post Graduate Program in Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Elisaldo A. Carlini
- Centro Brasileiro de Informações Sobre Drogas Psicotrópicas (CEBRID), Department of Preventive Medicine, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| |
Collapse
|
195
|
De Caro C, Cristiano C, Avagliano C, Cuozzo M, La Rana G, Aviello G, De Sarro G, Calignano A, Russo E, Russo R. Analgesic and Anti-Inflammatory Effects of Perampanel in Acute and Chronic Pain Models in Mice: Interaction With the Cannabinergic System. Front Pharmacol 2021; 11:620221. [PMID: 33597883 PMCID: PMC7883473 DOI: 10.3389/fphar.2020.620221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Pain conditions, such as neuropathic pain (NP) and persistent inflammatory pain are therapeutically difficult to manage. Previous studies have shown the involvement of glutamate receptor in pain modulation and in particular same of these showed the key role of the AMPA ionotropic glutamate receptor subtype. Antiseizure medications (ASMs) are often used to treat this symptom, however the effect of perampanel (PER), an ASM acting as selective, non-competitive inhibitor of the AMPA receptor on the management of pain has not well been investigated yet. Here we tested the potential analgesic and anti-inflammatory effects of PER, in acute and chronic pain models. PER was given orally either in acute (5 mg/kg) or repeated administration (3 mg/kg/d for 4 days). Pain response was assessed using models of nociceptive sensitivity, visceral and inflammatory pain, and mechanical allodynia and hyperalgesia induced by chronic constriction injury to the sciatic nerve. PER significantly reduced pain perception in all behavioral tests as well as CCI-induced mechanical allodynia and hyperalgesia in acute regimen (5 mg/kg). This effect was also observed after repeated treatment using the dose of 3 mg/kg/d. The antinociceptive, antiallodynic and antihyperalgesic effects of PER were attenuated when the CB1 antagonist AM251 (1 mg/kg/i.p.) was administered before PER treatment, suggesting the involvement of the cannabinergic system. Moreover, Ex vivo analyses showed that PER significantly increased CB1 receptor expression and reduced inflammatory cytokines (i.e. TNFα, IL-1β, and IL-6) in the spinal cord. In conclusion, these results extend our knowledge on PER antinociceptive and antiallodynic effects and support the involvement of cannabinergic system on its mode of action.
Collapse
Affiliation(s)
- Carmen De Caro
- Department of Health Sciences, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Claudia Cristiano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Giovanna La Rana
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Gabriella Aviello
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Giovambattista De Sarro
- Department of Health Sciences, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Emilio Russo
- Department of Health Sciences, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
196
|
Ibarra-Lecue I, Diez-Alarcia R, Urigüen L. Serotonin 2A receptors and cannabinoids. PROGRESS IN BRAIN RESEARCH 2021; 259:135-175. [PMID: 33541675 DOI: 10.1016/bs.pbr.2021.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Accumulating evidence has proven that both exogenous cannabinoids as well as imbalances in the endocannabinoid system are involved in the onset and development of mental disorders such as anxiety, depression, or schizophrenia. Extensive recent research in this topic has mainly focused on the molecular mechanisms by which cannabinoid agonists may contribute to the pathophysiology of these disorders. Initially, serotonin neurotransmitter garnered most attention due to its relationship to mood disorders and mental diseases, with little attention to specific receptors. To date, the focus has redirected toward the understanding of different serotonin receptors, through a demonstration of its versatile pharmacology and synergy with different modulators. Serotonin 2A receptors are a good example of this phenomenon, and the complex signaling that they trigger appears of high relevance in the context of mental disorders, especially in schizophrenia. This chapter will analyze most relevant attributes of serotonin 2A receptors and the endocannabinoid system, and will highlight the evidence toward the functional bidirectional interaction between these elements in the brain as well as the impact of the endocannabinoid system dysregulation on serotonin 2A receptors functionality.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Madrid, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Madrid, Spain; Biocruces Bizkaia Health Research Institute, Bizkaia, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Madrid, Spain; Biocruces Bizkaia Health Research Institute, Bizkaia, Spain.
| |
Collapse
|
197
|
Meng H, Deshpande A. Cannabinoids in chronic non-cancer pain medicine: moving from the bench to the bedside. BJA Educ 2021; 20:305-311. [PMID: 33456965 DOI: 10.1016/j.bjae.2020.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2020] [Indexed: 01/03/2023] Open
Affiliation(s)
- H Meng
- University of Toronto, Toronto, ON, Canada
| | - A Deshpande
- University of Toronto, Toronto, ON, Canada.,University Health Network, Toronto, ON, Canada
| |
Collapse
|
198
|
Blanton HL, Barnes RC, McHann MC, Bilbrey JA, Wilkerson JL, Guindon J. Sex differences and the endocannabinoid system in pain. Pharmacol Biochem Behav 2021; 202:173107. [PMID: 33444598 DOI: 10.1016/j.pbb.2021.173107] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/30/2020] [Accepted: 12/30/2020] [Indexed: 01/21/2023]
Abstract
Cannabis use has been increasing in recent years, particularly among women, and one of the most common uses of cannabis for medical purposes is pain relief. Pain conditions and response to analgesics have been demonstrated to be influenced by sex, and evidence is emerging that this is also true with cannabinoid-mediated analgesia. In this review we evaluate the preclinical evidence supporting sex differences in cannabinoid pharmacology, as well as emerging evidence from human studies, both clinical and observational. Numerous animal studies have reported sex differences in the antinociceptive response to natural and synthetic cannabinoids that may correlate to sex differences in expression, and function, of endocannabinoid system components. Female rodents have generally been found to be more sensitive to the effects of Δ9-THC. This finding is likely a function of both pharmacokinetic and pharmacodynamics factors including differences in metabolism, differences in cannabinoid receptor expression, and influence of ovarian hormones including estradiol and progesterone. Preclinical evidence supporting direct interactions between sex hormones and the endocannabinoid system may translate to sex differences in response to cannabis and cannabinoid use in men and women. Further research into the role of sex in endocannabinoid system function is critical as we gain a deeper understanding of the impact of the endocannabinoid system in various disease states, including chronic pain.
Collapse
Affiliation(s)
- Henry L Blanton
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States of America.
| | - Robert C Barnes
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States of America
| | - Melissa C McHann
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States of America
| | - Joshua A Bilbrey
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, United States of America
| | - Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, United States of America
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States of America.
| |
Collapse
|
199
|
Matarazzo AP, Elisei LMS, Carvalho FC, Bonfílio R, Ruela ALM, Galdino G, Pereira GR. Mucoadhesive nanostructured lipid carriers as a cannabidiol nasal delivery system for the treatment of neuropathic pain. Eur J Pharm Sci 2021; 159:105698. [PMID: 33406408 DOI: 10.1016/j.ejps.2020.105698] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/04/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
The therapeutic potential of cannabidiol (CBD) has been explored to treat several pathologies, including those in which pain is prevalent. However, the oral bioavailability of CBD is low owing to its high lipophilicity and extensive first-pass metabolism. Considering the ability of the nasal route to prevent liver metabolism and increase brain bioavailability, we developed nanostructured lipid carriers (NLCs) for the nasal administration of CBD. We prepared particles with a positively charged surface, employing stearic acid, oleic acid, Span 20Ⓡ, and cetylpyridinium chloride to obtain mucoadhesive formulations. Characterisation of the CBD-NLC dispersions showed uniform nano-sized particles with diameters smaller than 200 nm, and high drug encapsulation. The mucoadhesion of cationic particles has been related to interactions with negatively charged mucin. Next, we added in-situ gelling polymers to the CBD-NLC dispersion to obtain a CBD-NLC-gel. A thermo-reversible in-situ forming gel was prepared by the addition of PluronicsⓇ. CBD-NLC-gel was characterised by its gelation temperature, rheological behaviour, and mucoadhesion. Both formulations, CBD-NLC and CBD-NLC-gel, showed high mucoadhesion, as assessed by the flow-through method and similar in vitro drug release profiles. The in vivo evaluation showed that CBD-NLC dispersion (without gel), administered intranasally, produced a more significant and lasting antinociceptive effect in animals with neuropathic pain than the oral or nasal administration of CBD solution. However, the nasal administration of CBD-NLC-gel did not lessen mechanical allodynia. These findings demonstrate that in-situ gelling hydrogels are not suitable vehicles for highly lipophilic drugs such as CBD, while cationic CBD-NLC dispersions are promising formulations for the nasal administration of CBD.
Collapse
Affiliation(s)
- Ananda Pulini Matarazzo
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | | | - Flávia Chiva Carvalho
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Rudy Bonfílio
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | | | - Giovane Galdino
- Science of Motricity Institute, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Gislaine Ribeiro Pereira
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
200
|
Boehnke KF, Gagnier JJ, Matallana L, Williams DA. Cannabidiol Use for Fibromyalgia: Prevalence of Use and Perceptions of Effectiveness in a Large Online Survey. THE JOURNAL OF PAIN 2021; 22:556-566. [PMID: 33400996 DOI: 10.1016/j.jpain.2020.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/20/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022]
Abstract
Cannabidiol (CBD) is widely advertised as helpful for chronic pain management but research is limited. Using a cross-sectional, anonymous survey, we examined patterns of naturalistic CBD use among individuals with fibromyalgia (FM) and other chronic pain conditions. Our objective was to better understand rates of CBD use, reasons for use and discontinuation, communication with healthcare professionals about CBD, and perceptions of CBD effectiveness and safety among people with FM. After excluding incomplete surveys, our study population consisted of N = 2,701 participants with fibromyalgia, primarily in the United States. Overall, 38.1% reported never using CBD, 29.4% reported past CBD use, and 32.4% reported current CBD use. Past-year cannabis use was strongly associated with past or current CBD use. Those using CBD typically did so due to inadequate symptom relief, while those not using CBD typically cited safety concerns as their reason for not using CBD. Two-thirds of participants disclosed CBD use to their physician, although only 33% asked for physician advice on using CBD. Participants used CBD for numerous FM-related symptoms (most commonly pain), and generally reported slight to much improvement across symptom domains. Around half of participants reported side effects, which were typically minor. Our findings are limited by selection bias and our cross-sectional design, which prevents causal associations. In conclusion, CBD use is common among individuals with FM and many individuals using CBD report improvements across numerous FM-related symptoms. Our findings highlight the need for additional rigorous studies to better understand CBD's potential for FM management. PERSPECTIVE: This article indicates that CBD use is common among people with fibromyalgia, and the results suggest that many derive benefit from using CBD across multiple symptoms domains. Clinicians should discuss CBD use with fibromyalgia patients, and future studies are needed to rigorously assess CBD's therapeutic value for fibromyalgia symptoms.
Collapse
Affiliation(s)
- Kevin F Boehnke
- Anesthesiology Department, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Joel J Gagnier
- Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan; Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Lynne Matallana
- National Fibromyalgia Association, Newport Beach, California; Community Health Focus Inc., Ann Arbor, Michigan
| | - David A Williams
- Anesthesiology Department, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|